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At the HL-LHC and future high energy colliders, a sample of a billion top quarks

will be produced, allowing precision searches for new physics in top quark decay

and production. To aid in this endeavor, we characterize the independent three

and four point on-shell amplitudes involving top quarks, under the assumption of

SU(3)c × U(1)em invariance. The four point amplitudes factorize into primary and

descendent amplitudes, where descendants are primaries multiplied by Mandelstam

variables. By enumerating the allowed amplitudes, we can check for amplitude redun-

dancies to find the number of independent terms and convert those into a Lagrangian

which parameterizes these amplitudes. These results are then cross checked by uti-

lizing the Hilbert series to count the number of independent Lagrangian operators.

Interestingly, we find situations where the Hilbert series has cancellations which, if

näıvely interpreted, would lead to the incorrect conclusion that that there are no pri-

mary operators at a given mass dimension. We characterize the four fermion (ffff)

and two fermion, two gauge boson (ffV V ) operators respectively up to dimension

12 and 13. Finally, by combining unitarity bounds on the coupling strengths and

simple estimates of the branching ratio sensitivities, we highlight interesting ampli-

tudes for top quark decay that should be studied more closely at the HL-LHC. Of

those highlighted, there are both new charge current and flavor changing neutral

current decays that occur at dimension 8 and 10 in SMEFT.
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I. INTRODUCTION

The search for new physics beyond the Standard Model, at the LHC and beyond, has

been led by the well established methods of effective field theory (EFT). To parameterize the

indirect effects of new physics there are the two main paradigms of SMEFT [1, 2] and HEFT

[3]. These two approaches have differing assumptions about the physics at high energy scales

and the relative importance of different effects.

There are however a variety of issues that can obfuscate the connection between EFTs and

experimental signals. There is the large number of allowed interactions and also the compli-

cation of redundant (or incomplete) bases from equivalences due to equations of motion and

integration by parts. These issues have motivated work to understand the direct connection

between dimension 6 SMEFT terms and the physical observables they parameterize [4–7].

These redundancies on the Lagrangian side do not affect the predictions of physical

amplitudes where external particles are on-shell. Since these amplitudes are the direct

observables accessible to experiment, they provide a useful intermediary between theory

and experiment. Recent work in the study of amplitudes has allowed greater insight into

the independent amplitudes for a given process. In particular, the general structure of

beyond the Standard Model amplitudes, given just SU(3)c × U(1)em invariance, has been

analyzed, using both spinor helicity variables [8–12] as well as standard variables [13].

Ref. [13] was able to characterize the structure of on-shell 3 and 4 point amplitudes in-

volving the Higgs. To complete this procedure, a set of potential on-shell amplitudes was

constructed out of Lorentz invariant combinations of momenta and polarizations. By study-

ing their Taylor expansion in the kinematic variables, a set of independent amplitudes was

determined. These could then be converted into a basis of Lagrangian operators. As a cross

check, the number of independent operators at each mass dimension could be determined

using the Hilbert Series approach [14–20]. For the four point couplings, this lead to a num-

ber of primary amplitudes/operators whose multiplication by Mandelstam variables gave

descendant amplitudes/operators. If these new interactions are mediated by the exchange

of a massive particle, the lowest order primary amplitude would be a first approximation to

the relevant phenomenology. Finally, by requiring unitarity up to an energy Emax, one can

place upper bounds on their coupling strength. These results, when combined with simple

estimates, suggested that there are new amplitudes in Higgs decays into Zf̄f,W f̄f, γf̄f,
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and Zγγ that could be searched for at the HL-LHC.

In this paper, we extend this study to amplitudes involving the top quark. At the HL-LHC

and future TeV colliders, over a billion top quarks will be produced, allowing the study for

rare decays as well as new production mechanisms. This requires understanding the general

structure of four fermion operators and two fermion operators with two gauge bosons, which

can result in primaries up to dimension 11. This vector space of amplitudes is spanned by

these primary and descendant amplitudes, which in a model agnostic analysis can be taken

to be independent [21]. Interestingly, in this classification, we find interactions (e.g. γγf̄f)

whose Hilbert series numerator has a complete cancellation in the coefficient for one of the

terms, where a näıve inspection incorrectly concludes that there are no primary operators

at a certain mass dimension. In our analysis, we have also checked that the primary and

descendant structure up to at least dimension 12, going beyond the existing dimension 8

results using spinor-helicity variables [11, 12]. As an initial look at the phenomenology

of these operators, we give simple estimates that top quark decays for which FCNC modes

(e.g. t → c(ℓ̄ℓ, hγ, hg, Zγ, Zg, γγ, γg)) and charged current decay modes could be interesting

to search for at the HL-LHC. These simple estimates indicate that there are some decay

modes that appear at dimension 8 and 10 in SMEFT that are worth studying in more detail.

The rest of this paper is organized as follows: Section II describes what amplitudes

we will explore and how to determine independent amplitudes. Section III discusses the

Hilbert series results for our top quark operators. In Section IV, we discuss some relevant

phenomenological issues, such as unitarity bounds on coupling strengths and also rough

estimates for top quark decays at the HL-LHC. Section V is the main body of results, where

we list the operators for the primary amplitudes. In Section VI, we estimate which top decay

amplitudes are interesting for exploration at HL-LHC. Finally in Section VII, we conclude.

II. FINDING INDEPENDENT AMPLITUDES/COUPLINGS FOR TOP

QUARKS

The general on-shell amplitudes needed for top quark phenomenology are invariant under

SU(3)c × U(1)em and Lorentz symmetry. For 3 and 4 point interactions, imposing SU(3)c
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and Lorentz symmetry gives the following list:

3pt : q̄qV, q̄qh, 4pt : q̄qℓ̄ℓ, qqqℓ, q̄qq̄q, q̄qhh, q̄qhV, q̄qV V (1)

where q is a quark, ℓ is a lepton (charged or neutral), h is a Higgs boson, and V is any

gauge boson. To fully characterize these 4 point interactions, we also need additional 3

point interactions for exchange diagrams, which add

3pt additional : V V V, hV V, hhh, ℓ̄ℓh, ℓ̄ℓV. (2)

Of these couplings, the three point couplings and q̄qhh, q̄qhV have been fully characterized

(e.g [13]), so in this paper this leaves the following four point couplings to determine:

q̄qV V : WWq̄q,WZq̄q′, ZZq̄q, Zγq̄q, Zgq̄q,Wγq̄q′,Wgq̄q′, gγq̄q, γγq̄q, ggq̄q, (3)

Four fermion : q̄qℓ̄ℓ, q̄q′ēν, qqqℓ, q̄qq̄q. (4)

When there are identical particles involved, the form of the amplitude must respect the

relevant exchange symmetry and for these, there are no amplitudes with 3 or more identical

particles (note that, if we were characterizing down quark interactions, we would have to

consider dddē).

In [13], a general approach for finding independent amplitudes for 3 and 4 point on-

shell amplitudes was presented. Here, we give a brief overview of the process and refer to

that paper for further details, but will also note where changes in that approach need to

be made. To characterize four point on-shell amplitudes, we form Lorentz invariants out

of particle momenta, fermion wavefunctions, and gauge boson polarizations. For massless

gauge bosons, we use the field strength contribution ϵµpν − ϵνpµ, so that the amplitude is

manifestly gauge invariant. Three point interactions with a covariant derivative can also

give a four point contact interaction with a gauge boson; for our cases, the only one that

will be relevant is q̄σµνq
′W µν , which generates a q̄q′Wγ interaction. This results in a set of

amplitudes Ma, giving a linear parameterization of the general amplitudes M =
∑

a CaMa.

For each on-shell amplitude Ma, we can associate a local Lagrangian operator, which we

choose to have the lowest mass dimension possible, ca
vdO−4Oa, where we’ve normalized its

coefficient with factors of the Higgs vev to give a dimensionless coupling ca, resulting in a

Lagrangian which parameterizes the on-shell amplitudes

Lamp =
∑
a

ca
vdO−4

Oa. (5)
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By connecting these amplitudes to Lagrangian operators, we can work in increasing mass

dimension of the corresponding operators. For example, q̄qWW starts at dimension 5,

since the lowest local operator needs two fermions and two gauge bosons, while q̄qγγ will

start at dimension 7. At a given mass dimension, we write out all of the amplitudes for

the allowed particle helicities. In cases where there are two particles that are identical,

we symmetrize and anti-symmetrize with respect to those two particles. After finding the

allowed primary amplitudes for the distinguishable case, we can achieve the indistinguishable

case by imposing the Bose/Fermi symmetry. We’ll have more to say on that later, when we

have the Hilbert series results.

For our four point amplitudes, we consider 1 + 2 → 3 + 4 scattering in the center of

mass frame, where p1 = (E1, 0, 0, pi), p2 = (E2, 0, 0,−pi), p3 = (E3, 0, pf sin θ, pf cos θ), p4 =

(E4, 0,−pf sin θ,−pf cos θ). On-shell these have the constraints

E1 =
E2

com +m2
1 −m2

2

2Ecom

, E2 =
E2

com +m2
2 −m2

1

2Ecom

, E3 =
E2

com +m2
3 −m2

4

2Ecom

, E4 =
E2

com +m2
4 −m2

3

2Ecom

(6)

A general kinematic configuration is determined by the two continuous parameters Ecom

and cos θ as well as the choice of helicities. However, treating pi, pf , and sin θ as indepen-

dent is advantageous for finding amplitude redundancies. On-shell, one can replace even

powers of these variables as sin2 θ = (1 − cos2 θ), p2i = (E2
com−(m1+m2)2)(E2

com−(m1−m2)2)
4E2

com
, p2f =

(E2
com−(m3+m4)2)(E2

com−(m3−m4)2)
4E2

com
. After doing this, as shown in detail in [13], the Taylor series

coefficients of the amplitudes expansion in Ecom, pi, pf , cos θ, sin θ must all vanish if there is

an amplitude redundancy. Schematically, if there are Taylor series coefficients Bα, we then

form the matrix ∂Bα

∂Ca
, evaluate it for random numerical values for the particle masses, and

numerically evaluate its singular value decomposition. The number of nonzero values in that

decomposition is the number of independent amplitudes and one can find the independent

ones by removing Ca’s one at a time.

There are a few modifications to [13] needed to address the amplitudes of this paper. First

of all, for four fermion amplitudes, we are required to have fermions in the final state. Simi-

lar to that paper, we can choose a mass configuration, either m3 = 0,m4 ̸= 0 or m3 = m4, to

constrain the variable dependence of the kinematic variables in the fermion wavefunctions.

We have checked that this mass assumption doesn’t affect the basis of independent ampli-

tudes. Having final state fermions also results in dependence on cos θ
2
, sin θ

2
, which can be
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treated by replacing cos θ = 2 cos2 θ
2
− 1 and sin θ = 2 cos θ

2
sin θ

2
and using cos θ

2
and sin θ

2
as

our variables. Another complication is that the allowed SU(3) gauge invariant contractions

are more diverse than before. This issue interplays with the Bose/Fermi symmetries of the

amplitudes. As an example, for q̄qgg, interchange of the gluons must result in the same

amplitude. If the gluons are contracted with an fABC then the amplitude must also be odd

under exchange of the momenta and polarizations of the gluons. On the other hand if the

gluons are contracted with a dABC then the amplitude must also be even under exchange of

the momenta and polarizations of the gluons.

III. HILBERT SERIES

The Hilbert series gives a systematic way to count the number of gauge invariant inde-

pendent operators, up to equation of motion and integration by part redundancies [14–20],

which provides a useful cross check on our amplitude counting. It gives a function, whose

Taylor series expansion in a parameter q gives the number of independent operators at each

mass dimension [22]. In Eqn. 7, we list the Hilbert series for each of the four point operators

that we will characterize. The three point and the other four point operator results can be

found in [13].

HWWf̄f = HWZf̄f ′ =
4q5 + 12q6 + 16q7 + 6q8 − 2q9

(1− q2)2
,

HZZf̄f =
2q5 + 6q6 + 12q7 + 6q8 + 6q9 + 6q10 − 2q11

(1− q2)(1− q4)
,

HZγf̄f = HZgf̄f = HWγf̄f ′ = HWgf̄f ′ =
4q6 + 12q7 + 8q8 + (2− 2)q9

(1− q2)2
,

Hgγf̄f =
6q7 + 8q8 + (4− 2)q9

(1− q2)2
, Hγγf̄f =

4q7 + 2q8 + 4q9 + 6q10 + (2− 2)q11

(1− q2)(1− q4)
,

Hggf̄f =
10q7 + 10q8 + (14− 2)q9 + 14q10 + (6− 4)q11

(1− q2)(1− q4)
,

Hq̄qℓ̄ℓ = Hq̄q′ēν = Hq1q2q3ℓ =
10q6 + 8q7 − 2q8

(1− q2)2
,

Hqqq′ℓ =
4q6 + 6q7 + (6− 2)q8 + 2q9

(1− q2)(1− q4)
, Hq̄q̄′qq′ =

2(10q6 + 8q7 − 2q8)

(1− q2)2
,

Hq̄q̄′qq = Hq̄q̄qq′ =
10q6 + 8q7 + (10− 2)q8 + 8q9 − 2q10

(1− q2)(1− q4)
,

Hq̄q̄qq =
8q6 + 4q7 + (8− 2)q8 + 4q9 − 2q10

(1− q2)(1− q4)
.

(7)
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These fractional forms are interpretable in the following way: the numerator counts the

number of primary operators and the denominator allows for the dressing of these operators

with Mandelstam factors.

For example, looking at Hq̄qℓ̄ℓ =
10q6+8q7−2q8

(1−q2)2
, the numerator says that there are 10 dimen-

sion 6 primary operators and 8 dimension 7 primary operators. Ignore for now the −2q8,

which we’ll see denotes two constraints that appear at dimension 8. The denominator of

1/(1− q2)2 has an expansion of (1+ q2+ q4+ · · · )2 which is just counting the number of op-

erators from multiplying the primaries by Mandelstam factors of s, t (u is redundant to the

on-shell condition). As we will see when we analyze the amplitudes of this interaction, two

primary amplitudes at dimension 6, say Ma,Mb (with respective operators Oa,Ob), when

multiplied by a factor of s are redundant to a linear combination of other amplitudes, so

are no longer independent at dimension 8. This explains the −2q8 since treating this as the

loss of the two related operators sOa and sOb and all of their descendants gives the correct

counting of the number of independent terms. Such negative coefficients in the Hilbert series

often occur when the particles have nonzero spin [14–20], as identities relate operators of

different tensor structures when combined with derivatives. For four point functions, there

is an argument from counting conformal correlators that the number of primary operators is

equal to the product of the spin degrees of freedom of the participating particles [18, 23, 24].

