
Productions of X(3872), Zc(3900), X2(4013), and Zc(4020) in B(s) decays offer strong clues on their
molecular nature

Qi Wu,1, 2 Ming-Zhu Liu,3, 4, ∗ and Li-Sheng Geng4, 5, 6, 7, †

1Institute of Particle and Nuclear Physics, Henan Normal University, Xinxiang 453007, China
2School of Physics and Center of High Energy Physics, Peking University, Beijing 100871, China

3 Frontiers Science Center for Rare isotopes, Lanzhou University, Lanzhou 730000, China
4School of Physics, Beihang University, Beijing 102206, China

5Peng Huanwu Collaborative Center for Research and Education, Beihang University, Beijing 100191, China
6Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing, 102206, China

7Southern Center for Nuclear-Science Theory (SCNT), Institute of Modern Physics,
Chinese Academy of Sciences, Huizhou 516000, China

( Dated: February 13, 2024)

The exotic states X(3872) and Zc(3900) have long been conjectured as isoscalar and isovector D̄∗D
molecules. In this work, we first propose the triangle diagram mechanism to investigate their productions in
B decays as well as their heavy quark spin symmetry partners, X2(4013) and Zc(4020). We show that the
large isospin breaking of the ratio B[B+ → X(3872)K+]/B[B0 → X(3872)K0] can be attributed to the
isospin breaking of the neutral and charged D̄∗D components in their wave functions. For the same reason, the
branching fractions of Zc(3900) in B decays are smaller than the corresponding ones of X(3872) by at least
one order of magnitude, which naturally explains its non-observation. A hierarchy for the production fractions
of X(3872), Zc(3900), X2(4013), and Zc(4020) in B decays, consistent with all existing data, is predicted.
Furthermore, with the factorization ansatz we extract the decay constants ofX(3872), Zc(3900), and Zc(4020)

as D̄∗D(∗) molecules via theB decays, and then calculate their branching fractions in the relevantB(s) decays,
which turn out to agree with all existing experimental data. The mechanism we proposed is useful to elucidate
the internal structure of the many exotic hadrons discovered so far and to extract the decay constants of hadronic
molecules, which can be used to predict their production in related processes.

PACS numbers:
Keywords:

I. INTRODUCTION

The X(3872) was discovered in 2003 by the Belle Col-
laboration [1] and later confirmed in many other experi-
ments [2–8]. Its mass, 3871.69± 0.17 MeV, is lower than the
prediction of the legendary Goldfrey-Isgur quark model [9]
by almost 80 MeV. In addition, the ratio B[X(3872) →
J/ψπ+π−π0]/B[X(3872) → J/ψπ+π−] [10–12] shows
large isospin-breaking effects, difficult to understand for a
conventional charmonium. In 2013, the BESIII Collaboration
and Belle Collaboration observed a charged charmonium-like
state Zc(3900) in the J/ψπ± mass distribution of e+e− →
J/ψπ+π− [13, 14], which is above the mass threshold of
D̄∗D and has naturally been explained as a D̄∗D resonant
state and the isospin partner of X(3872) [15, 16]. Treating
X(3872) and Zc(3900) as D̄∗D molecules [16–34], heavy
quark spin symmetry (HQSS) implies the existence of two
D̄∗D∗ molecules, a JPC = 2++ bound state [22, 23, 35]
and a JPC = 1+− resonant state [36–41]. The former may
correspond to the X(4014) state recently discovered in the
γψ(2S) mass distribution of γγ → γψ(2S) by the Belle Col-
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laboration [42], and the latter may correspond to the resonant
state Zc(4020) discovered in the π±hc mass distribution of
e+e− → hcπ

+π− by the BESIII Collaboration [43]. Un-
like their masses and decay patterns, their productions (par-
ticularly in B(s) decays) remain largely unexplored. It is the
purpose of the present work to fill this gap and show how the
D̄(∗)D∗ molecular picture explains simultaneously their pro-
ductions, masses as well as decays, and thus help pin down
their molecular nature in a highly nontrivial way.

The production mechanism of X(3872) in B decays was
first proposed by Braaten et al. [44, 45], where the B meson
first decays into D̄∗DK and then the charmed mesons rescat-
ter and dynamically generate the X(3872). The predicted ra-
tio B[B0 → X(3872)K0]/B[B+ → X(3872)K+] depends
on two unknown parameters and the resulting natural value for
the ratio is one order of magnitude smaller than its experimen-
tal counterpart. We note that this ratio is reasonably described
in Ref. [46], but not the absolute branching fractions. It is im-
portant to note that up to now, a complete understanding of
the ratio B[B0 → X(3872)K0]/B[B+ → X(3872)K+] and
the absolute branching fractions in a unified framework is still
missing. In addition, X(3872) was observed in other decays
such as B+ → X(3872)K∗+ and B0

s → X(3872)ϕ [47]. It
is of vital importance to understand the branching fractions
of X(3872) as a D̄∗D molecule in the B(s) decays. Another
puzzle related to the four D̄∗D(∗) molecules is that although
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the X(3872) has been observed in multiple channels of B(s)

decays, the other three have not, which calls for an explana-
tion. Furthermore, for planning future experiments, it is im-
perative to know the branching fractions of the other three
states in B(s) decays, given the fact that B(s) decays have
served as important discovery channels for many exotic states
and more data can be expected in near future [48].

II. THEORETICAL FRAMEWORK

In this work, we propose the triangle mechanism to account
for the productions of theX(3872), Zc(3900),X2(4013), and
Zc(4020) molecules in B decays. In this mechanism, the
B meson first weakly decays into a pair of charmed mesons
D

(∗)
s D̄(∗), which proceeds via the externalW -emission mech-

anism at the quark level as shown in Fig. 4 (a) in Appendix A.
We only consider the external W -emission mechanism be-
cause it is usually the dominant one [49–51]. As shown later,
our results corroborate this assumption. Next, the charmed-
strange mesons D(∗)

s decay into a charmed meson D(∗) and a
kaon. Finally the D̄D∗ and D̄∗D∗ molecules are dynamically
generated via the final-state interactions of D̄(∗)D∗ as shown
in Fig. 1. Here the isoscalar D̄D∗ and D̄∗D∗ molecules refer
to X(3872) and X2(4013), and their isovector counterparts

are Zc(3900) and Zc(4020). We do not explicitly present the
triangle diagrams for the Zc(3900) and Zc(4020), which can
be obtained by replacing theX(3872) andX2(4013) of Fig. 1
with Zc(3900)

0 and Zc(4020)
0, respectively.

We note in passing that the triangle mechanism has been ap-
plied to study the productions of D∗

s0(2317), Ds1(2460) [52],
D+

s D
−
s , and DD̄ molecules [53], yielding branching frac-

tions in agreement with data. However, in the present work,
because of the existence of a complete multiplet of hadronic
molecules and of the interplay between the charged and neu-
tral components in the wave functions of these states, there
is richer physics, such as the isospin-breaking ratios and the
nontrivial hierarchy among the branching ratios. As a result,
the productions studied are more informative and play a more
decisive role in disclosing the nature of X(3872), Zc(3900),
and their HQSS partners, X2(4013) and Zc(4020).

