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Baryon masses estimate in heavy flavor QCD

An effective particle approach to hadron spectra
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Abstract We apply the renormalization group procedure for effective par-
ticles (RGPEP) to the QCD eigenvalue problem for only heavy quarks. We
derive the effective Hamiltonian that acts on the Fock space by solving the
RGPEP equation up to second order in powers of the coupling constant. The
eigenstates that contain three quarks and two or more gluons are eliminated
by inserting a gluon-mass term in the component with one gluon and formu-
late the eigenvalue problem for baryons. We estimate masses for bbb and ccc
states and find that the results match the estimates obtained in lattice QCD
and in quark models.

Keywords QCD Hamiltonian · Eigenvalue equation · Renormalization group

1 Introduction

In spite of many years of research, the issue of bound states in QCD remains
to be a long-standing problem to which an exact solution is still unknown. The
QCD Hamiltonian which defines the Schrödinger equation is full of complexi-
ties. The determination of its eigenvalues, which would lead to hadron masses
and the corresponding wave functions is certainly not straightforward.

The main difficulty concerns the fact that in quantum field theory one
needs to deal with an infinite number of degrees of freedom in the bound-state
equation Ĥ|ψ〉 = E|ψ〉. For a baryon, which is the case discussed in this work,
the eigenstate has the following structure in terms of Fock components

|ψ〉 = |3Q〉+ |3QG〉+ |3QGG〉+ . . . , (1)
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where we have denoted |3Q〉 ≡ |QQQ〉; and there is no limit in the number of
particles allowed.

In this context, the renormalization group procedure for effective particles
(RGPEP) was formulated as a non-perturbative tool to construct bound states
in quantum field theory. Nonetheless, any candidate for a basic physical theory
requires, an initial perturbative search for the set of interaction terms that
provides the basis on which the full effective theory can be constructed in a
series of successive approximations [1].

The RGPEP has its origin in the similarity renormalization (SRG) group
for Hamiltonians [2,3] but, in addition, it introduces the concept of effective
particles [1,4]. The renormalization-group approach allows one to consider
particle interactions and phenomena at different energy scales. The key idea
is that it is possible to express the initial Hamiltonian through a unitary
similarity transformation in a scale-dependent operator basis, in such a way
that for a certain scale, the number of non-negligible Fock components is small.
The eigenstates depend on the renormalization-group parameter t too:

|ψt〉 = |3Qt〉+ |3QtGt〉+ |3QtGtGt〉+ . . . . (2)

If an infinite number of components can be neglected in Eq. (2), the bound-
state equation is enormously simplified and one can attempt to seek numerical
solutions to the equation.

The RGPEP has been applied and solved exactly in several simple theo-
ries [5,6,7]. But, for the complex case of QCD, only perturbative expressions of
the Hamiltonian have been considered so far. Second-order calculations with
the inclusion of a gluon-mass ansatz have allowed us to examine the effec-
tive potential between heavy quarks in mesons [8] and in baryons [9]. Third-
order calculations have been employed to calculate the running coupling in
the front-form Hamiltonian [4], and recently, a new regularization procedure
that includes a canonical gluon mass has led to analogous results [10].

In this contribution, we focus on the study of triply heavy baryon spectra
with equal quark masses, ccc and bbb. For interested readers, we refer to a
detailed analysis of ccb and bbc states provided in [9].

The next section presents the most important general steps in the RGPEP
approach. In Section 3 we derive the bound state equation for a system of three
heavy quarks and provide the analytical result in Section 4. The numerical
setup is presented in Section 5 and the corresponding results are commented
in Section 6. Finally, Section 7 concludes the article.

2 Key elements of the RGPEP

The starting point of this method is the Lagrangian density of the chosen
theory. In this particular case, we choose QCD, LQCD. The classical Hamilto-
nian, HQCD, can be derived using Noether’s theorem to calculate the energy-
momentum tensor.
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We use the front-form of dynamics [11,12]. In this form, four vectors are
represented as xµ = (x+, x−, x⊥), where x+ = x0 + x3, x− = x0 − x3, x⊥ =
(x1, x2), and the scalar product in Minkowski space-time is given by a · b =
1
2a

+b− + 1
2a
−b+ − a⊥b⊥.

The quantum Hamiltonian Ĥcan
QCD is derived using canonical quantization

with the initial conditions on the hypersurface x+ = 0 and in the light-
cone gauge A+ = 0. It can be expressed by the “-” component of the four-
momentum operator, P̂µ, which is the generator of space-time translations [12]:

Ĥcan
QCD = P̂− =

∫
dx−d2x⊥ : Ĥx+=0 : . (3)

The dots on both sides of the Hamiltonian density, Ĥx+=0, indicate normal or-
dering of creation and annihilation operators. In the sequel we use the notation
considered in [12,13,8].