In our results, this is correct for all cases except q̄q̄qq, if one includes the negative coefficients

and takes into account possible SU(3)c contractions. For example, for q̄qℓ̄ℓ, the sum of the

numerator coefficients 10 + 8 − 2 = 16 is equal to the spin counting of 24. On the other

hand, the case of q̄q̄qq has further constraints from the crossing symmetry of the q̄ and q,

resulting in fewer operators.

We also note that for some denominators, the factors are (1−q2)(1−q4). This results for

situations where there are two identical particles in the amplitude. Assuming the two initial

state particles are the identical pair, s and (t − u)2 are the Mandelstam factors that have

the correct exchange symmetry between the two particles, so we are allowed to multiply the

primary by an arbitrary set of s and (t − u)2 factors (note that the primary already has a

factor of +/− when exchanging bosons/fermions).

As you’ll notice in the Hilbert series list, some of the numerator coefficients are written

in an unusual way, for example the (14− 2)q9 and (6− 4)q11 in Hggf̄f . When we evaluated

the Hilbert series, these would of course have been 12q9 and 2q11. However, when examining
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the number of independent amplitudes at dimension 9, we found 14 new primaries and 2

redundancies when 2 of the dimension 7 amplitudes were multiplied by s. In this way, the

Hilbert series must be interpreted with care, as there can be hidden cancellations. In some

case, there is even a complete cancellation like the (2− 2)q11 term for γγf̄f , where a näıve

interpretation would have missed the new primaries at dimension 11.

The Hilbert series also allows for understanding of the constraints of Bose/Fermi sym-

metry. For example, for ggf̄f there are two symmetric contractions for the gluon SU(3)

indices (δAB, dABC) and one antisymmetric contraction (fABC), then swapping the kine-

matic variables of the two gluons would result respectively in a + sign for the first two and

a − sign for the last one. Now, if we calculated the Hilbert series assuming photons were

odd under interchange, then Hasym

γγf̄f
= 2q7+6q8+(6−2)q9+2q10+2q11

(1−q2)(1−q4)
. One can then check that

Hggf̄f = 2Hγγf̄f +Hasym

γγf̄f
as expected from the behavior under kinematic variable exchange

and the allowed SU(3) contractions.

Note that unlike in [13], due to complications of enumerating all of the terms, we do not

claim to have examined the full, allowed tensor structures of the amplitudes. Instead, we

have checked that we agree with the Hilbert series up to dimension 13 for q̄qV V amplitudes

and dimension 12 for four fermion amplitudes. Up to those dimensions, the numerator of

these Hilbert series do not have any additional cancellations. As the Hilbert series shows,

the redundancies that appear at higher dimension appear in pairs so it seems unlikely there

are more, but still we cannot guarantee that others do not appear at higher dimension.

IV. PHENOMENOLOGY

A. Unitarity

As in [13], we utilize unitarity to constrain the coupling strengths of these operators.

Since these are new couplings beyond the Standard Model, they violate unitarity at high

energies. Requiring the amplitudes to satisfy perturbative unitarity up to a scale Emax,

gives an upper bound on the couplings. The technique follows the work [25–28], where the

unitarity bounds due to high multiplicity scattering was developed (see also [29–33]).

To stand in for a more detailed calculation of each amplitude, we utilize a SMEFT

operator realization of the amplitude to act as a proxy. As an example, consider the case
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of c
v
q̄qWW. This is realized by the dimension 8 SMEFT operator 1

Λ4 (Q̄LH̃uR +h.c.)|DµH|2

[34]. Since we are only looking for an approximate bound, we ignore O(1) factors like
√
2, g, g′, sin θW , cos θW and only take into account factors of v. Under this approximation,

c ≈ v4/Λ4. The SMEFT operator has many contact interactions that violate unitarity, but

we find that either the lowest and highest multiplicity give the best bound as a function

of Emax, so we will calculate these for all interactions and include them in our tables. For

this example, the lowest multiplicity amplitude is for two quarks and two Goldstones, with a

matrix element that goes as M2→2 ≈ vE3
max

Λ4 , where one factor of Emax comes from the fermion

bilinear and the other two come from the two derivatives acting on the Goldstones. This is

bounded by phase space factors M2→2 ≤ 8π [25], which translates into c ≤ (8π)v3/E3
max ≈

0.4
E3

TeV
where ETeV = Emax/TeV. The highest multiplicity amplitude is for two quarks and 3

Goldstones, with M2→3 ≈ E3
max

Λ4 ≤ 32π2

Emax
, where the bound again depends on the phase space.

This gives the bound c ≤ (32π2)v4/E4
max ≈ 1.2

E4
TeV

. As this example illustrates, we generally

find that the low multiplicity constraint is stronger for Emax < 4πv and the high multiplicity

one is stronger for energies above that.

B. Top Quark Decays

The HL-LHC will produce about 5 billion top quarks, allowing searches for rare decays

as well as new production modes. Here we will consider decay modifications due to our

amplitudes. The on-shell 2 and 3 body decay modes of the top quark allowed by the

Standard Model quantum numbers are

t → dW, u(Z, h), d(eν, d̄u,WZ,Wγ,Wg), u(ℓ̄ℓ, q̄q,WW,Zγ, Zg, γγ, γg, gg) (8)

along with changes in flavors of quarks and leptons.

Searches for the flavor changing two body decays are actively being pursued at the LHC

(e.g. [35–41]), where theoretical analyses are often performed in SMEFT (e.g. [42–45]).

Some of the three body decays are higher order decays that exist in the Standard Model at

tree level (e.g. dW (Z, γ, g), uWW ), while the others require flavor changing neutral current

interactions which should be suppressed in the Standard Model. Searches for new decay

modes can be triggered by requiring one of the tops decays in the standard leptonic channel

and then looking for the new decay mode for the other top quark.



10

For this simple analysis of the phenomenology, we will approximate top decay amplitudes

as a constant, assuming the top quark mass is the only relevant mass scale

MO(t → 2) ≃ cO
vdO−4

mdO−3
t ≈ cO

(mt

v

)dO−4

mt ≈ cO2
2−dO/2mt, (9)

MO(t → 3) ≃ cO
vdO−4

mdO−4
t ≈ cO

(mt

v

)dO−4

≈ cO2
2−dO/2, (10)

where we’ve approximated v ≈
√
2mt. Note that this ignores O(1) enhancements of the form

(mt/mW ) that can come from longitudinal polarizations, but is sufficient for our estimates.

Let’s first consider non-FCNC top decays that are not suppressed in the Standard Model,

such as t → b(W, ℓν,Wγ,Wg). In such cases, one has at least the Standard Model top

background to contend with. For new amplitudes which are CP even, they will interfere

with the Standard Model amplitude and have enhanced sensitivities (unless one designs CP

violating observables). In this case, we want to compare the number of new decays to the

fluctuation in the Standard Model top background. Under our approximation the branching

ratios in the Standard Model and the modification due to interference are

Br(t → 2)SM ≈ 1

16πmtΓt

|M(t → 2)SM |2, (11)

δBr(t → 2) ≈ 1

16πmtΓt

|M(t → 2)SM ||M(t → 2)BSM |. (12)

To estimate sensitivity, we require that the new top decays must be as large as a one sigma

deviation in the Standard Model top background, which for a sample of Nt top quarks gives

NtδBr(t → 2) ≳
√

NtBr(t → 2)SM . Such a calculation gives for two and three body decays

the constraints

2 Body Decays : c ≳ 5× 10−6

(
109

Nt

)1/2

2dO/2,

3 Body Decays : c ≳ 6× 10−5

(
109

Nt

)1/2

2dO/2

(13)

where we’ve normalized to a total sample of a billion top quarks.

For FCNC decays, such as t → c(Z, γ, g,WW,Zγ, Zg, γγ, γg, gg), the branching ratios

predicted in the Standard Model (10−12 to 10−17) are too small to occur at the HL-LHC

(e.g. [46–50]). Thus, for these decays we can ignore interference and give an estimate that

works for both CP even and odd interactions. If we make an optimistic assumption that

other backgrounds can be neglected, this requires that the new branching ratios BrBSM give
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a few events at the HL-LHC or NtBrBSM ≳ 1. Under our approximation, this gives the

same bounds as Eqn. 13.

To get some sense of how well this approximation works, we’ve checked in a few existing

FCNC searches, whether the background free assumption works at the O(1) level. As one

might expect, one finds that for final states with a single gluon or photon, where hadronic

backgrounds and fakes are relevant, that this is a poor assumption and gives a branching ratio

bound that is too strong by two and three orders of magnitude for photon and gluon decays,

respectively. Thus, estimates for these final states should be viewed as very optimistic.

However, we found that the searches with a Higgs decaying into two photons agree roughly

with our bounds. Similarly, the final states with e, µ’s give bounds that are correct to a

factor of 2−3 as long as one takes into account tagging efficiencies for b (∼ 0.5), e/µ (∼ 0.8)

and, when relevant, Z and W leptonic branching ratios (∼ 0.06 and 0.2). Thus, as long as

one take these factors into account, these final states should be more reliable. Later, when

combined with our upper bounds from perturbative unitarity, these calculations will enable

us to give a simple estimate of which decay amplitudes that are worth exploring further at

the HL-LHC.

V. INDEPENDENT AMPLITUDES FOR TOP QUARK PHYSICS

In the following subsections, we will list operators corresponding to the primary ampli-

tudes for ffV V and ffff interactions involving the top quark. We will make comparisons

to the Hilbert series to show consistency with the number of independent operators, includ-

ing discussions of redundancies that occur at certain mass dimensions. We will also give

CP properties of the operators and unitarity bounds on the coupling constants for these

interactions.

A. ffV V Amplitudes

Tables I and II list the primary operators for q̄qWW interactions. Note that for the

primary operators, covariant derivatives are with respect to SU(3)c ×U(1)em and thus only

involve the photon and gluon. From the Hilbert series, we expect that there should be

4 operators at dimension 5, 12 operators at dimension 6, 16 operators at dimension 7, 6
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operators at dimension 8, and at least two redundancies at dimension 9. This is precisely

what we find, with the 38 listed operators and at dimension 9, sO26 and sO27, where

s = (pq + pq̄)
2, become redundant to other operators. To be concrete, one can replace these

two operators with an operator of the following form

∑
i=1···4

(ci + ci,ss+ ci,tt+ ci,sss
2 + ci,stst+ ci,ttt

2)Oi (14)

+
∑

i=5···25, 28···32

(ci + ci,ss+ ci,tt)Oi +
∑

i=26,27

(ci + ci,tt)Oi, (15)

where the coefficients ci’s only depend on the particle masses and predict the same on-shell

amplitudes as sO26 and sO27. To generate an independent set of operators, one needs to

add descendants of the primaries, which involve multiplying by arbitrary powers of s and

t. However, because of the redundancies at dimension 9 for sO26 and sO27, one only needs

the descendants tnO26 and tnO27 for O26 and O27. Note that this explains the −2q9

(1−q2)2
part

of the Hilbert series for HWWf̄f , since operators of the form sntmO26 and sntmO27 (with

n ≥ 1) are redundant, so one needs this term in the Hilbert series to correct the counting of

independent operators. We’ve also listed the lowest dimensional SMEFT-like operator (that

we could find) which realizes each operator, where the covariant derivatives are with respect

to SU(3)c × SU(2)L × U(1)Y . We also list the unitarity bounds for each SMEFT operator,

assuming the lowest and highest particle multiplicity. These operators can also be reworked

to account for q̄q′WZ amplitudes provided we take q → q′ and W → Z. Here, we use q′ to

denote a different quark flavor of the correct charge.

In Tables III and IV, we list the primary operators for q̄qZZ interactions. Reading

off from the Hilbert series, we expect to see 2 operators at dimension 5, 6 operators at

dimension 6, 12 operators at dimension 7, 6 operators at dimensions 8, 9, and 10, and at

least 2 constraints at dimension 11. We do indeed find that there are 38 primary operators,

as well as two redundancies at dimension 11, for sO31 and sO32. To generate an independent

set of operators, one needs to add descendants of the primaries, which involve multiplying

by arbitrary powers of s and (t− u)2 (note that (t− u)2 respects the exchange symmetry of

the Z’s). However because of the redundancies at dimension 11, for O31 and O32, one only

needs their descendants (t− u)2nO31 and (t− u)2nO32.

We have listed all of the primary operators for q̄qZγ interactions in Table V. The Hilbert

series tells us to expect 4 operators at dimension 6, 12 new operators at dimension 7, 8
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operators at dimension 8, and 2 new operators and 2 new redundancies at dimension 9. We

note that a näıve interpretation of the Hilbert series would have missed the 2 new primary

operators that appear at dimension 9. We find that there are 26 primary operators, in

agreement with the Hilbert series, as well as two constraints at dimension 9—sO7 and sO8.

Thus for those two operators, one only needs their descendant operators tnO7 and tnO8.

These operators can also be adapted to account for q̄q′Wγ, q̄qZg, and q̄q′Wg where we use

a prime to denote a different quark flavor. To get q̄qZg operators, one replaces F µν → Gµν ,

to get q̄q′Wγ operators, one should make the replacement q → q′ and Z → W , and to get

q̄q′Wg operators one needs to make the replacements q → q′, F µν → Gµν , and Z → W .

Table VI lists the primary operators for q̄qgγ interactions. Reading the appropriate

Hilbert series, we expect to find 6 dimension 7 operators, 8 dimension 8 operators, and 4

dimension 9 operators, as well as 2 operators that become redundant at dimension 9, so the

analysis again finds 2 additional dimension 9 primary operators that a quick interpretation

of the Hilbert series would have missed. We indeed find the 18 operators we expect from

the Hilbert series analysis, as well as two operators that become redundant at dimension

9—sO5 and sO6. Thus, for those two operators, we can just add their descendants tnO5

and tnO6.

We list the primary operators for q̄qγγ interactions in Table VII. From the Hilbert series,

we expect that there should be 4 operators at dimension 7, 2 operators at dimension 8, 4

operators at dimension 9, 6 operators at dimension 10, and 2 operators at dimension 11,

giving 18 total primary operators in agreement with the Hilbert series. We also find that

there are two new redundancies at dimension 11 for sO7 and sO8. This gives rise to a

complete cancellation in the Hilbert series at dimension 11 between the two new operators

O17,O18 and the two redundancies for sO7 and sO8. Given the redundancies, for O7 and

O8, we only need the descendant operators (t− u)2nO7 and (t− u)2nO8.

In Tables VIII and IX, we list all of the primary operators for q̄qgg interactions. The

Hilbert series says that we should expect 10 operators at dimension 7, 10 operators at

dimension 8, 14 operators at dimension 9, 14 operators at dimension 10, and 6 operators

at dimension 11. Additionally, we find that there are 2 redundancies at dimension 9—sO9

and sO10—and 4 redundancies at dimension 11—sO21, sO22, sO23, and sO24. As noted in

Sec. III, there are three ways we can contract the SU(3) indices, two symmetric and one

antisymmetric. For example, O1 and O2 in Table VIII should be read as (q̄δABq)
(
GAµνGB

µν

)
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and dABC

(
q̄TAq

) (
GBµνGC

µν

)
, respectively, where TA are the generators of SU(3). O7 in

Table VIII should be ready as fABC

(
q̄TAq

) (
GBµνGC

µν

)
. Thus, for O9,10,21,22,23,24, we only

need to add their descendants with factors of (t− u)2.