We employ the effective Lagrangian approach to calculate
the Feynman diagrams of Fig. 1. The relevant Lagrangians
describing the interactions of each vertex in the triangle dia-
grams and the determination of the corresponding couplings
either by fitting to data or relying on symmetries are presented
in Appendix A, Appendix B, and Appendix C. It is straightfor-
ward to calculate the Feynman diagrams of Fig. 1 and obtain
the following amplitudes

Aa =

∫
d4q3
(2π)4

iA(B+ → D+
s D̄

0)A
(
D+

s → D∗0K+
)
A
(
D∗0D̄0 → X(3872)

)(
q21 −m2

D+
s

) (
q22 −m2

D̄0

) (
q23 −m2

D∗0

) , (1)

Ab =

∫
d4q3
(2π)4

iA(B+ → D∗+
s D̄0)A

(
D∗+

s → D∗0K+
)
A
(
D∗0D̄0 → X(3872)

)(
q21 −m2

D∗+
s

) (
q22 −m2

D̄0

) (
q23 −m2

D∗0

) , (2)

Ac =

∫
d4q3
(2π)4

iA(B+ → D∗+
s D̄∗0)A

(
D∗+

s → D0K+
)
A
(
D0D̄∗0 → X(3872)

)(
q21 −m2

D∗+
s

) (
q22 −m2

D̄∗0

) (
q23 −m2

D0

) , (3)

Ad =

∫
d4q3
(2π)4

iA(B+ → D+
s D̄

∗0)A
(
D+

s → D∗0K+
)
A
(
D∗0D̄∗0 → X2(4013)

)(
q21 −m2

D+
s

) (
q22 −m2

D̄∗0

) (
q23 −m2

D∗0

) , (4)

Ae =

∫
d4q3
(2π)4

iA(B+ → D∗+
s D̄∗0)A

(
D∗+

s → D∗0K+
)
A
(
D∗0D̄∗0 → X2(4013)

)(
q21 −m2

D∗+
s

) (
q22 −m2

D̄∗0

) (
q23 −m2

D∗0

) , (5)

where q1, q2, and q3 denote the momenta of D(∗)
s , D̄(∗), and

D(∗), and the amplitudes for each vertex of the triangle dia-
grams are listed in the Supplemental Material.

As shown in Fig. 2, one can condense the triangle diagram

into one vertex, leading to an effective description of the weak
decay B → X(3872)K at the tree level. With the factoriza-
tion ansatz, the decay B → X(3872)K actually can be ex-
pressed as the product of two matrix elements:

A (B → X(3872)K) =
GF√
2
VcbVcsa2 ⟨X(3872)|(cc̄)|0⟩

〈
K|(sb̄)|B

〉
, (6)
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FIG. 1: Triangle diagrams accounting for (a-c) B+(B0) → D
(∗)+
s D̄(∗)0(D(∗)+) → X(3872)K+(K0) and (d-e) B+(B0) →

D
(∗)+
s D̄(∗)0(D(∗)+) → X2(4013)K

+(K0).

FIG. 2: Triangle diagrams illustrating the decays B+(B0) → K+(K0)X(3872) simplified as tree diagrams.

where the effective Wilson coefficient a2 is determined by re-
producing the branching fractions of the decay B → J/ψK
since the J/ψ can be viewed as a pure cc̄. The matrix element〈
K|(sb̄)|B

〉
is characterized by form factors and the other one

is expressed as ⟨X(3872)|(cc̄)|0⟩ = mX(3872)fX(3872)ε
µ,

where the decay constant fX(3872) is unknown. Using the
equivalence of the triangle diagrams and tree diagrams in
Fig. 2, we can extract the decay constant of X(3872) as a
D̄∗D molecule, which is different from the estimation of the
X(3872) decay constant as an excited charmonium state [54].
One can see that the molecular information of X(3872) is
well hidden in the X(3872) decay constant. Since only
the tensor current for matrix element ⟨X2(4013)|c̄c|0⟩ is al-
lowed [55], the corresponding current for the matrix element〈
K|(sb̄)|B

〉
must be tensor, which is difficult to calculate.

Therefore, we can not directly extract the decay constant of
X2(4013) along this line and only focus on the other three
in this work. Following the strategy outlined, we can extract
the decay constants of Zc(3900) and Zc(4020) as hadronic
molecules, and the corresponding current matrix elements are
written as ⟨Zc(3900)|(cc̄)|0⟩ = mZc(3900)fZc(3900)ε

µ and
⟨Zc(4020)|(cc̄)|0⟩ = mZc(4020)fZc(4020)ε

µ.

Now that the decay constants of D̄(∗)D(∗) molecules are
obtained, it is straightforward to calculate the production rates
of D̄(∗)D(∗) molecules in other B(s) decays. Here we choose
the decay Bs → X(3872)ϕ as an example to demonstrate the
procedure. Using the naive factorization approach, the ampli-
tude of the decay Bs → X(3872)ϕ is expressed as

A (Bs → X(3872)ϕ) =
GF√
2
VcbVcsa2 ⟨X(3872)|(cc̄)|0⟩

〈
ϕ|(sb̄)|Bs

〉
, (7)
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where the effective Wilson coefficient a2 is determined by re-
producing the branching fraction of the weak decay Bs →
J/ψϕ, and the current matrix element

〈
ϕ|(sb̄)|Bs

〉
is ex-

pressed as several form factors, which have the same form

as the B → D∗ form factors. The current matrix element
⟨X(3872)|(cc̄)|0⟩ is already obtained via the decays B →
X(3872)K. Similarly, we can obtain the amplitudes of the
weak decays of B → J/ψK∗ and Bs → J/ψη:

A (Bs → X(3872)η) =
GF√
2
VcbVcsa2 ⟨X(3872)|(cc̄)|0⟩

〈
η|(sb̄)|Bs

〉
,

A (B → X(3872)K∗) =
GF√
2
VcbVcsa2 ⟨X(3872)|(cc̄)|0⟩

〈
K∗|(sb̄)|Bs

〉
. (8)

With the amplitudes for the weak decays given above, one
can compute the corresponding partial decay widths

Γ =
1

2J + 1

1

8π

|p⃗|
m2

B(s)

|M |2, (9)

where J is the total angular momentum of the initial B(s) me-
son, the overline indicates the sum over the polarization vec-
tors of final states, and |p⃗| is the momentum of either final
state in the rest frame of the B(s) meson.

