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We construct an exact analytic solution of the revised small-x helicity evolution equations derived
in [1] based on the earlier work [2, 3]. The equations we solve are obtained in the large-Nc limit
(with Nc the number of quark colors) and are double-logarithmic (summing powers of αs ln2(1/x)
with αs the strong coupling constant and x the Bjorken x variable). Our solution provides small-x,
large-Nc expressions for the flavor-singlet quark and gluon helicity parton distribution functions
(PDFs) and for the g1 structure function, with their leading small-x asymptotics given by

∆Σ(x,Q2) ∼ ∆G(x,Q2) ∼ g1(x,Q2) ∼
(

1

x

)αh

,

where the exact analytic expression we obtain for the intercept αh can be approximated by

αh = 3.66074
√

αs Nc
2π

. Our solution also yields an all-order (in αs) resummed small-x anoma-

lous dimension ∆γGG(ω) which agrees with all the existing fixed-order calculations (to three loops).
Notably, our anomalous dimension is different from that obtained in the infrared evolution equation
framework developed earlier by Bartels, Ermolaev, and Ryskin (BER) [4], with the disagreement
starting at four loops. Despite the previously reported agreement at two decimal points based on
the numerical solution of the same equations [1], the intercept of our large-Nc helicity evolution and
that of BER disagree beyond that precision, with the BER intercept at large Nc given by a different

analytic expression from ours with the numerical value of αBERh = 3.66394
√

αs Nc
2π

. We speculate

on the origin of this disagreement.
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I. INTRODUCTION

The proton spin puzzle [5–13] remains one of the fundamental open questions in our understanding of the hadronic
structure. The main question of the puzzle is how the spin of the proton is distributed among its quarks and gluons.
This is best described by the spin sum rules, due to Jaffe and Manohar [14] and due to Ji [15]. The former reads

Sq + Lq + SG + LG =
1

2
, (1)

where Sq and SG are the contributions to the spin of the proton coming from the quark and gluon helicities, respec-
tively, and Lq and LG are the contributions due to the quark and gluon orbital angular momenta (OAM).

The Sq and SG can be written as integrals over the Bjorken x variable,

Sq(Q
2) =

1

2

1∫
0

dx ∆Σ(x,Q2), SG(Q2) =

1∫
0

dx ∆G(x,Q2), (2)

where the flavor-singlet helicity distribution is

∆Σ(x,Q2) =
∑

f=u,d,s,...

[
∆qf (x,Q2) + ∆q̄f (x,Q2)

]
. (3)

Here ∆qf (x,Q2), ∆q̄f (x,Q2) are the quark and anti-quark helicity distributions, respectively, while ∆G(x,Q2) is the
gluon helicity distribution function. The reader is referred to [6–9, 11, 12] for detailed reviews of the proton spin
puzzle.

One of the least-explored regions of phase space which may potentially contribute to Sq(Q
2) and SG(Q2) is at small

x, in part due to the limited amount of available relevant data in that region and in part due to finite acceptance
in x of any given experiment, not allowing the exploration of helicity parton distribution functions (hPDFs) down
to x = 0, as required by Eqs. (2). Thus, understanding and quantifying the amount of the proton’s spin carried by
small-x partons is an integral part of the proton spin puzzle. Theoretical input appears to be necessary here: even
future experiments, such as those to be performed at the Electron-Ion Collider (EIC) [6, 10, 11, 13], would only be
able to probe the x-region down to some xmin, below which a theoretical extrapolation to lower x would still be
required to constrain the net amount of proton spin at small x.

In the perturbative quantum chromodynamics (pQCD) framework the first attempt at calculating the hPDFs at
small x was done by Bartels, Ermolaev and Ryskin (BER) [4, 16] employing the infrared evolution equations (IREE)
approach [17–21]. Those works led to phenomenology developed in [22–27] and allowed one to obtain predictions for
the small-x anomalous dimensions of the spin-dependent DGLAP evolution to higher (and potentially to all) orders
in the strong coupling αs [22, 23].

In the past decade, the question of theoretical understanding of helicity distributions at small x received renewed
attention [1–3, 28–40]. This is due in part to the prior development of new small-x resummation techniques [41–53]
(see [54–61] for reviews) which have more recently been extended to sub-eikonal (and sub-sub-eikonal) observables
[3, 32, 62–73] such as helicity, and in part in preparation for the data to be reported by the upcoming EIC. Novel small-
x evolution equations for the so-called “polarized dipole amplitudes”, which determine hPDFs and the g1 structure
function at small x, have been constructed in [2, 3, 29, 32] (KPS) (see also [38]). The equations resum powers
of αs ln2(1/x): this is usually referred to as the double-logarithmic approximation (DLA). Important corrections
modifying the KPS equations have recently been found in [1] (henceforth referred to as the KPS-CTT equations)
using both the background field method and the light-cone operator treatment (LCOT) approach. The resulting
equations have been cross-checked against the small-x and large-Nc part of the ∆γGG anomalous dimension to the
three known loops [74–77], indicating a complete agreement with the existing fixed-order calculations (see also [78–85]
for other relevant calculations which, apart from presenting interesting and important results, may also be used for
further cross checks of the small-x resummation). Here and below Nc denotes the number of quark colors.

Similarly to the unpolarized non-linear small-x evolution [44–53], the KPS-CTT evolution gives an infinite hierarchy
of equations. In the large-Nc and large-Nc&Nf limits the hierarchy gets replaced by a closed system of equations
[1, 2] (Nf is the number of quark flavors). A numerical solution of the large-Nc version of the KPS-CTT equations,
performed in [1], resulted in the following small-x asymptotics of the flavor-singlet hPDFs and the g1 structure
function,

∆Σ(x,Q2) ∼ ∆G(x,Q2) ∼ g1(x,Q2) ∼
(

1

x

)3.66
√
ᾱs

(4)
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with

ᾱs ≡
αsNc

2π
. (5)

This result was in agreement with the small-x asymptotics for hPDFs found earlier by BER in [4], with the corre-
sponding power of 3.66

√
ᾱs (the intercept) appearing to be the same as that found in [4], at least within the precision

of the numerical solution performed in [1].
In this paper we construct an analytic solution of the large-Nc version of the KPS-CTT equations [1, 2], that is, of

the same equations which were solved numerically in [1] leading to the asymptotics (4). The aims are to achieve a
better understanding of these equations, obtain an analytic expression for the intercept (the power) in Eq. (4), and
also perform a more detailed cross-check against the BER results [4].

The paper is structured as follows. We state the equations we are going to solve in Sec. II. As mentioned above,
the equations involve the “polarized dipole amplitudes,” defined in terms of operators in [1] (see also [3]). We also
list in Sec. II the relations between the polarized dipole amplitudes and hPDFs, g1 structure function, and transverse
momentum-dependent helicity PDFs (TMD hPDFs or hTMDs). Our analytic solution of the large-Nc KPS-CTT
equations is presented in Sec. (III) and is based on a double Laplace transform method. The final results for the
solution of the large-Nc equations are summarized in Sec. IV, in which we also derive an analytic version of the small-x
asymptotics (4), obtaining

∆Σ(x,Q2) ∼ ∆G(x,Q2) ∼ g1(x,Q2) ∼
(

1

x

)αh

(6)

with

αh =
4

31/3

√
Re

[(
−9 + i

√
111
)1/3

]√
ᾱs ≈ 3.66074

√
ᾱs . (7)

This is our exact analytic expression for the power of 3.66
√
ᾱs in Eq. (4), previously obtained numerically in [1]. After

running several cross-checks of our solution in Sec. V and obtaining the resummed small-x and large-Nc anomalous
dimension ∆γGG(ω), we proceed by comparing our results to BER [4] in Sec. VI. There we find that the BER intercept
is (cf. [1, 29])

αBERh =

√
17 +

√
97

2

√
ᾱs ≈ 3.66394

√
ᾱs. (8)

We see that, despite the numerical closeness of the two results (7) and (8), our intercept and that of BER are in fact
different, albeit by a very small amount. The difference was not detected by the numerical solution from [1]: while
the numerical intercept in [1] appeared to be closer to 3.661

√
ᾱs than to the BER intercept (that is, closer to the

number in Eq. (7) than to the number in Eq. (8)), the numerical precision did not allow the authors of [1] to make a
definitive conclusion about the difference between the numerical solution and that of BER.1

A similar difference persists in the resummed small-x and large-Nc gluon-gluon polarized anomalous dimension
∆γGG(ω), with the BER one (given by Eq. (77) below) being different from ours (obtained in Sec. V and shown in
Eq. (65)). Remarkably, the expansion of the BER anomalous dimension in powers of αs, presented in Eq. (78), agrees
with the expansion of our anomalous dimension in Eq. (66) in the first three terms, both of them agreeing with the
known results for this quantity, calculated up to three loops [74–77]. The (rather minor) difference between the BER
anomalous dimension and ours arises at order α4

s, that is, at the four-loop level, which has not yet been calculated
in the fixed-order framework. We speculate on the origin of this minor disagreement in Appendix A and conclude in
Sec. VII.