B. ffff Amplitudes

In Table X, we’ve listed the primary operators for q̄qℓ̄ℓ interactions. As the numerators

of the Hilbert series suggests, there should be 10 primaries at dimension 6, 8 primaries

at dimension 7, and at least two redundancies at dimension 8. This is precisely what we

find with the listed 18 operators, where at dimension 8, sO9 and sO10 are redundant to

the other operators, where s = (pq + pq̄)
2. Thus, for those two operators, one only needs

their descendants tnO9 and tnO10. We’ve listed a potential SMEFT operator to realize

this interaction. In some cases, a linear combination of the amplitudes may have a lower

dimension SMEFT operator. For example, q̄qℓ̄ℓ− q̄iγ5qℓ̄iγ5ℓ can be realized by the SMEFT

operator (ϵabQ̄LauRL̄L beR + h.c.). This would affect the unitarity bound by removing the

higher multiplicity bound of 15/E4
TeV. We can also convert these operators to account for

baryon-lepton interactions between uu′dē and udd′ν. The primes indicate different flavors

and thus, we do not need to consider any issues with indistinguishable particles. For example,

tcde interactions can be found by replacing q̄ → t̄c, q → c, ℓ̄ → ēc, ℓ → d where tc and ec

are the charge conjugated 4-component spinor for the top quark and the electron and the

SU(3) indices are contracted with an epsilon tensor. For the baryon-neutrino coupling, the

number of operators would depend on whether the neutrino is Majorana or Dirac, where

the Dirac case has twice the operators, since one can use either ν̄ or ν̄c.

In Table XI, we’ve listed the primary operators for uude interactions, where all SU(3)

indices are contracted by an epsilon tensor. As the Hilbert series suggests, there should be

4 primaries at dimension 6, 6 primaries at dimension 7, 6 primaries with 2 redundancies

at dimension 8, and 2 primaries at dimension 9. The table shows the stated number of

independent primaries and we find that at dimension 8, sO3 and sO4 are redundant to

the other operators, where s = (pu + pū)
2. Thus, for those two, one only needs their

descendants (t − u)2nO3 and (t − u)2nO4. To account for uddν interactions, one replaces

u → d, d̄c → ūc, ēc → ν̄/ν̄c, where again the case of Dirac neutrinos allows twice as many

operators.
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In Table XII, we’ve listed the primary operators for q̄qq̄′q′ interactions. Notably the

Hilbert series for this has a numerator that is twice the q̄qℓ̄ℓ Hilbert series. This factor of

two is simply for the two allowed SU(3) contractions, one where the qq′ are either in the 6

or 3̄ representation, leading to the symmetric (S) and antisymmetric (A) operators. Again,

at dimension 8, sO9 and sO10 are redundant to the other operators, where s = (pq + pq̄)
2.

Thus one only needs to add their descendants tnO9 and tnO10.

In Table XIII, we’ve listed the primary operators for q̄qq̄q interactions when two of the

quarks are identical for the specific case of uut̄c̄. There are again two allowed SU(3) contrac-

tions, specified by whether the uu are in symmetric (S) or antisymmetric (A) combination.

Since we’re suppressing the SU(3) indices, this makes some of the expressions look identical,

which occurs in the blocks (1-4) and (5-8), (11-12) and (17-18), (19-22) and (25-28), and

(29-30) and (31-32). At dimension 8, sO3 and sO4 become redundant and at dimension

10, sO27 and sO28 become redundant, where s = (pu + pū)
2. Thus one only needs to add

descendants for O3,4,27,28 with factors of (t − u)2. These four redundancies explain the two

−2 terms in the Hilbert series numerator.

In Table XIV, we’ve listed the primary operators for q̄qq̄q interactions when the two quarks

are identical and the two anti-quarks are identical, for the specific case of uut̄t̄. There are

again two allowed SU(3) contractions, specified by whether the uu are in symmetric (S) or

antisymmetric (A) combination. Since we’re suppressing the SU(3) indices, this makes some

of the expressions look identical, with (1-3) and (4-6) being the same, as well as (13-15) and

(18-20). At dimension 8, sO2 and sO3 become redundant and at dimension 10, sO19 and

sO20 become redundant. Thus one only needs the descendants of O2,3,19,20 with factors of

(t− u)2. These four redundancies explain the two −2 terms in the Hilbert series.

VI. INTERESTING TOP DECAY AMPLITUDES FOR THE HL-LHC

Now that we have all of the results, we can compare our unitarity upper bounds on the

coupling strengths with our estimate of the couplings needed for HL-LHC sensitivity to

the new top quark decays in Eqn. 13, to highlight which top decay amplitudes are worth

studying in more detail at the HL-LHC. In the following, we will assume we have top quark

pair production, where one top quark decays into a b quark and a leptonic W , with a b-

tagging efficiency of 0.5, a lepton tagging efficiency of 0.8, and a W leptonic branching ratio
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of 0.2. For the Higgs modes, we will assume it decays to photons with a branching ratio of

∼ 2× 10−3.

First, let’s consider two body decays of the top quark. For the charged current decays, we

have t → W (b, s, d), which have left and right handed vector and tensor couplings, which can

be distinguished by the lepton angular distributions [51]. In addition, the tensor operators

can be constrained by top quark production [52]. For flavor changing neutral current decays,

we have t → (u, c)(h, Z, γ, g), which are all actively being searched for at the LHC [35–41].

For all of these two body decays, there is a dimension 6 SMEFT operator that realizes

the coupling, which explains why they are actively being studied. Our constraints on the

coupling strengths agree that these are interesting and could potentially probe unitarity

violating scales up to several tens of TeV.

Now, let’s consider three body decays. We do not consider all hadronic decays of the

top quark since those suffer from large combinatorial backgrounds at the LHC and our

estimates would be entirely too optimistic. The charged current contact interaction t →

(b, s, d)(ē, µ̄, τ̄)ν has a different lepton pair invariant mass, which could be interesting to look

for in terms of the quark-charged lepton invariant mass distribution. Here our estimates say

that all of the dimension 6 CP even amplitudes could be interesting, even with unitarity

violation occurring around 5 TeV, while the dimension 7 CP even amplitudes are interesting

if unitarity violation occurs at about ∼ 3 TeV. Thus, these are worth exploring as there is

room to increase the coupling for lower scales of unitarity violation. The other three body

decays with a charged current interaction are t → (b, s, d)W (γ, g), which are generated at

higher order in the Standard Model (we do not consider t → dWZ since this is so close

to being kinematically closed and thus, our assumptions about the phase space and matrix

element would be wrong.). Contact amplitudes, unlike the Standard Model processes, are

not enhanced in the collinear/soft limits so these might be distinguishable. Here, we find

that of the operators in Table V the operators 3-4, 5 and 8 could be interesting for unitarity

violation occurring at ∼ 6 TeV, operators 10 and 14-15 need unitarity violation by ∼ 3

TeV, and operators 19-22 and 25 need unitarity violation just above a TeV. However, since

we should interpret our estimates carefully for these photon and gluon decays, the lowest

dimension operators are probably the most realistic to explore.

Flavor changing decays are highly suppressed in the Standard Model, so these are very

promising to search for. To start with, four fermion contact terms t → (c, u)(e, µ, τ)(ē, µ̄, τ̄)
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are being searched for at the LHC in the lepton flavor violating modes to eµ [53]. Here our

estimates say that dimension 6 CP even and odd amplitudes are interesting for unitarity

violation above 9 TeV, while dimension 7 CP even and odd amplitudes require unitarity

violation by ∼ 4 TeV. The existing CMS search probes the dimension 6 amplitudes [53],

but does not look for the dimension 7 amplitudes since they appear at dimension 8 in

SMEFT. We can also consider flavor changing neutral current decays involving gauge bosons,

including t → (c, u)(hγ, hg, Zγ, Zg, γγ, γg, gg), but not t → (c, u)WW since it is also nearly

kinematically closed. Again, our estimates are too optimistic for the decay modes that

are completely hadronic, so we will focus on the other cases. For the decays with a Higgs

and a photon or gluon, using the amplitudes and unitarity bounds in Table 3 of [13] and

assuming the diphoton Higgs decay, we find that the dimension 6, 7, 8 operators require

unitarity violation respectively by ∼ 5, 2, 1 TeV, so the dimension 6 and 7 ones are the most

promising. For the decays into a Z and a photon or gluon, assuming the Z decays to ee or

µµ, we find that the dimension 6, 7, 8, 9 operators in Table V, require unitarity violation

respectively by ∼ 3.5, 2.5, 1.2, 0.8 TeV so the dimension 6, 7, 8 ones should be explored

more closely, but the dimension 9 operators are likely out of reach. For the decays with

two photons or a photon and gluon, we find that the dimension 7, 8, 9, 10, 11 operators

in Tables VI, VII require unitarity violation respectively by ∼ 5, 2, 1.3, 1, 0.7 TeV and given

that we should be careful with these estimates (especially for the γg case), the dimension 7

ones are likely the only relevant ones.

There are also baryon number violating three body decays mediated by our amplitudes,

t → (c̄, ū)(b̄, s̄, d̄)(ē, µ̄, τ̄). These would have combinatorial backgrounds, but have been

searched for in the past by CMS [54]. Again, theory explorations of these have focused on the

dimension 6 SMEFT operators [55, 56], so it would be interesting if the ones parameterized

by dimension 8 SMEFT operators give distinguishable signals.

To conclude, our unitarity bounds combined with our estimates for the interesting size of

couplings for top quark decays has allowed us a quick survey of which of the decay amplitudes

may be worth pursuing at the HL-LHC. As the dimension of the amplitude gets larger, these

two constraints become more challenging to satisfy without lowering the scale of unitarity

to the TeV scale. Since the SMEFT operator realization must be at the same or higher

dimension, this motivates studying in more detail top decays from many dimension 8 and

a few dimension 10 SMEFT operators to determine their sensitivity at HL-LHC and future
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colliders.

VII. CONCLUSIONS

In this paper, we have extended an approach [13] to determine the on-shell 3 and 4

point amplitudes that are needed for modeling general top quark phenomenology at collid-

ers. These serve as an intermediary between the observables searched for by experimental

analyses and the operators in effective field theories for the Standard Model. This involved

characterizing the general amplitudes for processes involving four fermions or two fermions

and two gauge bosons. We were able to characterize these respectively to dimension 12

and 13, finding the structure of primary and descendant amplitudes, where descendants are

primaries multiplied by Mandelstam factors. Interestingly, we find two classes of interac-

tions whose Hilbert series numerator has a complete cancellation in the numerator. This

näıvely would suggest that there are no primary operators at a certain mass dimension, but

in actuality there are an equal number of new primaries and redundancies that appear at

that mass dimension. This illustrates the importance of using the Hilbert series in con-

junction with the amplitudes, as they complement each other in this process. We also note

that our approach is a complementary check to the existing results up to dimension 8 using

spinor-helicity variables [11, 12] and extends the amplitude structure to higher dimension.

To provide an initial survey of the potential phenomenology, we’ve used perturbative

unitarity to place upper bounds on the coupling strengths of these interactions. These

depend on the scale where unitarity is violated ETeV = Emax/TeV, with more stringent

constraints as one increases ETeV. Given the expected sample of top quarks at HL-LHC,

we’ve estimated the coupling size needed for the top quark decays to be seen over irreducible

backgrounds. This allowed us to highlight the that top quark decays into both FCNC modes,

like t → c(ℓ̄ℓ, hγ, hg, Zγ, Zg, γγ, γg), and non-FCNC modes, like t → b(Wγ,Wg), could be

interesting to search for at the HL-LHC. Some of these highlighted modes occur at dimension

8 and 10 in SMEFT and thus would be interesting to explore how distinctive these new

amplitudes are compared to existing searches. We leave such detailed phenomenology to

future work.

To conclude, the high energy program at colliders is entering the phase of testing whether

the Standard Model is indeed the correct description of physics at the TeV scale. To do so,
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we must look for new physics in the most general way, so that we can find such deviations

or constrain them. On-shell amplitudes are a useful intermediary between experimental

analyses and the parameterization of new physics by effective field theories. Finally, by

determining the on-shell amplitude structure to high dimension and writing down a concrete

basis for them, we hope this will allow the field to maximize its efforts to find what exists

beyond the Standard Model.
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i Oq̄qW+W−

i CP dOi

SMEFT c Unitarity

Operator Bound

1 (q̄q)
(
W+

µ W−µ
)

+

5

(
Q̄LH̃uR + h.c.

) (
|DµH|2

)
0.4

E3
TeV

, 1.2
E4

TeV

2 (iq̄γ5q)
(
W+

µ W−µ
)

−
(
iQ̄LH̃uR + h.c.

) (
|DµH|2

)
3 (q̄σµνq)

(
iW+

µ W−
ν

)
+

(
Q̄Lσ

µνH̃uR + h.c.
)(

i [DµH]† [DνH] + h.c.
)

4 (iq̄σµνγ5q)
(
iW+

µ W−
ν

)
−

(
iQ̄Lσ

µνγ5H̃uR + h.c.
)(

i [DµH]† [DνH] + h.c.
)

5 (q̄γνq)

(
iW+µ

↔
DνW

−
µ

)
+

6

(
Q̄Lγ

νQL + ūRγνuR

)(
i [DµH]†

↔
Dν [DµH] + h.c.

)

0.09
E4

TeV

6 (q̄γνγ5q)

(
iW+µ

↔
DνW

−
µ

)
+

(
Q̄Lγ

νQL − ūRγνuR

)(
i [DµH]†

↔
Dν [DµH] + h.c.

)
7

(
iq̄γν

↔
Dµq

)(
W+µW−

ν + h.c.
)

+
(
iQ̄Lγ

ν
↔
DµQL + iūRγν

↔
DµuR

)(
[DµH]† [DνH] + h.c.

)
8

(
iq̄γνγ5

↔
Dµq

)(
W+µW−

ν + h.c.
)

+
(
iQ̄Lγ

ν
↔
DµQL − iūRγν

↔
DµuR

)(
[DµH]† [DνH] + h.c.

)
9 (q̄γνq)

(
iW+µDµW

−
ν + h.c.

)
+

(
Q̄Lγ

νQL + ūRγνuR

) (
i [DµH]† [DµνH] + h.c.

)
10 (q̄γνγ5q)

(
iW+µDµW

−
ν + h.c.

)
+

(
Q̄Lγ

νQL − ūRγνuR

) (
i [DµH]† [DµνH] + h.c.

)
11

(
iq̄γµ

↔
Dνq

)(
iW+

µ W−ν + h.c.
)

−
(
iQ̄Lγ

µ
↔
DνQL + iūRγµ

↔
DνuR

)(
i [DµH]† [DνH] + h.c.