III. RESULTS AND DISCUSSIONS

The couplings of X(3872)/Zc(3900) and their HQSS
partners X2(4013)/Zc(4020) to their constituents D̄D∗ and
D̄∗D∗ can be estimated in the contact range effective field
theory approach (See Appendix D for details). As a D̄∗D
bound state, X(3872) contains both a neutral component
D̄∗0D0/D̄0D∗0 and a charged component D∗+D−/D+D∗−

in its wave function. The couplings to the neutral and charged
components are found to be, gn = 3.86 GeV and gc =
3.39 GeV, which indicates that the neutral component plays
a more important role than the charged component, consis-
tent with the conclusions of Refs. [25, 26, 28, 31, 56, 57].
1 Employing HQSS, we can obtain the potentials of the
D̄∗0D∗0/D∗+D∗− system and predict the existence of a
JPC = 2++ bound state with a mass of m = 4013.03 MeV,
corresponding to X2(4013). Similarly, the X2(4013) cou-
plings to its neutral and charged components are estimated
to be g′n = 5.36 GeV and g′c = 4.86 GeV. Because the
Zc(3900) is located above the mass thresholds of the neutral
and charged components of D̄∗D by about 10 MeV, isospin-
breaking effects are expected to be small. Therefore, we
deal with the Zc states in the isospin limit. By reproduc-
ing the mass and width of Zc(3900), we obtain the coupling
gZc(3900)D̄D∗ = 7.10 GeV. The HQSS dictates the existence

1 Once the couplings of gn and gc are obtained, we estimate the proportions
of the neutral and charged components as 96% and 4%, consistent with
Refs. [57–59]

of a D̄∗D∗ molecule with M= 4028 MeV and Γ = 26 MeV,
whose coupling is estimated to be gZc(4020)D̄∗D∗ = 1.77. In
Table I, we present the ratios of the couplings in particle basis
to those in isospin basis. For the isoscalar states, the couplings
to the charged component and those to the neutral component
are of the same sign, but for the isovector states, they are of
the opposite sign, which has an important impact on our un-
derstanding of the productions of these molecules in B de-
cays as shown below. It is important to note that Table I only
tells the relative sign between the neutral and charged compo-
nents, while the relative size will be determined by data for
the isoscalar molecules but assumed to be the same for the
isovector molecules as discussed below and in Appendix D.

TABLE I: Ratios of the couplings in particle basis to the couplings
in isospin basis.

Molecules D∗+D− D+D∗− D∗0D̄0 D0D̄∗0

X(3872) 1/2 −1/2 1/2 −1/2

Zc(3900) 1/2 1/2 −1/2 −1/2

Molecules D∗+D∗− D∗0D̄∗0

X2(4013) 1/
√
2 1/

√
2

Zc(4020) 1/
√
2 −1/

√
2

We employ the effective Lagrangian approach to calculate
the branching fractions of D̄∗D(∗) molecules in B decays il-
lustrated in Fig. 1, where the dominant uncertainties originate
from the couplings of the three vertices of the triangle dia-
grams. For the weak interaction vertices, the experimental un-
certainties of the branching fractions of B → D̄(∗)D

(∗)
s lead

to about 10% uncertainty for the effective Wilson coefficient
a1 [53]2 For the vertices describing the dynamical generation
of hadronic molecules, the uncertainties are mainly from the
cutoff Λ of the form factor. If we increase the cutoff from 1 to

2 The uncertainties of the experimental branching fractions of the weak de-
cays B → D̄(∗)D

(∗)
s are transferred to the uncertainties of the product of

effective Wilson coefficients and decay constants. Since the uncertainties
of decay constants fDs and fD∗

s
are small according to lattice QCD [60],

the experimental uncertainties are only embodied into the effective Wilson
coefficients.
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2 GeV, the couplings decrease by about 10%. Therefore, we
assign a 10% uncertainty for the couplings of the molecules
to their constituents [53], a bit larger than the estimation for a
cutoff variation from 0.5 GeV to 1 GeV [56]. As for the cou-
plings g

D
(∗)
s D(∗)K

the large SU(4)-flavor symmetry breaking
can lead to an uncertainty of about 33% 3. Finally, we obtain
the uncertainties of the branching fractions originating from
the uncertainties of these parameters via a Monte Carlo sam-
pling in their 1σ intervals. One should note that there exists
no extra free parameter in our model.

FIG. 3: Top: branching fractions of B+(0) → X(3872)K+(0)

(green block), B+(0) → X2(4013)K
+(0) (blue block), B+(0) →

Zc(3900)K
+(0) (blue block), and B+(0) → Zc(4020)K

+(0) (yel-
low block). The left and right data points in each block are for the
B+ and B0 decays, respectively. Bottom: the corresponding ratios
between the branching fractions of B+ and those of B0. The red
error bars and shadow parts are the corresponding experimental data.

In Fig. 3, we compare the predicted branching fractions
of D̄∗D and D̄∗D∗ molecules in B decays with the avail-
able experimental data. The numbers are given in Table VIII
of Appendix E. One can see that the branching fractions of
the decays B+ → X(3872)K+ and B0 → X(3872)K0

are in reasonable agreement with the experimental data. We
further compute the ratio B[B0 → X(3872)K0]/B[B+ →
X(3872)K+] to be 0.62 ± 0.13, in agreement with the ex-
perimental value 0.52 ± 0.26 within uncertainties. We note
that the uncertainty of the predicted ratio is much smaller than
that of the branching fractions. We stress that the fact that
the branching fractions of X(3872) in B decays can be re-
produced in the D̄∗D molecular picture provides non-trivial
support for the nature of X(3872) as a D̄∗D bound state.

3 The SU(3)-flavor symmetry breaking can be characterized by the differ-
ence between the decay constants fK and fπ , which is about 19% [61–
63]. Along this line, the SU(4)-flavor symmetry breaking is estimated to
be about 33% by comparing the decay constants fD and fK [61, 62], con-
sistent with Ref. [64].

TABLE II: Decay constants (in units of MeV) of X(3872),
Zc(3900), and Zc(4020) as D̄∗D(∗) molecules.

