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At the HL-LHC and future high energy colliders, a sample of a billion top quarks
will be produced, allowing precision searches for new physics in top quark decay
and production. To aid in this endeavor, we characterize the independent three
and four point on-shell amplitudes involving top quarks, under the assumption of
SU(3)e x U(1)em invariance. The four point amplitudes factorize into primary and
descendent amplitudes, where descendants are primaries multiplied by Mandelstam
variables. By enumerating the allowed amplitudes, we can check for amplitude redun-
dancies to find the number of independent terms and convert those into a Lagrangian
which parameterizes these amplitudes. These results are then cross checked by uti-
lizing the Hilbert series to count the number of independent Lagrangian operators.
Interestingly, we find situations where the Hilbert series has cancellations which, if
naively interpreted, would lead to the incorrect conclusion that that there are no pri-
mary operators at a given mass dimension. We characterize the four fermion (f f f f)
and two fermion, two gauge boson (ffVV) operators respectively up to dimension
12 and 13. Finally, by combining unitarity bounds on the coupling strengths and
simple estimates of the branching ratio sensitivities, we highlight interesting ampli-
tudes for top quark decay that should be studied more closely at the HL-LHC. Of
those highlighted, there are both new charge current and flavor changing neutral

current decays that occur at dimension 8 and 10 in SMEFT.



I. INTRODUCTION

The search for new physics beyond the Standard Model, at the LHC and beyond, has
been led by the well established methods of effective field theory (EFT). To parameterize the
indirect effects of new physics there are the two main paradigms of SMEFT [1I, 2] and HEFT
[3]. These two approaches have differing assumptions about the physics at high energy scales

and the relative importance of different effects.

There are however a variety of issues that can obfuscate the connection between EFT's and
experimental signals. There is the large number of allowed interactions and also the compli-
cation of redundant (or incomplete) bases from equivalences due to equations of motion and
integration by parts. These issues have motivated work to understand the direct connection

between dimension 6 SMEFT terms and the physical observables they parameterize [4-7].

These redundancies on the Lagrangian side do not affect the predictions of physical
amplitudes where external particles are on-shell. Since these amplitudes are the direct
observables accessible to experiment, they provide a useful intermediary between theory
and experiment. Recent work in the study of amplitudes has allowed greater insight into
the independent amplitudes for a given process. In particular, the general structure of
beyond the Standard Model amplitudes, given just SU(3). X U(1)en, invariance, has been

analyzed, using both spinor helicity variables [8H12] as well as standard variables [13].

Ref. [13] was able to characterize the structure of on-shell 3 and 4 point amplitudes in-
volving the Higgs. To complete this procedure, a set of potential on-shell amplitudes was
constructed out of Lorentz invariant combinations of momenta and polarizations. By study-
ing their Taylor expansion in the kinematic variables, a set of independent amplitudes was
determined. These could then be converted into a basis of Lagrangian operators. As a cross
check, the number of independent operators at each mass dimension could be determined
using the Hilbert Series approach [14-20]. For the four point couplings, this lead to a num-
ber of primary amplitudes/operators whose multiplication by Mandelstam variables gave
descendant amplitudes/operators. If these new interactions are mediated by the exchange
of a massive particle, the lowest order primary amplitude would be a first approximation to
the relevant phenomenology. Finally, by requiring unitarity up to an energy FE\,.., one can
place upper bounds on their coupling strength. These results, when combined with simple

estimates, suggested that there are new amplitudes in Higgs decays into Zff, W ff,vff,



and Zvyvy that could be searched for at the HL-LHC.

In this paper, we extend this study to amplitudes involving the top quark. At the HL-LHC
and future TeV colliders, over a billion top quarks will be produced, allowing the study for
rare decays as well as new production mechanisms. This requires understanding the general
structure of four fermion operators and two fermion operators with two gauge bosons, which
can result in primaries up to dimension 11. This vector space of amplitudes is spanned by
these primary and descendant amplitudes, which in a model agnostic analysis can be taken
to be independent [21]. Interestingly, in this classification, we find interactions (e.g. vyff)
whose Hilbert series numerator has a complete cancellation in the coefficient for one of the
terms, where a naive inspection incorrectly concludes that there are no primary operators
at a certain mass dimension. In our analysis, we have also checked that the primary and
descendant structure up to at least dimension 12, going beyond the existing dimension 8
results using spinor-helicity variables [I1, 12]. As an initial look at the phenomenology
of these operators, we give simple estimates that top quark decays for which FCNC modes
(e.g. t— c(ll,hy,hg, Zv,Zg,77,7g)) and charged current decay modes could be interesting
to search for at the HL-LHC. These simple estimates indicate that there are some decay

modes that appear at dimension 8 and 10 in SMEFT that are worth studying in more detail.

The rest of this paper is organized as follows: Section [[I] describes what amplitudes
we will explore and how to determine independent amplitudes. Section [[TI] discusses the
Hilbert series results for our top quark operators. In Section [[V] we discuss some relevant
phenomenological issues, such as unitarity bounds on coupling strengths and also rough
estimates for top quark decays at the HL-LHC. Section [V]is the main body of results, where
we list the operators for the primary amplitudes. In Section we estimate which top decay
amplitudes are interesting for exploration at HL-LHC. Finally in Section [VII} we conclude.

II. FINDING INDEPENDENT AMPLITUDES/COUPLINGS FOR TOP
QUARKS

The general on-shell amplitudes needed for top quark phenomenology are invariant under

SU(3)e X U(1)en, and Lorentz symmetry. For 3 and 4 point interactions, imposing SU(3).



and Lorentz symmetry gives the following list:

3pt : qqV,qqh, 4pt: qqll, qqql. Gqqq, gghh, qghV, gV v (1)

where ¢ is a quark, ¢ is a lepton (charged or neutral), h is a Higgs boson, and V is any
gauge boson. To fully characterize these 4 point interactions, we also need additional 3

point interactions for exchange diagrams, which add
3pt additional : VV'V, V'V, hhh, lh, (V. (2)

Of these couplings, the three point couplings and gghh, gghV have been fully characterized

(e.g [13]), so in this paper this leaves the following four point couplings to determine:

VvV . WWaqq,WZiq', ZZqq, Zvqq, Zg9qq, W~aqq', Wgad', 9vqGq, vvaq, 9949, (3)

Four fermion :  gqf¢, gq'ev, qqql, Gqdq. (4)

When there are identical particles involved, the form of the amplitude must respect the
relevant exchange symmetry and for these, there are no amplitudes with 3 or more identical
particles (note that, if we were characterizing down quark interactions, we would have to
consider ddde).

In [I3], a general approach for finding independent amplitudes for 3 and 4 point on-
shell amplitudes was presented. Here, we give a brief overview of the process and refer to
that paper for further details, but will also note where changes in that approach need to
be made. To characterize four point on-shell amplitudes, we form Lorentz invariants out
of particle momenta, fermion wavefunctions, and gauge boson polarizations. For massless
gauge bosons, we use the field strength contribution €,p, — €,p,, so that the amplitude is
manifestly gauge invariant. Three point interactions with a covariant derivative can also
give a four point contact interaction with a gauge boson; for our cases, the only one that
will be relevant is go,,¢'W"", which generates a g¢'W~ interaction. This results in a set of
amplitudes M,, giving a linear parameterization of the general amplitudes M = > C,M,.
For each on-shell amplitude M,, we can associate a local Lagrangian operator, which we
choose to have the lowest mass dimension possible, #Oa, where we've normalized its
coefficient with factors of the Higgs vev to give a dimensionless coupling c¢,, resulting in a
Lagrangian which parameterizes the on-shell amplitudes

Ca
ﬁamp = Z WOUL- (5)

a



By connecting these amplitudes to Lagrangian operators, we can work in increasing mass
dimension of the corresponding operators. For example, ggW W starts at dimension 5,
since the lowest local operator needs two fermions and two gauge bosons, while ggyy will
start at dimension 7. At a given mass dimension, we write out all of the amplitudes for
the allowed particle helicities. In cases where there are two particles that are identical,
we symmetrize and anti-symmetrize with respect to those two particles. After finding the
allowed primary amplitudes for the distinguishable case, we can achieve the indistinguishable
case by imposing the Bose/Fermi symmetry. We’ll have more to say on that later, when we
have the Hilbert series results.

For our four point amplitudes, we consider 1 + 2 — 3 + 4 scattering in the center of
mass frame, where p; = (E4,0,0,p;),p2 = (E2,0,0, —p;),ps = (E5,0,prsiné, pycosb), py =
(E4,0, —pssinf, —pygcosf). On-shell these have the constraints

2 2 2 2 2 2 2 2 2 2 2 2
E7E00m+m1_m2E 7Ecom+m2_m1E 7Ecom+m3_m4E7Ecom+m4_m3
1 — y 42 — y 43 — y L4 —

2Ecom 2ECOTTL 2ECO7’TL 2Ecom

(6)

A general kinematic configuration is determined by the two continuous parameters F..y,
and cos @ as well as the choice of helicities. However, treating p;, py, and sin6 as indepen-

dent is advantageous for finding amplitude redundancies. On-shell, one can replace even

(Egom,f(m1+m2)2)(Egomf(ml7m2)2)
4E2

com

powers of these variables as sin?@ = (1 — cos?6), p? = N
(E020m_(m3+m4)2)(Egom_(m3_m4)2
4R2

com

). After doing this, as shown in detail in [I3], the Taylor series
coefficients of the amplitudes expansion in E,y,, pi, pf, cos 0, sin 0 must all vanish if there is

an amplitude redundancy. Schematically, if there are Taylor series coefficients B, we then

0By
0Cy "’

form the matrix evaluate it for random numerical values for the particle masses, and
numerically evaluate its singular value decomposition. The number of nonzero values in that
decomposition is the number of independent amplitudes and one can find the independent
ones by removing C,’s one at a time.

There are a few modifications to [13] needed to address the amplitudes of this paper. First
of all, for four fermion amplitudes, we are required to have fermions in the final state. Simi-
lar to that paper, we can choose a mass configuration, either ms = 0, my # 0 or m3 = my, to

constrain the variable dependence of the kinematic variables in the fermion wavefunctions.

We have checked that this mass assumption doesn’t affect the basis of independent ampli-

9
27

tudes. Having final state fermions also results in dependence on cos 3, sin g, which can be



treated by replacing cos f = 2 cos? g — 1 and sinf = 2 cos g sing and using cosg and sing as
our variables. Another complication is that the allowed SU(3) gauge invariant contractions
are more diverse than before. This issue interplays with the Bose/Fermi symmetries of the
amplitudes. As an example, for gqgg, interchange of the gluons must result in the same
amplitude. If the gluons are contracted with an fapc then the amplitude must also be odd
under exchange of the momenta and polarizations of the gluons. On the other hand if the
gluons are contracted with a dspc then the amplitude must also be even under exchange of

the momenta and polarizations of the gluons.

III. HILBERT SERIES

The Hilbert series gives a systematic way to count the number of gauge invariant inde-
pendent operators, up to equation of motion and integration by part redundancies [14-H20],
which provides a useful cross check on our amplitude counting. It gives a function, whose
Taylor series expansion in a parameter ¢ gives the number of independent operators at each
mass dimension [22]. In Eqn. , we list the Hilbert series for each of the four point operators
that we will characterize. The three point and the other four point operator results can be
found in [13].
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These fractional forms are interpretable in the following way: the numerator counts the
number of primary operators and the denominator allows for the dressing of these operators

with Mandelstam factors.