II. LARGE-Nc EQUATIONS

The large-Nc DLA helicity evolution equations derived in [1–3] are written for the (impact-parameter integrated)
polarized dipole amplitudes G(x2

10, zs) and G2(x2
10, zs). These amplitudes are defined in terms of sub-eikonal operators

1 Note that the earlier KPS intercept obtained in [30, 31] for the un-corrected evolution differed from the BER one by about 30%:
compared to that, the difference between (7) and (8) is rather minor.
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and light-cone Wilson lines in [1]. The amplitudes depend on the transverse size squared of the dipole x2
ij = |xij |2 for

i, j = 0, 1, 2, . . . labeling the partons and with xij = xi − xj for the two-dimensional transverse vectors x = (x1, x2)
in the coordinate space. The impact parameter is integrated out in these dipole amplitudes. The amplitudes also
depend on the center of mass energy squared s between the original projectile and the target multiplied by the smallest
longitudinal momentum fraction z among the two partons making up the dipole. (It is better to think of z as the
parameter controlling the center of mass energy squared zs involved in the next step of the dipole evolution. Sometimes
z could be smaller than the longitudinal momentum fractions of the partons making up the dipole [40], for instance,
after a step of evolution involving a virtual correction.) The two dipole amplitudes G and G2 are accompanied by
the two auxiliary (impact-parameter integrated) amplitudes Γ(x2

10, x
2
21, zs) and Γ2(x2

10, x
2
21, zs), which also depend on

the size squared of the adjacent dipole x2
21: such amplitudes were dubbed the “neighbor dipole amplitudes” in [2].

Their operator definitions are identical to those for G and G2, except for a difference in the light-cone lifetime cutoff
[35], which for Γ and Γ2 depends on the adjacent dipole size [1–3]. As we will see shortly below, the observables and
distribution functions depend only on G and G2 and do not depend on the neighbor dipole amplitudes directly, such
that these latter amplitudes indeed play the role of auxiliary functions present only in the evolution equations.

The large-Nc helicity evolution equations for the polarized dipole amplitudes read [1–3]

G(x2
10, zs) = G(0)(x2

10, zs) +
αsNc

2π

z∫
1

sx2
10

dz′

z′

x2
10∫

1
z′s

dx2
21

x2
21

[
Γ(x2

10, x
2
21, z

′s) + 3G(x2
21, z

′s) (9a)

+ 2G2(x2
21, z

′s) + 2 Γ2(x2
10, x

2
21, z

′s)

]
,

Γ(x2
10, x

2
21, z

′s) = G(0)(x2
10, z

′s) +
αsNc

2π

z′∫
1

sx2
10

dz′′

z′′

min

[
x2

10,x
2
21
z′

z′′

]∫
1
z′′s

dx2
32

x2
32

[
Γ(x2

10, x
2
32, z

′′s) + 3G(x2
32, z

′′s)

+ 2G2(x2
32, z

′′s) + 2 Γ2(x2
10, x

2
32, z

′′s)

]
, (9b)

G2(x2
10, zs) = G

(0)
2 (x2

10, zs) +
αsNc
π

z∫
Λ2

s

dz′

z′

min
[
z
z′ x

2
10,

1
Λ2

]∫
max

[
x2

10,
1
z′s

]
dx2

21

x2
21

[
G(x2

21, z
′s) + 2G2(x2

21, z
′s)
]
, (9c)

Γ2(x2
10, x

2
21, z

′s) = G
(0)
2 (x2

10, z
′s) +

αsNc
π

z′
x2

21

x2
10∫

Λ2

s

dz′′

z′′

min

[
z′

z′′ x
2
21,

1
Λ2

]∫
max

[
x2

10,
1
z′′s

]
dx2

32

x2
32

[
G(x2

32, z
′′s) + 2G2(x2

32, z
′′s)
]
, (9d)

where Γ(x2
10, x

2
21, z

′s) and Γ2(x2
10, x

2
21, z

′s) are only defined for x10 ≥ x21 and Λ is an infrared (IR) cutoff such that
we require all the dipole sizes to be xij < 1/Λ.

For convenience, we define the new variables [30]

η =

√
αsNc

2π
ln
zs

Λ2
, η′ =

√
αsNc

2π
ln
z′s

Λ2
, η′′ =

√
αsNc

2π
ln
z′′s

Λ2
, (10)

s10 =

√
αsNc

2π
ln

1

x2
10Λ2

, s21 =

√
αsNc

2π
ln

1

x2
21Λ2

, s32 =

√
αsNc

2π
ln

1

x2
32Λ2

.
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In terms of these, Eqs. (9) can be written as

G(s10, η) = G(0)(s10, η) +

η∫
s10

dη′
η′∫

s10

ds21

[
Γ(s10, s21, η

′) + 3G(s21, η
′) + 2G2(s21, η

′) + 2 Γ2(s10, s21, η
′)

]
, (11a)

Γ(s10, s21, η
′) = G(0)(s10, η

′) +

[ s21∫
s10

ds32

η′−s21+s32∫
s32

dη′′ +

η′∫
s21

ds32

η′∫
s32

dη′′

]
(11b)

×
[
Γ(s10, s32, η

′′) + 3G(s32, η
′′) + 2G2(s32, η

′′) + 2 Γ2(s10, s32, η
′′)

]
,

G2(s10, η) = G
(0)
2 (s10, η) + 2

s10∫
0

ds21

η−s10+s21∫
s21

dη′
[
G(s21, η

′) + 2G2(s21, η
′)

]
, (11c)

Γ2(s10, s21, η
′) = G

(0)
2 (s10, η

′) + 2

s10∫
0

ds32

η′−s21+s32∫
s32

dη′′
[
G(s32, η

′′) + 2G2(s32, η
′′)

]
, (11d)

where we have changed the order of integration in the integral kernels of Eqs. (9b)-(9d). Once again, the ordering
0 ≤ s10 ≤ s21 ≤ η′ is assumed in Eqs. (11b) and (11d).

Once the dipole amplitudes G and G2 are determined by solving Eqs. (11), they can be used to calculate the (dipole)

gluon and (flavor-singlet) quark helicity TMDs gGdip1L (x, k2
T ) and gS1L(x, k2

T ), hPDFs ∆G(x,Q2) and ∆Σ(x,Q2), and
the g1 structure function, by employing the following relations derived in [1] (see also [2, 3, 32]):

gGdip1L (x, k2
T ) =

Nc
αs2π4

∫
d2x10 e

−ik·x10

[
1 + x2

10

∂

∂x2
10

]
G2

(
x2

10, zs =
Q2

x

)
, (12a)

gS1L(x, k2
T ) =

8iNcNf
(2π)5

1∫
Λ2/s

dz

z

∫
d2x10 e

ik·x10
x10

x2
10

· k
k2

[
Q(x2

10, zs) + 2G2(x2
10, zs)

]
, (12b)

∆G(x,Q2) =
2Nc
αsπ2

[(
1 + x2

10

∂

∂x2
10

)
G2

(
x2

10, zs =
Q2

x

)]
x2

10=
1
Q2

, (12c)

∆Σ(x,Q2) = −NcNf
2π3

1∫
Λ2/s

dz

z

min
{

1
zQ2 ,

1
Λ2

}∫
1
zs

dx2
10

x2
10

[
Q(x2

10, zs) + 2G2(x2
10, zs)

]
, (12d)

g1(x,Q2) = −
∑
f

NcZ
2
f

4π3

1∫
Λ2/s

dz

z

min
{

1
zQ2 ,

1
Λ2

}∫
1
zs

dx2
10

x2
10

[
Q(x2

10, zs) + 2G2(x2
10, zs)

]
. (12e)

The transverse momentum vector is denoted by k = (k1, k2) and its magnitude is kT = |k|. We have introduced the
fractional electric charge of the quark Zf . In Eq. (12d) we have also assumed, for simplicity, that all flavors contribute
equally, such that the sum over flavors can be replaced by the number of flavors Nf . This appears to be a good
approximation at large Nc. In addition, we have employed another polarized dipole amplitude Q(x2

10, zs), which is
also defined in [1]. Note that at large Nc, one has Q(x2

10, zs) ≈ G(x2
10, zs) [1], such that all the quantities in Eqs. (12)

can be expressed in terms of the amplitudes G and G2.
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III. SOLUTION

A. Double Inverse Laplace Transform Representations for G2, Γ2, G

Our goal now is to solve Eqs. (11). We begin by writing G2(s10, η) as a double inverse Laplace transform over the
variables η − s10 and s10:

G2(s10, η) =

∫
dω

2πi

∫
dγ

2πi
eω(η−s10)eγs10G2ωγ . (13)

The integrals here are taken over infinite straight-line contours in the complex ω- and γ-planes, parallel to the
imaginary axis and to the right of all the integrand’s singularities.