Molecules Decay Constants
X(3872) 182.22+34.62

−42.98

Zc(3900) 68.85+16.14
−21.33

Zc(4020) 15.69+2.52
−3.01

The branching fractions of B[B+ → Zc(3900)K
+] and

B[B0 → Zc(3900)K
0] turn out to be (1.0 ∼ 3.3) × 10−5

and (0.6 ∼ 2.0) × 10−5. The upper limit of the experi-
mental branching fraction B[B+ → Zc(3900)(Zc(3900) →
ηcπ

+π−)K+] is 4.7 × 10−5 [47]. Although due to the un-
known branching fraction of B[Zc(3900) → ηcπ

+π−], we
can not determine B[B+ → Zc(3900)K

+], our prediction
is safely below the experimental upper limit. We note that
the ratio B[B+ → Zc(3900)K

+]/B[B0 → Zc(3900)K
0] =

0.63 ± 0.29 shows large isospin-breaking effects. However,
unlike the case of X(3872) and X2(4013), this is not due to
isospin breaking of the wave functions but is mainly caused by
the Wilson coefficient a1 fitted to the B+(0) → D+

s D̄
0(D−)

and B+(0) → D∗+
s D̄∗0(D∗−) decays (see Appendix E for

details). It is interesting to compare the branching fractions of
B[B → Zc(3900)K] with those of B[B → X(3872)K]. The
former is smaller than the latter by one order of magnitude,
which is consistent with the fact that the Zc(3900) state has
not been observed in B decays. We note that only the ampli-
tude of Fig. 1 (a) and that of Fig. 1 (c) contribute to the decays
of the B meson into the D̄∗D molecules, while the contribu-
tion of Fig. 1 (b) is accidentally very small. The sign of the
amplitude of Fig. 1 (a) and that of Fig. 1 (c) depend on the rel-
ative sign between the charged and neural components in the
wave functions of the D̄∗D molecules. From Table I one can
see that the sign is opposite for the isocalar molecules but the
same for the isovector molecules. As the two amplitudes for
the isoscalar molecules add constructively, but those for the
isovector molecules add destructively, the production rates of
Zc(3900) in B decays are lower than those of X(3872) in B
decays.

We now turn to the branching fractions of X2(4013) and
Zc(4020) in B decays. The predicted branching fractions of
B[B+ → X2(4013)K

+] and B[B0 → X2(4013)K
0] are

(1.5 ∼ 3.1) × 10−5 and (1.1 ∼ 2.3) × 10−5, and the ra-
tio B[B0 → X2(4013)K

0]/B[B+ → X2(4013)K
+] is es-

timated to be 0.75 ± 0.16. We note that the isospin break-
ing of the ratio is mainly caused by the isospin breaking of
the D̄∗D∗ wave function. Similarly, we predict the branch-
ing fractions B[B → Zc(4020)K] to be around 1 × 10−6,
which are lower than those of B[B → Zc(3900)K] as well
as B[B → X2(4013)K] by one order of magnitude. This im-
plies that it will be more difficult to observe them inB decays.

The production mechanism of the D̄∗D(∗) molecules in B
decays via the triangle diagrams can be simplified as tree-
level diagrams. This way, one can extract the decays constants
of X(3872), Zc(3900), and Zc(4020) as D̄∗D(∗) molecules.
From Fig. 2, we can see that the summation of Eq.(1), Eq.(2)
and Eq.(3) representing the amplitude of the triangle diagram
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TABLE III: Branching fractions (10−4) of the decays B0
s → X(3872)ϕ, B → X(3872)K∗, and B0

s → X(3872)η.

Decay modes Exp. [47] a2 Decay modes Our predictions Exp. [47]
B+ → J/ψK+ 10.20± 0.19 0.271+0.002

−0.003 B+ → X(3872)K+ 1.49+0.62
−0.62 2.1± 0.7

B+ → J/ψK∗+ 14.3± 0.8 0.236+0.007
−0.007 B+ → X(3872)K∗+ 3.47+0.85

−0.85 2.8 ∼ 6

B0
s → J/ψϕ 10.4± 0.4 0.206+0.004

−0.004 B0
s → X(3872)ϕ 2.39+0.58

−0.58 1.1± 0.4

B0
s → J/ψη 4.0± 0.7 0.212+0.018

−0.019 B0
s → X(3872)η 0.41+0.11

−0.11 −

is equal to Eq.(6) representing the amplitude of the tree-level
diagram, where the former amplitude was already calculated
but with two unknown parameters a2 and fX(3872) left for
the latter amplitude. First, we determine the effective Wil-
son coefficient a2 = 0.271+0.002

−0.003 by reproducing the exper-
imental branching fraction B(B+ → J/ψK+). Then we
extract the decay constant of X(3872) as a D̄∗D molecule,
e.g., fX(3872) = 182.22+34.62

−42.98 MeV. The decay constant of
X(3872) as a purely excited charmonium state is estimated to
be 329 MeV [54] or 335 MeV [65], which is much larger than
that as a hadronic molecule. Once the X(3872) decay con-
stant is obtained 4, one can predict the branching fractions of
these states in other processes, such asB → K∗,Bs → η, and
Bs → ϕ, which share the same production mechanism as that
of B → X(3872)K at the quark level. The unknown param-
eters of the form factors of these hadron transitions are taken
from Table VI in Appendix A, and the corresponding effec-
tive Wilson coefficients a2 are determined by the experimental
branching fractions of the decaysB → J/ψK∗,Bs → J/ψη,
and Bs → J/ψϕ listed in Table III. With the X(3872) de-
cay constant determined, we can obtain the branching frac-
tions: B(B+ → X(3872)K∗+) = 3.47+0.85

−0.85 × 10−4 and
B(B0

s → X(3872)ϕ) = 2.39+0.58
−0.58 × 10−4, consistent with

the experimental data. Similarly, we predict the branching
fraction B(B0

s → X(3872)η) to be 0.41+0.11
−0.11 × 10−4, which

can be verified by future experiments.

One can see that the mechanism we proposed can describe
the decays of B(s) into X(3872) plus a strange meson. It
is natural to expect that such a mechanism works in simi-
lar decays of B(s) into Zc(3900) and Zc(4020). The decay
constants of Zc(3900) and Zc(4020) as the isovector D̄∗D(∗)

molecules are estimated to be fZc(3900) = 68.85+16.14
−21.33 MeV

and fZc(4020) = 15.69+2.52
−3.01 MeV, respectively. With the de-

cay constants given in Table II and the effective Wilson co-
efficient a2 given in Table III, we predict the branching frac-
tions of the decays B → Zc(3900)K

∗, Bs → Zc(3900)η,
Bs → Zc(3900)ϕ, B → Zc(4020)K

∗, Bs → Zc(4020)η,
and Bs → Zc(4020)ϕ in Table IV, which are smaller than the
B(s) decays into X(3872).

4 The X(3872) can also contain a cc̄ component [66, 67]. The studies per-
formed in this work show that the D̄∗D component plays a dominant role.