10q6—&—8q7—2q8
(1-¢2)?

sion 6 primary operators and 8 dimension 7 primary operators. Ignore for now the —2¢®,

For example, looking at H,z = , the numerator says that there are 10 dimen-
which we’ll see denotes two constraints that appear at dimension 8. The denominator of
1/(1 —¢?)* has an expansion of (1+¢*+¢* +---)? which is just counting the number of op-
erators from multiplying the primaries by Mandelstam factors of s, ¢ (u is redundant to the
on-shell condition). As we will see when we analyze the amplitudes of this interaction, two
primary amplitudes at dimension 6, say M,, M, (with respective operators O,, 0;), when
multiplied by a factor of s are redundant to a linear combination of other amplitudes, so
are no longer independent at dimension 8. This explains the —2¢® since treating this as the
loss of the two related operators sO, and sQO, and all of their descendants gives the correct
counting of the number of independent terms. Such negative coefficients in the Hilbert series
often occur when the particles have nonzero spin [14H20], as identities relate operators of
different tensor structures when combined with derivatives. For four point functions, there
is an argument from counting conformal correlators that the number of primary operators is
equal to the product of the spin degrees of freedom of the participating particles [18| 23], [24].
In our results, this is correct for all cases except qgqq, if one includes the negative coefficients
and takes into account possible SU(3). contractions. For example, for ggf¢, the sum of the
numerator coefficients 10 + 8 — 2 = 16 is equal to the spin counting of 2*. On the other
hand, the case of §gqq has further constraints from the crossing symmetry of the § and ¢,
resulting in fewer operators.

We also note that for some denominators, the factors are (1 —¢®)(1—g?*). This results for
situations where there are two identical particles in the amplitude. Assuming the two initial
state particles are the identical pair, s and (t — u)? are the Mandelstam factors that have
the correct exchange symmetry between the two particles, so we are allowed to multiply the
primary by an arbitrary set of s and (¢ — u)? factors (note that the primary already has a
factor of +/— when exchanging bosons/fermions).

As you’ll notice in the Hilbert series list, some of the numerator coefficients are written
in an unusual way, for example the (14 — 2)¢” and (6 — 4)¢"" in H,,7;. When we evaluated

the Hilbert series, these would of course have been 12¢” and 2¢'*. However, when examining



the number of independent amplitudes at dimension 9, we found 14 new primaries and 2
redundancies when 2 of the dimension 7 amplitudes were multiplied by s. In this way, the
Hilbert series must be interpreted with care, as there can be hidden cancellations. In some
case, there is even a complete cancellation like the (2 — 2)¢"!' term for yyf f, where a naive
interpretation would have missed the new primaries at dimension 11.

The Hilbert series also allows for understanding of the constraints of Bose/Fermi sym-
metry. For example, for ggff there are two symmetric contractions for the gluon SU(3)
indices (0ap,dapc) and one antisymmetric contraction (fapc), then swapping the kine-
matic variables of the two gluons would result respectively in a + sign for the first two and

a — sign for the last one. Now, if we calculated the Hilbert series assuming photons were

odd under interchange, then H % = 2q7+6q8a(fq_2§)((f:z;1w+2qu. One can then check that

H, 7 =2H 7+ Hjj}é? as expected from the behavior under kinematic variable exchange

and the allowed SU(3) contractions.

Note that unlike in [13], due to complications of enumerating all of the terms, we do not
claim to have examined the full, allowed tensor structures of the amplitudes. Instead, we
have checked that we agree with the Hilbert series up to dimension 13 for gqV'V amplitudes
and dimension 12 for four fermion amplitudes. Up to those dimensions, the numerator of
these Hilbert series do not have any additional cancellations. As the Hilbert series shows,
the redundancies that appear at higher dimension appear in pairs so it seems unlikely there

are more, but still we cannot guarantee that others do not appear at higher dimension.

IV. PHENOMENOLOGY

A. TUnitarity

As in [13], we utilize unitarity to constrain the coupling strengths of these operators.
Since these are new couplings beyond the Standard Model, they violate unitarity at high
energies. Requiring the amplitudes to satisfy perturbative unitarity up to a scale E.,
gives an upper bound on the couplings. The technique follows the work [25H28], where the
unitarity bounds due to high multiplicity scattering was developed (see also [29-33]).

To stand in for a more detailed calculation of each amplitude, we utilize a SMEFT

operator realization of the amplitude to act as a proxy. As an example, consider the case



of £qgWW. This is realized by the dimension 8 SMEFT operator %(QLE,UR +h.c.)|D*H|?
[34]. Since we are only looking for an approximate bound, we ignore O(1) factors like
V2,9, ¢, sin by, cos By and only take into account factors of v. Under this approximation,
¢~ v*/A*. The SMEFT operator has many contact interactions that violate unitarity, but
we find that either the lowest and highest multiplicity give the best bound as a function
of Fnax, so we will calculate these for all interactions and include them in our tables. For
this example, the lowest multiplicity amplitude is for two quarks and two Goldstones, with a
matrix element that goes as My .o ~ %, where one factor of E,,,x comes from the fermion
bilinear and the other two come from the two derivatives acting on the Goldstones. This is

bounded by phase space factors My ,, < 87 [25], which translates into ¢ < (8m)v?/E3 =~

ax

Eog;4 where Erey = Epax/TeV. The highest multiplicity amplitude is for two quarks and 3
TeV
Goldstones, with My_,3 =~ E/%jx < ;32”2 , where the bound again depends on the phase space.

This gives the bound ¢ < (327%)v*/Ey,,, ~ zi—. As this example illustrates, we generally
TeV
find that the low multiplicity constraint is stronger for Ey,.« < 47mv and the high multiplicity

one is stronger for energies above that.

B. Top Quark Decays

The HL-LHC will produce about 5 billion top quarks, allowing searches for rare decays
as well as new production modes. Here we will consider decay modifications due to our
amplitudes. The on-shell 2 and 3 body decay modes of the top quark allowed by the

Standard Model quantum numbers are
t — dW,u(Z, h), d(ev, du, W Z,W~, W g),u(ll, g, WW, Z~, Z9,v7,79, 99) (8)

along with changes in flavors of quarks and leptons.

Searches for the flavor changing two body decays are actively being pursued at the LHC
(e.g. [35H41]), where theoretical analyses are often performed in SMEFT (e.g. [42445]).
Some of the three body decays are higher order decays that exist in the Standard Model at
tree level (e.g. dW(Z,~,g), uW W), while the others require flavor changing neutral current
interactions which should be suppressed in the Standard Model. Searches for new decay
modes can be triggered by requiring one of the tops decays in the standard leptonic channel

and then looking for the new decay mode for the other top quark.



10

For this simple analysis of the phenomenology, we will approximate top decay amplitudes

as a constant, assuming the top quark mass is the only relevant mass scale

do—4

Mo(t —2) ~ Udcf_élmfofg X Co (%) me & cp2¥ % ?m,, 9)
do—4

Mo(t — 3) ~ Udcf_élmfof4 X Co (%) ~ cp2t /2, (10)

where we’ve approximated v &~ v/2m;. Note that this ignores O(1) enhancements of the form
(my/my) that can come from longitudinal polarizations, but is sufficient for our estimates.

Let’s first consider non-FCNC top decays that are not suppressed in the Standard Model,
such as t — b(W, v, W~,Wg). In such cases, one has at least the Standard Model top
background to contend with. For new amplitudes which are CP even, they will interfere
with the Standard Model amplitude and have enhanced sensitivities (unless one designs CP
violating observables). In this case, we want to compare the number of new decays to the
fluctuation in the Standard Model top background. Under our approximation the branching

ratios in the Standard Model and the modification due to interference are

~ 2
Br(t — 2)sy ~ T6mmT, IM(t — 2)sm]”, (11)
1

To estimate sensitivity, we require that the new top decays must be as large as a one sigma

deviation in the Standard Model top background, which for a sample of N; top quarks gives

NidBr(t — 2) 2 \/NyBr(t — 2)sy. Such a calculation gives for two and three body decays
the constraints

109 1/2
2 Body Decays: ¢>5x107° (F) 2do/2.

t

109 1/2
3 Body Decays: ¢ > 6 x 107° (V) 9do/2

t

where we’ve normalized to a total sample of a billion top quarks.

For FCNC decays, such as t — c(Z,v,9, WW, Z~, Zg,v7v,79,99), the branching ratios
predicted in the Standard Model (107! to 10717) are too small to occur at the HL-LHC
(e.g. [46H50]). Thus, for these decays we can ignore interference and give an estimate that
works for both CP even and odd interactions. If we make an optimistic assumption that

other backgrounds can be neglected, this requires that the new branching ratios Brgg,s give
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a few events at the HL-LHC or N;Brgsy; 2 1. Under our approximation, this gives the
same bounds as Eqn. [13]

To get some sense of how well this approximation works, we’ve checked in a few existing
FCNC searches, whether the background free assumption works at the O(1) level. As one
might expect, one finds that for final states with a single gluon or photon, where hadronic
backgrounds and fakes are relevant, that this is a poor assumption and gives a branching ratio
bound that is too strong by two and three orders of magnitude for photon and gluon decays,
respectively. Thus, estimates for these final states should be viewed as very optimistic.
However, we found that the searches with a Higgs decaying into two photons agree roughly
with our bounds. Similarly, the final states with e, u’s give bounds that are correct to a
factor of 2 —3 as long as one takes into account tagging efficiencies for b (~ 0.5), e/u (~ 0.8)
and, when relevant, Z and W leptonic branching ratios (~ 0.06 and 0.2). Thus, as long as
one take these factors into account, these final states should be more reliable. Later, when
combined with our upper bounds from perturbative unitarity, these calculations will enable
us to give a simple estimate of which decay amplitudes that are worth exploring further at

the HL-LHC.

V. INDEPENDENT AMPLITUDES FOR TOP QUARK PHYSICS

In the following subsections, we will list operators corresponding to the primary ampli-
tudes for ffVV and ffff interactions involving the top quark. We will make comparisons
to the Hilbert series to show consistency with the number of independent operators, includ-
ing discussions of redundancies that occur at certain mass dimensions. We will also give
CP properties of the operators and unitarity bounds on the coupling constants for these

interactions.

A. ffVV Amplitudes

Tables [I| and [[I] list the primary operators for ggWW W interactions. Note that for the
primary operators, covariant derivatives are with respect to SU(3). X U(1)en, and thus only
involve the photon and gluon. From the Hilbert series, we expect that there should be

4 operators at dimension 5, 12 operators at dimension 6, 16 operators at dimension 7, 6
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operators at dimension 8, and at least two redundancies at dimension 9. This is precisely
what we find, with the 38 listed operators and at dimension 9, sOs and sQOy;, where
s = (py + pg)?, become redundant to other operators. To be concrete, one can replace these

two operators with an operator of the following form

Z (¢i + Ciss + cigt + 01,3532 + ¢ a5t + ci,tttZ)Ol- (14)
=14
+ Z (ci + ciss+ ciit)O; + Z (¢i + ciit) O, (15)
=525, 2832 i=26,27

where the coefficients ¢;’s only depend on the particle masses and predict the same on-shell
amplitudes as sOy5 and sOy7. To generate an independent set of operators, one needs to
add descendants of the primaries, which involve multiplying by arbitrary powers of s and
t. However, because of the redundancies at dimension 9 for sOss and sOs7, one only needs
the descendants t"Oyg and t"Oq; for Oy and Oy7. Note that this explains the % part
of the Hilbert series for Hyy 7, since operators of the form s"t" Oy and s"t"Oy; (with
n > 1) are redundant, so one needs this term in the Hilbert series to correct the counting of
independent operators. We've also listed the lowest dimensional SMEF T-like operator (that
we could find) which realizes each operator, where the covariant derivatives are with respect
to SU(3). x SU(2)r x U(1)y. We also list the unitarity bounds for each SMEFT operator,
assuming the lowest and highest particle multiplicity. These operators can also be reworked
to account for g¢'WZ amplitudes provided we take ¢ — ¢’ and W — Z. Here, we use ¢ to
denote a different quark flavor of the correct charge.