We can also introduce corresponding double inverse Laplace transforms for the initial conditions/inhomogeneous

terms G(0)(s10, η) and G
(0)
2 (s10, η),

G(0)(s10, η) =

∫
dω

2πi

∫
dγ

2πi
eω(η−s10)eγs10G(0)

ωγ , (14a)

G
(0)
2 (s10, η) =

∫
dω

2πi

∫
dγ

2πi
eω(η−s10)eγs10G

(0)
2ωγ . (14b)

Next we observe that Eqs. (11c) and (11d) admit the following scaling property:

Γ2(s10, s21, η
′)−G(0)

2 (s10, η
′) = G2(s10, η = η′ + s10 − s21)−G(0)

2 (s10, η = η′ + s10 − s21). (15)

Using Eqs. (13) and (14b) in Eq. (15) we immediately have

Γ2(s10, s21, η
′) =

∫
dω

2πi

∫
dγ

2πi

[
eω(η′−s21)eγs10

(
G2ωγ −G(0)

2ωγ

)
+ eω(η′−s10)eγs10 G

(0)
2ωγ

]
. (16)

Now we write the amplitude G(s10, η) as a double inverse Laplace transform

G(s10, η) =

∫
dω

2πi

∫
dγ

2πi
eω(η−s10)eγs10Gωγ , (17)

substitute Eqs. (13), (14b), and (17) into (11c) and perform the integrals over η′ and s21. Next, applying the forward
Laplace transforms over η − s10 and s10 (treating those as two independent variables) yields

G2ωγ = G
(0)
2ωγ +

2

ωγ
[Gωγ + 2G2ωγ ] . (18)

Solving Eq. (18) for Gωγ we arrive at

Gωγ = 1
2ωγ

(
G2ωγ −G(0)

2ωγ

)
− 2G2ωγ , (19)

so that Eq. (17) gives

G(s10, η) =

∫
dω

2πi

∫
dγ

2πi
eω(η−s10)eγs10

[
1
2ωγ

(
G2ωγ −G(0)

2ωγ

)
− 2G2ωγ

]
. (20)

This way, we have obtained double inverse Laplace transform representations for the dipole amplitudes G2,Γ2 and G
given in Eqs. (13), (16) and (20), respectively.

From Eqs. (11c) and (11d) we have several boundary conditions which our expressions for G2(s10, η) and
Γ2(s10, s21, η

′) must satisfy. We need

G2(s10 = 0, η) = G
(0)
2 (s10 = 0, η) , (21a)

G2(s10, η = s10) = G
(0)
2 (s10, η = s10) , (21b)

Γ2(s10 = 0, s21, η
′) = G

(0)
2 (s10 = 0, η′) , (21c)

Γ2(s10, s21, η
′ = s21) = G

(0)
2 (s10, η

′ = s21) . (21d)
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Using Eqs. (13) and (14b), we see that Eqs. (21a) and (21b) give respectively∫
dω

2πi

∫
dγ

2πi
eωηG2ωγ =

∫
dω

2πi

∫
dγ

2πi
eωηG

(0)
2ωγ , (22a)∫

dω

2πi

∫
dγ

2πi
eγs10G2ωγ =

∫
dω

2πi

∫
dγ

2πi
eγs10G

(0)
2ωγ . (22b)

Note that the constraints resulting from Eqs. (21c) and (21d) are equivalent to Eqs. (22).
Since G2ωγ , Gωγ must go to zero as ω →∞ or γ →∞ in order for the Laplace transforms to exist, the second term

on the right-hand side of Eq. (18) goes to zero faster than 1/ω or 1/γ as ω →∞ or γ →∞. This implies that∫
dω

2πi

2

ωγ
[Gωγ + 2G2ωγ ] = 0 (23)

and ∫
dγ

2πi

2

ωγ
[Gωγ + 2G2ωγ ] = 0, (24)

since the ω- and γ-contours are located to the right of all the singularities of the integrand, allowing us to close the
contours to the right. We see that the conditions in Eqs. (22) are automatically satisfied by Eq. (18).

We conclude that at this point Eqs. (11c) and (11d) are completely solved.

B. Double Inverse Laplace Transform Representation for Γ

Differentiating Eq. (11b) one can show that Γ(s10, s21, η
′) satisfies the partial differential equation

∂2Γ(s10, s21, η
′)

∂s2
21

+
∂2Γ(s10, s21, η

′)

∂s21∂η′
+ Γ(s10, s21, η

′) = −3G(s21, η
′)− 2G2(s21, η

′)− 2 Γ2(s10, s21, η
′). (25)

This second-order partial differential equation has two solutions, homogeneous and particular, which we label (h) and
(p), respectively,

Γ(s10, s21, η
′) = Γ(h)(s10, s21, η

′) + Γ(p)(s10, s21, η
′). (26)

Looking for the homogeneous solution of the form

Γ(h)(s10, s21, η
′) =

∫
dω

2πi

∫
dγ

2πi
eω(η′−s21)eγs21Γωγ(s10) (27)

one arrives at the condition

γ2 − ωγ + 1 = 0, (28)

which yields two solutions, γ = δ+
ω and γ = δ−ω , where we have defined

δ±ω ≡
ω

2

[
1±

√
1− 4

ω2

]
. (29)

Thus, the homogeneous solution can be written as

Γ(h)(s10, s21, η
′) =

∫
dω

2πi
eω(η′−s21)

[
Γ+
ω (s10) eδ

+
ω s21 + Γ−ω (s10) eδ

−
ω s21

]
(30)

with some unknown functions Γ+
ω (s10) and Γ−ω (s10).

To construct a particular solution of Eq. (25), one can substitute Eqs. (20), (13), and (16) into the right hand side
of Eq. (25). This motivates an ansatz for the particular solution of the form

Γ(p)(s10, s21, η
′) =

∫
dω

2πi

∫
dγ

2πi

[
Aωγ e

ω(η′−s21)eγs21 +Bωγ e
ω(η′−s21)eγs10 + Cωγ e

ω(η′−s10)eγs10

]
. (31)
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Substitution of Eq. (31) into Eq. (25) allows one to determine the coefficients Aωγ , Bωγ , and Cωγ . The particular
solution found this way is

Γ(p)(s10, s21, η
′) =

∫
dω

2πi

∫
dγ

2πi

[
eω(η′−s21)eγs21

( − 3
2ωγ + 4

γ2 − ωγ + 1
G2ωγ +

3
2ωγ

γ2 − ωγ + 1
G

(0)
2ωγ

)
(32)

− 2 eω(η′−s21)eγs10
[
G2ωγ −G(0)

2ωγ

]
− 2 eω(η′−s10)eγs10G

(0)
2ωγ

]
.

Combining the homogeneous (30) and particular (32) solutions we arrive at the general solution of Eq. (25),

Γ(s10, s21, η
′) =

∫
dω

2πi
eω(η′−s21)

[
Γ+
ω (s10)eδ

+
ω s21 + Γ−ω (s10)eδ

−
ω s21

]
(33)

+

∫
dω

2πi

∫
dγ

2πi

[
eω(η′−s21)eγs21

( − 3
2ωγ + 4

γ2 − ωγ + 1
G2ωγ +

3
2ωγ

γ2 − ωγ + 1
G

(0)
2ωγ

)

− 2 eω(η′−s21)eγs10

(
G2ωγ −G(0)

2ωγ

)
− 2 eω(η′−s10)eγs10G

(0)
2ωγ

]
.

The integral in Eq. (33) is not defined until we specify the location of the poles in the new denominator, γ2−ωγ+1 =
−γ[ω− (γ + 1

γ )] = (γ − δ+
ω )(γ − δ−ω ), with respect to the ω- and γ-contours. A simple analysis shows that one cannot

have both the ω- and γ-contours to the right of the new poles. Indeed, since

γ2 − ωγ + 1 = (γ − δ+
ω ) (γ − δ−ω )

|ω|→∞−→ (γ − ω)

(
γ − 1

ω

)
, (34)

we see that if Re ω > Re γ then the γ = ω pole is to the right of the γ-contour and to the left of the ω-contour;
if Re ω < Re γ than the γ = ω pole is to the left of the γ-contour and to the right of the ω-contour. We choose
the ω-contour to be to the right of the singularity at ω = γ + 1/γ generated by the new denominator. Then, as
one can show, the γ-contour must pass between the γ = δ+

ω and γ = δ−ω poles. We stress that the locations of ω-
and γ-contours here are a choice, affecting both the homogeneous and particular solutions simultaneously: different
choices for the contours’ locations would result in different Γ+

ω (s10) and Γ−ω (s10). As we will see below, the residue
at γ = δ+

ω will be zero in the final solution. Therefore, this new pole to the right of the γ-contour will vanish, such
that all the γ-singularities of the integrand will still be to the left of the γ-contour, as expected for an inverse Laplace
transform. However, we will need to keep this pole in mind later when we invert an integral over γ.

C. Constraints on Γ

Note that we might have lost some of the constraints of Eq. (11b) when we differentiated it to obtain Eq. (25).
Hence, the expression (33), while a solution of the differential equation (25), may not yet be a solution of Eq. (11b).
To fully satisfy Eq. (11b) we take our expression (33) for Γ(s10, s21, η

′) along with the other three amplitudes given
in Eqs. (13), (16), and (20) and substitute them all back into Eq. (11b). Performing the integrals over η′′ and s32

and also making use of the facts that δ+
ω δ
−
ω = 1 and δ+

ω + δ−ω = ω (as can be seen from Eq. (29)), we obtain

0 =

∫
dω

2πi

∫
dγ

2πi
eω(η′−s21)eγs10

{
γ − ω
ω

[ − 3
2ωγ + 4

γ2 − ωγ + 1
G2ωγ +

3
2ωγ

γ2 − ωγ + 1
G

(0)
2ωγ

]
+ 2

(
G2ωγ −G(0)

2ωγ

)}
(35)

+

∫
dω

2πi

∫
dγ

2πi
eω(η′−s10)eγs10

(
G(0)
ωγ + 2G

(0)
2ωγ

)
−
∫

dω

2πi

{
Γ+
ω (s10)

[
eω(η′−s21)eδ

+
ω s10

ω δ+
ω

+ eδ
+
ω η
′ − eδ

+
ω s10

ω δ+
ω

]
+ Γ−ω (s10)

[
eω(η′−s21)eδ

−
ω s10

ω δ−ω
+ eδ

−
ω η
′ − eδ

−
ω s10

ω δ−ω

]}
.