IV. SUMMARY AND OUTLOOK

In summary, we proposed a unified framework to compute
the branching fractions of D̄∗D and D̄∗D∗ molecules in B
decays, where the former molecules refer to X(3872) and
Zc(3900), and the latter to X2(4013) and Zc(4020). Our
framework, with no free parameters, predicted the branch-
ing fractions of B[B+ → X(3872)K+] and B[B0 →
X(3872)K0], (0.87 ∼ 2.11) × 10−4 and (0.54 ∼ 1.32) ×
10−4, consistent with the experimental data. The branch-
ing fractions of B[B+ → Zc(3900)K

+] and B[B0 →
Zc(3900)K

0] are found to be about the order of 10−5, smaller
than the experimental upper limits. Moreover, we predicted
the branching fractions of B[B → X2(4013)K] and B[B →
Zc(4020)K] to be of the order of 10−5 and 10−6. Simplify-
ing the triangle diagrams as tree-level diagrams, we could ex-
tract the decay constants of XZ states as D̄∗D(∗) molecules,
i.e., fX(3872) = 182.22 MeV, fZc(3900) = 68.85 MeV, and
fZc(4020) = 15.69 MeV, following the magnitude of the
branching fractions of the D̄∗D(∗) molecules in the B(s)

decays. With the D̄∗D(∗) molecular decay constants de-
termined, we calculated the branching fractions of the de-
cays B → X/ZcK

∗, Bs → X/Zcη, and Bs → X/Zcϕ.
In particular, the calculated branching fractions B[B+ →
X(3872)K∗+] = 3.47 × 10−4 and B[B0

s → X(3872)ϕ] =
2.51×10−4 are consistent with the current experimental data.

We emphasize that the ratios of branching fractions are
more precise than the absolute branching fractions in our
framework and can provide more insights into the molec-
ular nature of the states studied. The ratios of B[B+ →
X(3872)K+]/B[B0 → X(3872)K0] and B[B+ →
X2(4013)K

+]/B[B0 → X2(4013)K
0] are about 0.62 and

0.75, the former consistent with the experimental data. The
large isospin-breaking effects are attributed to the isospin
breaking of the D̄∗D and D̄∗D∗ neutral and charged compo-
nents. On the other hand, the isospin-breaking ratio B[B+ →
Zc(3900)K

+]/B[B0 → Zc(3900)K
0] = 0.63 mainly orig-

inates from the Wilson coefficient a1 determined by fitting
to the weak decay processes of B+(0) → D+

s D̄
0(D−) and

B+(0) → D∗+
s D̄∗0(D∗−). In addition, our results show that

the branching fractions of B[B → Zc(3900)K] are smaller
than those of B[B → X(3872)K] by one order of magnitude,
which is consistent with the fact Zc(3900) has not been ob-
served in B decays. The predicted hierarchy in the branching
fractions of B[B → Zc(3900)K] and B[B → X(3872)K]
serve as a highly nontrivial test on the molecular nature of
X(3872) and Zc(3900) and should be checked by future ex-
periments.
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TABLE IV: Branching fractions (10−6) of the decays B0
s → Zc(3900)ϕ, B → Zc(3900)K

∗, B0
s → Zc(3900)η, B0

s → Zc(4020)ϕ,
B → Zc(4020)K

∗, and B0
s → Zc(4020)η.

Decay modes Our Predictions Decay modes Our predictions
B+ → Zc(3900)K

∗+ 49.64+15.15
−15.15 B+ → Zc(4020)K

∗+ 2.51+0.51
−0.51

B0
s → Zc(3900)ϕ 34.07+10.36

−10.36 B0
s → Zc(4020)ϕ 1.63+0.33

−0.33

B0
s → Zc(3900)η 5.83+1.86

−1.86 B0
s → Zc(4020)η 0.23+0.05

−0.05

A few remarks are in order. In this study, we only con-
sidered the dominant D̄∗D(∗) contribution to the XZ states.
However, other channels, such as D̄sDs, D̄∗D∗, and D̄∗

sD
∗
s ,

can also play a role in forming the X(3872) [25, 68]. In ad-
dition, the X(3872) may contain a cc̄ component [57]. The
fact that the D̄∗D contribution alone can describe the branch-
ing fractions of X(3872) in B decays indicates that X(3872)
contains a sizable or dominant D̄∗D component. As for
Zc(3900), purely based on the D̄∗D invariant mass distribu-
tions, it can also be explained either as a cusp effect or as a
virtual state [15, 69–74], which would affect its couplings to
D̄∗D and therefore modify B[B → Zc(3900)K]. As a result,
future experimental measurements of Zc(3900) in B decays
will help either confirm or refute its nature as a D̄∗D resonant
state.

Acknowledgments

M.Z.L thanks Fu-sheng Yu and Rui-Xiang Shi for use-
ful discussions. This work is supported in part by the Na-
tional Natural Science Foundation of China under Grants

No.11975041 and No.11961141004. M.-Z.L acknowledges
support from the National Natural Science Foundation of
China under Grant No.12105007.

Appendix A: Amplitudes for weak decays B → D
(∗)
s D̄(∗)

The mechanism accounting for the weak decays B →
D

(∗)
s D̄(∗) can be well explained in the naive factorization ap-

proach, which mainly proceeds via the external W -emission
mechanism at the quark level shown in Fig. 4 (a). According
to the topological classification of weak decays, the external
W -emission mechanism often provides the dominant contri-
butions [49–51]. As shown in Table V, the branching fractions
B[B → D

(∗)
s D̄(∗)] are of the order of 10−2, and therefore it is

favorable to produce the D̄∗D(∗) molecules in B decays via
the triangle mechanism.

For the weak interaction vertices, the decay amplitudes of
B → D

(∗)
s D̄(∗) can be expressed as the products of two

hadronic matrix elements [75, 76]

A
(
B → DsD̄

∗) =
GF√
2
VcbVcsa1 ⟨Ds|(sc̄)|0⟩

〈
D̄∗|(cb̄)|B

〉
, (A1)

A
(
B → DsD̄

)
=

GF√
2
VcbVcsa

′
1 ⟨Ds|(sc̄)|0⟩

〈
D̄|(cb̄)|B

〉
, (A2)

A
(
B → D∗

sD̄
)

=
GF√
2
VcbVcsa

∗
1 ⟨D∗

s |(sc̄)|0⟩
〈
D̄|(cb̄)|B

〉
, (A3)

A
(
B → D∗

sD̄
∗) =

GF√
2
VcbVcsa

′∗
1 ⟨D∗

s |(sc̄)|0⟩
〈
D̄∗|(cb̄)|B

〉
, (A4)

where a1 = ceff1 +ceff2 /Nc withNc the number of colors and
a1 can be obtained in the factorization approach [77]. In the
present work, we determine a1 by fitting to the experimental
branching fractions.

The current matrix elements between a pseudoscalar meson
or vector meson and the vacuum have the following form:

⟨Ds|(sc̄)|0⟩ = ifDs
pµDs

, (A5)
⟨D∗

s |(sc̄)|0⟩ = mD∗
s
fD∗

s
ϵ∗µ,

where fDs
and fD∗

s
are the decay constants for Ds and D∗

s ,
respectively, and ϵ∗µ denotes the polarization vector of a vector
particle. In this work, we take GF = 1.166 × 10−5 GeV−2,
Vcb = 0.041, Vcs = 0.987, fDs = 250 MeV, and fD∗

s
=

272 MeV [47, 78–80].

The hadronic matrix elements are parameterized in terms of
six form factors [78]



8

TABLE V: Branching fractions (10−3) of B → D
(∗)
s D̄(∗).