The canonical Hamiltonian needs regularization and counterterms. The
regularized canonical Hamiltonian with counterterms is called initial Hamil-
tonian, since it provides the initial condition for solving the RGPEP equation.

The regularization is provided by inserting functions defined in Ref. [8]
in every interaction vertex. Such functions depend on ultraviolet and small-
x cutoffs, ∆ and δ, respectively, which will be removed at the end of the
calculation.

The RGPEP provides a means for the calculation of counterterms. It in-
troduces effective particle operators related by a unitary transformation

qs = Usq0U†s , (4)

where s has units of length and plays the role of a renormalization group
parameter. It is associated with the size of the effective particles. If q and q†

are operators that annihilate or create pointlike particles in the Fock space,
effective particle operators qs and q†s annihilate or create particles of size s. It
is convenient to consider scale parameter λ = 1/s which has units of energy
and the parameter t = s4 which we have already used in Eq. (2).

The renormalization-group parameter labels a family of equivalent Hamil-
tonians that correspond to the same theory but expressed in terms of degrees of
freedom that are differently defined. If H0 = H0(q0) is the initial Hamiltonian,
then the RGPEP demands that:

H0(q0) = Ht(qt) . (5)

An effective Hamiltonian that satisfies this condition is a solution of the
RGPEP equation:

H′t = [[Hf ,HPt],Ht] , (6)

where Ht = H(q0), and the prime on the effective Hamiltonian, Ht, indicates
differentiation with respect to t. The subscript f stands for free and refers to
terms that do not depend on the coupling constant. Finally, HPt is identical
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to Ht but multiplied by a factor 1
2

(∑
i p

+
i

)2
, with i refering to all incoming

and outgoing particles involved in a vertex [1].
The ease of solving Eq. (6) depends on the complexity of the initial Hamil-

tonian. Although there are theories for which it is possible to find exact solu-
tions [6,5,7], the complexity of QCD forces us to use a perturbative expansion
in powers of the coupling constant. Such form of a solution can be written as

Ht = H0 + gHt1 + g2Ht2 + g3Ht3 + g4Ht4 + . . . (7)

The numerical subscript 0, 1, 2, ... refers to the power of the coupling constant.
Thus, H0 ≡ Hf is the 0th-order term which does not depend on g the cou-
pling constant or on the renormalization-group parameter t. In the 2nd-order
expansion one has

H′0 + gH′t1 + g2H′t2 =
[[
H0,H0 + gHPt 1 + g2HPt 1

]
,H0 + gHt1 + g2Ht2

]
(8)

which can be solved order by order:

H′0 = 0 , (9)

gH′t 1 = [[H0, gHPt 1] ,H0] , (10)

g2H′t 2 =
[[
H0, g

2HPt 2

]
,H0

]
+ [[H0, gHPt 1] , gH1t] . (11)

Solving Eqs. (9)-(11) yields exponentials of products of t by differences of
invariant masses. These functions play the role of form factors that appear at
interaction vertices. The renormalized Hamiltonian is determined by the initial
condition that at t = 0 it should equal the regularized canonical Hamiltonian
plus counterterms. The counterterms should be such that every matrix element
of the renormalized Hamiltonian is cutoff independent for t > 0, i.e. free of
ultraviolent divergences. In this work, we restrict our calculation to second-
order expansions.

Note that this perturbative expansion is made at the level of the RGPEP
equation, not at the level of the Schrödinger equation.

3 Effective Hamiltonian and bound-state equation for triply heavy
baryons

The simplest possible systems that can be considered in QCD are heavy
quarkonia and triply-heavy baryons. Thus, we simplify the picture by consid-
ering only heavy flavors, and neglecting light quarks. The eigenvalue problem
simplifies enormously choosing the renormalization-group parameter in the
following region

mQ � λ� ΛQCD , (12)

where mQ is the quark mass. The fact that λ is much larger than ΛQCD allows
one to keep only the first term in the Hamiltonian expansion in powers of
gt [4]. The condition mQ � λ, on the other hand, makes Fock sectors with
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extra quark-antiquark pairs strongly suppressed by RGPEP form factors and
they can be neglected. However, sectors with more gluons cannot be neglected,
since they are massless, and many of them can be produced without adding
much to the invariant mass of a system. We cannot deal with infinitely many
Fock sectors of gluons. To address this problem, we drop all the sectors with
more than one gluon and account for their absence by introducing a gluon
mass ansatz in the sector QtQ̄tGt for mesons and QtQtQtGt for baryons [8,
9]. Thus, our gluon mass ansatz accounts for all possible non-Abelian effects
that we cannot take into account explicitly. Higher-order calculations should
be able to replace such an ansatz by elements of the theory.