In arriving at Eq. (35) we have dropped the following term:∫
dω

2πi

∫
dγ

2πi

(
eγη

′

γ(γ − ω)
+
eγs10

ωγ

)
γ(γ − ω)

( 3
2ωγ − 4

γ2 − ωγ + 1
G2ωγ −

3
2ωγ

γ2 − ωγ + 1
G

(0)
2ωγ

)
. (36)
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With no ω in the exponent in this term, we can close the ω-contour to the right. Then using the fact that G2ωγ , G
(0)
2ωγ

must go to zero for ω →∞ along with the property in Eq. (22b), one can show that this entire term is zero.
Performing the forward Laplace transform over η′ in Eq. (35) we obtain

0 = e−ωs21

∫
dγ

2πi
eγs10

{
γ − ω
ω

[ −3
2 ωγ + 4

γ2 − ωγ + 1
G2ωγ +

3
2ωγ

γ2 − ωγ + 1
G

(0)
2ωγ

]
+ 2

(
G2ωγ −G(0)

2ωγ

)}
(37)

− Γ+
ω (s10)

e−ωs21eδ
+
ω s10

ω δ+
ω

− Γ−ω (s10)
e−ωs21eδ

−
ω s10

ω δ−ω

+

∫
dγ

2πi
e−ωs10eγs10

(
G(0)
ωγ + 2G

(0)
2ωγ

)
+

∫
dω′

2πi

(
Γ+
ω′(s10)

δ+
ω′ − ω

+
Γ−ω′(s10)

δ−ω′ − ω

)

+
1

ω

∫
dω′

2πi

(
Γ+
ω′(s10)

eδ
+

ω′s10

ω′ δ+
ω′

+ Γ−ω′(s10)
eδ
−
ω′s10

ω′ δ−ω′

)
.

Note that the terms in the first two lines of Eq. (37) have the same s21-dependence, ∝ e−ωs21 , whereas the last two
lines are independent of s21. Since Eq. (37) must be valid for all s21 > 0, we conclude that the sum of the first two
lines in Eq. (37) must be separately equal to zero. This means that the sum of the last two lines in Eq. (37) must
also be zero. This gives two constraints∫

dγ

2πi
eγs10

{
γ − ω
ω

[ −3
2 ωγ + 4

γ2 − ωγ + 1
G2ωγ +

3
2ωγ

γ2 − ωγ + 1
G

(0)
2ωγ

]
+ 2

(
G2ωγ −G(0)

2ωγ

)}
(38a)

= Γ+
ω (s10)

eδ
+
ω s10

ω δ+
ω

+ Γ−ω (s10)
eδ
−
ω s10

ω δ−ω
,

0 =

∫
dγ

2πi
e−ωs10eγs10

(
G(0)
ωγ + 2G

(0)
2ωγ

)
+

∫
dω′

2πi

(
Γ+
ω′(s10)

δ+
ω′ − ω

+
Γ−ω′(s10)

δ−ω′ − ω

)
(38b)

+
1

ω

∫
dω′

2πi

(
Γ+
ω′(s10)

eδ
+

ω′s10

ω′ δ+
ω′

+ Γ−ω′(s10)
eδ
−
ω′s10

ω′ δ−ω′

)
.

If we satisfy the conditions (38), we will solve Eq. (11b).
Before we do that, we observe that the evolution equation (11a) for G(s10, η) is just a special case of Eq. (11b) for

Γ(s10, s21, η). So to ensure that Eq. (11a) is satisfied as well, we impose the condition

Γ(s10, s21 = s10, η) = G(s10, η), (39)

which follows from Eqs. (11a) and (11b). We then substitute the dipole amplitudes from Eqs. (20) and (33) into
Eq. (39) and perform the forward Laplace transform over η − s10, obtaining∫

dγ

2πi
eγs10

[ 3
2ωγ − 4

γ2 − ωγ + 1
G2ωγ −

3
2ωγ

γ2 − ωγ + 1
G

(0)
2ωγ + 1

2ωγ
(
G2ωγ −G(0)

2ωγ

)]
= Γ+

ω (s10) eδ
+
ω s10 + Γ−ω (s10) eδ

−
ω s10 . (40)

Equations (38a) and (40) can be solved to give individual expressions for Γ+
ω (s10) and Γ−ω (s10). Making use of the

properties (δ±ω )2 − ωδ±ω + 1 = 0, δ+
ω δ
−
ω = 1, δ+

ω + δ−ω = ω, which follow from Eq. (29), the result can be written as

Γ+
ω (s10) =

e−δ
+
ω s10

δ+
ω − δ−ω

∫
dγ

2πi
eγs10

ω δ+
ω

2 (γ − δ+
ω )

[
G2ωγ

(
γ2 − ωγ + 4− 8

ω δ
−
ω

)
−G(0)

2ωγ

(
γ2 − ωγ + 4

)]
, (41a)

Γ−ω (s10) =
e−δ

−
ω s10

δ−ω − δ+
ω

∫
dγ

2πi
eγs10

ω δ−ω
2 (γ − δ−ω )

[
G2ωγ

(
γ2 − ωγ + 4− 8

ω δ
+
ω

)
−G(0)

2ωγ

(
γ2 − ωγ + 4

)]
. (41b)

We are only left with Eq. (38b) to satisfy. Employing Eq. (18) in Eqs. (41) along with the fact that G2ωγ , G
(0)
2ωγ → 0

as ω →∞ we conclude that

eδ
+
ω s10 Γ+

ω (s10)→ 0, eδ
−
ω s10 ω Γ−ω (s10)→ 0, when ω →∞. (42)
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(We have also employed the fact that δ+
ω → ω and δ−ω → 1/ω as ω → ∞, which follows from Eq. (29)). This allows

us to close the ω′ contour to the right in the last term of Eq. (38b), obtaining zero. Eq. (38b) then becomes∫
dγ

2πi
e−ωs10eγs10

(
G(0)
ωγ + 2G

(0)
2ωγ

)
=

∫
dω′

2πi

(
Γ+
ω′(s10)

ω − δ+
ω′

+
Γ−ω′(s10)

ω − δ−ω′

)
(43)

= −
∫

dω′

2πi

(
ω − δ−ω′
ω

Γ+
ω′(s10)

ω′ −
(
ω + 1

ω

) +
ω − δ+

ω′

ω

Γ−ω′(s10)

ω′ −
(
ω + 1

ω

)) ,
where we have again used the properties δ+

ω δ
−
ω = 1, δ+

ω + δ−ω = ω to obtain the second line of Eq. (43). Now we can
close the ω′-contour to the right, picking up the pole at ω′ = ω+ 1

ω in each term. Using δ−
ω+ 1

ω

= 1
ω and δ+

ω+ 1
ω

= ω (as

can be seen from Eq. (29)) we see that the Γ−ω′(s10) term vanishes. Then Eq. (43) has become∫
dγ

2πi
eγs10

(
G(0)
ωγ + 2G

(0)
2ωγ

)
=

(
1− 1

ω2

)
Γ+
ω+ 1

ω

, (44)

where we have defined Γ+
ω by Γ+

ω (s10) ≡ Γ+
ω e
−δ+

ω s10 . Again using δ+
ω+ 1

ω

= ω, δ−
ω+ 1

ω

= 1/ω, we rewrite Eq. (44) as

∫
dγ

2πi
eγs10

(
G

(0)

δ+

ω+ 1
ω

γ
+ 2G

(0)

2 δ+

ω+ 1
ω

γ

)
=

1− 1[
δ+
ω+ 1

ω

]2
 Γ+

ω+ 1
ω

, (45)

or, replacing ω + 1
ω → ω, as ∫

dγ

2πi
eγs10

(
G

(0)

δ+
ω γ

+ 2G
(0)

2 δ+
ω γ

)
=

(
1− 1[

δ+
ω

]2
)

Γ+
ω . (46)

Employing Eq. (41a) in Eq. (46) and inverting the γ integral — while remembering that the γ = δ+
ω pole in the

former equation is located to the right of the γ-contour — we arrive at

G
(0)

δ+
ω γ

+ 2G
(0)

2 δ+
ω γ

=
ω

2 (γ − δ+
ω )

[
G2ωγ

(
γ − γ−ω

) (
γ − γ+

ω

)
−G(0)

2ωγ

(
γ2 − ωγ + 4

)
(47)

−G2ωδ+
ω

(
δ+
ω − γ−ω

) (
δ+
ω − γ+

ω

)
+ 3G

(0)

2ωδ+
ω

]
.