Decay mode RPP. [47] Decay mode RPP. [47]
a′1+ B+ → D̄0D+

s 9.0± 0.9 a∗1+ B+ → D̄0D∗+
s 7.6± 1.6

a′10 B0 → D−D+
s 7.2± 0.8 a∗10 B0 → D−D∗+

s 7.4± 1.6

a1+ B+ → D̄∗0D+
s 8.2± 1.7 a′∗1+ B+ → D̄∗0D∗+

s 17.1± 2.4

a10 B0 → D∗−D+
s 8.0± 1.1 a′∗10 B0 → D∗−D∗+

s 17.7± 1.4

〈
D̄∗|(cb̄)|B

〉
= ϵ∗α

{
−gµα(mD̄∗ +mB)A1

(
q2
)
+ PµPα A2

(
q2
)

mD̄∗ +mB
(A6)

+iεµαβγPβqγ
V
(
q2
)

mD̄∗ +mB
+ qµPα

[
mD̄∗ +mB

q2
A1

(
q2
)
− mB −mD̄∗

q2
A2

(
q2
)
− 2mD̄∗

q2
A0

(
q2
)]}

,

〈
D̄|(cb̄)|B

〉
=

[
(pB + pD̄)µ −

m2
B −m2

D̄

q′2
q′µ

]
F1(q

′2) +
m2

B −m2
D̄

q′2
q′µF0(q

′2), (A7)

where q and q′ represent the momentum transfer of pB − pD̄∗

and pB − pD̄, respectively, and P = pB + pD̄∗ .
The form factors of F1,0(t), A0(t), A1(t), A2(t), and V (t)

with t ≡ q(′)2 can be parameterized in the following form [78]

F (t) =
F (0)

1− a (t/m2
B) + b (t2/m4

B)
. (A8)

The values of F0, a, and b in the transition form factors of
B → D̄(∗) are taken from Ref. [78] and shown in Table VI.

The weak decay amplitudes of B(k0) →
D

(∗)
s (q1)D̄

(∗)(q2) have the following form

A(B → DsD̄
∗) =

GF√
2
VcbVcsa1fDs{−q1 · ε(q2)(mD̄∗ +mB)A1

(
q21
)

(A9)

+ (k0 + q2) · ε(q2)q1 · (k0 + q2)
A2

(
q21
)

mD̄∗ +mB
+ (k0 + q2) · ε(q2)

[(mD̄∗ +mB)A1(q
2
1)− (mB −mD̄∗)A2(q

2
1)− 2mD̄∗A0(q

2
1)]},

A(B → DsD̄) =
GF√
2
VcbVcsa

′
1fDs

(m2
B −m2

D)F0(q
2
1),

A(B → D∗
sD̄) =

GF√
2
VcbVcsa

∗
1mD∗

s
fD∗

s
(k0 + q2) · ε(q1)F1(q

2
1),

A(B → D∗
sD̄

∗) =
GF√
2
VcbVcsa

∗′
1 mD∗

s
fD∗

s
εµ(q1)

[
(−gµα(mD̄∗ +mB)A1

(
q21
)

+ (k0 + q2)
µ(k0 + q2)

α A2

(
q21
)

mD̄∗ +mB
+ iεµαβγ(k0 + q2)βq1γ

V
(
q21
)

mD̄∗ +mB

]
εα(q2).

By fitting to the eight branching fractions of B → D
(∗)
s D̄(∗)

tabulated in Table V, we obtain a1+ = 0.929, a10 = 0.955,
a′1+ = 0.791, a′10 = 0.736, a∗1+ = 0.812, a∗10 = 0.834,
a′∗1+ = 0.833, and a′∗10 = 0.880. The subscript with + and

0 denote the B+ and B0 decay modes, the values of which
show small isospin-breaking effects of less than 10%.

The weak decay amplitudes of B(k0) →
X(3872)(p2)K

(∗)(p1) have the following form
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FIG. 4: External W -emission mechanism (a) for B+(0) → D
(∗)+
s D̄(∗)0(D(∗)−) and internal W -emission mechanism (b) for B+(0) →

J/ψK(∗)+(0).

A(B → X(3872)K) =
GF√
2
VcbVcsa2mX(3872)fX(3872)(k0 + p1) · ε(p2)F1(p

2
2), (A10)

A(B → X(3872)K∗) =
GF√
2
VcbVcsa2mX(3872)fX(3872)εµ(p2)

[
(−gµα(mX(3872) +mB)A1

(
p22
)

+ (k0 + p1)
µ(k0 + p1)

α A2

(
p22
)

mX(3872) +mB
+ iεµαβγ(k0 + p1)βp2γ

V
(
p22
)

mX(3872) +mB

]
εα(p1).

TABLE VI: Values of F (0), a, b in the B → K and B → K∗

transition form factors [78].

F0 F1 V A0 A1 A2

F (0)B→D(∗)
0.67 0.67 0.77 0.68 0.65 0.61

aB→D(∗)
0.63 1.22 1.25 1.21 0.60 1.12

bB→D(∗)
0.01 0.36 0.38 0.36 0.00 0.31

F (0)B→K(∗)
0.34 0.34 0.36 0.38 0.31 0.28

aB→K(∗)
0.78 1.60 1.69 1.61 0.84 1.53

bB→K(∗)
0.05 0.73 0.95 0.89 0.12 0.79

F (0)Bs→η(ϕ) 0.28 0.28 0.29 0.31 0.25 0.22
aBs→η(ϕ) 1.07 1.82 1.95 1.87 1.20 1.79
bBs→η(ϕ) 0.32 1.45 1.98 1.87 0.54 1.67

Appendix B: Amplitudes for D(∗)
s → D(∗)K

The Lagrangians describing the interactions between
charmed mesons and the kaon

LD∗
sDK = −igD∗

sDK(D∂µKD∗†
sµ −D∗

sµ∂
µKD†),(B1)

LDsD∗K = −igDsD∗K(Ds∂
µKD∗†

µ −D∗
µ∂

µKD†
s),

LD∗
sD

∗K = −gD∗
sD

∗Kεµναβ∂
µD∗ν

s ∂αD∗β†K,

where gDsD∗K , gD∗
sDK , and gD∗

sD
∗K are the couplings to

be determined. From these Lagrangians, one can obtain the
amplitudes for the decays of D(∗)

s (q1) → D(∗)(q3)K(p1)

A (D∗
s → DK) = gD∗

sDKp1 · ε(q1), (B2)
A (Ds → D∗K) = −gDsD∗Kp1 · ε(q3),
A (D∗

s → D∗K) = gD∗
sD

∗Kεµναβq
µ
1 ε

ν(q1)q
α
3 ε

β(q3).