The triply-heavy baryon bound-state problem with two Fock sectors (i.e.
in the second order in the RGPEP) and gluon mass ansatz is (cf. [8] and [9]
for more details):{[

(Ht 0 + µ2
t ) gHt1

gHt1 (Ht 0 + g2Ht2)

]
− E

}[
|3QtGt〉
|3Qt〉

]
= 0 . (13)

where µ2
t is the gluon-mass operator, which acts on the QtQtQtGt sector. We

assume that the mass ansatz depends on the relative motion of the gluon with
respect to the quarks in that sector.

Since we consider only terms up to second order in powers of the coupling
constant in the effective Hamiltonian, the approximate eigenvalue problem
Eq. (13) can be reduced to the sector with no gluons [14]. Matrix elements
after the reduction are

〈l|Heff t|r〉 (14)

= 〈l|
[
Ht0 + g2Ht2 +

1

2
gHt1

(
1

El −Ht0 − µ2
t

+
1

Er −Ht0 − µ2
t

)
gHt1

]
|r〉 .

where left (l) and right (r) states are both in the 3Qt sector and Hf |l〉 = El|l〉
and Hf |r〉 = Er|r〉, where Hf is the free term of the Hamiltonian, which does
not depend on the coupling constant.

4 Result: Coulomb and harmonic-oscillator potentials

The effective front-form eigenvalue equation for baryons has the following
structure

Heff t|3Qt〉 =
M2 + P⊥2

P+
|3Qt〉 , (15)

where the state |3Qt〉 is defined as

|3Qt〉 =

∫
123

P+δ̃P.123 ψt(123)
εc1c2c3√

6
b†t 1b

†
t 2b
†
t 3|0〉 . (16)

where the spin-momentum wave function, ψt(123) is multiplied by the color
factor εc1c2c3/

√
6. We have used the shortcut notation δ̃P.123 = 2(2π)3δ3(P −
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p1 + p2 − p3) for the delta function of momentum conservation. Details of the
structure of the effective Hamiltonian can be found in [9].

In the non-relativistic limit, the expressions of the interaction potentials
and mass functions simplify enormously. To define this limit we introduce
variables defined in [15,16],

K⊥12 =

√
x1 + x2

6x1x2
κ⊥12 , Kz

12 =

√
x1 + x2

6x1x2

x1 − x2

x1 + x2
mQ , (17)

Q⊥12 =

√
2/9

x3(1− x3)
κ⊥3 , Qz12 =

√
2/9

x3(1− x3)
(3x3 − 1)mQ . (18)

where κ⊥12 is the relative transverse momentum of particle 1 with respect to
particle 2, κ⊥3 is the relative transverse momentum of particle 3 with respect
to particles 1 and 2, and x1, x2, x3 are longitudinal momentum fractions
xi = p+

i /P
+ of particles i = 1, 2, and 3, respectively. In the nonrelativistic

approximation the eigenvalue equation can be written in the form[
K12

2

2µ12
+

Q3
2

2µ3(12)
−B + 3

δm2
1 t

2mQ

]
ψt(123)

+
∑
σ1′σ2′

∫
d3K ′12

(2π)3
[ft 12.1′2′V 12

C,BF +W 12]ψt(1
′2′3)

+
∑
σ2′σ3′

∫
d3K ′23

(2π)3
[ft 23.2′3′V 23

C,BF +W 23]ψt(12′3′)

+
∑
σ3′σ1′

∫
d3K ′31

(2π)3
[ft 31.3′1′V 31

C,BF +W 31]ψt(1
′23′) = 0 , (19)

whereB is the binding energy; V ijC,BF = VC,BF (Kij ,K
′
ij ) andW ij = W (Kij−

K′ij ) are, respectively, the Coulomb term with Breit-Fermi (BF) corrections
and the additional interaction resulting from the gluon mass ansatz. µ12 =
mQ/2, µ3(12) = 2mQ/3 are the reduced masses. Both V and W are similar to
the ones in the quarkonium case [8].