In arriving at Eq. (47) we have again used (δ+
ω )2 − ωδ+

ω + 1 = 0 and have also defined

γ2 − ωγ + 4− 8

ω
δ−ω ≡

(
γ − γ−ω

) (
γ − γ+

ω

)
(48)

with

γ±ω =
ω

2

1±

√
1− 16

ω2

√
1− 4

ω2

 . (49)

Note also that the pole at γ = δ+
ω is not present on the right-hand side of Eq. (47) (and therefore is also not present

on the equation’s left-hand side). Satisfying Eq. (47) would complete the solution of Eqs. (11) by expressing G2ωγ in

terms of G
(0)
2ωγ and G

(0)
ωγ . Equation (19) would then allow us to find Gωγ , after which all the dipole amplitudes can

be constructed using Eqs. (13), (16), (20), (33), and (41). The quantities G
(0)
2ωγ and G

(0)
ωγ are specified by the initial

conditions/inhomogeneous terms.
The only remaining problem is that Eq. (47) contains G2ωγ with two different arguments: it contains G2ωγ itself

along with G2ωδ+
ω

. This makes the equation harder to solve for G2ωγ . However, we can solve Eq. (47) for G2ωδ+
ω

by

setting γ = γ+
ω in it. The term G2ωγ (γ − γ−ω ) (γ − γ+

ω ) will vanish as long as G2ωγ does not have a pole at γ = γ+
ω .

However, we assumed this to be true from the beginning: in writing the inverse Laplace transform (13), we assumed
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that all singularities of G2ωγ are to the left of the γ and ω integration contours. Since γ+
ω → ω as ω → ∞, the pole

at γ = γ+
ω becomes a pole at γ = ω for large ω. If the ω and γ integration contours were chosen in Eq. (13) such

that Re ω > Re γ, then a pole at γ = ω would violate the assumption of the γ-contour being to the right of all the
singularities of the integrand. If the ω and γ integration contours were chosen such that Re ω < Re γ, the same
argument would apply to the ω contour. Hence, by writing Eq. (13) we assumed that the pole at γ = γ+

ω in G2ωγ

does not exist.
Putting γ = γ+

ω in Eq. (47) and dropping the G2ωγ (γ − γ−ω ) (γ − γ+
ω ) term allows one to solve for G2ωδ+

ω
, yielding

G2ωδ+
ω

=
1

ω
(
δ+
ω − γ−ω

) (
δ+
ω − γ+

ω

) {2
(
δ+
ω − γ+

ω

) [
G

(0)

δ+
ω γ

+
ω

+ 2G
(0)

2 δ+
ω γ

+
ω

]
− 8 δ−ω G

(0)

2ωγ+
ω

+ 3ωG
(0)

2ωδ+
ω

}
. (50)

Substituting this result back into Eq. (47) and solving for G2ωγ , we obtain

G2ωγ = G
(0)
2ωγ +

1

ω
(
γ − γ−ω

) (
γ − γ+

ω

)[2
(
γ − δ+

ω

) (
G

(0)

δ+
ω γ

+ 2G
(0)

2δ+
ω γ

)
(51)

− 2
(
γ+
ω − δ+

ω

) (
G

(0)

δ+
ω γ

+
ω

+ 2G
(0)

2δ+
ω γ

+
ω

)
+ 8 δ−ω

(
G

(0)
2ωγ −G

(0)

2ωγ+
ω

)]
.

Note that indeed, by construction, there is no γ = γ+
ω pole on the right of Eq. (51).

We have now completely solved Eqs. (11). The polarized dipole amplitudes in our solution are given by Eqs. (13),
(16), (20), and (33), with the ingredients of these expressions constructed in Eqs. (29), (41), (49), and (51), for the

initial conditions specifying G
(0)
2ωγ and G

(0)
ωγ .

IV. SUMMARY OF OUR RESULTS AND THE SMALL-x ASYMPTOTICS

A. Summary of our Results

Let us now summarize our solution and construct its small-x asymptotics. For brevity, we will utilize the notation
defined in Eq. (5). Rescaling

ω → ω√
ᾱs
, γ → γ√

ᾱs
, G2ωγ → ᾱsG2ωγ , G

(0)
2ωγ → ᾱsG

(0)
2ωγ , G(0)

ωγ → ᾱsG
(0)
ωγ , (52)

with the lowercase ω, γ indices not reflecting the rescaling of those variables, we write our solution as follows:

G2(x2
10, zs) =

∫
dω

2πi

∫
dγ

2πi
e
ω ln(zsx2

10)+γ ln

(
1

x2
10Λ2

)
G2ωγ , (53a)

Γ2(x2
10, x

2
21, z

′s) =

∫
dω

2πi

∫
dγ

2πi
(53b)

×
[
e
ω ln(z′sx2

21)+γ ln

(
1

x2
10Λ2

) (
G2ωγ −G(0)

2ωγ

)
+ e

ω ln(z′sx2
10)+γ ln

(
1

x2
10Λ2

)
G

(0)
2ωγ

]
,

G(x2
10, zs) =

∫
dω

2πi

∫
dγ

2πi
e
ω ln(zsx2

10)+γ ln

(
1

x2
10Λ2

) [
ωγ

2 ᾱs

(
G2ωγ −G(0)

2ωγ

)
− 2G2ωγ

]
, (53c)

Γ(x2
10, x

2
21, z

′s) =

∫
dω

2πi
eω ln(z′sx2

21)

[
Γ+
ω (x2

10) e
δ+
ω ln

(
1

x2
21Λ2

)
+ Γ−ω (x2

10) e
δ−ω ln

(
1

x2
21Λ2

)]
(53d)

+

∫
dω

2πi

∫
dγ

2πi
e
ω ln(z′sx2

21)+γ ln

(
1

x2
21Λ2

) [(
− 3

2ωγ + 4 ᾱs
)
G2ωγ + 3

2ωγ G
(0)
2ωγ

γ2 − ωγ + ᾱs

]

−
∫

dω

2πi

∫
dγ

2πi

[
2 e

ω ln(z′sx2
21)+γ ln

(
1

x2
10Λ2

) (
G2ωγ −G(0)

2ωγ

)
+ 2 e

ω ln(z′sx2
10)+γ ln

(
1

x2
10Λ2

)
G

(0)
2ωγ

]
,
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with

G2ωγ = G
(0)
2ωγ +

ᾱs

ω
(
γ − γ−ω

) (
γ − γ+

ω

)[2
(
γ − δ+

ω

) (
G

(0)

δ+
ω γ

+ 2G
(0)

2 δ+
ω γ

)
(54a)

− 2
(
γ+
ω − δ+

ω

) (
G

(0)

δ+
ω γ

+
ω

+ 2G
(0)

2 δ+
ω γ

+
ω

)
+ 8 δ−ω

(
G

(0)
2ωγ −G

(0)

2ωγ+
ω

)]
,

G(0)(x2
10, zs) =

∫
dω

2πi

∫
dγ

2πi
e
ω ln(zsx2

10)+γ ln

(
1

x2
10Λ2

)
G(0)
ωγ , (54b)

G
(0)
2 (x2

10, zs) =

∫
dω

2πi

∫
dγ

2πi
e
ω ln(zsx2

10)+γ ln

(
1

x2
10Λ2

)
G

(0)
2ωγ , (54c)

Γ+
ω (x2

10) =
e
−δ+

ω ln

(
1

x2
10Λ2

)
ᾱs (δ+

ω − δ−ω )

∫
dγ

2πi
e
γ ln

(
1

x2
10Λ2

)
ω δ+

ω

2 (γ − δ+
ω )

(54d)

×
[
G2ωγ

(
γ2 − ωγ + 4 ᾱs − 8 ᾱs

ω δ−ω
)
−G(0)

2ωγ

(
γ2 − ωγ + 4 ᾱs

) ]
,

Γ−ω (x2
10) =

e
−δ−ω ln

(
1

x2
10Λ2

)
ᾱs (δ−ω − δ+

ω )

∫
dγ

2πi
e
γ ln

(
1

x2
10Λ2

)
ω δ−ω

2 (γ − δ−ω )
(54e)

×
[
G2ωγ

(
γ2 − ωγ + 4 ᾱs − 8 ᾱs

ω δ+
ω

)
−G(0)

2ωγ

(
γ2 − ωγ + 4 ᾱs

) ]
,

δ±ω =
ω

2

[
1±

√
1− 4 ᾱs

ω2

]
, (54f)

γ±ω =
ω

2

1±

√
1− 16 ᾱs

ω2

√
1− 4 ᾱs

ω2

 . (54g)

With the four polarized dipole amplitudes known, Eqs. (12) give us the gluon and (flavor-singlet) quark helicity
TMDs and PDFs along with the g1 structure function. We begin by substituting Eq. (53a) into Eq. (12a) for the
gluon dipole TMD, while neglecting the derivative term at DLA. Integrating out x10 we arrive at

gGdip1L (x, k2
T ) =

2Nc
αs π3

1

k2
T

∫
dω

2πi

∫
dγ

2πi
e
ω ln

(
Q2

xk2
T

)
+γ ln

(
k2
T

Λ2

)
22ω−2γ Γ (ω − γ + 1)

Γ (γ − ω)
G2ωγ . (55)

The gluon helicity PDF at DLA follows immediately from substituting Eq. (53a) into Eq. (12c),

∆G(x,Q2) =
2Nc
αsπ2

∫
dω

2πi

∫
dγ

2πi
e
ω ln

(
1
x

)
+γ ln

(
Q2

Λ2

)
G2ωγ . (56)

Next we substitute Eqs. (53c) and (53a) into Eq. (12b) for the flavor-singlet quark helicity TMD (while remembering
that Q = G at large Nc). Integrating out x10 and z yields2

gS1L(x, k2
T ) = − Nf

αs 2π3

1

k2
T

∫
dω

2πi

∫
dγ

2πi

eω ln

(
Q2

x k2
T

)
+γ ln

(
k2
T

Λ2

)
− e

(γ−ω) ln

(
k2
T

Λ2

) 22ω−2γ Γ (1 + ω − γ)

Γ (1− ω + γ)
(57)

× γ
(
G2ωγ −G(0)

2ωγ

)
.