Assuming SU(3)-flavor symmetry and SU(4)-flavor symme-
try the coupling gDsD∗K is estimated to be 16.6 [53] and
10 [81], while the QCD sum rule yields 5 [82, 83]. In
view of this large variance, we adopt the couplings estimated
by SU(4) symmetry, which are in between those estimated
utilyzing SU(3) symmetry and by the QCD sum rule, i.e.,
gDsD∗K = gD∗

sDK = 10 and gD∗
sD

∗K = 7.0 GeV−1 [81].
It is well known that the SU(4) symmetry is heavily broken.
Therefore, following Refs. [61, 62], we estimate the breaking
of SU(4) symmetry using the D and K decay constants as
references, which is 33%, consistent with Ref. [64].

Appendix C: Amplitudes for the dynamical generation of D̄∗D
and D̄∗D∗ molecules

The Lagrangian describing the interactions between
X(3872)/X2(4013) and their constituents are

LXD̄D∗ = gXD̄D∗XµD∗
µD̄, (C1)

LX2D̄∗D∗ = gX2D̄∗D∗X2µνD
∗µD̄∗ν ,

where gXD̄D∗ and gX2D̄∗D∗ are the couplings to be deter-
mined.
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In the following, we denote Zc(3900) and Zc(4020) as
Zc and Z ′

c, respectively. The interactions between the
Zc(3900)/Zc(4020) resonant states and their constituents can
be expressed by the following effective Lagrangians:

LZcDD̄∗ = gZcDD̄∗Zµ
c DD̄

∗
µ, (C2)

LZ′
cD

∗D̄∗ = igZ′
cD

∗D̄∗εµναβ∂
µZ ′ν

c D
∗αD̄∗β ,

where gZcDD̄∗ and gZ′
cD

∗D̄∗ are the corresponding couplings.

From the above Lagrangians, one can obtain the amplitudes
for the coupling of X(3872), X2(4013), Zc(3900), Zc(4020)
to the D̄D∗ and D̄D∗ channels, e.g., D̄(∗)(q2)D

(∗)(q3) →
X/Zc(p2)

A(D̄D∗ → X(3872)) = gD̄D∗Xε
µ(p2)εµ(q3), (C3)

A(D̄∗D → X(3872)) = gD̄D∗Xε
µ(p2)εµ(q2), (C4)

A(D̄∗D∗ → X2(4013)) = gD̄∗D∗Xε
µν(p2)εµ(q3)εν(q2), (C5)

A(D̄D∗ → Zc(3900)) = gD̄D∗Zc
εµ(p2)εµ(q3), (C6)

A(D̄∗D → Zc(3900)) = gD̄D∗Zc
εµ(p2)εµ(q2), (C7)

A(D̄∗D∗ → Zc(4020)) = gD̄∗D∗Z′
c
εµναβp

µ
2ε

ν(p2)ε
α(q3)ε

β(q2). (C8)

In the above formula, εµ(q) denotes the polarization vector of
a particle with spin S = 1, and εµν(q) denotes the polarization
tensor of a particle with spin S = 2.

The above couplings are determined by the contact-range
effective field theory as shown later. One should note that

the isovector D̄∗D(∗) molecules are generated by the D̄∗D(∗)

potentials in isospin basis, and therefore their couplings to
the components in particle basis can be derived following
Eq. (C9). In the isospin limit, one can decompose the isospin
wave functions of the isovector molecules as

|Zc(3900)⟩ =
1

2

[
(|D∗+D−⟩ − |D∗0D̄0⟩) + (|D+D∗−⟩ − |D0D̄∗0⟩)

]
, (C9)

|Zc(4020)⟩ =
1√
2

(
|D∗+D∗−⟩ − |D∗0D̄∗0⟩

)
.

To compare with the isovector molecules, we decompose the isospin wave functions of the isoscalar molecules as

|X(3872)⟩ =
1

2

[
(|D∗+D−⟩+ |D∗0D̄0⟩)− (|D+D∗−⟩+ |D0D̄∗0⟩)

]
, (C10)

|X2(4013)⟩ =
1√
2

(
|D∗+D∗−⟩+ |D∗0D̄∗0⟩

)
.

Due to the fact that the isoscalar D̄∗D(∗) molecules are gen-
erated by the D̄∗D(∗) potentials in particle basis, the absolute
couplings of the isoscalar D̄∗D(∗) molecules to their compo-
nents are determined by the EFT approach, but the sign be-
tween the components is determined by Eq. (C10).

Appendix D: Contact-range effective field theory for the D̄∗D
and D̄∗D∗ interactions

In this subsection, we briefly describe the contact-range ef-
fective field theory in which the D̄∗D and D̄∗D∗ interactions
can dynamically generate theX(3872),X2(4013), Zc(3900),
and Zc(4020).

The scattering amplitude T responsible for the dynamical
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generation of the D̄∗D and D̄∗D∗ molecules is determined
by solving the Lippmann-Schwinger equation

T = (1− V G)−1V, (D1)

where V is the D̄(∗)D(∗) potential determined by the contact-
range EFT approach shown later, andG is the two-body prop-
agator. In evaluating the loop function G, we introduce a reg-
ulator of Gaussian form e−2q2/Λ2

in the integral as

G(s) =

∫
d3q

(2π)3
e−2q2/Λ2

√
s−m1 −m2 − q2/(2µ12) + iε

, (D2)

where
√
s is the total energy in the c.m. frame of m1 and m2,

µ12 = m1m2

m1+m2
is the reduced mass, and Λ is the momentum

cutoff. Following our previous works [84, 85], we take Λ =
1 GeV in the present work. The dynamically generated states
correspond to poles in the unphysical sheet. In this sheet, the
loop function of Eq. (D2) becomes

GII(s,m1,m2) = GI(s,m1,m2) + iµ12
p

2π
e−2p2/Λ2

,(D3)

where the c.m. momentum p is

p =
√
2µ12

(√
s−m1 −m2

)
. (D4)

Using the D̄(∗)D(∗) contact potentials we can search for
poles around the D̄(∗)D(∗) thresholds, and determine the cou-
plings between the molecular states and their constituents
from the residues of the corresponding poles,

gigj = lim√
s→√

s0

(√
s−

√
s0
)
Tij(

√
s), (D5)

where gi denotes the coupling of channel i to the dynamically
generated state and

√
s0 is the pole position.