)
12

(
iq̄γµγ5

↔
Dνq

)(
iW+

µ W−ν + h.c.
)

−
(
iQ̄Lγ

µ
↔
DνQL − iūRγµ

↔
DνuR

)(
i [DµH]† [DνH] + h.c.

)
13 (q̄γνq)

(
W+µDµW

−
ν + h.c.

)
− (

Q̄Lγ
νQL + ūRγνuR

) (
[DµH]† [DµνH] + h.c.

)
14 (q̄γνγ5q)

(
W+µDµW

−
ν + h.c.

)
− (

Q̄Lγ
νQL − ūRγνuR

) (
[DµH]† [DµνH] + h.c.

)
15 ϵµνρσ (q̄γνq)

(
W+ρ

↔
DµW−σ

)
+ ϵµνρσ

(
Q̄Lγ

νQL + ūRγνuR

)(
[DρH]†

↔
Dµ [DσH] + h.c.

)
16 ϵµνρσ (q̄γνγ5q)

(
W+ρ

↔
DµW−σ

)
+ ϵµνρσ

(
Q̄Lγ

νQL − ūRγνuR

)(
[DρH]†

↔
Dµ [DσH] + h.c.

)

Table I: Primary 5- and 6-dimension operators for q̄qW+W− interactions. As outlined in the

text, these operators can be modified to yield the operators for q̄q′WZ interactions. Under the

assumption that q̄ and q are each other’s anti-particles, the operators are Hermitean and have

the listed CP properties. If they are not, each of these operators has a Hermitean conjugate,

which can be used to create a CP even and a CP odd operator. To simplify the expressions,

we use the shorthand
↔
Dµν =

↔
Dµ

↔
Dν , and similarly, Dµν = DµDν . To get the descendant

operators, once can add contracted derivatives to get arbitrary Mandelstam factors of s, t.
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i CP dOi

SMEFT c Unitarity
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17
(
q̄
↔
Dµνq

)(
W+µW−ν

)
+

7

(
Q̄L

↔
DµνH̃uR + h.c.

)(
[DµH]† [DνH] + h.c.

)

0.02
E5

TeV
, 0.07
E6

TeV

18
(
iq̄γ5

↔
Dµνq

)(
W+µW−ν

) −
(
iQ̄L

↔
DµνH̃uR + h.c.

)(
[DµH]† [DνH] + h.c.

)
19

(
iq̄

↔
Dµq

)(
W+νDνW−µ + h.c.

) −
(
iQ̄L

↔
DµH̃uR + h.c.

)(
[DνH]† [DνµH] + h.c.

)
20

(
q̄γ5

↔
Dµq

)(
W+νDνW−µ + h.c.

)
+

(
Q̄L

↔
DµH̃uR + h.c.

)(
[DνH]† [DνµH] + h.c.

)
21

(
iq̄

↔
Dµq

)(
iW+νDνW−µ + h.c.

)
+

(
iQ̄L

↔
DµH̃uR + h.c.

)(
i [DνH]† [DνµH] + h.c.

)
22

(
q̄γ5

↔
Dµq

)(
iW+νDνW−µ + h.c.

) −
(
Q̄L

↔
DµH̃uR + h.c.

)(
i [DνH]† [DνµH] + h.c.

)
23 ϵµνρσ

(
iq̄

↔
Dµq

)(
W+ρ

↔
DνW−σ

)
+ ϵµνρσ

(
iQ̄L

↔
DµH̃uR + h.c.

)(
[DρH]†

↔
Dν [DσH] + h.c.

)
24 ϵµνρσ

(
q̄γ5

↔
Dµq

)(
W+ρ

↔
DνW−σ

)
− ϵµνρσ

(
Q̄L

↔
DµH̃uR + h.c.

)(
[DρH]†

↔
Dν [DσH] + h.c.

)
25

(
iq̄σµν

↔
Dρq

)(
iW+

ν

↔
DµW−ρ + h.c.

)
−

(
iQ̄Lσ

µν
↔
DρH̃uR + h.c.

)(
i [DνH]†

↔
Dµ [DρH] + h.c.

)
26 (q̄σµνq)

(
i[DρW

+
ν ]

↔
DµW−ρ + h.c.

)
+

(
Q̄Lσ

µνH̃uR + h.c.
)(

i [DρνH]†
↔
Dµ [DρH] + h.c.

)
27 (iq̄σµνγ5q)

(
i[DρW

+
ν ]

↔
DµW−ρ + h.c.

)
−

(
iQ̄Lσ

µνH̃uR + h.c.
)(

i [DρνH]†
↔
Dµ [DρH] + h.c.

)
28

(
q̄σµνγ5

↔
Dρq

)(
iW+

ν

↔
DµW−ρ + h.c.

)
+

(
Q̄Lσ

µν
↔
DρH̃uR + h.c.

)(
i [DνH]†

↔
Dµ [DρH] + h.c.

)
29 (q̄q) (WµνWµν) +

7

(
Q̄LH̃uR + h.c.

) (
WaµνWa

µν

)
0.4

E3
TeV

, 1.2
E4

TeV

30 (iq̄γ5q) (WµνWµν) −
(
iQ̄LH̃uR + h.c.

) (
WaµνWa

µν

)
31 (q̄q)

(
W+µνW̃−

µν

)
−

(
Q̄LH̃uR + h.c.

)(
WaµνW̃a

µν + h.c.
)

32 (iq̄γ5q)
(
W+µνW̃−

µν

)
+

(
iQ̄LH̃uR + h.c.

)(
WaµνW̃a

µν + h.c.
)

33
(
q̄γµ

↔
Dνρq

)(
iW+ν

↔
DµW−ρ

)
+

8

(
Q̄Lγ

µ
↔
DνρQL + ūRγµ

↔
DνρuR

)(
i [DνH]†

↔
Dµ [DρH] + h.c.

)

0.006
E6

TeV

34
(
q̄γµγ5

↔
Dνρq

)(
iW+ν

↔
DµW−ρ

)
+

(
Q̄Lγ

µ
↔
DνρQL − ūRγµ

↔
DνρuR

)(
i [DνH]†

↔
Dµ [DρH] + h.c.

)
35

(
iq̄γµ

↔
Dρq

)(
iW+ν

↔
DµDνW−ρ + h.c.

)
−

(
iQ̄Lγ

µ
↔
DρQL + iūRγµ

↔
DρuR

)(
i [DνH]†

↔
Dµ [DρνH] + h.c.

)
36

(
iq̄γµγ5

↔
Dρq

)(
iW+ν

↔
DµDνW−ρ + h.c.

)
−

(
iQ̄Lγ

µ
↔
DρQL − iūRγµ

↔
DρuR

)(
i [DνH]†

↔
Dµ [DρνH] + h.c.

)
37 (q̄γµq)

(
i[DρW

+
ν ]

↔
DµDνW−ρ

)
+

(
Q̄Lγ

µQL + ūRγµuR

)(
i [DνρH]†

↔
Dµ [DρνH] + h.c.

)
38 (q̄γµγ5q)

(
i[DρW

+
ν ]

↔
DµDνW−ρ

)
+

(
Q̄Lγ

µQL − ūRγµuR

)(
[DνρH]†

↔
Dµ [DρνH] + h.c.

)

Table II: Primary 7- and 8-dimension operators for q̄qW+W− interactions, where W̃µν = 1
2ϵµνρσW

ρσ. As outlined

in the text, these operators can be modified to yield the operators for q̄q′WZ interactions. Under the assumption

that q̄ and q are each other’s anti-particles, the operators are Hermitean and have the listed CP properties. If they

are not, each of these operators has a Hermitean conjugate, which can be used to create a CP even and a CP odd

operator. To simplify the expressions, we use the shorthand
↔
Dµν =

↔
Dµ

↔
Dν , and similarly, Dµν = DµDν . To get the

descendant operators, once can add contracted derivatives to get arbitrary Mandelstam factors of s, t. At

dimension 9, sO26 and sO27 become redundant to other operators and thus one only needs their descendants tnO26

and tnO27 for an independent set of operators.
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i Oq̄qZZ
i CP dOi

SMEFT c Unitarity

Operator Bound

1 (q̄q) (ZµZµ) +
5

(
Q̄LH̃uR + h.c.

)
|DµH|2

0.4
E3

TeV
, 1.2
E4

TeV2 (q̄iγ5q) (ZµZµ) −
(
iQ̄LH̃uR + h.c.

)
|DµH|2

3
(
iq̄γν

↔
Dµq

)
(ZµZν) +

6

(
iQ̄Lγ

ν
↔
DµQL + iūRγν

↔
DµuR

)(
[DµH]† [DνH] + h.c.

)
0.09
E4

TeV

4
(
iq̄γνγ5

↔
Dµq

)
(ZµZν) +

(
iQ̄Lγ

ν
↔
DµQL − iūRγν

↔
DµuR

)(
[DµH]† [DνH] + h.c.

)
5 (q̄γνq) (Zµ∂µZν) − (

Q̄Lγ
νQL + ūRγνuR

) (
[DµH]† [DµνH] + h.c.

)
6 (q̄γνγ5q) (Zµ∂µZν) − (

Q̄Lγ
νQL − ūRγνuR

) (
[DµH]† [DµνH] + h.c.

)
7 (q̄γνq)

(
Z̃νσZσ

)
+

6

(
Q̄Lγ

νQL + ūRγνuR

) (
B̃νσH†DσH + h.c.

)
0.4

E3
TeV

, 1.2
E4

TeV8 (q̄γνγ5q)
(
Z̃νσZσ

)
+

(
Q̄Lγ

νQL − ūRγνuR

) (
B̃νσH†DσH + h.c.

)
9 (q̄q) (ZµνZµν) +

7

(
Q̄LH̃uR + h.c.

)
(BµνBµν)

0.4
E3

TeV
, 1.2
E4

TeV

10 (iq̄γ5q) (ZµνZµν) −
(
iQ̄LH̃uR + h.c.

)
(BµνBµν)

11 (q̄q)
(
Zµν Z̃µν

)
−

(
Q̄LH̃uR + h.c.

)(
BµνB̃µν

)
12 (iq̄γ5q)

(
Zµν Z̃µν

)
+

(
iQ̄LH̃uR + h.c.

)(
BµνB̃µν

)
13

(
iq̄σµν

↔
Dρq

)
(Zµ∂ρZν) +

7

(
iQ̄Lσµν

↔
DρH̃uR + h.c.

)(
[DµH]† [DρνH] + h.c.

)

0.02
E5

TeV
, 0.07
E6

TeV

14
(
q̄σµνγ5

↔
Dρq

)
(Zµ∂ρZν) −

(
Q̄Lσµν

↔
DρH̃uR + h.c.

)(
[DµH]† [DρνH] + h.c.

)
15

(
q̄
↔
Dµνq

)
(ZµZν) +

(
Q̄L

↔
DµνH̃uR + h.c.

)(
[DµH]† [DνH] + h.c.

)
16

(
iq̄γ5

↔
Dµνq

)
(ZµZν) −

(
iQ̄L

↔
DµνH̃uR + h.c.

)(
[DµH]† [DνH] + h.c.

)
17

(
iq̄

↔
Dνq

)
(Zµ∂µZν) −

(
iQ̄L

↔
DνH̃uR + h.c.

)(
[DµH]†

[
D ν

µ H
]
+ h.c.

)
18

(
q̄γ5

↔
Dνq

)
(Zµ∂µZν) +

(
Q̄L

↔
DνH̃uR + h.c.

)(
[DµH]†

[
D ν

µ H
]
+ h.c.

)
19

(
iq̄

↔
Dµq

)(
Z̃µσZσ

)
+

7

(
iQ̄L

↔
DµH̃uR + h.c.

)(
B̃µσH†DσH + h.c.

)
0.09
E4

TeV
, 0.9
E6

TeV20
(
q̄γ5

↔
Dµq

)(
Z̃µσZσ

)
−

(
Q̄L

↔
DµH̃uR + h.c.

)(
B̃µσH†DσH + h.c.

)

Table III: Primary 5-, 6-, and 7-dimension operators for q̄qZZ interactions. Under the

assumption that q̄ and q are each other’s anti-particles, the operators are Hermitean and have

the listed CP properties. If they are not, each of these operators has a Hermitean conjugate,

which can be used to create a CP even and a CP odd operator. To simplify the expressions, we

use the shorthand
↔
Dµν =

↔
Dµ

↔
Dν , and similarly, ∂µν = ∂µ∂ν . To get the descendant operators,

once can add contracted derivatives to get arbitrary Mandelstam factors of s, (t− u)2.
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i Oq̄qZZ
i CP dOi

SMEFT c Unitarity

Operator Bound

21
(
iq̄γν

↔
Dρq

)
([∂νZµ]∂ρZµ) +

8

(
iQ̄Lγ

ν
↔
DρQL + iūRγν

↔
DρuR

)([
D µ

ν H
]† [

Dρ
µH

]
+ h.c.

)

0.006
E6

TeV

22
(
iq̄γνγ5

↔
Dρq

)
([∂νZµ]∂ρZµ) +

(
iQ̄Lγ

ν
↔
DρQL − iūRγν

↔
DρuR

)([
D µ

ν H
]† [

Dρ
µH

]
+ h.c.

)
23

(
q̄γν

↔
Dµρq

)
(Zµ∂ρZν) −

(
Q̄Lγ

ν
↔
DµρQL + ūRγν

↔
DµρuR

)(
[DµH]†

[
Dρ

νH
]
+ h.c.

)
24

(
q̄γνγ5

↔
Dµρq

)
(Zµ∂ρZν) −

(
Q̄Lγ

ν
↔
DµρQL − ūRγν

↔
DµρuR

)(
[DµH]†

[
Dρ

νH
]
+ h.c.

)
25

(
iq̄γν

↔
Dρq

)
(Zµ∂ρµZν) +

(
iQ̄Lγ

ν
↔
DρQL + iūRγν

↔
DρuR

)(
[DµH]†

[
Dρµ

νH
]
+ h.c.

)
26

(
iq̄γνγ5

↔
Dρq

)
(Zµ∂ρµZν) +

(
iQ̄Lγ

ν
↔
DρQL − iūRγν

↔
DρuR

)(
[DµH]†

[
Dρµ

νH
]
+ h.c.

)
27

(
q̄
↔
Dναq

)
(Zµ∂αµZν) +

9

(
Q̄L

↔
DναH̃uR + h.c.

)(
[DµH]† [DαµνH] + h.c.

)
0.001
E7

TeV
, 0.004
E8

TeV
28

(
iq̄γ5

↔
Dναq

)
(Zµ∂αµZν) −

(
iQ̄L

↔
DναH̃uR + h.c.

)(
[DµH]† [DαµνH] + h.c.

)
29

(
iq̄σµνγ5

↔
Dρσq

)
([∂µZρ]∂σZν) +

(
iQ̄Lσµν

↔
DρσH̃uR + h.c.