To obtain the quark helicity PDF in the DLA we substitute Eqs. (53c) and (53a) into Eq. (12d), again remembering
that Q = G at large Nc. Carrying out the x2

10 and z-integrals and employing Eq. (18) we arrive at

∆Σ(x,Q2) = − Nf
αs 2π2

∫
dω

2πi

∫
dγ

2πi

ω

ω − γ
(
G2ωγ −G(0)

2ωγ

)
e
ω ln

(
1
x

)
e
γ ln

(
Q2

Λ2

)
, (58)

2 Note that a special care needs to be taken to extract the DLA part of gS1L(x, k2T ): this was not done in Eq. (57).
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where Re ω > Re γ along their contours.
To obtain the g1 structure function, we replace Nf → 1

2

∑
f Z

2
f in Eq. (58), which gives

g1(x,Q2) = −1

2

∑
f

Z2
f

1

αs 2π2

∫
dω

2πi

∫
dγ

2πi

ω

ω − γ
(
G2ωγ −G(0)

2ωγ

)
e
ω ln

(
1
x

)
e
γ ln

(
Q2

Λ2

)
, (59)

again with Re ω > Re γ on the integration contours.
Thus in Eqs. (55), (57), (56), (58), and (59) we have analytic small-x large-Nc expressions for the quark and gluon

helicity TMDs, PDFs, and the g1 structure function.

B. Small-x Asymptotics

Importantly, the small-x asymptotics of the dipole amplitudes in Eq. (53) are governed by the rightmost singularity
in the complex ω-plane. One can show that this rightmost singularity is a branch point of the large square root in
γ−ω . Setting the expression under that large square root in γ−ω from Eq. (54g) to zero gives

1− 16 ᾱs
ω2

√
1− 4 ᾱs

ω2
= 0 , (60)

whose rightmost solution in the complex ω-plane is

ω = αh ≡
4

31/3

√
Re

[(
−9 + i

√
111
)1/3

]√
αsNc

2π
≈ 3.66074

√
αsNc

2π
. (61)

We arrive at the small-x asymptotics of all the helicity-dependent quantities discussed above, driven by the following
leading power of 1/x:

∆Σ(x,Q2) ∼ ∆G(x,Q2) ∼ g1(x,Q2) ∼ gGdip1L (x, k2
T ) ∼ gS1L(x, k2

T ) ∼
(

1

x

)αh

. (62)

Together with the general solution of the large-Nc small-x helicity evolution equations given in Eqs. (53) and (54),
the asymptotics (62) are the main result of this work.

V. RESUMMED ANOMALOUS DIMENSION AND CROSS-CHECKS

Now let us perform several cross-checks of our solution. As a first cross-check, we consider [1] where our Eqs. (9)

were solved iteratively with the initial conditions G
(0)
2 (x2

10, zs) = 1 and G(0)(x2
10, zs) = 0. With these initial conditions,

Eqs. (54b), (54c), and (54a) give

G(0)
ωγ = 0 , G

(0)
2ωγ =

1

ωγ
, G2ωγ =

1

ω(γ − γ−ω )
. (63)

One can then expand Eqs. (53) in powers of αs and integrate over γ and ω (it is easier to carry out the γ-integrals
first, then expand in powers of αs, then carry out the ω-integrals). We have confirmed up to O(α2

s) that such an
expansion of our analytic solution is in complete agreement with the iterative solution from [1].

As another cross-check we can use the gluon helicity PDF ∆G(x,Q2) given in Eq. (56). Employing G
(0)
ωγ , G

(0)
2ωγ and

G2ωγ from Eq. (63) in Eq. (56) we obtain

∆G(x,Q2) =
2Nc
αsπ2

∫
dω

2πi
e
ω ln

(
1
x

)
+γ−ω ln

(
Q2

Λ2

)
1

ω
. (64)

We see that ∆γGG(ω) ≡ γ−ω is our prediction for the resummed all-order in αs GG anomalous dimension (at small x
and in the large-Nc limit),

∆γGG(ω) = γ−ω =
ω

2

1−

√
1− 16 ᾱs

ω2

√
1− 4 ᾱs

ω2

 . (65)
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Expanding this in powers of αs we obtain

∆γGG(ω) =
4 ᾱs
ω

+
8 ᾱ2

s

ω3
+

56 ᾱ3
s

ω5
+

496 ᾱ4
s

ω7
+O(α5

s). (66)

Thus our all-order resummed small-x anomalous dimension ∆γGG(ω) agrees with the fixed-order calculations to the
existing three-loop order [74–77], with novel predictions at O(α4

s) and beyond. This accomplishes another cross-check
of our solution.

VI. COMPARISON TO BER

Here we compare our results to the earlier resummation for helicity distributions at small x done by Bartels,
Ermolaev, and Ryskin (BER) [4, 16]. In order to do so, we will need to simplify the expression for the anomalous
dimension obtained by BER in [4] for the pure-glue case. Following [4] we write the g1 structure function as

g1(x,Q2) = − 1

2π
ImT3(x,Q2) (67)

with the signature-odd scattering amplitude T3 given by

TS3 (x,Q2) =

∫
dω

2πi
ξ(ω)

(
1

x

)ω (
Q2

Λ2

)F0(ω)/8π2

1

ω − F0(ω)/8π2
RB (68)

for the flavor-singlet case (denoted by the superscript S on the amplitude). Here

ξ(ω) =
e−iπω − 1

2
≈ −iπω

2
(69)

is the signature factor, RB is given by the Mellin transform of the Born initial conditions, while Λ is our IR cutoff,
denoted by µ in [4].

The anomalous dimension F0(ω)/8π2 was found in [4] to be (see Eq. (4.8) in [4])

F0(ω)

8π2
=
ω

2

[
1−

√
1− 2αs

π ω2
M0 +

αs
π3 ω3

G0 F8(ω)

]
. (70)

Here M0 and G0 are 2 × 2 matrices in the quark-gluon distributions space. Their gluon–gluon components are
(M0)GG = 4Nc and (G0)GG = Nc. The adjoint (octet) amplitude F8(ω) has to be found by solving the following
non-linear differential equation,

F8(ω) =
4παs
ω

M8 +
αsNc
2π ω

dF8(ω)

dω
+

1

8π2 ω
[F8(ω)]2. (71)

Again, M8 is a 2× 2 matrix in the quark and gluon distributions space: its gluon-gluon component is (M8)GG = 2Nc.
To obtain the pure-glue anomalous dimension we discard quarks, and replace the matrices M0, G0, and M8 by their

GG components. The matrix functions F0(ω) and F8(ω) also become single-component objects, which we will label
F0GG(ω) and F8GG(ω), respectively. The solution of Eq. (71) can then be found by using the substitution [18]

F8GG(ω) = 4παsNc
∂

∂ω
lnu(z) (72)

where

z =
ω

ω0
with ω0 =

√
αsNc

2π
. (73)

This reduces Eq. (71) to

u′′(z)− z u′(z) + 2u(z) = 0. (74)
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The solution of Eq. (74) giving the right perturbative expansion of F8GG(ω) in the powers of αs (that is, giving
F8GG(ω) = 8παsNc/ω at order-αs) is quite simple,

u(z) = z2 − 1, (75)

leading to

F8GG(ω) =
8παsNc

ω

1

1− αsNc

2π
1
ω2

. (76)

Using this result in Eq. (70) along with (M0)GG = 4Nc and (G0)GG = Nc yields the re-summed GG polarized small-x
large-Nc anomalous dimension3

∆γBERGG (ω) ≡ F0GG(ω)

8π2
=
ω

2

[
1−

√
1− 16 ᾱs

ω2

1− 3 ᾱs

ω2

1− ᾱs

ω2

]
. (77)

Comparing this with Eq. (65), we conclude that our re-summed GG polarized small-x anomalous dimension is different
from the one which follows from the evolution obtained by BER. Curiously, the perturbative expansion of ∆γBERGG (ω)
in the powers of αs yields

∆γBERGG (ω) =
4 ᾱs
ω

+
8 ᾱ2

s

ω3
+

56 ᾱ3
s

ω5
+

504 ᾱ4
s

ω7
+O(α5

s). (78)

Comparing this with Eq. (66), we see that the two anomalous dimensions, ours and BER, agree at the one-, two-
and three-loop levels, which have also been verified by the perturbative calculations [74–77]. However, at the four-
loop level, our and BER anomalous dimensions disagree by a small amount. Disagreement persists at higher orders,
reflecting the fact that Eqs. (65) and (77) contain different functions.

One may wonder about the agreement between the BER intercept and the one found numerically in [1]: both
intercepts were reported to be αh = 3.66

√
ᾱs [1, 4]. To find an analytic expression for the intercept in the BER

calculation, we need to find the right-most singularity of ∆γBERGG (ω). Equating the expression under the square root
of Eq. (77) to zero, we see that the rightmost branch point is given by

ω = αBERh ≡

√
17 +

√
97

2

√
αsNc

2π
≈ 3.66394

√
αsNc

2π
, (79)

as first reported in [29]. Comparing this to our Eq. (61), we see that the two intercepts are indeed also different,
though in both cases the numerical prefactor rounds up to 3.66.