In Tables [[IT] and [[V] we list the primary operators for g¢ZZ interactions. Reading
off from the Hilbert series, we expect to see 2 operators at dimension 5, 6 operators at
dimension 6, 12 operators at dimension 7, 6 operators at dimensions 8, 9, and 10, and at
least 2 constraints at dimension 11. We do indeed find that there are 38 primary operators,
as well as two redundancies at dimension 11, for sO3; and sOs,. To generate an independent
set of operators, one needs to add descendants of the primaries, which involve multiplying
by arbitrary powers of s and (t —u)? (note that (f —u)? respects the exchange symmetry of
the Z’s). However because of the redundancies at dimension 11, for O3; and O3, one only
needs their descendants (t — u)?"O3; and (t — u)?*"Os;,.

We have listed all of the primary operators for g¢Z~ interactions in Table [V] The Hilbert

series tells us to expect 4 operators at dimension 6, 12 new operators at dimension 7, 8
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operators at dimension 8, and 2 new operators and 2 new redundancies at dimension 9. We
note that a naive interpretation of the Hilbert series would have missed the 2 new primary
operators that appear at dimension 9. We find that there are 26 primary operators, in
agreement with the Hilbert series, as well as two constraints at dimension 9—sQO7; and sOs.
Thus for those two operators, one only needs their descendant operators t"O; and t"Os.
These operators can also be adapted to account for g¢'W~, ggZg, and q¢'W g where we use
a prime to denote a different quark flavor. To get ggZg operators, one replaces F* — GH|
to get q¢'W~ operators, one should make the replacement ¢ — ¢’ and Z — W, and to get
qq'W g operators one needs to make the replacements ¢ — ¢/, F** — G*, and Z — W.

Table lists the primary operators for gqg~vy interactions. Reading the appropriate
Hilbert series, we expect to find 6 dimension 7 operators, 8 dimension 8 operators, and 4
dimension 9 operators, as well as 2 operators that become redundant at dimension 9, so the
analysis again finds 2 additional dimension 9 primary operators that a quick interpretation
of the Hilbert series would have missed. We indeed find the 18 operators we expect from
the Hilbert series analysis, as well as two operators that become redundant at dimension
9—s0O5 and sOg. Thus, for those two operators, we can just add their descendants t"Os
and t"Og.

We list the primary operators for ggyy interactions in Table [VII] From the Hilbert series,
we expect that there should be 4 operators at dimension 7, 2 operators at dimension 8, 4
operators at dimension 9, 6 operators at dimension 10, and 2 operators at dimension 11,
giving 18 total primary operators in agreement with the Hilbert series. We also find that
there are two new redundancies at dimension 11 for sO; and sOg. This gives rise to a
complete cancellation in the Hilbert series at dimension 11 between the two new operators
O17, O13 and the two redundancies for sO; and sOg. Given the redundancies, for O; and
Og, we only need the descendant operators (t — u)**O; and (t — u)*"Os.

In Tables and [[X] we list all of the primary operators for gggg interactions. The
Hilbert series says that we should expect 10 operators at dimension 7, 10 operators at
dimension 8, 14 operators at dimension 9, 14 operators at dimension 10, and 6 operators
at dimension 11. Additionally, we find that there are 2 redundancies at dimension 9—sQOy
and sO;p—and 4 redundancies at dimension 11—s0y1, sOg9, sOa3, and sOy4. As noted in
Sec. there are three ways we can contract the SU(3) indices, two symmetric and one
antisymmetric. For example, O; and Oy in Table should be read as (gdapq) (G’A“”ny)
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and dapc (chAq) (GB””GSV), respectively, where T4 are the generators of SU(3). O7 in
Table [VIII should be ready as fagc (q_TAq) (GBWGEV). Thus, for Og 1021222324, We only

need to add their descendants with factors of (¢ — u)?.

B. ffff Amplitudes

In Table , we’ve listed the primary operators for ggf¢ interactions. As the numerators
of the Hilbert series suggests, there should be 10 primaries at dimension 6, 8 primaries
at dimension 7, and at least two redundancies at dimension 8. This is precisely what we
find with the listed 18 operators, where at dimension 8, sOgy and sO;y are redundant to
the other operators, where s = (p, + p;)>. Thus, for those two operators, one only needs
their descendants t"Oy and t"O;5. We've listed a potential SMEFT operator to realize
this interaction. In some cases, a linear combination of the amplitudes may have a lower
dimension SMEFT operator. For example, §gl¢ — Givsqlivsl can be realized by the SMEFT
operator (e“bQ LaurLpver + h.c.). This would affect the unitarity bound by removing the
higher multiplicity bound of 15/FEf,. We can also convert these operators to account for
baryon-lepton interactions between uu'dé and udd'v. The primes indicate different flavors
and thus, we do not need to consider any issues with indistinguishable particles. For example,
tede interactions can be found by replacing § — t¢,¢ — ¢, — e°,{ — d where t° and e°
are the charge conjugated 4-component spinor for the top quark and the electron and the
SU(3) indices are contracted with an epsilon tensor. For the baryon-neutrino coupling, the
number of operators would depend on whether the neutrino is Majorana or Dirac, where
the Dirac case has twice the operators, since one can use either 7 or ve°.

In Table , we’ve listed the primary operators for uude interactions, where all SU(3)
indices are contracted by an epsilon tensor. As the Hilbert series suggests, there should be
4 primaries at dimension 6, 6 primaries at dimension 7, 6 primaries with 2 redundancies
at dimension 8, and 2 primaries at dimension 9. The table shows the stated number of
independent primaries and we find that at dimension 8, sO3; and sO, are redundant to
the other operators, where s = (p, + pa)?>. Thus, for those two, one only needs their
descendants (t — u)**O3 and (t — u)*"O4. To account for uddy interactions, one replaces
u — d,d° — u¢,e¢ — v/v¢, where again the case of Dirac neutrinos allows twice as many

operators.
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In Table , we've listed the primary operators for gqq'q’ interactions. Notably the
Hilbert series for this has a numerator that is twice the ggf¢ Hilbert series. This factor of
two is simply for the two allowed SU(3) contractions, one where the ¢¢’ are either in the 6
or 3 representation, leading to the symmetric (S) and antisymmetric (A) operators. Again,
at dimension 8, sOy and sOjq are redundant to the other operators, where s = (p, + p;)*.
Thus one only needs to add their descendants t"Ogy and t"Oy.

In Table we’ve listed the primary operators for gqgq interactions when two of the
quarks are identical for the specific case of uute. There are again two allowed SU(3) contrac-
tions, specified by whether the wu are in symmetric (S) or antisymmetric (A) combination.
Since we're suppressing the SU(3) indices, this makes some of the expressions look identical,
which occurs in the blocks (1-4) and (5-8), (11-12) and (17-18), (19-22) and (25-28), and
(29-30) and (31-32). At dimension 8, sO3 and sO, become redundant and at dimension
10, sOy7 and 5Oy become redundant, where s = (p, + pg)?. Thus one only needs to add
descendants for O 42728 with factors of (¢ — u)?. These four redundancies explain the two
—2 terms in the Hilbert series numerator.

In Table[XTV], we’ve listed the primary operators for Gggq interactions when the two quarks
are identical and the two anti-quarks are identical, for the specific case of uutt. There are
again two allowed SU(3) contractions, specified by whether the uu are in symmetric (S5) or
antisymmetric (A) combination. Since we're suppressing the SU(3) indices, this makes some
of the expressions look identical, with (1-3) and (4-6) being the same, as well as (13-15) and
(18-20). At dimension 8, sO; and sO3 become redundant and at dimension 10, sO;9 and
5Oy become redundant. Thus one only needs the descendants of Os 31990 With factors of

(t — u)?. These four redundancies explain the two —2 terms in the Hilbert series.

VI. INTERESTING TOP DECAY AMPLITUDES FOR THE HL-LHC

Now that we have all of the results, we can compare our unitarity upper bounds on the
coupling strengths with our estimate of the couplings needed for HL-LHC sensitivity to
the new top quark decays in Eqn. to highlight which top decay amplitudes are worth
studying in more detail at the HL-LHC. In the following, we will assume we have top quark
pair production, where one top quark decays into a b quark and a leptonic W, with a b-

tagging efficiency of 0.5, a lepton tagging efficiency of 0.8, and a W leptonic branching ratio
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of 0.2. For the Higgs modes, we will assume it decays to photons with a branching ratio of
~2x 1073

First, let’s consider two body decays of the top quark. For the charged current decays, we
have t — W (b, s, d), which have left and right handed vector and tensor couplings, which can
be distinguished by the lepton angular distributions [51]. In addition, the tensor operators
can be constrained by top quark production [52]. For flavor changing neutral current decays,
we have t — (u,c)(h, Z,7,g), which are all actively being searched for at the LHC [35-41].
For all of these two body decays, there is a dimension 6 SMEFT operator that realizes
the coupling, which explains why they are actively being studied. Our constraints on the
coupling strengths agree that these are interesting and could potentially probe unitarity
violating scales up to several tens of TeV.

Now, let’s consider three body decays. We do not consider all hadronic decays of the
top quark since those suffer from large combinatorial backgrounds at the LHC and our
estimates would be entirely too optimistic. The charged current contact interaction ¢ —
(b, s,d)(e, r, T)v has a different lepton pair invariant mass, which could be interesting to look
for in terms of the quark-charged lepton invariant mass distribution. Here our estimates say
that all of the dimension 6 CP even amplitudes could be interesting, even with unitarity
violation occurring around 5 TeV, while the dimension 7 CP even amplitudes are interesting
if unitarity violation occurs at about ~ 3 TeV. Thus, these are worth exploring as there is
room to increase the coupling for lower scales of unitarity violation. The other three body
decays with a charged current interaction are t — (b, s,d)W (v, g), which are generated at
higher order in the Standard Model (we do not consider ¢ — dWZ since this is so close
to being kinematically closed and thus, our assumptions about the phase space and matrix
element would be wrong.). Contact amplitudes, unlike the Standard Model processes, are
not enhanced in the collinear/soft limits so these might be distinguishable. Here, we find
that of the operators in Table [V] the operators 3-4, 5 and 8 could be interesting for unitarity
violation occurring at ~ 6 TeV, operators 10 and 14-15 need unitarity violation by ~ 3
TeV, and operators 19-22 and 25 need unitarity violation just above a TeV. However, since
we should interpret our estimates carefully for these photon and gluon decays, the lowest
dimension operators are probably the most realistic to explore.