)(
[DµρH]† [DσνH] + h.c.

)
30

(
q̄σµν

↔
Dρσq

)
(Zµν∂σZρ) −

9

(
Q̄Lσ

µν
↔
DρσH̃uR + h.c.

)(
BµνH†DσρH + h.c.

)
0.006
E6

TeV
, 0.05
E8

TeV
31

(
iq̄σµν

↔
Dσq

)
([∂ρZµν ] ∂σZρ) +

(
iQ̄Lσ

µν
↔
DσH̃uR + h.c.

)(
[∂ρBµν ]H†DσρH + h.c.

)
32

(
iq̄σµν

↔
Dρq

)([
∂µZ̃νσ

]
∂ρZσ

)
−

(
iQ̄Lσ

µν
↔
DρH̃uR + h.c.

)([
∂µB̃νσ

]
H†DρσH + h.c.

)
33

(
q̄γµ

↔
Dνσq

)
([∂µρZν ]∂σZρ) −

10

(
Q̄Lγ

µ
↔
DνσQL + ūRγµ

↔
DνσuR

)([
Dν

µρH
]†

[DσρH] + h.c.
)

3×10−4

E8
TeV

34
(
iq̄γµ

↔
Dσq

)
([∂µρZν ]∂σνZρ) +

(
iQ̄Lγ

µ
↔
DσQL + iūRγµ

↔
DσuR

)(
[DµρνH]† [DσνρH] + h.c.

)
35

(
iq̄γµγ5

↔
Dσq

)
([∂µρZν ]∂σνZρ) +

(
iQ̄Lγ

µ
↔
DσQL − iūRγµ

↔
DσuR

)(
[DµρνH]† [DσνρH] + h.c.

)
36

(
q̄γα

↔
Dµ

βq

)(
Z̃µρ∂ρβZα

)
+

10

(
Q̄Lγ

α
↔
Dµ

βQL + ūRγα
↔
Dµ

βuR

)(
B̃µρH†Dρβ

αH + h.c.
)

0.001
E7

TeV
, 0.004
E8

TeV
37

(
q̄γαγ5

↔
Dµ

βq

)(
Z̃µρ∂ρβZα

)
+

(
Q̄Lγ

α
↔
Dµ

βQL − ūRγα
↔
Dµ

βuR

)(
B̃µρH†Dρβ

αH + h.c.
)

38
(
iq̄γργ5

↔
Dµ

αβq

)(
Z̃µρ∂βZα

)
−

(
iQ̄Lγ

ρ
↔
Dµ

αβQL − iūRγρ
↔
Dµ

βαuR

)(
B̃µρH†DαβH + h.c.

)

Table IV: Primary 8-, 9-, and 10-dimension operators for q̄qZZ interactions. Under the

assumption that q̄ and q are each other’s anti-particles, the operators are Hermitean and have

the listed CP properties. If they are not, each of these operators has a Hermitean conjugate,

which can be used to create a CP even and a CP odd operator. To simplify the expressions,

we use the shorthand
↔
Dµν =

↔
Dµ

↔
Dν , and similarly, ∂µν = ∂µ∂ν . To get the descendant

operators, once can add contracted derivatives to get arbitrary Mandelstam factors of

s, (t− u)2. At dimension 11, sO31 and sO32 become redundant to other operators. Thus, for

these two, we need only their (t− u)2nO31 and (t− u)2nO32 descendants.
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i Oq̄qZγ
i CP dOi

SMEFT c Unitarity

Operator Bound

1 (q̄γνq) (FνµZµ) −

6

(
Q̄Lγ

νQL + ūRγνuR

) (
BνµH†DµH + h.c.

)
0.4

E3
TeV

, 1.2
E4

TeV

2 (q̄γνγ5q) (FνµZµ) − (
Q̄Lγ

νQL − ūRγνuR

) (
BνµH†DµH + h.c.

)
3 (q̄γνq)

(
F̃νσZσ

)
+

(
Q̄Lγ

νQL + ūRγνuR

) (
B̃νσH†DσH + h.c.

)
4 (q̄γνγ5q)

(
F̃νσZσ

)
+

(
Q̄Lγ

νQL − ūRγνuR

) (
B̃νσH†DσH + h.c.

)
5 (q̄q) (FµνZµν) +

7

(
Q̄LH̃uR + h.c.

)
(BµνBµν)

0.4
E3

TeV
, 1.2
E4

TeV

6 (iq̄γ5q) (FµνZµν) −
(
iQ̄LH̃uR + h.c.

)
(BµνBµν)

7 (q̄q)
(
F̃µνZµν

)
−

(
Q̄LH̃uR + h.c.

)(
BµνB̃µν

)
8 (iq̄γ5q)

(
F̃µνZµν

)
+

(
iQ̄LH̃uR + h.c.

)(
BµνB̃µν

)
9

(
iq̄

↔
Dνq

)
(F νµZµ) −

7

(
iQ̄L

↔
DνH̃uR + h.c.

)(
BνµH†DµH + h.c.

)

0.09
E4

TeV
, 0.9
E6

TeV

10
(
q̄
↔
Dνγ5q

)
(F νµZµ) +

(
Q̄L

↔
DνH̃uR + h.c.

)(
BνµH†DµH + h.c.

)
11

(
iq̄σµν

↔
Dρq

)
(FµρZν) +

(
iQ̄Lσµν

↔
DρH̃uR + h.c.

)(
BρµH†DνH + h.c.

)
12 (q̄σµνq) (Fµρ∂ρZν) −

(
Q̄LσµνH̃uR + h.c.

) (
BµρH†Dν

ρH + h.c.
)

13
(
q̄σµνγ5

↔
Dρq

)
(FµρZν) −

(
Q̄Lσµν

↔
DρH̃uR + h.c.

)(
BµρH†DνH + h.c.

)
14 (iq̄σµνγ5q) (Fµρ∂ρZν) +

(
iQ̄LσµνH̃uR + h.c.

) (
BµρH†Dν

ρH + h.c.
)

15
(
iq̄

↔
Dµq

)(
F̃µσZσ

)
+

(
iQ̄L

↔
DµH̃uR + h.c.

)(
B̃µσH†DσH + h.c.

)
16

(
q̄γ5

↔
Dµq

)(
F̃µσZσ

)
−

(
Q̄L

↔
DµH̃uR + h.c.

)(
B̃µσH†DσH + h.c.

)
17 (q̄γνq) ([∂νFµρ]Zµρ) −

8

(
Q̄Lγ

νQL + ūRγνuR

)
([∂νBµρ]Bµρ)

0.09
E4

TeV18 (q̄γνγ5q) ([∂νFµρ]Zµρ) − (
Q̄Lγ

νQL − ūRγνuR

)
([∂νBµρ]Bµρ)

19
(
iq̄γν

↔
Dρq

)
([∂νFµρ]Zµ) +

8

(
iQ̄Lγ

ν
↔
DρQL + iūRγν

↔
DρuR

)(
[∂νBµρ]H†DµH + h.c.

)

0.02
E5

TeV
, 0.07
E6

TeV

20
(
iq̄γνγ5

↔
Dρq

)
([∂νFµρ]Zµ) +

(
iQ̄Lγ

ν
↔
DρQL − ūRγν

↔
DρuR

)(
[∂νBµρ]H†DµH + h.c.

)
21

(
iq̄γν

↔
Dµq

)
(Fµρ∂ρZν) +

(
iQ̄Lγ

ν
↔
DµQL + iūRγν

↔
DµuR

)(
BµρH†DνρH + h.c.

)
22

(
iq̄γνγ5

↔
Dµq

)
(Fµρ∂ρZν) +

(
iQ̄Lγ

ν
↔
DµQL − iūRγν

↔
DµuR

)(
BµρH†DνρH + h.c.

)
23

(
q̄γµ

↔
Dνρq

)
(FµρZν) −

(
Q̄Lγµ

↔
DνρQL + ūRγµ

↔
DνρuR

)(
BµρH†DνH + h.c.

)
24

(
q̄γµγ5

↔
Dνρq

)
(FµρZν) −

(
Q̄Lγµ

↔
DνρQL − ūRγµ

↔
DνρuR

)(
BµρH†DνH + h.c.

)
25

(
q̄
↔
Dµνq

)
(Fµρ∂ρZν) +

9

(
Q̄L

↔
DµνH̃uR + h.c.

)(
BµρH†Dν

ρH + h.c.
)

0.006
E6

TeV
, 0.05
E8

TeV26
(
iq̄γ5

↔
Dµνq

)
(Fµρ∂ρZν) −

(
iQ̄L

↔
DµνH̃uR + h.c.

)(
BµρH†Dν

ρH + h.c.
)

Table V: Primary operators for q̄qZγ interactions. As outlined in the text, these operators can be modified to yield the

operators for q̄qZg, q̄q′Wγ, and q̄q′Wg interactions. Under the assumption that q̄ and q are each other’s anti-particles, the

operators are Hermitean and have the listed CP properties. If they are not, each of these operators has a Hermitean

conjugate, which can be used to create a CP even and a CP odd operator. To simplify the expressions, we use the shorthand
↔
Dµν =

↔
Dµ

↔
Dν , and similarly, Dµν = DµDν . To get the descendant operators, once can add contracted derivatives to get

arbitrary Mandelstam factors of s, t. At dimension 9, sO7 and sO8 become redundant to other operators. For these two, one

only needs their tnO7 and tnO8 descendants.
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i Oq̄qgγ
i CP dOi

SMEFT c Unitarity

Operator Bound

1 (q̄q) (FµνGµν) +

7

(
Q̄LH̃uR + h.c.

)
(BµνGµν)

0.4
E3

TeV
, 1.2
E4

TeV

2 (iq̄γ5q) (FµνGµν) −
(
iQ̄LH̃uR + h.c.

)
(BµνGµν)

3 (q̄σµνq)
(
FµρGν

ρ

) −
(
Q̄LσµνH̃uR + h.c.

) (
BµρGν

ρ

)
4 (iq̄σµνγ5q)

(
FµρGν

ρ

)
+

(
iQ̄Lσµνγ5H̃uR + h.c.

) (
BµρGν

ρ

)
5 (q̄q)

(
FµνG̃µν

)
−

(
Q̄LH̃uR + h.c.

)(
BµνG̃µν

)
6 (iq̄γ5q)

(
FµνG̃µν

)
+

(
Q̄RH̃uR + h.c.

)(
BµνG̃µν

)
7 (q̄γνq) ([∂νFµρ]Gµρ) −

8

(
Q̄Lγ

νQL + ūRγνuR

)
([∂νBµρ]Gµρ)

0.09
E4

TeV

8 (q̄γνγ5q) ([∂νFµρ]Gµρ) − (
Q̄Lγ

νQL − ūRγνuR

)
([∂νBµρ]Gµρ)

9
(
iq̄γν

↔
Dµq

)
(FµρGνρ) +

(
iQ̄Lγ

ν
↔
DµQL + iūRγν

↔
DµuR

)
(BµρGνρ)

10
(
iq̄γνγ5

↔
Dµq

)
(FµρGνρ) +

(
iQ̄Lγ

ν
↔
DµQL − iūRγν

↔
DµuR

)
(BµρGνρ)

11
(
iq̄γν

↔
Dρq

)
(FνµGρµ) +

(
iQ̄Lγ

ν
↔
DρQL + iūRγν

↔
DρuR

)
(BνµGρµ)

12
(
iq̄γνγ5

↔
Dρq

)
(FνµGρµ) +

(
iQ̄Lγ

ν
↔
DρQL − iūRγν

↔
DρuR

)
(BνµGρµ)

13
(
iq̄γν

↔
Dρq

)(
F̃µνGµρ

)
−

(
iQ̄Lγ

ν
↔
DρQL + iūRγν

↔
DρuR

)(
B̃µνGµρ

)
14

(
iq̄γνγ5

↔
Dρq

)(
F̃µνGµρ

)
−

(
iQ̄Lγ

ν
↔
DρQL − iūRγν

↔
DρuR

)(
B̃µνGµρ

)
15

(
q̄
↔
Dµνq

)(
FµρGν

ρ

)
+

9

(
Q̄L

↔
DµνH̃uR + h.c.

)(
BµρGν

ρ

)
0.02
E5

TeV
, 0.07
E6

TeV

16
(
iq̄γ5

↔
Dµνq

)(
FµρGν

ρ

) −
(
iQ̄L

↔
DµνH̃uR + h.c.

)(
BµρGν

ρ

)
17

(
iq̄σµν

↔
Dσq

)
(FµρDρGνσ) +

(
iQ̄Lσµν

↔
DσH̃uR + h.c.

)
(BµρDρGνσ)

18
(
q̄σµνγ5

↔
Dρq

)
(FµσDσGνρ) −

(
Q̄Lσµν

↔
DρuR + h.c.

)
(BµσDσGνρ)

Table VI: Primary operators for q̄qgγ interactions. Under the assumption that q̄ and q are

each other’s anti-particles, the operators are Hermitean and have the listed CP properties. If

they are not, each of these operators has a Hermitean conjugate, which can be used to create

a CP even and a CP odd operator. To simplify the expressions, we use the shorthand

↔
Dµν =

↔
Dµ

↔
Dν . To get the descendant operators, once can add contracted derivatives to get

arbitrary Mandelstam factors of s, t. At dimension 9, sO5 and sO6 become redundant to

other operators. For these two, one only needs their tnO5 and tnO6 descendants.
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i Oq̄qγγ
i CP dOi

SMEFT c Unitarity

Operator Bound

1 (q̄q) (FµνFµν) +

7

(
Q̄LH̃uR + h.c.

)
(BµνBµν)

0.4
E3

TeV
, 1.2
E4

TeV

2 (q̄iγ5q) (FµνFµν) −
(
iQ̄LH̃uR + h.c

)
(BµνBµν)

3 (q̄q)
(
Fµν F̃µν

)
−

(
Q̄LH̃uR + h.c.

)(
BµνB̃µν

)
4 (iq̄γ5q)

(
Fµν F̃µν

)
+

(
iQ̄LH̃uR + h.c.

)(
BµνB̃µν

)
5

(
iq̄γν

↔
Dµq

)
(FµρFρν) +

8

(
iQ̄L

↔
DµγνQL + iūR

↔
DµγνuR

)
(BµρBρν)

0.09
E4

TeV6
(
iq̄γνγ5

↔
Dµq

)
(FµρFρν) +

(
iQ̄L

↔
DµγνQL − iūR

↔
DµγνuR

)
(BµρBρν)

7
(
iq̄σµν

↔
Dρq

)
(Fµσ∂ρF ν

σ) +

9

(
iQ̄Lσµν

↔
DρH̃uR + h.c.

)
(Bµσ∂ρBν

σ)

0.02
E5

TeV
, 0.07
E6

TeV

8
(
q̄σµνγ5

↔
Dρq

)
(Fµσ∂ρF ν

σ) −
(
Q̄Lσµν

↔
DρH̃uR + h.c.