We thus observe a difference between the solution of our large-Nc helicity evolution equations and the corresponding
results of the BER IREE-based resummation. The difference of the intercept appears to be numerically insignificant.
The disagreement between the perturbative expansion of our anomalous dimension in Eq. (66) and the expansion in
Eq. (78) at the four-loop level implies that potential future perturbative calculations of the GG polarized anomalous
dimension at four loops can determine which approach is correct.

The origin of this apparent disagreement between our calculation and that of BER is not entirely clear. We note
here that some questions about the validity of one of the approximations made in [4] were raised earlier in Appendix B
of [29]. The questions addressed the role of non-ladder hard (large transverse momentum) gluons in the IREE for
helicity: it appears that in [4] BER had stated that such hard gluons cannot contribute in the DLA, while in [29] a
counter-example was constructed for the quark–quark scattering amplitude at the order α3

s. Since then, a suggestion
has been put forward that such hard-gluon non-ladder contributions can be accounted for in the IREE obtained by
BER at the order α3

s by re-defining the ladder to include diagrams with uncut rungs.4 Below, in Appendix A, we
describe how the order-α3

s non-ladder diagrams from [29] may yet be included into BER IREE, potentially explaining
the agreement between the anomalous dimensions (66) and (78) at the order α3

s. However, when trying to apply the
same line of reasoning to a diagram at the order α4

s containing hard non-ladder gluons, we run into potential problems
and cannot unambiguously incorporate it into BER IREE. This issue at the order α4

s may be a possible explanation
of the discrepancy between our (66) and BER (78) anomalous dimensions at four loops. We note once again that a
full four-loop calculation of polarized DGLAP anomalous dimensions would unambiguously resolve this discrepancy.

3 While we did not take the large-Nc limit in our calculation, taking it now would not modify anything in Eq. (77): it appears that pure
glue and large-Nc approximations are identical for BER evolution.

4 One of the authors (YK) thanks Yoshitaka Hatta and Renaud Boussarie for a very useful discussion on this topic.
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VII. CONCLUSIONS

To summarize, we note that we have analytically solved the large-Nc equations for small-x helicity evolution derived
in [1, 2]. The solution for the polarized dipole amplitudes is given in Eqs. (53) and (54). The corresponding hTMDS,
hPDFs and the g1 structure function are given by Eqs. (55), (57), (56), (58), and (59). Our solution results in the
small-x asymptotics (62) for helicity TMDs, PDFs, and for the g1 structure function, with the intercept given in
Eq. (61).

Remarkably, our large-Nc intercept (61), while being numerically very close to the one resulting from BER IREE
[4] given by Eq. (79) above, is still different. This difference appears to persist when comparing a numerical solution
of the large-Nc&Nf version of the helicity evolution [1, 2] to the appropriate limit of BER work [86]. Moreover, the
resummed GG large-Nc small-x polarized anomalous dimensions are different in the two approaches: we obtain

∆γGG(ω) =
ω

2

1−

√
1− 16 ᾱs

ω2

√
1− 4 ᾱs

ω2

 (80)

while the BER IREE formalism gives

∆γBERGG (ω) =
ω

2

[
1−

√
1− 16 ᾱs

ω2

1− 3 ᾱs

ω2

1− ᾱs

ω2

]
. (81)

We hope that the future developments in perturbative calculations of the polarized DGLAP anomalous dimensions
would result in an expression for ∆γGG(ω) at four loops, resolving this discrepancy. In the meantime we note that
the less than 1% difference between the two intercepts and a similarly minor difference in the anomalous dimensions
are outside of the precision of phenomenological applications of BER and our formalisms for the foreseeable future.
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Appendix A: Comparison of some diagrams in BER IREE and in the shock wave approach

The aim of this Appendix is to speculate on the possible origin of the minor disagreement between the result of
BER [4] and the solution found here, as manifested in the difference between the intercepts (Eqs. (61) and (79)) and
the anomalous dimensions (Eqs. (80) and (81)). Admittedly, the authors of this work are not expert enough in the
IREE to make any definitive statements, and our discussion below should be understood as pointing out one potential
origin of the discrepancy.

The IREE [4, 16–21] are based on evolving in the infrared cutoff on the transverse momenta of the quarks and
gluons in a 2→ 2 forward scattering amplitude. In the original QCD version [18], the IREE for the Reggeon evolution
were based on the following observation: the softest loop momentum integral can be driven either by one or two softest
partons in the amplitude. Otherwise the amplitude is not double-logarithmic. (In this Appendix, soft and hard refer
to the transverse momentum of the partons.) If there is one softest parton driving the loop integral, then it must be
a gluon, and Gribov’s bremsstrahlung theorem [87, 88] (also known as the soft-gluon theorem) applies, allowing one
to keep only the diagrams where the soft gluon connects to the external legs. Since, by definition, the loop integral
involving the bremsstrahlung gluon is the softest, the dependence on the IR cutoff Λ enters the expression for the
amplitude only through the transverse momentum part of the integral,∫

Λ2

dk2
T

k2
T

. (A1)

Differentiating the amplitude with respect to ln Λ2 would remove the contribution in Eq. (A1), thus truncating
(removing) the soft gluon.
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If the softest loop involves two softest partons, in the Reggeon evolution of [18] they must be quarks (to transfer
the flavor between the projectile and the target) contributing two opposite “rails” of the ladder: these softest quarks
also contribute the logarithm of the IR cutoff in Eq. (A1). Truncating these soft quarks allows one to split the
single forward 2 → 2 scattering diagram into two sub-diagrams, each of them containing a 2 → 2 forward scattering
sub-process [18]. These two observations led to the IREE for the 2→ 2 Reggeon scattering amplitude constructed in
[18]. Similar logic was applied in [16] to construct double-logarithmic evolution equations for the flavor non-singlet
helicity-dependent amplitude. The latter evolution was confirmed at large Nc based on the s-channel shock wave
approach in [29].

In the flavor-singlet helicity evolution case [4], an additional category of diagrams was added: the two soft partons
could be gluons, also comprising two opposite “rails” of the ladder. Hence, for the flavor-singlet helicity evolution in
[4] one may have one softest parton dominating the softest loop integral in an amplitude, which has to be a gluon, or
two partons, which could either be two quarks or two gluons, forming opposite “rails” of the ladder. A consequence
of this statement appears to be that for the evolution in [4] to work, there should be no non-ladder hard gluons and
no hard-gluon vertex corrections: only soft “bremsstrahlung” non-ladder gluons are allowed, for which the soft-gluon
theorem [87, 88] applies. In [4], starting after Eq. (3.32) and until the end of Sec. 2, an argument is presented which
appears to make the case that no such hard non-ladder gluons and vertex corrections exist in the flavor-singlet helicity
evolution.

E

p1

p2

k1

k1 − k2

k2

σ1

σ2

p1 − k2

p2 − k1 + k2

C

p1

p2

k1

k2

k1 − k2

k2

σ1

σ2

p1 − k2

I

p1

p2

k1

k1 − k2

k2

σ1

σ2

p1 − k2

p2 + k1

0

p2 + k2 p2 + k2 p2 + k2

FIG. 1. Diagram cancellations in the k2T � k1T regime with the DLA accuracy, as outlined in [18]. We use the diagram
labeling from Appendix B of [29]. The diagrams are different by different connections of the soft gluon k1 in the lower left
corner. Vertical dashed line denotes the cut.

To better understand this “no hard non-ladder gluons” assertion, in Appendix B of [29] the types of non-ladder
gluons were studied by an explicit calculation of several diagrams contributing to the helicity-dependent part of
qq → qq forward scattering at the order α3

s. One such diagram, diagram C in the nomenclature of [29], is shown here,
in the left panel of Fig. 1. The diagram is double-logarithmic: in the p+

1 , p
−
2 � k+

1 , k
−
2 , k1T , k2T � k−1 , k

+
2 regime it

gives [29] (with the center-of-mass energy squared s ≈ 2p+
1 p
−
2 )

s∫
Λ2

dk2
1T

s∫
Λ2

dk2
2T C ∼

s∫
Λ2

dk2
1T

k2
1T

s∫
Λ2

dk2
2T

k2
2T

(A2)

along with a logarithm of energy resulting from the longitudinal momentum integration. (For simplicity we imagine
working in a frame with p1T = p2T = 0. The contribution C in [29] does not explicitly include any of the integrals.)

It is our understanding that in IREE the diagram C from the left panel of Fig. 1 should be separately considered in
two different kinematic regions, k1T � k2T and k1T � k2T . In either kinematic region, the non-ladder gluon k1 − k2

is hard, thus contributing a hard (cut) vertex correction in an apparent violation of the absence of such gluons in the
IREE argued in [4]. However, before reaching any conclusions, let us analyze this diagram C in more detail.