Flavor changing decays are highly suppressed in the Standard Model, so these are very

promising to search for. To start with, four fermion contact terms t — (¢, u)(e, p, 7)(€, fi, 7)
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are being searched for at the LHC in the lepton flavor violating modes to ey [53]. Here our
estimates say that dimension 6 CP even and odd amplitudes are interesting for unitarity
violation above 9 TeV, while dimension 7 CP even and odd amplitudes require unitarity
violation by ~ 4 TeV. The existing CMS search probes the dimension 6 amplitudes [53],
but does not look for the dimension 7 amplitudes since they appear at dimension 8 in
SMEFT. We can also consider flavor changing neutral current decays involving gauge bosons,
including t — (¢, u)(hvy, hg, Zv, Zg,7v7v,79, g9), but not t — (¢, u)WW since it is also nearly
kinematically closed. Again, our estimates are too optimistic for the decay modes that
are completely hadronic, so we will focus on the other cases. For the decays with a Higgs
and a photon or gluon, using the amplitudes and unitarity bounds in Table 3 of [13] and
assuming the diphoton Higgs decay, we find that the dimension 6, 7, 8 operators require
unitarity violation respectively by ~ 5,2,1 TeV, so the dimension 6 and 7 ones are the most
promising. For the decays into a Z and a photon or gluon, assuming the Z decays to ee or
pp, we find that the dimension 6, 7, 8, 9 operators in Table [V] require unitarity violation
respectively by ~ 3.5,2.5,1.2,0.8 TeV so the dimension 6, 7, 8 ones should be explored
more closely, but the dimension 9 operators are likely out of reach. For the decays with
two photons or a photon and gluon, we find that the dimension 7, 8, 9, 10, 11 operators
in Tables [V1] require unitarity violation respectively by ~ 5,2,1.3,1,0.7 TeV and given
that we should be careful with these estimates (especially for the g case), the dimension 7

ones are likely the only relevant ones.

There are also baryon number violating three body decays mediated by our amplitudes,
t — (¢,u)(b,5,d)(e,fi,7). These would have combinatorial backgrounds, but have been
searched for in the past by CMS [54]. Again, theory explorations of these have focused on the
dimension 6 SMEFT operators [55] [56], so it would be interesting if the ones parameterized

by dimension 8 SMEFT operators give distinguishable signals.

To conclude, our unitarity bounds combined with our estimates for the interesting size of
couplings for top quark decays has allowed us a quick survey of which of the decay amplitudes
may be worth pursuing at the HL-LHC. As the dimension of the amplitude gets larger, these
two constraints become more challenging to satisfy without lowering the scale of unitarity
to the TeV scale. Since the SMEFT operator realization must be at the same or higher
dimension, this motivates studying in more detail top decays from many dimension 8 and

a few dimension 10 SMEFT operators to determine their sensitivity at HL-LHC and future
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colliders.

VII. CONCLUSIONS

In this paper, we have extended an approach [13] to determine the on-shell 3 and 4
point amplitudes that are needed for modeling general top quark phenomenology at collid-
ers. These serve as an intermediary between the observables searched for by experimental
analyses and the operators in effective field theories for the Standard Model. This involved
characterizing the general amplitudes for processes involving four fermions or two fermions
and two gauge bosons. We were able to characterize these respectively to dimension 12
and 13, finding the structure of primary and descendant amplitudes, where descendants are
primaries multiplied by Mandelstam factors. Interestingly, we find two classes of interac-
tions whose Hilbert series numerator has a complete cancellation in the numerator. This
naively would suggest that there are no primary operators at a certain mass dimension, but
in actuality there are an equal number of new primaries and redundancies that appear at
that mass dimension. This illustrates the importance of using the Hilbert series in con-
junction with the amplitudes, as they complement each other in this process. We also note
that our approach is a complementary check to the existing results up to dimension 8 using
spinor-helicity variables [11, [12] and extends the amplitude structure to higher dimension.

To provide an initial survey of the potential phenomenology, we’ve used perturbative
unitarity to place upper bounds on the coupling strengths of these interactions. These
depend on the scale where unitarity is violated Erey = Enax/TeV, with more stringent
constraints as one increases Erey. Given the expected sample of top quarks at HL-LHC,
we’ve estimated the coupling size needed for the top quark decays to be seen over irreducible
backgrounds. This allowed us to highlight the that top quark decays into both FCNC modes,
like t — c(¢€, hvy,hg, Z~y, Zg,77,79), and non-FCNC modes, like t — b(W~, Wg), could be
interesting to search for at the HL-LHC. Some of these highlighted modes occur at dimension
8 and 10 in SMEFT and thus would be interesting to explore how distinctive these new
amplitudes are compared to existing searches. We leave such detailed phenomenology to
future work.

To conclude, the high energy program at colliders is entering the phase of testing whether

the Standard Model is indeed the correct description of physics at the TeV scale. To do so,



19

we must look for new physics in the most general way, so that we can find such deviations
or constrain them. On-shell amplitudes are a useful intermediary between experimental
analyses and the parameterization of new physics by effective field theories. Finally, by
determining the on-shell amplitude structure to high dimension and writing down a concrete
basis for them, we hope this will allow the field to maximize its efforts to find what exists

beyond the Standard Model.
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b SMEFT ¢ Unitarity
i oI CP | do,
Operator Bound
1 (aq) (Wi w ) + (Qubtug +he) (1D H)
L + _ _ = =~
2 (iGv59) (Wu w u) - <ZQLHUR + hc.) (ID*H|?) 0 12
3 (gotvq) (iWJWJ> + (QLUWHuR + h.c.) (z (D, H]" [D,H] + h.c.) Etev” Brey
4 (igo y5q) (iWJWJ) - (iQLJ‘“’%ﬁuR + h.c.) (z (D, H! Dy H] + h.c.)
5 (av"q) (iW“‘BuWJ ) + (QLY" QL + Uy ur) (z (D#HT D, (D, H] + h.c.)
6 (@7 759) (iW*“ByWJ) + (@7 Qu — ary ur) ( [DHH]' Dy [DyH] + h)
7 (itﬁ”B,ﬂ) (Whewy +he) |+ (iQmVBHQL + iﬂR’yl’BHuR) (tom a0t (D, H) + )
8 (i(j’y”'ﬁguq) (W*“W; + h.c.> + (iQL'y”BMQL — iﬂR'y”BHuR) ([D“H}T [D,H] + h.c.)
9 (@v¥a) (iW“‘DuWJ + h.c.) + (QLY* QL + GrY’ur) (z [DeH]' (D, H] + h.c.)
10 | (@v"vsq) (iWJ”‘DMWJ + h.c.> + | 6 (Qrv" Q1L — ary”ur) (z [(DHY D, H] + h.c_> 0,00
g — d > TeV
11 (iq'y“qu) (iWJW*V + h.c.) - (iQL'y“DVQL + iﬂR'y“DyuR) (z (D, H' DY H] + h.c.)
12 (iqusﬁ,,q) (iij—v + h.c.) - (iQmHBUQL - mmuf)yuR) (z (D, H]' [DV H] + h.c.)
13 (@"q) (Wﬂ‘DuW; + h-C~> - (QLY"QL + @rY"ur) ([D“H]Jr [DuvH] + h.c.>
14| @9 (W“DMW; + h.c.) - (QrY'QrL — ury”ur) ([D“H]T (D H] + h.c.)
15 €uvpo (ff'YUQ) (W+pl<)_)uW—<7) + €uvpo (QL'YVQL + ’l_LR’}’V’lLR) ([D'OH]T b—L [DUH} =+ hC)
16 €uvpo (q’YV'YSQ) (W+ﬂ5'uwia> + €uvpo (QL'YVQL - ﬂR'y”uR) ([DﬂH]T ﬁ“ [DGH] =+ hC)

Table I: Primary 5- and 6-dimension operators for ggWW+W ~ interactions. As outlined in the

text, these operators can be modified to yield the operators for gq'W Z interactions. Under the

assumption that ¢ and ¢ are each other’s anti-particles, the operators are Hermitean and have

the listed CP properties. If they are not, each of these operators has a Hermitean conjugate,

which can be used to create a CP even and a CP odd operator. To simplify the expressions,

<> > >
we use the shorthand D, = D,D,, and similarly, D,, = D,D,. To get the descendant

operators, once can add contracted derivatives to get arbitrary Mandelstam factors of s, t.
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o SMEFT ¢ Unitarity

i QW W CP | do,
Operator Bound

17 (gBWq) (WHew—v) + (QLBWHuRJrhc) ([D“H (D H] +hc)
18 (z‘q«,g)BWq) (WHrw—») - (iQLB,Wﬁ'uR +he. ) (tpea)t (D7 H] + he.)
19 (iqguq) (WH D, W=+ + h.c) - (iQLBHHuR + h.c.) (1D, 1) (D H) + hc.)
20 (zmﬁﬂq) (WH D, W+ + h.c.) + (QLBMIQURJrhc) (tDw Y (D7 H] + hec.)
21 (iunq> (iW+D, W=+ 4 h.c.) + (iQLBNIZIuR +hc) (z (D, H]' (DY H] +hc>
22 ((mﬁ“q) (iW+ D, W+ + h.c) - (QLBMHuR + h.c.> (i (D HY [D¥#H] + hc.) -
23 Cuvpo (iqﬁuq) (W*PEVW*"> + €po (zQLD“HuR fhe. ) ([DPH}T D [D7H) + h.c.) ey ? Brey
24 €nvpo ((7755;‘(1) (W*PSVW*f’) — €pvpo (QLE“I:IuR +h.c. ) ([DPH]T DY [D7H] + h.c.)
25 (iqUWB,,q> (z‘W,j’ DuWr + h.c) - (iQLO'””Bpf{uR + h.c.) (z (D, H]' D, [DPH] + h.c.)
26 (Goq )(z[Dp 1D, W P+hc) + (Quot Hup + hic.) ( (D, H)' D, [DPH]+hc>
27 | (igo"sq) (i[DpW;']BuW_p + h.c.) - (1Quot Hup + he. ( (D H)' D, [DPH] + hc.)
28 (QU”V’Ys qu) (inle*P + h.c.> + (QLUWD Hup +h.c. ) ( (D, H]f 5; [DPH] + h.c.>
29 (@a) (WH Wy + (Quiun +he.) (Warrwg,)
30 (@Gysq) (WH W) N 7 (iQLﬁuR + h'c'> (W wi,) 04 1.2
31 (dq) (W+H"Wg,) - (QLPIuR T h.c.) (W““”Wﬁy T h.c.) Btev” Brev
32 (iqy5q) (W+WW;V> + (z‘QLHuR 4 h.c.) (W“ e, 4 h.c.)
33 (quypq) (z’w“blwfﬂ) + (Qm“BUPQL + amuB,,,,uR) ( (DvH]' D, [DPH] + h. c)
34 (tﬁ“%gwq) (iW“b_)uW’p) + (QL'Y“BupQL - ﬂm“?)upuzz) ( (DVH]' D, [DPH] + h.c. )
35 (itﬁ“qu) (z‘W*’”BuDVW_p + h.c.) - 3 (iQLprQL + mmquuR) ( (D, H]f D,L [DPY H] + h.c. ) %806
36 (i(j’y”’y5qu) (iW+VBMDVW*P + h.c.) - (iQLv“BpQL - z’am“BpuR) ( (D, H]f Du [DPY H] + h. c) -
37 (@v*q) (i[DpWJ“]BMD”W—O + (QrAy"Qr + arv"ur) (z (D,,H]' D, [D°* H] + hAc.>
38 (Gv*vs5q) (z[Dp ]D DYW— P) + (QLY*Qr — urY"uR) ([DU,JH]T BM [DrY H] + h.c.>