)
(Bµσ∂ρBν

σ)

9
(
q̄
↔
Dµνq

)(
FµρF ν

ρ

)
+

(
Q̄L

↔
DµνH̃uR + h.c.

)(
BµρBν

ρ

)
10

(
iq̄γ5

↔
Dµνq

)(
FµρF ν

ρ

) −
(
iQ̄L

↔
DµνH̃uR + h.c.

)(
BµρBν

ρ

)
11

(
iq̄γν

↔
Dρq

)
([∂νFµσ ] ∂ρFµσ) +

10

(
iQ̄Lγ

ν
↔
DρQL + iūRγν

↔
DρuR

)
([∂νBµσ ] ∂ρBµσ)

0.006
E6

TeV

12
(
iq̄γνγ5

↔
Dρq

)
([∂νFµσ ] ∂ρFµσ) +

(
iQ̄Lγ

ν
↔
DρQL − iūRγν

↔
DρuR

)
([∂νBµσ ] ∂ρBµσ)

13
(
q̄γν

↔
Dµσq

)
(Fµρ∂σFνρ) −

(
Q̄Lγ

ν
↔
DµσQL + ūRγν

↔
DµσuR

)
(Bµρ∂σBνρ)

14
(
q̄γνγ5

↔
Dµσq

)
(Fµρ∂σFνρ) −

(
Q̄Lγ

ν
↔
DµσQL − ūRγν

↔
DµσuR

)
(Bµρ∂σBνρ)

15
(
q̄γν

↔
Dαβq

)(
F̃νσ∂βFσα

)
+

(
Q̄Lγ

ν
↔
DαβQL + ūRγν

↔
DαβuR

)(
B̃νσ∂βBσα

)
16

(
q̄γνγ5

↔
Dαβq

)(
F̃νσ∂βFσα

)
+

(
Q̄Lγ

ν
↔
DαβQL − ūRγν

↔
DαβuR

)(
B̃νσ∂βBσα

)
17

(
q̄σµν

↔
Dσαq

)(
Fµρ∂α

ρF
νσ

) −
11

(
Q̄Lσµν

↔
DσαH̃uR + h.c.

)(
Bµρ∂α

ρB
νσ

)
0.001
E7

TeV
, 0.004
E8

TeV18
(
iq̄σµνγ5

↔
Dσαq

)(
Fµρ∂α

ρF
νσ

)
+

(
iQ̄Lσµν

↔
DσαH̃uR + h.c.

)(
Bµρ∂α

ρB
νσ

)

Table VII: Primary operators for q̄qγγ interactions. Under the assumption that q̄ and q are

each other’s anti-particles, the operators are Hermitean and have the listed CP properties. If

they are not, each of these operators has a Hermitean conjugate, which can be used to create

a CP even and a CP odd operator. To simplify the expressions, we use the shorthand

↔
Dµν =

↔
Dµ

↔
Dν , and similarly, ∂µν = ∂µ∂ν . To get the descendant operators, once can add

contracted derivatives to get arbitrary Mandelstam factors of s, (t− u)2. At dimension 11,

sO7 and sO8 become redundant to other operators. For these two, one only needs their

(t− u)2nO7 and (t− u)2nO8 descendants.
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i Oq̄qgg
i CP dOi

SU(3)
SMEFT c Unitarity

Operator Bound

1, 2 (q̄q) (GµνGµν) +

7 δAB , dABC

(
Q̄LH̃uR + h.c.

)
(GµνGµν)

0.4
E3

TeV
, 1.2
E4

TeV

3, 4 (iq̄γ5q) (GµνGµν) −
(
iQ̄LH̃uR + h.c.

)
(GµνGµν)

5, 6 (q̄q)
(
GµνG̃µν

)
−

(
Q̄LH̃uR + h.c.

)(
GµνG̃µν

)
7, 8 (iq̄γ5q)

(
GµνG̃µν

)
+

(
iQ̄LH̃uR + h.c.

)(
GµνG̃µν

)
9 (q̄σµνq)

(
GµρGν

ρ

)
+

7 fABC

(
Q̄LσµνH̃uR + h.c.

) (
GµρGν

ρ

)
0.4

E3
TeV

, 1.2
E4

TeV10 (iq̄σµνγ5q)
(
GµρGν

ρ

) −
(
iQ̄LσµνH̃uR + h.c.

) (
GµρGν

ρ

)
11, 12

(
iq̄γν

↔
Dµq

)
(GµρGνρ) +

8 δAB , dABC

(
iQ̄Lγ

ν
↔
DµQL + iūRγν

↔
DµuR

)
(GµρGνρ)

0.09
E4

TeV13, 14
(
iq̄γνγ5

↔
Dµq

)
(GµρGνρ) +

(
iQ̄Lγ

ν
↔
DµQL − iūRγν

↔
DµuR

)
(GµρGνρ)

15 (q̄γνq) ([DνGµρ]Gµρ) +

8 fABC

(
Q̄Lγ

νQL + ūRγνuR

)
([DνGµρ]Gµρ)

0.09
E4

TeV

16 (q̄γνγ5q) ([DνGµρ]Gµρ) +
(
Q̄Lγ

νQL − ūRγνuR

)
([DνGµρ]Gµρ)

17
(
iq̄γν

↔
Dµq

)
(GµρGνρ) −

(
iQ̄Lγ

ν
↔
DµQL + iūRγν

↔
DµuR

)
(GµρGνρ)

18
(
iq̄γνγ5

↔
Dµq

)
(GµρGνρ) −

(
iQ̄Lγ

ν
↔
DµQL − iūRγν

↔
DµuR

)
(GµρGνρ)

19
(
iq̄γµ

↔
Dρq

)(
GνρG̃µν

)
+

(
iQ̄Lγ

µ
↔
Dρq + iūRγµ

↔
DρuR

)(
GνρG̃µν

)
20

(
iq̄γµγ5

↔
Dρq

)(
GνρG̃µν

)
+

(
iQ̄Lγ

µ
↔
Dρq − iūRγµ

↔
DρuR

)(
GνρG̃µν

)
21, 22

(
iq̄σµν

↔
Dσq

)(
GµρDσGν

ρ

)
+

9 δAB , dABC

(
iQ̄Lσµν

↔
DσH̃uR + h.c.

)(
GµρDσGν

ρ

)
0.02
E5

TeV
, 0.07
E6

TeV

23, 24
(
q̄σµνγ5

↔
Dσq

)(
GµρDσGν

ρ

) −
(
Q̄Lσµν

↔
DσH̃uR + h.c.

)(
GµρDσGν

ρ

)
25, 26

(
q̄
↔
Dµνq

)(
GµρGν

ρ

)
+

(
Q̄L

↔
DµνH̃uR + h.c.

)(
GµρGν

ρ

)
27, 28

(
iq̄γ5

↔
Dµνq

)(
GµρGν

ρ

) −
(
iQ̄L

↔
DµνH̃uR + h.c.

)(
GµρGν

ρ

)
29

(
q̄
↔
Dρq

)
(GµνDρGµν) +

9 fABC

(
Q̄L

↔
DρH̃uR + h.c.

)
(GµνDρGµν)

0.02
E5

TeV
, 0.07
E6

TeV

30
(
iq̄γ5

↔
Dρq

)
(GµνDρGµν) −

(
iQ̄L

↔
DρH̃uR + h.c.

)
(GµνDρGµν)

31
(
q̄
↔
Dρq

)(
GµνDρG̃µν

)
−

(
Q̄L

↔
DρH̃uR + h.c.

)(
GµνDρG̃µν

)
32

(
iq̄γ5

↔
Dρq

)(
GµνDρG̃µν

)
+

(
iQ̄L

↔
DρH̃uR + h.c.

)(
GµνDρG̃µν

)
33

(
iq̄σµν

↔
Dσq

)
(GµρDρGνσ) −

(
iQ̄Lσµν

↔
DσuR + h.c.

)
(GµρDρGνσ)

34
(
q̄σµνγ5

↔
Dσq

)
(GµρDρGνσ) +

(
Q̄Lσµν

↔
DσuR + h.c.

)
(GµρDρGνσ)

Table VIII: Primary 7-, 8-, and 9-dimension operators for q̄qgg interactions. There are three allowed SU(3) contractions,

2 symmetric ones—δAB and dABC—and one antisymmetric one—fABC . For example, Oq̄qgg
1 = (q̄δABq)

(
GAµνGB

µν

)
,

Oq̄qgg
2 = dABC

(
q̄TAq

) (
GBµνGC

µν

)
, and Oq̄qgg

9 = fABC

(
q̄TAσµνq

) (
GBµρGCν

ρ

)
. Under the assumption that q̄ and q are each

other’s anti-particles, the operators are Hermitean and have the listed CP properties. If they are not, each of these operators

has a Hermitean conjugate, which can be used to create a CP even and a CP odd operator. To simplify the expressions, we

use the shorthand
↔
Dµν =

↔
Dµ

↔
Dν . To get the descendant operators, once can add contracted derivatives to get arbitrary

Mandelstam factors of s, (t− u)2. At dimension 9, sO9 and sO10 become redundant to other operators and at dimension 11,

sO21, sO22, sO23 and sO24 become redundant to other operators. For the O9,10,21,22,23,24 operators, one only needs

descendants with factors of (t− u)2.
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i Oq̄qgg
i CP dOi

SU(3)
SMEFT c Unitarity

Operator Bound

35, 36
(
iq̄γν

↔
Dσq

)
([DνGµρ]DσGµρ) +

10 δAB , dABC

(
iQ̄Lγ

ν
↔
DσQL + iūRγν

↔
DσuR

)
([DνGµρ]DσGµρ)

0.006
E6

TeV

37, 38
(
iq̄γνγ5

↔
Dσq

)
([DνGµρ]DσGµρ) +

(
iQ̄Lγ

ν
↔
DσQL − iūRγν

↔
DσuR

)
([DνGµρ]DσGµρ)

39, 40
(
q̄γν

↔
Dµσq

)
(GµρDσGνρ) −

(
Q̄Lγ

ν
↔
DµσQL + ūRγν

↔
DµuR

)
(GµρDσGνρ)

41, 42
(
q̄γνγ5

↔
Dµσq

)
(GµρDσGνρ) −

(
Q̄Lγ

ν
↔
DµσQL − ūRγν

↔
DµuR

)
(GµρDσGνρ)

43, 44
(
q̄γµ

↔
Dρσq

)(
GνρDσG̃µν

)
+

(
Q̄Lγ

µ
↔
DρσQL + ūRγµ

↔
DρσuR

)(
GνρDσG̃µν

)
45, 46

(
q̄γµγ5

↔
Dρσq

)(
GνρDσG̃µν

)
+

(
Q̄Lγ

µ
↔
DρσQL − ūRγµ

↔
DρσuR

)(
GνρDσG̃µν

)
47

(
q̄γν

↔
Dµσq

)
(GµρDσGνρ) +

10 fABC

(
Q̄Lγ

ν
↔
DµσQL + ūRγν

↔
DµσuR

)
(GµρDσGνρ)

0.006
E6

TeV48
(
q̄γνγ5

↔
Dµσq

)
(GµρDσGνρ) +

(
Q̄Lγ

ν
↔
DµσQL − ūRγν

↔
DµσuR

)
(GµρDσGνρ)

49, 50
(
q̄σµν

↔
Dσαq

)(
GµρDα

ρG
νσ

) −
11 δAB , dABC

(
Q̄Lσµν

↔
DσαH̃uR + h.c.

)(
GµρDα

ρG
νσ

)
0.001
E7

TeV
, 0.004
E8

TeV51, 52
(
iq̄σµνγ5

↔
Dσαq

)(
GµρDα

ρG
νσ

)
+

(
iQ̄Lσµν

↔
DσαH̃uR + h.c.

)(
GµρDα

ρG
νσ

)
53

(
iq̄

↔
Dµνσq

)(
GµρDσGν

ρ

)
+

11 fABC

(
iQ̄L

↔
DµνσH̃uR + h.c.

)(
Gµρ

↔
DσGν

ρ

)
0.001
E7

TeV
, 0.004
E8

TeV54
(
q̄γ5

↔
Dµνσq

)(
GµρDσGν

ρ

) −
(
Q̄L

↔
DµνσH̃uR + h.c.

)(
GµρDσGν

ρ

)

Table IX: Primary 10- and 11-dimension operators for q̄qgg interactions. There are three

allowed SU(3) contractions, 2 symmetric ones—δAB and dABC—and one antisymmetric

one—fABC . Under the assumption that q̄ and q are each other’s anti-particles, the operators

are Hermitean and have the listed CP properties. If they are not, each of these operators has

a Hermitean conjugate, which can be used to create a CP even and a CP odd operator. To

simplify the expressions, we use the shorthand
↔
Dµν =

↔
Dµ

↔
Dν , and similarly Dµν = DµDν . To

get the descendant operators, once can add contracted derivatives to get arbitrary

Mandelstam factors of s, (t− u)2.
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i Oq̄qℓ̄ℓ
i CP dOi

SMEFT c Unitarity

Operator Bound

1 (q̄q)(ℓ̄ℓ) +

6

(Q̄LH̃uR + h.c.)(L̄LHeR + h.c.)

1.5
E2

TeV
, 15
E4

TeV

2 (q̄iγ5q)(ℓ̄ℓ) − (iQ̄LH̃uR + h.c.)(L̄LHeR + h.c.)

3 (q̄q)(ℓ̄iγ5ℓ) − (Q̄LH̃uR + h.c.)(iL̄LHeR + h.c.)

4 (q̄iγ5q)(ℓ̄iγ5ℓ) + (iQ̄LH̃uR + h.c.)(iL̄LHeR + h.c.)

5 (q̄γµq)(ℓ̄γµℓ) +

6

(Q̄Lγ
µQL + ūRγ

µuR)(L̄LγµLL + ēRγµeR)

1.5
E2

TeV

6 (q̄γµγ5q)(ℓ̄γµℓ) + (Q̄Lγ
µQL − ūRγ

µuR)(L̄LγµLL + ēRγµeR)

7 (q̄γµq)(ℓ̄γµγ5ℓ) + (Q̄Lγ
µQL + ūRγ

µuR)(L̄LγµLL − ēRγµeR)

8 (q̄γµγ5q)(ℓ̄γµγ5ℓ) + (Q̄Lγ
µQL − ūRγ

µuR)(L̄LγµLL − ēRγµeR)

9 (q̄σµνq)(ℓ̄σµνℓ) +
6

(Q̄Lσ
µνH̃uR + h.c.)(L̄LσµνHeR + h.c.)

1.5
E2

TeV
, 15
E4

TeV10 ϵµνρσ(q̄σ
µνq)(ℓ̄σρσℓ) − ϵµνρσ(Q̄Lσ

µνH̃uR + h.c.)(L̄Lσ
ρσHeR + h.c.)