In the heavy quark limit, the contact potential of the
JPC = 1++ D̄∗D channel is expressed as a sum of two
low-energy constants, Ca + Cb, where Ca characterizes the
spin-independent interaction and Cb accounts for the spin-
spin interaction [22]. Because the X(3872) is quite close
to the mass threshold of D̄∗0D0 but below the mass thresh-
old of D∗+D− by 8 MeV, it is important to take into ac-
count the isospin-breaking effects of the D̄∗D wave function.
It contains both a neutral component and a charged compo-
nent, which are defined as Cn = 1√

2
(D̄∗0D0 − D̄0D∗0) and

Cc =
1√
2
(D∗+D− −D+D∗−). The contact potential for Cn

and Cc read [22]:

VCn−Cc
=

(
C ′

a + C ′
b C ′′

a + C ′′
b

C ′′
a + C ′′

b C ′
a + C ′

b

)
. (D6)

In principle, the contact potentials should be determined by
reproducing the experimental data. Due to the scarcity of ex-
perimental data one needs to turn to other approaches such
as the light meson saturation mechanism, which dictates that
the couplings are saturated by the light meson (σ, ρ, and ω)
exchanges in the one boson exchange model. Ca receives con-
tributions from both the scalar and vector meson exchanges,

but Cb only receives contributions from the vector meson ex-
changes, i.e.,

CS
a + CV

a ∝ Csat
a (Λ ∼ mσ,mV ), (D7)

CV
b ∝ Csat

b (Λ ∼ mσ,mV ),

where

Csat(σ)
a (Λ ∼ mσ) ∝ − g2σ

m2
σ

, (D8)

Csat(V )
a (Λ ∼ mV ) ∝ − g2v

m2
v

(1− τ⃗1 · τ⃗2),

C
sat(V )
b (Λ ∼ mV ) ∝ − f2v

6M2
(1− τ⃗1 · τ⃗2),

where gσ1
denotes the coupling of the charm meson to

the sigma meson, gv1 and fv1 denote the electric-type and
magnetic-type couplings between the charm meson and a light
vector meson, andM is a mass scale to render fv1 dimension-
less. The proportionality constant is unknown and depends
on the details of the renormalization procedure. However, as-
suming that the constant is the same for Csat

a and Csat
b , we

can calculate their ratio. Such an approach has been verified
in the studies of the D̄(∗)Σ

(∗)
c system and it was found that the

ratio estimated by the light meson saturation is consistent with
that obtained by reproducing the masses of the Pc states [86].

As for the Cn − Cc system, the diagonal potential re-
ceives contributions from the σ, ω, and ρ0 mesons but the
off-diagonal potentials only receive contributions from the ρ+

meson, which can determine the relative strength between the
off-diagonal potential and the diagonal potential. Following
Ref. [87], the couplings of C ′

a, C ′
b, C ′′

a , and C ′′
b in the light

meson saturation approach read

C ′
a ∝ − g2σ

m2
σ

− g2v
m2

v

− g2v
m2

v

, (D9)

C ′
b ∝ − f2v

6M2
− f2v

6M2
,

C ′′
a ∝ −2

g2v
m2

v

,

C ′′
b ∝ −2

f2v
6M2

,

from which we obtain the ratio of C ′′
a + C ′′

b to C ′
a + C ′

b:

C ′′
a + C ′′

b

C ′
a + C ′

b

≈ 0.5, (D10)

consistent with the estimations of Refs. [88–90]. As a re-
sult, the unknown couplings of the contact-range potentials
are reduced to one. By reproducing the mass of X(3872),
we obtain C ′

a + C ′
b = −12.551 GeV−2 and the correspond-

ing couplings to the neutral and charged components of its
wave function, i.e., gn = 3.86 GeV and gc = 3.39 GeV.
Taking into account HQSS, one can obtain the potentials of
the D̄∗0D∗0/D∗+D∗− system and predict the existence of a
JPC = 2++ bound state with a mass of m = 4013.03 MeV,
corresponding to X2(4013). Finally, the X2(4013) couplings
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TABLE VII: Values of the couplings of the D̄∗D(∗) molecules to
their neutral and charged components.

Molecules gn gc

X(3872) 3.86 GeV 3.39 GeV
X2(4013) 5.36 GeV 4.86 GeV
Zc(3900) 5.02 GeV 5.02 GeV
Zc(4020) 1.25 1.25

to its neutral and charged components are determined as g′n =
5.36 GeV and g′c = 4.86 GeV.

To generate resonant states, the contact potential has to
be supplemented with a q2 dependent term [37], where q
is the relative three momentum. Identifying Zc(3900) as a
D̄D∗ resonant state with the form of Cs + Cd q

2, we ob-
tain Cs = −7.7 GeV−2 and Cd = −211 GeV−4, and then
the coupling gZc(3900)D̄D∗ = 7.10 GeV. Taking into account
HQSS, we predict the existence of a D̄∗D∗ molecule with
M = 4028 MeV and Γ = 26 MeV, in perfect agreement with
the experimental measurements, and then obtain the coupling
gZc(4020)D̄∗D∗ = 1.77. In Table VII, we collect the values of
the molecular couplings.

Appendix E: Additional numerical details

In Table VIII, we present the branching fractions of
the decays of B → X(3872)/X2(4013)K and B →
Zc(3900)/Zc(4020)K. In the following, we analyze the
origin of the isospin breaking in the ratios B[B0 →

X(3872)K0]/B[B+ → X(3872)K+] and B[B+ →
Zc(3900)K

+]/B[B0 → Zc(3900)K
0].

In the particle basis, the Wilson coefficients a′1/a
′∗
1 and the

couplings gn/gc for the decays of B0 → X(3872)K0 and
B+ → X(3872)K+ are different, resulting in a ratio B[B0 →
X(3872)K0]/B[B+ → X(3872)K+] = 0.62 ± 0.13. With
different couplings gn/gc but the same Wilson coefficients
a′1/a

′∗
1 , the ratio becomes B[B0 → X(3872)K0]/B[B+ →

X(3872)K+] = 0.66 ± 0.14. On the other hand, with
the same couplings gn/gc but different Wilson coefficients
a′1/a

′∗
1 , the ratio becomes B[B0 → X(3872)K0]/B[B+ →

X(3872)K+] = 0.81 ± 0.17. Clearly, the isospin-breaking
of the ratio B[B0 → X(3872)K0]/B[B+ → X(3872)K+]
is mainly caused by the isospin breaking of the D̄∗D wave
function.

For the Zc(3900), the different Wilson coefficients a′1/a
′∗
1

lead to the ratio B[B+ → Zc(3900)K
+]/B[B0 →

Zc(3900)K
0] = 0.63 ± 0.29. With the same Wilson coef-

ficients a′1/a
′∗
1 , the ratio B[B+ → Zc(3900)K

+]/B[B0 →
Zc(3900)K

0] becomes 0.98 ± 0.39, which shows no isospin
breaking. As a result, the isospin-breaking effect of the ratio
B[B+ → Zc(3900)K

+]/B[B0 → Zc(3900)K
0] originates

from the Wilson coefficients fitted to the experimental data.

For X2(4013), in the particle basis, the ratio B[B0 →
X2(4013)K

0]/B[B+ → X2(4013)K
+] is estimated to be

0.75 ± 0.16. With the same couplings g′n/g
′
c, the ratio be-

comes 0.92 ± 0.20. With the same Wilson coefficients, the
ratio becomes 0.70 ± 0.15. Clearly, the isospin breaking of
the neutral and charged components in its wave function is
responsible for the large isospin breaking of this ratio.
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