Table II: Primary 7- and 8-dimension operators for ggWW+W ~ interactions, where WW = %eWWW”". As outlined
in the text, these operators can be modified to yield the operators for g¢'W Z interactions. Under the assumption
that ¢ and ¢ are each other’s anti-particles, the operators are Hermitean and have the listed CP properties. If they
are not, each of these operators has a Hermitean conjugate, which can be used to create a CP even and a CP odd
operator. To simplify the expressions, we use the shorthand D;w = B By, and similarly, D,, = D, D,. To get the
descendant operators, once can add contracted derivatives to get arbitrary Mandelstam factors of s,t. At

dimension 9, sOs5 and sOz7 become redundant to other operators and thus one only needs their descendants " Osg

and t"Os7 for an independent set of operators.
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- SMEFT ¢ Unitarity

i otk CP | do,
Operator Bound

1 (@) (Z"Zy) + (QLFI“R + h'c'> | Dy H]? 04 1.2
2 (@iv59) (21 Z,.) _ ] ° (z‘QLFIuR+h.c.) |D, H|? Efev’ By
3 (ithVBuq) (21 Zy) + (iQLﬂ/”B#QL + iﬂR’y”BMuR) ([D#H]T [D, H] + h.c.)
4 (Z'WW,BM) (Z4Z,) 6 (iQL’YVBMQL - z‘am”BHuR> ([D”H]T (D H] + h-c-) 0.09
5 (@7"q) (ZM0uZy) - (QLy" QL + ary”ur) ([D“H 1" [DuvH] + h-C~) e
6 | (@) (240.2) | — (QLr"Qu — ary*ur) (D" H)' (D H) + hoc.)
7 @1"0) (Zvo27) L (QuyQr +ary ur) (Buo H'D7H + hc.) i s
8 (@159) (200 27) + (@QLy"Qr — ary*ur) (BuoHID7H + hec.) Brev? Eiey
9 (@9) (Zuw 2) + (Q’LPIUR + h.c.) (B* By)
10| (s (27Z) | - (#@uHun + he.) (B Byu) 01 12
n| o @(z) | - | (Quiun -+ ) (55,) Bl Bl
12 (iGv59) (ZWZ,“,) (z’QLquR + h.c.) (BWBW)
13 (igaWB,,q> (Zrorzv) (z’QLUWBpru R+ h.c.) ((pH)T (D H] + hc)
14 (qaumﬁpq) (Zrorzvy | — (QLUWD Hug + h.c. ) (D H]! [DP H] + hc.)
15 (unuq) (Zrzv) + 7 ( DMVHURJFhC) [D“H]T [D¥ H] +h0) 002 0,07
16 (imgwq) (zezvy | — ( Q1 Dy Hup + hec. ) (10 H]1 (D7 H) + h.c.) Foy B
17 (i(jBVq) (219, 2") - ( QLD H uR+hc) (1=t [0,y H] +he)
18 ((j’\/squ> (zro,zv) | + (Q D, me+hc) ((D*H) D2 H] + e
19 (zqﬁ%) (Zuo27) + . iQLﬁuﬁuR+hc) (BuoHID?H + h.c.) vos oo
20 ((jvsf)_)“q) (ZWZ”) — (QLﬁufluR + h.c.) (BWHTD”H +he. ) Blev” Prev

Table III: Primary 5-, 6-, and 7-dimension operators for ggZ Z interactions. Under the

assumption that ¢ and q are each other’s anti-particles, the operators are Hermitean and have

the listed CP properties. If they are not, each of these operators has a Hermitean conjugate,

which can be used to create a CP even and a CP odd operator. To simplify the expressions, we

<> >
use the shorthand D, = D, D, and similarly, 0, = 0,0,. To get the descendant operators,

once can add contracted derivatives to get arbitrary Mandelstam factors of s, (t — u)?.
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a SMEFT ¢ Unitarity
i o1 CP | do,
Operator Bound
21 ;= VH 0 VH Par DH H T P
iqy"Dpq ) ([0vZH]0P Z),) + QLY DpQr + iury’Dpyur ([DV H|" [D*,H] +h.c.>
3 <> L= > . <> _‘_
22 (zquppq) (1B,zMorzr) | + (sz"D,JQL - zﬁR’y”DpuR) ([DJ‘H} (D, H] +h.cl)
> <> <> _l_
23 (‘TYVDMJ‘Z) (Zrorzy) - 8 ( 7' DppQrL +’U/R’YVDH;)’U/R) [D+H]' [DF, H] + h.c.) 0.006
E6
<> TeV
24 (év”msDupq) (ZrOPZ,) - (Qm DupQr — gy D“puR) [D“H]T DP, H] + h. c)
25 (iwg,,q) (Z,0PZ,) + (szVDPQL + tupyY DpuR> [D,H]' [DP% H] + h. c)
<>
26 (icj’y”'y5qu) (Z,0°"Z,) + (zQL'y D,Qr — w,Rfy”DpuR) [D‘LH]T DY H| + h.c. )
<> g ~
27 (quq> (2,000 Z) + (QLDWHUR + h.c.) ([D#H]T (DR H] + hAc.>
28 (iq'ysgyaq> (Z,0017Y) — 9 (iQLBmHuR + h.c.) ([DMH]T [DoHv H] + h.c.) %Ovl, %
29 (iq’a‘w’ysBpgq) ([orzrjoe z) + (iQLO'MproquR + h.c.) ([D“pH]T [D°YH] + h.c.)
30 (qa#"f)pgq) (2,87 ZP) - (QLJWBMFIUR + h.c.> (BuwHTD?PH + h.c.)
31 (quM"ng) (0pZw)°27) | + | 9 (iQLU‘“’BaHuR n h.c.) ([0,Byw] HI D?PH + h.c.) %9203, ,ggé—oi
32 (iq’o“”qu) ([GHZW-] 8PZ0> — (iQLJ“”BpFIuR + h.c.) ([GHBVJ] HtDPOH + h‘c.)
<> _ <> <> 1_
33 (WLDWq) ([OupZ710° ZP) — (QLWDMQL + ﬁR’y“DyguR) ([D”M,H] [DePH] + h.c.)
hug _ <~ g 4
34 (iqu(,q) (OupZ)0°v 2Py | + | 10 (iQwa‘DUQL i iaRwDUuR) <[D,L,,UH]T [Dove H] + h.c.) %
> _ > >
35 (itﬁ“’vsDoq) (Bup 2107 27) | + (iQm“DoQL - mm#DguR) (Dppn 1 (D70 H] 4 hic)
<> ~ _ <> <> ~ ﬁ
36 ((j’yaD'U‘gq) (2090 22) + (QL’YO‘D‘LBQL + ﬂR'yO‘D'“BuR) (BupHID%H +h.c.)
<> -~ _ <> <> ~
37 (fﬂ“%D“gq) (Zupapﬁza) + 10 (QL"/[XD”ﬁQL — Q_LR’YO‘D“BUR) (BMPHTDP%H + h.C.) OEES\i’ OE,%%;I
> ~ — > > ~
38 (iw%maﬂq) (Zup0Pz?) | - (iQL'yPD“aﬁQL - mmpDuﬁauR> (BupHTDPH + h.c.)

Table IV: Primary 8-, 9-, and 10-dimension operators for g¢ZZ interactions. Under the

assumption that ¢ and ¢ are each other’s anti-particles, the operators are Hermitean and have

the listed CP properties. If they are not, each of these operators has a Hermitean conjugate,

which can be used to create a CP even and a CP odd operator. To simplify the expressions,

<> >
we use the shorthand D, = D,D,, and similarly, 0,, = 0,0,. To get the descendant

operators, once can add contracted derivatives to get arbitrary Mandelstam factors of

s, (t — u)?

these two, we need only their (t — u)?"O3; and (t — u)?" O35 descendants.

. At dimension 11, sO3; and sO35 become redundant to other operators. Thus, for
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0 SMEFT ¢ Unitarity
i o112 CP | do,
Operator Bound
1 (@ q) (Fyou2™) - (QLy"Qr + ary"ur) (BuuH'DHH + h.c.)
2 (v’ v5q) (FupZt) — ( YQr 7ﬂRfy”uR) (BuuHTD“HJrhc) o4 Lo
~ 6 E«B b E‘i
3 (@a) (Foo27) + (@ Qr + any"ur) (BuoHT D H + hic.) Tov’ Frev
4 (@ v59) (FWZ”> + (QLy"Qr — ary”ur) (BuaHTD"H +h.e. )
5 (d9) (Fyw 27) + (Quiur +hee.) (B B*)
6 (iqv5q) (Fuw Z1) - (zQLHuR T he. ) (Buy B*)
7 Eo3.4 ’ E142
7 (d9) (FWZW) - (QLHUR 4 hAc.> (BWBW) Tev " FTev
8 (iGvsq) (FHVZ“”> + (i@LﬁuR + h.c.) (B””BW,)
9 (iquq) (F*"2,) — (iQLBVﬁuR + h‘c.) (B*"HYD,H +h.c.)
> I
10 ((jDV%q) (F¥1Z,) + (QLDVHuR + h.c.) (B""HTD,H + h.c.)
11 (ianqu) (Frezv) + (iQLaWBpHuR +he | (B#HIDYH + h.c.)
12 (qouvq) (FHPO,Z7) — 7 <QLU,“,EIUR + h.c.) (B“pHTD”pH + h.c.) 0.09 0.9
P _ E:ll"e\/ ’ E’?‘e\/
13 (cja;w'y5qu) (FrPZv) — (QLO';“,DpHUR+hC) (B**HYDVH + h.c.)
14 (iGousq) (FRPO,Z7) ( QLo Hup +hee. ) (BHPHTDY,H + h.c.)
<> ~ o ~
15 (iunq) (F,w fo) ( DM Hup + h.c.) (BWHTDOH 4 h.c.)
<> ~ ~
16 (rmD“q) (FWZ”) - ( LD flug + hec. ) (BWHTDGH + h.c.)
17 (@ a) ([0u FHP) Zyup) - (@Y’ Qr + ary“ur) ([8,B*?] Byyp) 0.0
8 .
— E4
18 (@Y 759) ([O0 FHP] Zyp) - (QLWVQL - ﬂFNVUR) ([0v B*P] Bpp) Tev
<> _ <> <>
19 (i(j’y”DPq) ([0, F1P] Z,,) + (iQL'y"DpQL T mm"D,,uR) (18 BH?) HT D, H + h.c.)
. g - “ o
20 (z(j’y”’y5qu> ([BuFHrr] Z,,) + (zQL'y”DpQL - ﬁRwl’DpuR) ([0, BH*) H'D,H + h.c.)
21 (qu”Duq) (F'#POpZy) + 3 (2QL'YVDMQL + ZUR’YDD#"R> (B*PHDypH + h.c.) 0.02  0.07
b _ <~ — E"Efev E"Grev
22 (i(jw”ysDMq> (FrPB,2Zy) + (iQLVVDHQL - z‘am”DHuR) (B#HYDy,,H + h.c.)
> _ <> >
23 (quupq) (Frezv) - (QLWDVPQL + aRWDV,JuR> (B**H'DYH + h.c.)
< _ <> <>
24 (qWM’YSDupQ) (FHPZU) - (QL'YHDUPQL — ﬂR'yuDupuR> (BHPHTD”H + h.C.)
25 (qBWq> (FrPd,Z7) + (QL BWHUR + h.c.) (B**H'DY,H +h.c.)
9 0.006 0.05
<~ 4 ~ Eﬁrcv ’ E”Srcv
26 (i(j'y5DWq) (FrPd,ZV) - (iQL D, Hup + h.c.) (B*H'DY,H + h.c.)