11 (q̄γµq)(iℓ̄
↔
Dµℓ) +

7

(Q̄Lγ
µQL + ūRγ

µuR)(iL̄LH
↔
DµeR + h.c.)

0.4
E3

TeV
, 1.2
E4

TeV

12 (q̄γµq)(ℓ̄γ5
↔
Dµℓ) − (Q̄Lγ

µQL + ūRγ
µuR)(L̄LH

↔
DµeR + h.c.)

13 (q̄γµγ5q)(iℓ̄
↔
Dµℓ) + (Q̄Lγ

µQL − ūRγ
µuR)(iL̄LH

↔
DµeR + h.c.)

14 (q̄γµγ5q)(ℓ̄γ5
↔
Dµℓ) − (Q̄Lγ

µQL − ūRγ
µuR)(L̄LH

↔
DµeR + h.c.)

15 (iq̄
↔
Dµq)(ℓ̄γµℓ) + (iQ̄LH̃

↔
DµuR + h.c.)(L̄LγµLL + ēRγµeR)

16 (q̄γ5
↔
Dµq)(ℓ̄γµℓ) − (Q̄LH̃

↔
DµuR + h.c.)(L̄LγµLL + ēRγµeR)

17 (iq̄
↔
Dµq)(ℓ̄γµγ5ℓ) + (iQ̄LH̃

↔
DµuR + h.c.)(L̄LγµLL − ēRγµeR)

18 (q̄γ5
↔
Dµq)(ℓ̄γµγ5ℓ) − (Q̄LH̃

↔
DµuR + h.c.)(L̄LγµLL − ēRγµeR)

Table X: Primary operators for q̄qℓ̄ℓ interactions (As described in the text, these operators

can be modified to yield the operators for baryon-lepton interactions uu′de and udd′ν.).

Under the assumption the q̄, q and ℓ̄, ℓ are each other’s anti-particles, the operators are

Hermitean and have the listed CP properties. If they are not, each of these operators has a

Hermitean conjugate, which can be used to create a CP even and a CP odd operator. To get

the descendant operators, one can add contracted derivatives to get arbitrary Mandelstam

factors of s, t. At dimension 8, sO9 and sO10 become redundant and thus, one only needs to

consider O9 and O10 with arbitrary factors of t.
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i Ouude
i dOi

SMEFT c Unitarity
Operator Bound

1 (d̄cu)(ēcu)

6

(d̄cRH̃†QL + Q̄c
LHuR)(ēcRH̃†QL + L̄c

LHuR)

1.5
E2

TeV

, 15
E4

TeV

2 (d̄ciγ5u)(ēcu) (id̄cRH̃†QL − iQ̄c
LHuR)(ēcRH̃†QL + L̄c

LHuR)

3 (d̄cu)(ēciγ5u) (d̄cRH̃†QL + Q̄c
LHuR)(iēcRH̃†QL − iL̄c

LHuR)

4 (d̄ciγ5u)(ēciγ5u) (id̄cRH̃†QL − iQ̄c
LHuR)(iēcRH̃†QL − iL̄c

LHuR)

5 (d̄cγµu)(ēcDµu)

7

(Q̄c
Lγ

µQL + d̄cRγµuR)(ēcRDµH̃†QL + L̄c
LHDµuR)

0.4
E3

TeV

, 1.2
E4

TeV

6 (d̄cγµu)(ēciγ5Dµu) (Q̄c
Lγ

µQL + d̄cRγµuR)(iēcRDµH̃†QL − iL̄c
LHDµuR)

7 (d̄cγµγ5u)(ēcDµu) (Q̄c
Lγ

µQL − d̄cRγµuR)(ēcRDµH̃†QL + L̄c
LHDµuR)

8 (d̄cγµγ5u)(ēciγ5Dµu) (Q̄c
Lγ

µQL − d̄cRγµuR)(iēcRDµH̃†QL − iL̄c
LHDµuR)

9 (d̄cDµu)(ēcγµu) (d̄cRDµH̃†QL + Q̄c
LHDµuR)(L̄c

Lγ
µQL + ēcRγµuR)

10 (d̄ciγ5Dµu)(ēcγµu) (id̄cRDµH̃†QL − iQ̄c
LHDµuR)(L̄c

Lγ
µQL + ēcRγµuR)

11 (d̄cu)([Dµēc]
↔
Du

µu)

8

(d̄cRH̃†QL + Q̄c
LHuR)([DµēcR]

↔
DQ,u

µ H̃†QL + [DµL̄c
LH]

↔
DQ,u

µ uR)

0.09
E4

TeV

, 0.9
E6

TeV

12 (d̄ciγ5u)([Dµēc]
↔
Du

µu) (id̄cRH̃†QL − iQ̄c
LHuR)([DµēcR]

↔
DQ,u

µ H̃†QL + [DµL̄c
LH]

↔
DQ,u

µ uR)

13 (d̄cu)([Dµēc]iγ5
↔
Du

µu) (d̄cRH̃†QL + Q̄c
LHuR)(i[DµēcR]

↔
DQ,u

µ H̃†QL − i[DµL̄c
LH]

↔
DQ,u

µ uR)

14 (d̄ciγ5u)([Dµēc]iγ5
↔
Du

µu) (id̄cRH̃†QL − iQ̄c
LHuR)(i[DµēcR]

↔
DQ,u

µ H̃†QL − i[DµL̄c
LH]

↔
DQ,u

µ uR)

15 (d̄cγµu)([Dν ēc]γµ
↔
Du

νu)
8

(Q̄c
Lγ

µQL + d̄cRγµuR)([Dν L̄c
L]γµ

↔
DQ,u

ν QL + [Dν ēcR]γµ
↔
DQ,u

ν uR) 0.09
E4

TeV16 (d̄cγµγ5u)([Dν ēc]γµ
↔
Du

νu) (Q̄c
Lγ

µQL − d̄cRγµuR)([Dν L̄c
L]γµ

↔
DQ,u

ν QL + [Dν ēcR]γµ
↔
DQ,u

ν uR)

17 (d̄cγµu)([Dν ēc]
↔
Du

νDµu)
9

(Q̄c
Lγ

µQL + d̄cRγµuR)([Dν ēcR]
↔
DQ,u

ν DµH̃†QL + [Dν L̄c
LH]

↔
DQ,u

ν DµuR) 0.02
E5

TeV

, 0.07
E6

TeV18 (d̄cγµu)([Dν ēc]iγ5
↔
Du

νDµu) (Q̄c
Lγ

µQL + d̄cRγµuR)(i[Dν ēcR]
↔
DQ,u

ν DµH̃†QL − i[Dν L̄c
LH]

↔
DQ,u

ν DµuR)

Table XI: Primary operators for uude interactions, where dc and ec are the charge conjugated

down-type quark and charged lepton 4-component spinor and SU(3) indices are contracted with an

epsilon tensor (These operators can be modified to yield the operators for uddν interactions by

simply taking u → d, d̄c → ūc, ēc → ν̄/ν̄c.). To simplify the expressions, we’ve defined a back-forth

derivative
↔
Du

µ, which only acts on the u fields, and similarly
↔
Du,Q

µ which acts on uR and QL (but

not Q̄c
L). To get the descendant operators, one can add contracted derivatives to get arbitrary

Mandelstam factors that respect the exchange symmetry between the two up-type quarks,

i.e. s, (t− u)2. At dimension 8, sO3 and sO4 become redundant and thus, one only needs to

consider O3 and O4 descendants with arbitrary factors of (t− u)2.
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i Oq̄qq̄′q′

i,S/A CP dOi

SMEFT c Unitarity

Operator Bound

1 (q̄q)(q̄′q′) +

6

(Q̄LH̃uR + h.c.)(Q̄′
LH̃u′

R + h.c.)

1.5
E2

TeV
, 15
E4

TeV

2 (q̄iγ5q)(q̄
′q′) − (iQ̄LH̃uR + h.c.)(Q̄′

LH̃u′
R + h.c.)

3 (q̄q)(q̄′iγ5q
′) − (Q̄LH̃uR + h.c.)(iQ̄′

LH̃u′
R + h.c.)

4 (q̄iγ5q)(q̄
′iγ5q

′) + (iQ̄LH̃uR + h.c.)(iQ̄′
LH̃u′

R + h.c.)

5 (q̄γµq)(q̄′γµq
′) +

6

(Q̄Lγ
µQL + ūRγ

µuR)(Q̄
′
LγµQ

′
L + ū′

Rγµu
′
R)

1.5
E2

TeV

6 (q̄γµγ5q)(q̄
′γµq

′) + (Q̄Lγ
µQL − ūRγ

µuR)(Q̄
′
LγµQ

′
L + ū′

Rγµu
′
R)

7 (q̄γµq)(q̄′γµγ5q
′) + (Q̄Lγ

µQL + ūRγ
µuR)(Q̄

′
LγµQ

′
L − ū′

Rγµu
′
R)

8 (q̄γµγ5q)(q̄
′γµγ5q

′) + (Q̄Lγ
µQL − ūRγ

µuR)(Q̄
′
LγµQ

′
L − ū′

Rγµu
′
R)

9 (q̄σµνq)(q̄′σµνq
′) +

6
(Q̄Lσ

µνH̃uR + h.c.)(Q̄′
LσµνH̃u′

R + h.c.)
1.5

E2
TeV

, 15
E4

TeV10 ϵµνρσ(q̄σ
µνq)(q̄′σρσq′) − ϵµνρσ(Q̄Lσ

µνH̃uR + h.c.)(Q̄′
Lσ

ρσH̃u′
R + h.c.)

11 (q̄γµq)(iq̄′
↔
Dµq

′) +

7

(Q̄Lγ
µQL + ūRγ

µuR)(iQ̄
′
LH̃

↔
Dµu

′
R + h.c.)

0.4
E3

TeV
, 1.2
E4

TeV

12 (q̄γµq)(q̄′γ5
↔
Dµq

′) − (Q̄Lγ
µQL + ūRγ

µuR)(Q̄
′
LH̃

↔
Dµu

′
R + h.c.)

13 (q̄γµγ5q)(iq̄
′
↔
Dµq

′) + (Q̄Lγ
µQL − ūRγ

µuR)(iQ̄
′
LH̃

↔
Dµu

′
R + h.c.)

14 (q̄γµγ5q)(q̄
′γ5

↔
Dµq

′) − (Q̄Lγ
µQL − ūRγ

µuR)(Q̄
′
LH̃

↔
Dµu

′
R + h.c.)

15 (iq̄
↔
Dµq)(q̄′γµq

′) + (iQ̄LH̃
↔
DµuR + h.c.)(Q̄′

LγµQ
′
L + ū′

Rγµu
′
R)

16 (q̄γ5
↔
Dµq)(q̄′γµq

′) − (Q̄LH̃
↔
DµuR + h.c.)(Q̄′

LγµQ
′
L + ū′

Rγµu
′
R)

17 (iq̄
↔
Dµq)(q̄′γµγ5q

′) + (iQ̄LH̃
↔
DµuR + h.c.)(Q̄′

LγµQ
′
L − ū′

Rγµu
′
R)

18 (q̄γ5
↔
Dµq)(q̄′γµγ5q

′) − (Q̄LH̃
↔
DµuR + h.c.)(Q̄′

LγµQ
′
L − ū′

Rγµu
′
R)

Table XII: Primary operators for q̄qq̄′q′ interactions. There are two allowed SU(3) contractions, the S

indicates where q, q′ form a symmetric 6 representation under SU(3), while A has the antisymmetric 3̄

representation. For example, with explicit indices we have Oq̄qq̄′q′

1,S = (q̄{αq{α)(q̄
′β}q′β}) and

Oq̄qq̄′q′

1,A = (q̄[αq[α)(q̄
′β]q′β]), where q{αqβ} = qαqβ + qβqα and q[αqβ] = qαqβ − qβqα. Under the assumption

the q̄, q and q̄′, q′ are resprectively each other’s anti-particles, the operators are Hermitean and have the

listed CP properties. If they are not, each of these operators has a Hermitean conjugate, which can be

used to create a CP even and a CP odd operator. To get the descendant operators, one can add contracted

derivatives to get arbitrary Mandelstam factors of s, t. At dimension 8, sO9 and sO10 become redundant

and thus, one only needs to consider O9 and O10 with arbitrary factors of t.
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i Ouut̄c̄
i dOi

SU(3)
SMEFT c Unitarity
Operator Bound

1 (t̄u)(c̄u)

6 A

(Q̄3LH̃uR + t̄RH̃†Q1L)(Q̄2LH̃uR + c̄RH̃†Q1L)

1.5
E2

TeV

, 15
E4

TeV

2 (t̄iγ5u)(c̄u) (iQ̄3LH̃uR − it̄RH̃†Q1L)(Q̄2LH̃uR + c̄RH̃†Q1L)

3 (t̄u)(c̄iγ5u) (Q̄3LH̃uR + t̄RH̃†Q1L)(iQ̄2LH̃uR − ic̄RH̃†Q1L)

4 (t̄iγ5u)(c̄iγ5u) (iQ̄3LH̃uR − it̄RH̃†Q1L)(iQ̄2LH̃uR + ic̄RH̃†Q1L)

5 (t̄u)(c̄u)

6 S

(Q̄3LH̃uR + t̄RH̃†Q1L)(Q̄2LH̃uR + c̄RH̃†Q1L)

1.5
E2

TeV

, 15
E4

TeV

6 (t̄iγ5u)(c̄u) (iQ̄3LH̃uR − it̄RH̃†Q1L)(Q̄2LH̃uR + c̄RH̃†Q1L)

7 (t̄u)(c̄iγ5u) (Q̄3LH̃uR + t̄RH̃†Q1L)(iQ̄2LH̃uR − ic̄RH̃†Q1L)

8 (t̄iγ5u)(c̄iγ5u) (iQ̄3LH̃uR − it̄RH̃†Q1L)(iQ̄2LH̃uR + ic̄RH̃†Q1L)

9 (t̄γµu)(c̄γµu)
6 S

(Q̄3Lγ
µQ1L + t̄RγµuR)(Q̄2LγµQ1L + c̄RγµuR) 1.5

E2
TeV10 (t̄γµγ5u)(c̄γµu) (Q̄3Lγ

µQ1L − t̄RγµuR)(Q̄2LγµQ1L + c̄RγµuR)

11 (t̄γµu)(c̄Dµu)

7 A

(Q̄3Lγ
µQ1L + t̄RγµuR)(Q̄2LH̃DµuR + c̄RDµH̃†Q1L)

0.4
E3

TeV

, 1.2
E4

TeV

12 (t̄γµu)(c̄iγ5Dµu) (Q̄3Lγ
µQ1L + t̄RγµuR)(iQ̄2LH̃DµuR − ic̄RDµH̃†Q1L)

13 (t̄γµγ5u)(c̄Dµu) (Q̄3Lγ
µQ1L − t̄RγµuR)(Q̄2LH̃DµuR + c̄RDµH̃†Q1L)