VC,BF (K,K′) = −2

3
g2 1

∆K2
(1 +BF ) , (20)

W (∆K) = −2

3
g2

[
1

(∆Kz)2
− 1

∆K2

]
µ2

µ2 +∆K2
exp

[
−2tm2

Q

∆K4

(∆Kz)2

]
(21)

where ∆K = K−K′ and the RGPEP form factor is

ft ij.i′j′ = exp
{
−16t[K2

ij − (K′ij)
2]2
}
. (22)

We assume now that the mass ansatz µ2 dominates ∆K2 in the relevant in-

tegration range, then µ2

µ2+∆K2 ≈ 1, and the wave function can be expanded
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in a Taylor series in such a way that the resulting potential that corrects the
Coulomb term is a harmonic oscillator one, with oscillator frequencies

ωbaryon =

√
3

2

√
α

18
√

2π

λ3

m2
Q

. (23)

The result of quarkonia and triply heavy baryons differ by a factor
√

3/2, in
such a way that ω2

baryon/ω
2
meson = 3/4.

5 Numerical studies

To provide numerical results for heavy quarkonia and baryons, we need to
estimate the values of α, mc, and mb. Although the RGPEP is defined to
provide an exact effective Hamiltonian independent of the scale parameter λ,
the second-order approximation results in a certain λ-dependence, which is
negligible in a window of values of λ (cf. Figures in Refs. [17,18]).

We assume that the scale parameter is proportional to the coupling con-
stant and the quark mass, λ ∼

√
αmQ. In this way, if α is sufficiently small,

the assumption satisfies our hierarchy of scales Eq. (12) and, for the quark-
antiquark system λ � kB ∼ αµ, where kB is the Bohr momentum and µ is
the quark reduced mass. This ensures that the RGPEP form factors are ap-
proximately 1 and do not influence significantly the eigenvalue problem1 [9].
Furthermore, the fact that λ is proportional to

√
α makes the resulting hadron

binding energies proportional to α2, in analogy to QED [19]. In fact, the har-
monic oscillator frequencies obtained from QCD are expected to be compara-
ble in size with the strong-interaction Rydberg-like constant R = µ(4α/3)2/2,
since the low-mass quarkonium spectra can be characterized as intermediate
between the Coulomb and the oscillator spectra [20].

Several simplifications are taken into account in this pilot application of our
method. The numerical sketch we provide yields approximate results restricted
to the low-mass hadron spectrum. In this numerical sketch, we estimate the
Coulomb effects in first-order perturbation theory around the oscillator solu-
tion. Therefore, we consider only the diagonal matrix elements of the Coulomb
potential in the basis of harmonic oscillator wave functions, since the effects of
the non-diagonal ones are relatively small and do not change significantly the
lowest-mass heavy-baryon spectrum. In particular, those effects are smaller
than the effects due to spin-dependent interactions, which we neglect (yet we
include the effects of the Pauli exclusion principle).

1 Note that form factors are necessary in higher-order calculations since they regulate
terms that otherwise would be divergent.
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5.1 Adjustment of parameters

The coupling constant α depends on the scale parameter λ in the following
way [4]:

α =

[
β0 log

(
λ2

ΛQCD

)]−1

(24)

with β0 = (33 − 2nf )/(12π). We take nf = 2, for two heavy flavors, b and c,
though the result does not change significantly for nf in the range up to 5.
The value of ΛQCD = 371 MeV is imposed by the fact that α = 0.1181 for
λ = MZ = 91.1876 GeV.

Quark masses, mb and mc, and the renormalization group parameter λ are
determined by the fit of computed heavy quarkonia spectra to the known ex-
perimental ones. The numerical results of this fitting are given in Appendix A.
Hence, our estimates of the baryon masses are predictions without any free
parameters.

We would like to point out that our estimates are in a primitive stage
of development. However, obtained results in this crude approximation are
in surprisingly good agreement with other long-standing and widely used ap-
proaches. The purpose of this preliminary study is to find out whether the
oscillator terms that follow from the assumption of gluon mass are capable of
reproducing a good approximation to the heavy hadron spectrum. This would
motivate higher-order studies in our perturbative expansion Eq. (7), to provide
a theoretical explanation of the gluon-mass generation.

Therefore, we ignore Breit-Fermi spin interactions and estimate Coulomb
effects by evaluating the expectation values of the corresponding interaction
terms in the oscillator eigenstates. In this paper we select the most remarkable
results and present them in Table 1 and Figure 1.

6 Analysis of results

The notation used is the following. State 0ω is the ground state of the system,
while state 1ω is the first (orbitally) excited state. States called A, B, C,
and D in bbb and ccc refer to the second excitation of the harmonic oscillator
with excitation energy 2ω (with ω ≡ ωbaryon) above the ground state. They
are mixtures of radial and orbital excitations and their masses differ due to
different expectation values of the Coulomb potential.