Table V: Primary operators for ggZ~ interactions. As outlined in the text, these operators can be modified to yield the

operators for gqZg, G’ W+, and qq'Wg interactions. Under the assumption that g and ¢ are each other’s anti-particles, the

operators are Hermitean and have the listed CP properties. If they are not, each of these operators has a Hermitean

conjugate, which can be used to create a CP even and a CP odd operator. To simplify the expressions, we use the shorthand

<>

>

Dyy = D, Dy, and similarly, D, = D, D,. To get the descendant operators, once can add contracted derivatives to get

arbitrary Mandelstam factors of s,¢. At dimension 9, sO7 and sOg become redundant to other operators. For these two, one

only needs their t"O7 and t"*Og descendants.
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Operator

¢ Unitarity
Bound

(d9) (F™ )
(ig750) (FF G
(Goa) (FF2G,)

(g0 ) (FH2G",)

(aa) (F* )

(o) (PG

(QLI:IUR + h.c.) (BHG,)
(iQufup +he.) (B Gpy)
(Qrow fug +hc.) (BHGY,)
(iQrowys Alug +hee.) (BH2GY,)
(QLI:IUR + h.c.) (BWC:W>

(QRﬁuR + h.c,) (B“”G#,,>

0.4 1.2

w3 4
ETuV ETCV

© oo NS ot ke W N

11
12
13

14

(@"q) ([0, F#P] Gp)
(@ v59) ([0u FHP] G up)
. <
(uﬁ”DuQ) (F#PGup)
. <>
('L(Y'YU’}%D,U,(]) (FHPGVP)
3 <>
(ztj’y"qu> (FuuGPH)
. <>
(167D75qu) (FVMGPM)
© -
(qu”D,,q) (FW,GMP>

(iQ’YV’Ys qu) (FLVG“P)

(QLy" QL + ary ur) ([8uB**] Gup)
(QL’YDQL - ﬂR'YDuR) ([8VBNP] Gup)
L= <> . <>

(ZQL’YVDMQL + ZﬂR’YVDMuR) (B**Gyp)
- hug . — =

(1017 Bt - iwrr By ) (540G
L= <> . <

(ZQL’YVDpQL + lﬂR"/”DpuR) (BuuGPH)
L= > . <>

(ZQL'y”DpQL — zﬁR'y”DPuR) (BuuGPH)
L= <> . <>

(lQL'VUDpQL + ZﬁR’Y”DpUR) BWGW’

— <> <~
QLY DpQr — iury’ Dpur BWG“’J

15
16
17

18

>
(quq) (FreGr)
<>
(icﬁs Dul/‘l) (FrerGv,)
<>
(i(jaw,ng) (F#° D,G¥)

>
((chu%qu) (FH7DeGYP)

_ = ~
(QLDWHuR + h.c.) (B**GY,)
- = ~
(z’QLD,WHuR + h.c.) (B GY,)
— <~
(iQLUWDUHuR + h.c.) (BHPD,G¥7)

— >
(QLUWDPUR + h.c.) (B D, GvP)

0.02  0.07

5 6
ETeV ETeV

Table VI: Primary operators for ggg~y interactions. Under the assumption that ¢ and ¢ are

each other’s anti-particles, the operators are Hermitean and have the listed CP properties. If

they are not, each of these operators has a Hermitean conjugate, which can be used to create

a CP even and a CP odd operator. To simplify the expressions, we use the shorthand
> &
D,, =D,D,. To get the descendant operators, once can add contracted derivatives to get

arbitrary Mandelstam factors of s,t. At dimension 9, sO5 and sOg become redundant to

other operators. For these two, one only needs their t"O5 and t"Og descendants.
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1 og CP | do,
Operator Bound
1 (Gq) (F™ Fy) + ( OQrHup + h,c.) (B* By,
2 (Givsq) (F* F) - (zQLHuR +h c) (B By,
7 E%4 ’ E142
3 (d9) (FWF,W) - (QLHuR + h.c.) (BWBW) Tev  FTev
4 (iq75Q) <F‘“/F~‘MV) + (iQLHuR + h.C.) (B‘“’BMV)
3 <> = <> . <>
5 (MW’Q&) (FHPFpy) + (ZQLDM’YVQL + ’LﬂRDu’YVUR) (B*P Bpy) 0.00
- 8 o R Efev
6 (lq'YD'YE’)D/,Lq) (F“pru) -+ (ZQLD#’)/VQL - ZURD;L'YVUR) (B:“PBPV)
7 (iqawf)pq) (FrogPFY,) + (zQLoWD Hup + hee. ) (Bro 9P BY,)
> _ < o
8 (tjzmﬂstQ> (FHo 9P Y ) - 9 (QLfwapHuR +h.c. ) Br7OPBY;) 0.02  0.07
o PO Efev’ Efeyv
9 (qDWq> (FreFv) + (QLDWHUR +hec. ) (B BY,)
<> N ~
10 (i(j'yg)DW,q) (FreFv) — (iQLDWHuR + h.c. ) (B**BY,)
X h=g e > ) “—
11 (zq'y”qu) (B, FHo] 0P F o) + (ZQL’y”DpQL +zﬁR7”DpuR) ([6,B*°) 8P Buo)
. <> L= <> . >
12 (uj’y"'y5qu) ([0LFH°] 0P Fuuo) + (zQL'y”DpQL — ZER’y”DpuR> ([6vB*°] 8P Byior)
<> _ <> <>
13 (WDWq) (FHPO7F,,) -1 10 (QWVDWQL + amVDWuR) (B B,,) 0.006
hug — <~ <~ E’(I"‘e\/
14 (‘j'YV’Y5Du0q) (FMP@UFVP) - (QL’YVD;LJQL - ﬁR’YuDuauR) B“pagBup
<> ~ <> <>
15 (quan) (FwaﬁFm) + ( Y DasQr +ER')/”DQ5UR) B,,C,aﬂBm
<> ~
16 (‘TYV'YSDQ[?Q) (FuoaﬁFda) + ( LY Da,BQL — UR"Y DaﬁuR) BuoaBBUO‘
> <> ~
17 (qau,,qu) (FHro, Fro) — (QLUWDMHuR + h.c.) (BP9 B¥7)
0.001 0.004
11 > 2
pug = pug ~ Etev’ Etev
18 (z'qowngaq) (Frege Fro) |+ (iQLUW/DaaHuR + h.c.) (Brro,Bv7)

Table VII: Primary operators for ggy~y interactions. Under the assumption that § and ¢ are

each other’s anti-particles, the operators are Hermitean and have the listed CP properties. If

they are not, each of these operators has a Hermitean conjugate, which can be used to create

a CP even and a CP odd operator. To simplify the expressions, we use the shorthand

<~ >

D,, = D,D,, and similarly, 0,, = 0,0,. To get the descendant operators, once can add

contracted derivatives to get arbitrary Mandelstam factors of s, (t — u)?.

At dimension 11,

sO7 and sOg become redundant to other operators. For these two, one only needs their

(t —u)?"O7 and (t — u)?"Og descendants.
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B SMEFT ¢ Unitarity
i 0499 CP | do, | SU(3)
Operator Bound
13 2 (@9) (G**Guv) + (QLHUR + h.C.> (GHGuy)
3, 4 (ig159) (G G ) - (iQrAur +he.) (GG i 1o
3 7 | daB, daBc B s Rt
5,6 (aq) (GG — (Qufun +he) (GG fov " Plov
7’ 8 (i(j’YSQ) (G’l“’é’_“’) + (ZQLHUR + hC) (Guuéuu>
9 (qouvq) (GHPGY,) + (QLU’“’HUR + h'c') (Great,) 04 1.2
7 faBc _ ) 5 B
10 (10 759) (GHPGY,) - (1Qrow Hup +hc.) (GHGY,) v’ Erey
11, 12 GWBM) (@G, ) + (z‘Qm“BMQL + iﬂR’YVBuUR) (GH0Gy) -
. 8 | dap, dasc R o Bl
13, 14 (i(ﬁ”%Duq) (GFPG,,) + (iQLfy”D#QL - iﬁR'y”DuuR> (GFPG,,) °
15 (@ q) ([DvGHP] Gpp) + (RLy QL + uryur) ([DyG*?] Gpp)
16 (@' v5q) ([DvG*P] Gpup) + (Q@ry”Qr — ary ur) ([DvG*P] Gpup)
17 (iq'y”?)uq) (GHPGy)p) - (iQL’Y”BuQL + iﬂR’Y”BuUR) (GHPGy)p) 0.09
> 8 fABC _ <~ P E;‘F v
18 (iq'yu’}%Duq) (GquVP) - (iQL’YUD,uQL - iﬁR'y’/DuuR) (GHPGV/)) ¢
<> - _ <> <> ~
19 (i(j’y”qu) (G"PGW) + (iQLW“qu-&-iﬂRv“DpuR) (G"PGW)
20 (iév"%gpq) (G””C?'W) + (iQL'Y#qu*iaR'Y#BpUR) (G”PG'W)
21, 22 (ingng) (Grepocn) |+ (iQLoWBgﬁuR + h.c.) (GreDoGr,)
23, 24 (qJW%ng) (Guenrge) | — (QLUWBE,I?UR + h.c.) @060 | Lo o
o 9 5AB7 dABC o E’%“V’ E”‘?‘\V
25, 26 (qDWq) (Gregv,) + (QLDWI:IuR +h.c.> (GHrGY,)
27, 28 (iq%B,wq) (@rear) | - (z‘QLBWHuR + h.c.) (Grecr,)
29 (quq) (G"DPG,) + ( 31D, Hup + h.c.) (G DPG,)
30 (ic}yg)qu) (GF*DPG L) — (iQLBpFIuR + h.c.) (G DPG)
31 iD G* DPG — 31D, H h.c. ) (G DPG,,
(q pq) ( ” ) 9 fABC (QL P Rt C) ( » ) EOSOQ s E0'2507
PaN ~ e ~ TeV TeV
32 <i(j’y5DPq) (GWDPGW> + (iQLDpHuR + h.c.) (GWDPGW)
33 (iqU,,,,B,,q) (GHPD,G¥?) - (z'QLo,WB(,uR + h.c.) (GHPD,GY7)
34 ((jam,’ysgaq> (GHPD,G¥7) + (QLJ;“,BUUR + h.c.) (GHPD,G¥7)

Table VIII: Primary 7-, 8-, and 9-dimension operators for gggg interactions. There are three allowed SU(3) contractions,
2 symmetric ones—d 4 and d4pc—and one antisymmetric one—f 4 gc. For example, qugg =(@daBQq) (GA‘“’GEV)7
qugg =daBc (QTAq) (GB‘“’GEV), and qugg = fABC ((jTAo'w,q) (GBW’GCP"). Under the assumption that ¢ and q are each
other’s anti-particles, the operators are Hermitean and have the listed CP properties. If they are not, each of these operators
has a Hermitean conjugate, which can be used to create a CP even and a CP odd operator. To simplify the expressions, we
use the shorthand B w = B,LBD. To get the descendant operators, once can add contracted derivatives to get arbitrary
Mandelstam factors of s, (t — u)z. At dimension 9, sOg and sO1p become redundant to other operators and at dimension 11,
5021, 5022, sO23 and sO24 become redundant to other operators. For the Og 10,21,22,23,24 operators, one only needs

descendants with factors of (¢t — u)2.
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B SMEFT ¢ Unitarity
i 0499 CP | do, | SU(3)
Operator Bound
> _ <> <>
35, 36 (z'qw"Doq) (ID.G*) D Gp) | + (iQm”DaQL + mmVDauR) (IDGH#) D7 Giyp)
. <> = <> . <>
37, 38 (mwwaq) (1D G?] D* Gup) (sz“DaQL - mm”DauR) (IDG#?] D° )
> _ <« <>
39, 40 (q”y”DWq> (GHFPD7Gy)p) - (QL’Y”DWQL + ﬂR’Y"DuuR) (GHPD7Ghp) 0.006
10 | daB, dasc yoi0
pug _ — — TeV
417 42 ((TYU'YBD;LUCI) (GﬂngGup) - (QL'YUD;LUQL - ﬂR'YVD;LuR) (GHpDUGVp)
<> - _ <> <> ~
43, 44 (qup(,q) (G"PD"G’,“,> + (QLW“DWQL +1ZR'y“nguR) (G”PD"GW>
<> - _ <> > ~
45, 46 (W%qu) (Gvep7Gu) | + ( 17" DpsQr fam“nguR) (GveD7G)
<> _ <> <>
47 (qy"qu) (G DG, ) + (QHVDMQL + am"DMuR> (GHPDTG,)p)
10 fasc 0.006
<~ _ — — ETev
48 (‘TYV'YSDMJQ) (GupDaGup) + (QL'YVD;LUQL - aR"/VD,uUUR) (GungGVp)
49, 50 (myﬁwq) (Grepegrr) | — (QLUWBMHILR + h.c.) (GreDa v
; 1| dap, danc o 001 g0
51, 52 (i(jauu'yg,Dgaq) (Grepacre) |+ (iQLoWDmHuR + h.c.) (G D G vy
hug _ ~ <~
53 (z‘quaq) (GrrDoGY,) + (iQ rDuveHur + h.c.) (GW’D"GVP)
11 f 0.001 0.004
pug ABC = ~ ETeV7 E%ev
54 (quD,mq> (GrepoGr) | - (QLDWUHuR + h.c.) (e DG