In the k1T � k2T region the k1 gluon is the softest in the diagram and the bremsstrahlung theorem applies.
Following Sec. 3.3 of [18], we see that diagram C for k1T � k2T falls under the category of Fig. 7 in that reference,
with the cut through the quark (p2 +k2) and gluon (k1−k2) lines connecting an external leg to the rest of the diagram
and with the soft uncut gluon (k1) attaching in all possible ways to the three lines involved (p2, p2 + k2, and k1− k2).
(The cut is mentioned in the text, but not shown explicitly in Fig. 7 of [18].) These connections of the soft gluon k1

are shown here in the diagrams C, E and I in Fig. 1, using the diagram labeling from [29]. Employing Eqs. (B2) from
[29] we readily obtain (division by 4 and 2 is required to single out one diagram in the class of diagrams C, E and I,
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with the diagrams in each class related to each other by up-down and left-right symmetries)[
C

4
+
E

4
+
I

2

]
k2T�k1T

= g6 CF σ1 σ2
s

k2
1T k

2
2T

[
−2 + 2

N2
c − 2

N2
c

+
4

N2
c

]
= 0. (A3)

Here, as in [29], we keep only the part of the amplitude dependent on the polarizations σ1 and σ2 of the two colliding
quarks. Also, CF = (N2

c − 1)/(2Nc) is the fundamental Casimir operator and g is the QCD coupling.

p2

k2 k2

⊗

k2
k2

k2T ≪ k1T

p2 + k2

p1

k1

k1 − k2

p1

k1

k1 − k2

C

p2

k2 k2

p1 − k2

p1 − k2

p1 − k1

p1 − k1

FIG. 2. Possible decomposition of the diagram C from Appendix B of [29] in the k2T � k1T regime under the IREE from [4].
Vertical dashed line denotes the cut.

In the k1T � k2T region, both k2 gluons become the softest internal partons in the diagram. According to IREE,
one should then truncate these two gluons splitting diagram C into two, as shown in Fig. 2. The diagram on the top
right of that figure, resulting from this splitting, appears to still be a non-ladder diagram with a hard gluon k1 − k2.
It still appears to violate the IREE rules. However, to better understand IREE, imagine attaching a bremsstrahlung
gluon to a single-rung ladder (an “H”-shape diagram). By IREE rules, the transverse momentum of the external legs
is negligibly small. Therefore, the transverse momentum in the loop formed by attaching a bremsstrahlung gluon to
the single-rung ladder is going to be larger than that in the external legs, and, by momentum conservation, should be
the same in the propagators of all the partons forming the loop. For the top right diagram in Fig. 2 this implies that,
in the k1T � k2T regime, the transverse momenta of the gluon lines k1 and k1− k2 are comparable to each other and
to the transverse momentum in the quark line p1− k1. Therefore, at this low order in αs (order-α2

s), there appears to
be no difference between a diagram with a bremsstrahlung gluon and a diagram with a hard non-ladder gluon: the top
right diagram in Fig. 2 can be viewed as a bremsstrahlung gluon diagram. The remaining question is to identify which
gluon is the bremsstrahlung one in the top right diagram of Fig. 2: is it the gluon k1 or k1−k2? According to [18], the
bremsstrahlung gluon should carry longitudinal (“nonsense”) polarization. Since the gluon k1 − k2 is cut, it can only
be polarized transversely, and, hence, cannot be the bremsstrahlung gluon. This leaves k1 to be the bremsstrahlung
gluon. Therefore, we can view top right diagram in Fig. 2 as the ladder made out of the gluons k1 − k2 and k2 and
the quark line, with the rung of the ladder given by the p1− k2 quark line, and with the k1 bremsstrahlung soft gluon
attached to the ladder. (It is not clear to the authors whether such a ladder with an uncut rung was intentionally
included in the BER formalism.) Therefore, while initially appearing to violate the “no hard non-ladder gluons”
argument, diagram C (along with the diagram B from Appendix B of [29]) can be incorporated into the IREE derived
by BER. Identifying the forward 2→ 2 quark and gluon scattering amplitudes with the anomalous dimensions at the
same order in αs, per [18], we see that the above discussion appears to explain why the calculation of [4] agrees with
the polarized DGLAP anomalous dimensions to three loops [23], that is, to order α3

s.
We now want to investigate the hard non-ladder diagrams at higher orders in αs. Anomalous dimensions at four

loops correspond to 2→ 2 forward scattering amplitudes at the order α4
s. While a systematic analysis of all order-α4

s

diagrams appears to be rather lengthy, we will consider one relevant diagram to illustrate a possible concern arising
at that order. This order-α4

s diagram is given in the left panel of Fig. 3. This diagrams is known to be double-
logarithmic, at least in the framework of [1–3, 29, 32]. Note that in [1–3, 29, 32] the calculations were performed in
the light-cone gauge of the projectile (the upper quark line in Fig. 3): it is possible that the diagram in Fig. 3 is not
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k1 q

k1

k2

q q

p1

p2

p1

p1

p2

k2 − q

k2 − q

q

qqT ≪ k1T ≪ k2T

q

⊗
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k1 − q

k1T ≪ k2T

?

k1 − q

q

⊗

k2

k2 − q
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FIG. 3. Possible decomposition of a diagram at the order α4
s in the qT � k1T � k2T regime under the IREE from [4].

double-logarithmic in Feynman gauge employed in [4]. However, the IREE technique developed in [18] is stated to be
gauge-invariant by the authors. Hence we proceed by assuming that the diagram in Fig. 3 is double-logarithmic in
Feynman gauge as well. (The authors of [1] have also verified their calculations in background Feynman gauge.)

We will concentrate on the kinematic region where qT � k1T � k2T . In this region the diagram in the left panel
of Fig. 3 is still double-logarithmic [1]. The diagram appears to be a one-loop vertex correction to the diagram B
from Appendix B of [29], which, in turn, is quite similar to the diagram C considered above. In the qT � k1T � k2T

kinematic region, there are two softest gluons, the ones carrying momenta q in Fig. 3. (These are the Glauber gluons
in the formalism of [1–3, 29, 32].) Truncating those gluons splits the left diagram into the two diagrams in the middle
panel of Fig. 3. Just like in Fig. 2, the resulting top diagram appears to be non-ladder. One may wonder whether it is
also included in the BER evolution. This appears to be less clear. In the same qT � k1T � k2T kinematic region, the
softest two gluons in the top diagram in the middle panel of Fig. 3 are k1 and k1 − q. The next question is whether
these gluons are (i) “rails” of some ladder or whether (ii) one of them is a bremsstrahlung gluon. In the case (i), by
the IREE rules, truncating those gluons leads to the diagrams on the right of Fig. 3. However, these diagrams form
3- and 5-point Green functions. The IREE of [4] only contain 4-point Green functions and do not contain diagrams
with an odd number of external legs. Therefore, if the ladder “rails” interpretation from (i) is correct, it appears
impossible to obtain the contribution of the diagram on the left of Fig. 3 in the qT � k1T � k2T kinematic region
using IREE.

The option (ii), involving a bremsstrahlung gluon, appears to be in-line with our above interpretation of the top
right diagram in Fig. 2. However, the top middle diagram in Fig. 3 has a significant difference from the top right
diagram in Fig. 2: both gluons k1 and k1 − q are not cut. Either of them may carry longitudinal polarization.
Therefore, it appears unclear, at least to the authors, which of these two gluons would be the bremsstrahlung one.
Moreover, the position of gluons k1 and k1 − q in the diagram appears to be rather ladder-like, making applicability
of Gribov’s bremsstrahlung theorem [87, 88] questionable; after all, the bremsstrahlung theorem does not apply to
two equally soft gluons forming the “rails” of a ladder. It, therefore, appears unlikely that the diagram on the left of
Fig. 3 in the qT � k1T � k2T kinematic region can be obtained from the IREE developed in [4].

However, our admittedly limited understanding of IREE does not allow us to reach a firm conclusion here. Indeed
it is also possible, though perhaps unlikely, that the diagram on the left of Fig. 3 is not double-logarithmic in Feynman
gauge. Alternatively, it may also be possible to interpret this diagram in BER IREE using some observation currently
not apparent to the authors of this work. Yet again, in [4], BER do express concern about hard non-ladder diagrams
and appear to argue that those are not double-logarithmic: the apparent violation of that argument found in [29]
should manifest itself at some order in αs. Moreover, if our concern expressed in this Appendix is correct, the fact
that it applies only to a fairly high-order in αs diagram may explain the numerically minor difference of the intercepts
in Eqs. (61) and (79) and the fact that the expansions (66) and (78) for our and BER anomalous dimensions disagree
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only starting at the order α4
s.

[1] F. Cougoulic, Y. V. Kovchegov, A. Tarasov and Y. Tawabutr, Quark and gluon helicity evolution at small x: revised and
updated, JHEP 07 (2022) 095, [2204.11898].

[2] Y. V. Kovchegov, D. Pitonyak and M. D. Sievert, Helicity Evolution at Small-x, JHEP 01 (2016) 072, [1511.06737].
[3] Y. V. Kovchegov and M. D. Sievert, Small-x Helicity Evolution: an Operator Treatment, Phys. Rev. D99 (2019) 054032,

[1808.09010].
[4] J. Bartels, B. Ermolaev and M. Ryskin, Flavor singlet contribution to the structure function G(1) at small x, Z.Phys.

C72 (1996) 627–635, [hep-ph/9603204].
[5] C. A. Aidala, S. D. Bass, D. Hasch and G. K. Mallot, The Spin Structure of the Nucleon, Rev. Mod. Phys. 85 (2013)

655–691, [1209.2803].
[6] A. Accardi et al., Electron Ion Collider: The Next QCD Frontier, Eur. Phys. J. A52 (2016) 268, [1212.1701].
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