The values of masses obtained for bbb and ccc baryons agree well with
model calculations [21,22,23,24,25,26,27] including quark-diquark [28] and
hypercentral approximations [29,30], Regge phenomenology [31,32], bag mod-
els [33,34,35], pNRQCD [36], sum rules [37,38,39,40], Dyson-Schwinger ap-
proach [41] and lattice studies [42,43,44,45,46,47,48].
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Fig. 1 Graphical representation of mass spectra for all bbb and ccc states up to second band
of harmonic oscillators.

We remark the comparison of the ground state of ccc, for which different lat-
tice approaches yield values between 4733 to 4796 MeV. Our result, 4797 MeV,
differs by 29 MeV from the average result, 4768 MeV, which corresponds to
the 0.6%. In the case of the ground state of bbb, we obtain 14347 MeV, as
compared with the lattice result of 14369 MeV, a difference of 23 MeV, 0.2%.
Concerning mass splittings, we differ in about 10% with lattice results pro-
vided in [43] for bbb states, and in 20% with lattice results [45] for the case
of ccc states. Analysis of results for states bbc and ccb is not presented in
this document. The reader is invited to consult the detailed analysis provided
in [9].

It is surprising that this preliminary approximation of our RGPEP method
with no free parameters, after fitting quark masses and scale to heavy quarko-
nia spectra, produces similar splittings to those obtained from advanced cal-
culations.
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Table 1 Masses in MeV for all bbb and ccc states up to the second excited band of the
harmonic oscillator.

bbb-states

JP Name Mass

1/2+ B1/2+ 14885

C1/2+ 14896

3/2+ 0ω 14347
A3/2+ 14832

C3/2+ 14896

D3/2+ 14917

5/2+ C5/2+ 14896

D5/2+ 14917

7/2+ C7/2 14896

1/2− 1ω 14645

3/2− 1ω 14645

ccc-states

JP Name Mass

1/2+ B1/2+ 5350

C1/2+ 5358

3/2+ 0ω 4797
A3/2+ 5309

C3/2+ 5358

D3/2+ 5374

5/2+ C5/2+ 5358

D5/2+ 5374

7/2+ C7/2 5358

1/2− 1ω 5103

3/2− 1ω 5103

7 Conclusion

The effective Hamiltonian for heavy quarkonia and triply-heavy baryons de-
rived in the second-order of our RGPEP with gluon-mass ansatz leads to
baryon mass spectra that are comparable with the expectation obtained from
other approaches to physics of bbb and ccc.

The considered method is invariant under boosts and in principle appears
capable of providing a relativistic description of hadrons in terms of a small
number of effective constituents, with suitably adjusted size. Therefore, an
extension to higher-order calculations appears worth doing. A fourth-order
calculation is needed to verify if the introduced gluon-mass ansatz provides
an adequate representation of the gluon dynamics in the presence of heavy
quarks. Furthermore, such calculations are also needed in the study of spin
splittings and rotational symmetry. As a remark, it should be pointed out
that the ratio

√
8/6 of harmonic oscillator frequencies in heavy quarkonia and

baryons is close to the ratio
√

8/5 obtained for u and d quarks in constituent
models using the gluon condensate. This suggests studying if the RGPEP for-
malism can be applied also to light hadrons as built from constituent quarks
and massive gluons. Even in the heavy-quarks case, the effective oscillator po-
tential provides simple wave functions that can be used in relativistic processes
involving heavy hadrons.
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A Masses of quarks and other parameters

Quark masses and scale parameters are calculated using a fit to the masses of Υ (1S), Υ (2S),
and χb1(1P ) for bottomonia and J/ψ, ψ(2S) and χc1(1P ) for charmonia. Results of the fit
yield:

mb = 4698 MeV and λbb̄ = 4258 MeV , (25)

mc = 1460 MeV and λcc̄ = 1944 MeV , (26)

These values are associated, respectively, with

α(λbb̄) = 0.2664 and ωbb̄ = 268.8 MeV , (27)

α(λcc̄) = 0.3926 and ωcc̄ = 321.6 MeV . (28)
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8. Stanis law D. G lazek, Maŕıa Gómez-Rocha, Jai More, and Kamil Serafin. Renormalized

quark–antiquark Hamiltonian induced by a gluon mass ansatz in heavy-flavor QCD.
Phys. Lett. B, 773:172–178, 2017.
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