Table IX: Primary 10- and 11-dimension operators for gggg interactions. There are three

allowed SU(3) contractions, 2 symmetric ones—dap and dgpc—and one antisymmetric

one—fapc. Under the assumption that ¢ and ¢ are each other’s anti-particles, the operators

are Hermitean and have the listed CP properties. If they are not, each of these operators has

a Hermitean conjugate, which can be used to create a CP even and a CP odd operator. To

<> >
simplify the expressions, we use the shorthand D, = D, D, and similarly D,, = D,D,. To

get the descendant operators, once can add contracted derivatives to get arbitrary

Mandelstam factors of s, (t — u)*.

2
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B SMEFT ¢ Unitarity
: o] " CP | do, Operator Bound
1 (qq)(£¢) + (QrHug +h.c.)(LyHeg + h.c.)
2 (qivsq) (€0) — ; (iQrHup + h.c.)(LyHer + h.c.) Ls s
3 (@9)(Zist) = (QrHug + hc.)(iLy Hep + h.c.) Bhev Prev
4 (qinsq) (Lirys ) + (iQrHugr +h.c.)(iL Hep +h.c.)
5 (@) (Ey,0) + (Qry"Qr + urY"ur)(LryuLL + €rvuer)
6 | (@"9)(Chul) o, (Qu*Qr — ary*ur)(LryuLr + Ervuer) s
7 (@"q) (Eyuyst) + (Qu*Qr + ury*ur)(LrvuLr — €rvuer) Fhv
8 (@7 v59) (Cyuv5L) + (Qry"Qr — ury"ur)(LryuLL — €rVueR)
9 ((ja“”q)(gau,,ﬂ) + ; (QLUWHuR +h.c.)(L rowHer +h.c.) s 1
10 | €pupo (G0 q)(loP70) | — €pvpo(Qro™ Hup +hc)(Lyo® Hep + he.) | 75 Prev
1| (@)D, + (Qu"Qr + umHuR)(zLLHD er +h.c.)
12 @"0@sDul | - (Qur*Qu+ anyun) (Lo HDyer +hic)
13 ((?V“stI)(iiﬁté) + (QLy"QrL — URV“UR)(ZLLHD er +h.c.)
14 (QV“%Q)( 755;5) -, (@ LV“QL - ﬂRV“uR)(LLHDu@R +he) 04 12
15 (qu“q)(f’yﬂﬁ) + (i QLHD”uR +h.e.)(LryuLr + ervuer) Brov” Prov
16 (Q’Y5D”Q)(5’Yu€) - (QLHD”UR +h.e)(LryuLr + Ervuer)
17| @Dk yst) |+ (1QuHD*ug +he)(Liyly — enyuen)
18 (6755“@(57%75@ - (QLHD“UR +h.c.)(LryuLr — €rvuer)

Table X: Primary operators for ggf¢ interactions (As described in the text, these operators

can be modified to yield the operators for baryon-lepton interactions uu'de and udd'v.).

Under the assumption the g, ¢ and Z, £ are each other’s anti-particles, the operators are

Hermitean and have the listed CP properties. If they are not, each of these operators has a

Hermitean conjugate, which can be used to create a CP even and a CP odd operator. To get

the descendant operators, one can add contracted derivatives to get arbitrary Mandelstam

factors of s,t. At dimension 8, sOg and sO1g become redundant and thus, one only needs to

consider Oy and Oy with arbitrary factors of ¢.
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SMEFT ¢ Unitarity
¢ O;mde do, Operator Bound
1 (deu)(e®u) (AR H'Qr + Q) Hup) (e AT QL + L Hug)
2 (deiysu)(ecu) 6 (idﬁffTQL —1iQ% HUR)(EE{{TQL + L7 Hug) L5 15
3 (dew) (eCiysu) (d_%HTQL + QEHUR)(%%HTQL —iL$ Hup) Etev’ Etev
! (d°insu)(eCiysu) (id5; 7' Qp — iQf Hup)(ief H'Qp — ilg Hup)
5 (dey#u) (e Dyu) (Q544Qr + d5 v ur) (@D HT QL + LS HDpuR)
6 (deyHu)(eiys Dyu) (Q5"QL + dy*ur) (i€, D HT QL — iL$ HDyug)
7 (deyHvy5u) (e Dyu) - (Q5*QrL — diy*ur) (e D HTQL + LG HDyuR) 04 1.2
8 | (dyMy5u)(®ivs Dyu) Q47 Qr — diytur) (i Du1Qr — iL§ HDyug) Prev’ Prev
9 (d°Dyu)(ecrytu) (d5,DuHTQr + Q5 HDuur)(L5AQr + €47 uR)
10 (d¢iys Dyu)(ecyHu) (1d3DuHQr — iQf HDyur)(LEV QL + €37 ur)
— _ = _ - _ =Y — — =Y
11 (dcu)([Duec]D}ju) (d%HTQL + QEHUR)([D“EE]DS’UHTQL + [D”LCLH}DS‘UHR)
— _ .= _ - _ P - _ >
12 (dci%“)([D”ec}fZZf“) 8 (id%HT QL — iQEHuR)([D“é%LDS’uHTQL + [D“LEH}QS’MUR) ;409 ’ Eoﬁ.g
13 (d°u)([D*e?)ivs Dju) (d%,HT QL + Q% Hup)(i[DHes,]| D" H1Qy, — i[DH LS HID$G "“ug) Tev Etev
— _ <> _ - _ <> - _ >
14 | (diysu)([D¥ecins Diyu) (id5HTQr — iQ5 Hup)(i[D*e3] D At QL — i[DM LG HID} " ur)
— _ End — . — gy _ p=y
15 | @dyra)(DrepDyu) | (Q57"Qr + diy"ur)((D” LG J1uDF QL + [D¥eRlyu D ur) 0.09
— _ > _ — _ <> _ > E4
16 | (d°y"vysu)([D¥e“]yuDyu) (Q57"QL — dsy*ur)([DYL 1y, DP " QL + [DY&5]vu DY uR) Tev
— _ = — —. . = ~ — <
17 (dC'y”u)([DVeC}D:,;DMu) 0 ( QL + d%yNuR)([D”e‘R]ES’“DHHTQL + [D”L‘LH]?_?’HDHUR) 0,02 0607
18 | (deyHu)([DYeée)ins DX D) (QSA1QL + déyHug)(i[D¥e%,] DS D, HI Qp, — i[DYLS HIDD " Dyug) | Frev Plev

Table XI: Primary operators for uude interactions, where d¢ and e¢ are the charge conjugated

down-type quark and charged lepton 4-component spinor and SU(3) indices are contracted with an

epsilon tensor (These operators can be modified to yield the operators for uddv interactions by

simply taking u — d, d¢ — u¢,e¢ — v/ve.). To simplify the expressions, we've defined a back-forth

s
derivative D"

|73

e
which only acts on the u fields, and similarly D}j’Q which acts on ug and @, (but

not Q%). To get the descendant operators, one can add contracted derivatives to get arbitrary

Mandelstam factors that respect the exchange symmetry between the two up-type quarks,

i.e. s, (t —u)?. At dimension 8, sO3 and sO4 become redundant and thus, one only needs to

consider O3 and Oy descendants with arbitrary factors of (t — u)?2.
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SMEFT ¢ Unitarity
i Of qsq/gx CP | do, Operator Bound
1 (q9)(d'q") + (QrLHug + h.c.)(Q’Lﬁuh +h.c.)
2 (qivs59)(T'¢") — (iQ ﬁuR + hc)(Q’Lﬁuk +h.c) - s
3 (q9)(q"iv5q") - ° (QLHug +h.c.)(iQ Huly + h.c.) v Phov
4 (qivs59)(T'ivsq") + (iQrHup + h.c.)(iQ}, Huy + h.c.)
5 (@) (@ Vud") + (Q" QL + urY ur)(QpVuQ + Wryutly)
6 (@"59)(T7.q) + ; (Qey*Qr — apy*ur)(Qp QY + Wrvuuly) s
T @@t |+ (Qe"Qr + ary un) Q) W@, — Wrutly) Piev
8 | (V") (@rsd) | + (Quy"Qr — ury"ur)(QLYuQY — Wrutiy)
9 (@ ) (T o d) + (Qro™ Hup + h.c.)(Qpou, Hufy + h.c.) 15 15
10 | €uvpo (@0 q)(q'a"7q") | — ° €po (QLot” Hup + h.c.)( LUPUHU, +h.c.) Fhov? Phov
11 (QV”Q)(W’BMQ/) + (QLy"Qr + UR'YHUR)(ZQLHD up + h.c.)
12| (@)@ vDud) | - (QurQu + amMquQ/LHD Wy + hc.)
13 (67“75(1)(@’&(1’) + (QLy"QL — ury ur)(i QLHDMUR +h.c.)
14 (@7“%61)(@'755;(]/) - . (QLy"QL — ury" UR)(QLHD ur +h.c.) 04 1o
15| (q@Dr)(@wd) | + (1QrHD up + he) Q@ + Whadyy) | Trev Frev
16| (D) @) | - (QuE D ug + 0e.) (@)1, Q, + Wty
17| (gD ) (@osd) |+ (IQLED up + h.e.)(Q Q) — W)
18| (@D ")(@vnd) | — (QuHD*up +h.)(Q)7, Q) — Tyutly)