14 (t̄γµγ5u)(c̄iγ5Dµu) (Q̄3Lγ
µQ1L − t̄RγµuR)(iQ̄2LH̃DµuR − ic̄RDµH̃†Q1L)

15 (t̄Dµu)(c̄γµu) (Q̄3LH̃DµuR + t̄RDµH̃†Q1L)(Q̄2Lγ
µQ1L + c̄RγµuR)

16 (t̄iγ5Dµu)(c̄γµu) (iQ̄3LH̃DµuR − it̄RDµH̃†Q1L)(Q̄2Lγ
µQ1L + c̄RγµuR)

17 (t̄γµu)(c̄Dµu)
7 S

(Q̄3Lγ
µQ1L + t̄RγµuR)(Q̄2LH̃DµuR + c̄RDµH̃†Q1L) 0.4

E3
TeV

, 1.2
E4

TeV18 (t̄γµu)(c̄iγ5Dµu) (Q̄3Lγ
µQ1L + t̄RγµuR)(iQ̄2LH̃DµuR − ic̄RDµH̃†Q1L)

19 (t̄u)([Dµc̄]
↔
Du

µu)

8 A

(Q̄3LH̃uR + t̄RH̃†Q1L)([D
µQ̄2LH̃]

↔
Du,Q1

µ uR + [Dµc̄R]
↔
Du,Q1

µ H̃†Q1L)

0.09
E4

TeV

, 0.9
E6

TeV

20 (t̄iγ5u)([Dµc̄]
↔
Du

µu) (iQ̄3LH̃uR − it̄RH̃†Q1L)([D
µQ̄2LH̃]

↔
Du,Q1

µ uR + [Dµc̄R]
↔
Du,Q1

µ H̃†Q1L)

21 (t̄u)([Dµc̄]iγ5
↔
Du

µu) (Q̄3LH̃uR + t̄RH̃†Q1L)(i[D
µQ̄2LH̃]

↔
Du,Q1

µ uR − i[Dµc̄R]
↔
Du,Q1

µ H̃†Q1L)

22 (t̄iγ5u)([Dµc̄]iγ5
↔
Du

µu) (iQ̄3LH̃uR − it̄RH̃†Q1L)(i[D
µQ̄2LH̃]

↔
Du,Q1

µ uR − i[Dµc̄R]
↔
Du,Q1

µ H̃†Q1L)

23 (t̄γµu)([Dν c̄]γµ
↔
Du

νu)
8 A

(Q̄3Lγ
µQ1L + t̄RγµuR)([DνQ̄2L]γµ

↔
Du,Q1

ν Q1L + [Dν c̄R]γµ
↔
Du,Q1

ν uR) 0.09
E4

TeV24 (t̄γµγ5u)([Dν c̄]γµ
↔
Du

νu) (Q̄3Lγ
µQ1L − t̄RγµuR)([DνQ̄2L]γµ

↔
Du,Q1

ν Q1L + [Dν c̄R]γµ
↔
Du,Q1

ν uR)

25 (t̄u)([Dµc̄]
↔
Du

µu)

8 S

(Q̄3LH̃uR + t̄RH̃†Q1L)([D
µQ̄2LH̃]

↔
Du,Q1

µ uR + [Dµc̄R]†
↔
Du,Q1

µ H̃Q1L)

0.09
E4

TeV

, 0.9
E6

TeV

26 (t̄iγ5u)([Dµc̄]
↔
Du

µu) (iQ̄3LH̃uR − it̄RH̃†Q1L)([D
µQ̄2LH̃]

↔
Du,Q1

µ uR + [Dµc̄R]
↔
Du,Q1

µ H̃†Q1L)

27 (t̄u)([Dµc̄]iγ5
↔
Du

µu) (Q̄3LH̃uR + t̄RH̃†Q1L)(i[D
µQ̄2LH̃]

↔
Du,Q1

µ uR − i[Dµc̄R]
↔
Du,Q1

µ H̃†Q1L)

28 (t̄iγ5u)([Dµc̄]iγ5
↔
Du

µu) (iQ̄3LH̃uR − it̄RH̃†Q1L)(i[D
µQ̄2LH̃]

↔
Du,Q1

µ uR − i[Dµc̄R]
↔
Du,Q1

µ H̃†Q1L)

29 (t̄γµu)([Dν c̄]
↔
Du

νDµu)
9 A

(Q̄3Lγ
µQ1L + t̄RγµuR)([DνQ̄2LH̃]

↔
Du,Q1

ν DµuR + [Dν c̄R]
↔
Du,Q1

ν DµH̃†Q1L) 0.02
E5

TeV

, 0.07
E6

TeV30 (t̄γµu)([Dν c̄]iγ5
↔
Du

νDµu) (Q̄3Lγ
µQ1L + t̄RγµuR)(i[DνQ̄2LH̃]

↔
Du,Q1

ν DµuR − i[Dν c̄R]
↔
Du,Q1

ν DµH̃†Q1L)

31 (t̄γµu)([Dν c̄]
↔
Du

νDµu)

9 S

(Q̄3Lγ
µQ1L + t̄RγµuR)([DνQ̄2LH̃]

↔
Du,Q1

ν DµuR + [Dν c̄R]
↔
Du,Q1

ν DµH̃†Q1L)

0.02
E5

TeV

, 0.07
E6

TeV

32 (t̄γµu)([Dν c̄]iγ5
↔
Du

νDµu) (Q̄3Lγ
µQ1L + t̄RγµuR)(i[DνQ̄2LH̃]

↔
Du,Q1

ν DµuR − i[Dν c̄R]
↔
Du,Q1

ν DµH̃†Q1L)

33 (t̄γµγ5u)([Dν c̄]
↔
Du

νDµu) (Q̄3Lγ
µQ1L − t̄RγµuR)([DνQ̄2LH̃]

↔
Du,Q1

ν DµuR + [Dν c̄R]
↔
Du,Q1

ν DµH̃†Q1L)

34 (t̄γµγ5u)([Dν c̄]iγ5
↔
Du

νDµu) (Q̄3Lγ
µQ1L − t̄RγµuR)(i[DνQ̄2LH̃]

↔
Du,Q1

ν DµuR − i[Dν c̄R]
↔
Du,Q1

ν DµH̃†Q1L)

35 (t̄Dµu)([Dν c̄]γµ
↔
Du

νu) (Q̄3LH̃DµuR + t̄RDµH̃†Q1L)([D
νQ̄2L]γµ

↔
Du,Q1

ν Q1L + [Dν c̄R]γµ
↔
Du,Q1

ν uR)

36 (t̄iγ5Dµu)([Dν c̄]γµ
↔
Du

νu) (iQ̄3LH̃DµuR − it̄RDµH̃†Q1L)([D
νQ̄2L]γµ

↔
Du,Q1

ν Q1L + [Dν c̄R]γµ
↔
Du,Q1

ν uR)

Table XIII: Primary operators for qqq̄q̄ interactions with two indistinguishable quarks, for the specific

case of uut̄c̄ interactions (Hermitean conjugate yields tcūū and down-type interactions can be found by

exchange for down quarks.). The SU(3) contractions are determined by S(A) to be symmetric

(antisymmetric) in the uu indices. We’ve defined a back-forth derivative
↔
Du

µ, which only acts on the u

fields, and similarly
↔
Du,Q1

µ which acts on uR and Q1L. For descendant operators, one adds contracted

derivatives to get arbitrary Mandelstam factors that respect the exchange symmetry, i.e. s, (t− u)2. At

dimension 8, sO3 and sO4 become redundant, while at dimension 10, sO27 and sO28 become redundant.

Thus one only needs to consider O3,4,27,28 descendants with arbitrary factors of (t− u)2.
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i Ouut̄t̄
i dOi

SU(3)
SMEFT c Unitarity
Operator Bound

1 (t̄u)(t̄u)

6 A

(Q̄3LH̃uR + t̄RH̃†Q1L)(Q̄3LH̃uR + t̄RH̃†Q1L)
1.5

E2
TeV

, 15
E4

TeV
2 (t̄iγ5u)(t̄u) (iQ̄3LH̃uR − it̄RH̃†Q1L)(Q̄3LH̃uR + t̄RH̃†Q1L)

3 (t̄iγ5u)(t̄iγ5u) (Q̄3LH̃uR − t̄RH̃†Q1L)(Q̄3LH̃uR − t̄RH̃†Q1L)

4 (t̄u)(t̄u)

6 S

(Q̄3LH̃uR + t̄RH̃†Q1L)(Q̄3LH̃uR + t̄RH̃†Q1L)
1.5

E2
TeV

, 15
E4

TeV
5 (t̄iγ5u)(t̄u) (iQ̄3LH̃uR − it̄RH̃†Q1L)(Q̄3LH̃uR + t̄RH̃†Q1L)

6 (t̄iγ5u)(t̄iγ5u) (Q̄3LH̃uR − t̄RH̃†Q1L)(Q̄3LH̃uR − t̄RH̃†Q1L)

7 (t̄γµu)(t̄γµu)
6 S

(Q̄3Lγ
µQ1L + t̄RγµuR)(Q̄3LγµQ1L + t̄RγµuR) 1.5

E2
TeV8 (t̄γµγ5u)(t̄γµu) (Q̄3Lγ

µQ1L − t̄RγµuR)(Q̄3LγµQ1L + t̄RγµuR)

9 (t̄γµu)(t̄Dµu)

7 A

(Q̄3Lγ
µQ1L + t̄RγµuR)(Q̄3LH̃DµuR + t̄RDµH̃†Q1L)

0.4
E3

TeV

, 1.2
E4

TeV

10 (t̄γµu)(t̄iγ5Dµu) (Q̄3Lγ
µQ1L + t̄RγµuR)(iQ̄3LH̃DµuR − it̄RDµH̃†Q1L)

11 (t̄γµγ5u)(t̄Dµu) (Q̄3Lγ
µQ1L − t̄RγµuR)(Q̄3LH̃DµuR + t̄RDµH̃†Q1L)

12 (t̄γµγ5u)(t̄iγ5Dµu) (Q̄3Lγ
µQ1L − t̄RγµuR)(iQ̄3LH̃DµuR − it̄RDµH̃†Q1L)

13 (t̄u)([Dµ t̄ ]
↔
Du

µu)

8 A

(Q̄3LH̃uR + t̄RH̃†Q1L)([D
µQ̄3LH̃]

↔
Du,Q1

µ uR + [Dµ t̄R]
↔
Du,Q1

µ H̃†Q1L)
0.09
E4

TeV

, 0.9
E6

TeV
14 (t̄iγ5u)([Dµ t̄ ]

↔
Du

µu) (iQ̄3LH̃uR − it̄RH̃†Q1L)([D
µQ̄3LH̃]

↔
Du,Q1

µ uR + [Dµ t̄R]
↔
Du,Q1

µ H̃†Q1L)

15 (t̄iγ5u)([Dµ t̄ ]iγ5
↔
Du

µu) (iQ̄3LH̃uR − it̄RH̃†Q1L)(i[D
µQ̄3LH̃]

↔
Du,Q1

µ uR − i[Dµ t̄R]
↔
Du,Q1

µ H̃†Q1L)

16 (t̄γµu)([Dν t̄ ]γµ
↔
Du

νu)
8 A

(Q̄3Lγ
µQ1L + t̄RγµuR)([DνQ̄3L]γµ

↔
Du,Q1

ν Q1L + [Dν t̄R]γµ
↔
Du,Q1

ν uR) 0.09
E4

TeV17 (t̄γµγ5u)([Dν t̄ ]γµ
↔
Du

νu) (Q̄3Lγ
µQ1L − t̄RγµuR)([DνQ̄3L]γµ

↔
Du,Q1

ν Q1L + [Dν t̄R]γµ
↔
Du,Q1

ν uR)

18 (t̄u)([Dµ t̄ ]
↔
Du

µu)

8 S

(Q̄3LH̃uR + t̄RH̃†Q1L)([D
µQ̄3LH̃]

↔
Du,Q1

µ uR + [Dµ t̄R]
↔
Du,Q1

µ H̃†Q1L)
0.09
E4

TeV

, 0.9
E6

TeV
19 (t̄iγ5u)([Dµ t̄ ]

↔
Du

µu) (iQ̄3LH̃uR − it̄RH̃†Q1L)([D
µQ̄3LH̃]

↔
Du,Q1

µ uR + [Dµ t̄R]
↔
Du,Q1

µ H̃†Q1L)

20 (t̄iγ5u)([Dµ t̄ ]iγ5
↔
Du

µu) (iQ̄3LH̃uR − it̄RH̃†Q1L)(i[D
µQ̄3LH̃]

↔
Du,Q1

µ uR − i[Dµ t̄R]
↔
Du,Q1

µ H̃†Q1L)

21 (t̄γµu)([Dν t̄ ]Dµ

↔
Du

νu)

9 S

(Q̄3Lγ
µQ1L + t̄RγµuR)([DνQ̄3LH̃]

↔
Du,Q1

ν DµuR + [Dν t̄R]
↔
Du,Q1

ν DµH̃†Q1L)

0.02
E5

TeV

, 0.07
E6

TeV

22 (t̄γµu)([Dν t̄ ]iγ5Dµ

↔
Du

νu) (Q̄3Lγ
µQ1L + t̄RγµuR)(i[DνQ̄3LH̃]

↔
Du,Q1

ν DµuR − i[Dν t̄R]
↔
Du,Q1

ν DµH̃†Q1L)

23 (t̄γµγ5u)([Dν t̄ ]Dµ

↔
Du

νu) (Q̄3Lγ
µQ1L − t̄RγµuR)([DνQ̄3LH̃]

↔
Du,Q1

ν DµuR + [Dν t̄R]
↔
Du,Q1

ν DµH̃†Q1L)

24 (t̄γµγ5u)([Dν t̄ ]iγ5Dµ

↔
Du

νu) (Q̄3Lγ
µQ1L − t̄RγµuR)(i[DνQ̄3LH̃]

↔
Du,Q1

ν DµuR − i[Dν t̄R]
↔
Du,Q1

ν DµH̃†Q1L)

Table XIV: Primary operators for qqq̄q̄ interactions with two indistinguishable quarks and two

indistinguishable antiquarks, for the specific case of uut̄t̄ interactions (The Hermitean conjugate

yields the ttūū interactions and the down-type interactions can be found by exchange for down

quarks.). The SU(3) contractions are determined by S to be symmetric in the uu indices and A to

be antisymmetric. To simplify the expressions, we’ve defined a back-forth derivative
↔
Du

µ, which

only acts on the u fields, and similarly
↔
Du,Q1

µ which acts on uR and Q1L. To get the descendant

operators, one can add contracted derivatives to get arbitrary Mandelstam factors that respect the

exchange symmetries, i.e. s, (t− u)2. At dimension 8, sO2 and sO3 become redundant, while at

dimension 10, sO19 and sO20 become redundant. Thus, one only needs to consider

O2,O3,O19,O20 with arbitrary factors of (t− u)2.
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