Table XII: Primary operators for gq¢'q’ interactions. There are two allowed SU(3) contractions, the S
indicates where ¢, ¢’ form a symmetric 6 representation under SU(3), while A has the antisymmetric 3
representation. For example, with explicit indices we have ngglq = (q{ q1a)(q "By }) and
O‘liflzlq' — (cj[o‘q[a)((j'mq;g]), where q(oqs} = ¢aqp + 4540 and qjaqp = ¢aqs — 4s9a- Under the assumption
the q,q and ¢, ¢’ are resprectively each other’s anti-particles, the operators are Hermitean and have the
listed CP properties. If they are not, each of these operators has a Hermitean conjugate, which can be
used to create a CP even and a CP odd operator. To get the descendant operators, one can add contracted
derivatives to get arbitrary Mandelstam factors of s,¢t. At dimension 8, sOg and sO19 become redundant

and thus, one only needs to consider Og and Oy with arbitrary factors of .
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- SMEFT c Unitarity
( Ofutc do, | SU(3) Operator Bound
1 (tu)(eu) (QsrHup +trH Q1) (Q2rHup + crHQ1L)
2 (tiysu)(eu) p A (i_QBLf{uR _ii}igTQlL)(_QQL{'}UR+ER}Z[TQ1L) L5 15
3 (tu) (Ciysu) (QsrHupr +trHTQ11)(iQar Hup — iecp HT Q1) Etev’ Etev
4 (tivsu)(civsu) (iQsr Hugr — it HTQ11)(i1Qap Hup + icr HTQ1 1)
5 (tu)(Cu) (QspHug +trHQ11)(Q2r Hur + erH'Q11)
6 (fl”Ysu)(Eu) p S (i_QstIuR —jf}iHTQm)(_QszIUR + ERI:{‘LQlL) L5 15
7 (tu)(ciysu) (QsrHupr +trH'Q11)(iQar Hup — ier HT Q1) Etev’ Etev
8 (tiysu) (Ciysu) (iQsp Hup — it HT Q1) (iQa Hug + icr H1Q11)
9 Efv“u)(EWu) p S (6:23L’Y“Q1L + fR’Y“UR)(C:?zL’mQu + CrRYuUR) L5
10 (tyHysu) (Eypu) Q37" Q1L — trRY"ur)(Q2L7: Q1L + CRYUUR) Erev
11 (ty*w)(EDpu) (@37 Q1L + trY*ur)(Q2r HDpur + erDuHT Q1)
12 (ty*u) (Civs D) (@37 Q1 + trY*ur)(iQ2r HDpup — icr D HTQ1 1)
13 Ty y5u)(€Dpu) . A @3L’Y“Q1L - ERWMUR)(Q:bLI:{DMUR + ERD;Lf{leL) 04 _12
14 (tv#y5u) (€ivs Dyw) (@327 Qi1 — try"ur)(iQor HDyug — ier Dy H Q1) Frev Prev
15 (tDyu)(eyHu) (QsrHDpur +trRDuHTQ11)(Q207" Q1L + CrY ur)
16 (#iv5 Dpu) (EyHu) (iQs HDyup — itg D HT Q1) Q207" Q11 + ErY uR)
17 _(EW”U)(ED;LU) . S (_Q3L7“Q1L +_£R'YMUR)(Q:2LI:{DHUR + ERDuf{leL) 04 12
18 (ty*u)(Eivs Duw) (Q3y*Q1L + trv*ur)(iQe HDyug — itr D HTQ11) Frov’ Frov
19 (Fu) ([D# &) D) (Qsz Hug + ErATQuL) (D" Qor HIDY @ ug + [Dreg) DY@ HTQy L)
2| @Dy | g | (1Qu1 frup — el Quu) (D Qe DL ¥ un +(D*er] D 11Qur) | 000 oo
21 (tu)([DHelivs Djju) (QspHup + trATQ1L) (i[D* Qe HID} P up — i[Deg] Dy AT Q1 1) ey ey
22 | (finsu)([D*divs Diu) (iQs1 Hup — ¥R AT Q1) (D" Qar A DY up — i[DFer) Dl ¥ Q1 1)
23 (t_’Y”U)([DVE]WEzU) g A (Q@srY*Q1L + fR’Y“UR)([DUQu]Wuéﬁ’QIQlL + [DVER]%@é:f’QIuR) 0.00
24 (tr*y5u) ([DY Eyu Dy u) (Q327*Q11 — TRy ur)([DY QoL DY@ Qir + [D¥eR]yu DY ?  ur) Frev
25 (fu)([D“é]Ezfu) (QspHug +fRﬁTQlL)([D“QMﬁ]Bﬁ’QIUR+ [D“éR]TBZ’QIHQm)
% | @Epw(Didbiy | g | g (@1 Hur, — iTp A1 Qui)(D* Qo B)DY P up + [Drep DI ATQur) | o _oa
27 (tu)([DHelivs Djju) (QspHup + trATQ1L) (i[D* Q2 HID} ® up — i[D*ep] Dy AT Q1 1) ey ey
28 | (finsu)(ID*divs Diu) (iQs1 Hup — ¥R AT Q1) (D" Qar A DY up — i[DFep) Dl ¥ Q1 1)
2 [ @Erw(0adibw | [, | @urt@u+ ey un) (D" Qe MDY Dyun+ D"e)DE Y DuitQur) | o0 gor
30 | (Iy*u)([D¥elivs DY Dyu) Q37" Q1 + Irv*ur) (i[DY Q2 HIDY® Dyug — i[D¥Eg] Dy Dy HT Q1 1) Ftev ' Plev
81| (Fyhu)([D*eDEDyu) (@21 QuL + Fry ur) (1D Qo H1 D2 Dyug + [D*er] DY Dy AT Q1)
32 (E’Y“U)([Dyé]i’Ysﬁu‘DHU) (Q3ry*Qur + fR’Y“UR)(i[D”QszﬂBZf’QlDuuR - i[DVER]BTIf’QlD,uHTQIL)
33 (t’w“vsu)([D”E}ﬁ,jHDw) . g Qs Q1L — ER'y”uR)([D"QgLFI]lH);,j’QlDMuR + [D“ER]B:;’QlD#I?TQlL) 0or o0n
34 | (Byysu)([D”eivs DY Dyu) (@37 Q11 — try*ug) (i[DY Qo HIDY ODyup —i[DYeR) DY oD, HTQ1) | Prev’ Flev
35 (fDuu)([DVE]’Y“E%U) (Qs HDpur + ERDuﬁTQlL)([DVQZL]’YMBg’QlQIL + [DVER]’YMBg’QluR)
36 | (fins Duw)((DY e  Ditu) (iQsr ADup — itp Dy HTQ1L) (DY Qarlyu D2 Qi 1, + [DYrln DY @ ug)

Table XIII: Primary operators for gqGq interactions with two indistinguishable quarks, for the specific

case of wutc interactions (Hermitean conjugate yields tcuti and down-type interactions can be found by

exchange for down quarks.). The SU(3) contractions are determined by S(A) to be symmetric

>
antisymmetric) in the uu indices. We've defined a back-forth derivative D7, which only acts on the u
w

<>
fields, and similarly DZ’Ql which acts on ugr and Q11. For descendant operators, one adds contracted

derivatives to get arbitrary Mandelstam factors that respect the exchange symmetry, i.e. s, (t — u)?. At

dimension 8, sO3 and sO4 become redundant, while at dimension 10, sOs7 and sOsg become redundant.

Thus one only needs to consider O3 4 27 28 descendants with arbitrary factors of (¢ — u)°.

2
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- SMEFT ¢ Unitarity
( O?utt do; | SU(3) Operator Bound
1 (Fu) (fu) (QsrHupr +trHTQ1L)(QsL Hup + trRHTQ11)
2 (tiysu) (tu) 6 A (iQsrHupr — itp HTQ11)(Qsr Hup + trHTQ11) ElzT'fV ) E%‘iv
3 (tiysu) (tiysu) (QspHup —trH'Q11)(QsL Hur — trHQ11) 4 4
4 (Fu) (Fu) (QsrHup +trHTQ1L) Qs Hur + trRHTQ1L)
5 (tivsu)(tu) 6 S (1QspHugr — it HTQ11)(Q3r Hur + trRHTQ11) El%fv ; Eiv
6 (tiysu) (Fiysu) (QsrHup —trHTQ11)(QsrHur —trHTQ11) ‘ ‘
7 7(57”“)(577““) 6 S (C?aLV”Qu: + tiR’Y'uUR)( :BL’YquL + fRWUR) 15
8 (ty*vsu) (Fyuu) Q3" Q1L — trRY"ur)(Q3rLYuQ1L + tRVuUR) Brev
9 (ty#u)(EDyu) (@37 Q11 + trRv"ur)(QsL HDyug +tr Dy HTQ1 L)
10 (E:Y”u)(fi’YfDuU) . A (Q_:&L’Y“QIL +E£QV“UR)(iC:23LI?DuuR - Z;fRDuﬁTQm) 04 12
11 (tyHysu) (ED ) (Qs27* Q1L — try*ur)(QsL HDyur +trDuHT Q1) Frev’ Brev
12 (ty*ysu) (tivs Dyw) Q3" Q1r — try*ur)(iQs HDyug — it Dy HT Q1)
13 (Fu) ([DE] D) (QspHup + TRATQ1L)((DPQsp HIDY @ upg + [DHER]| DY H1Qy )
14| (@) (DrEDE) 8 | A (iQsr Hur — T A1 Q1) (ID# Qo DY P up + (DRI DY HI QL) | Bl B
15 (fi’YSU)([D”ﬂWsﬁjU) (iQar Hup — ifRﬁTQlL)(i[D“QsLﬁ}BZ’QIuR - i[D”fR]BZ’QIHTQlL)
16 (EVMU)([DVE}W;LB%U) 8 A (QsLY* Q1L + ER'Y““R)([DVQ?)L]"M?g’QIQlL + [D”thuélf’QluR) 0,09
17 (ty#vsu)([DVE ]y Dpu) (Q327*Q1r — trv*ur)([D¥ QsL]vu D@  Qur + [D¥TR]y. Dy ug) Frev
18 (fu)([D“ﬂﬁEfu) (QsHug + fRﬁTQlL)([D“Q:aLH}Bﬁ’QIUR + [D”fR]BZ’QlﬁTQm)
19 (Fivsu)([D*T] Djrw) 8 | S (iQs1 Hug — T H1QuL)([D*Qap HID ¥ up + [DFER] DY AT Q1L) B By
20 (fiVSU)([D“ﬂi%l(;}fu) (iQsr Hup — ifRﬁTQlL)(i[D“QumBﬁ’QlUR - i[D”fR]BZ’QIgTQm)
21 | (Fy“u)([D*E]DuDlu) (@7 Q1L + Ery*ur)(ID¥ QoL HIDE Dyup + (DR DY Dy AT Q1)
22 (EWMU)([D”'?]Z'%DHE):JU) 9 S (Q3rY" Qi + fm“uR)(i[D”QsLﬁ]?ﬁ’QlDHUR - i[D”t_RLB?QIDqulL) 002 007
23 | (ty"ysu)([DVE]DuDYu) (@37 Q1L — try"ur)([DY Qs HIDY'?* Dyug + [DVER] D9 DL HTQ: L) ey ey
24 | (By*ysu)([D"E)ins DuDlbu) (@27 Quz — IRy ur) (1D Q31 A DE2D,up — i[D¥Ir] DL Y D1 Qu1)

Table XIV: Primary operators for qggq interactions with two indistinguishable quarks and two

indistinguishable antiquarks, for the specific case of uuitt interactions (The Hermitean conjugate

yields the ttuu interactions and the down-type interactions can be found by exchange for down

quarks.). The SU(3) contractions are determined by S to be symmetric in the uu indices and A to

<>
be antisymmetric. To simplify the expressions, we’ve defined a back-forth derivative D);, which

<
only acts on the u fields, and similarly D}j’Ql which acts on ur and Q1. To get the descendant

operators, one can add contracted derivatives to get arbitrary Mandelstam factors that respect the

exchange symmetries, i.e. s, (t —u)?. At dimension 8, sOy and sO3 become redundant, while at

dimension 10, sO19 and sOyy become redundant. Thus, one only needs to consider

0y, 03,019, 09 with arbitrary factors of (¢ — u)?.
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