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Neutrino oscillations in the interaction picture
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We study the mixing of different kind of fields (scalar in 0+1D, scalar in 3+1D, fermion in 3+1D)
treating the mixing term as an interaction. To this aim, we employ the usual perturbative series in
the interaction picture. We find that expression for flavor changing probability exhibits corrections
with respect to the usual quantum mechanical (e.g. neutrino) oscillation formula, in agreement with
the result previously obtained in the non-perturbative flavor Fock space approach.

I. INTRODUCTION

The idea of neutrino oscillations as a mechanism to solve the solar-neutrino puzzle was firstly proposed by Pontecorvo
and collaborators [1–4] and it was later confirmed by a plethora of experiments (see e.g. [5–8]).

Although many features of neutrino mixing and oscillations are now well-understood [9–11], there is no agreement
on their correct ultimate description within quantum field theory (QFT). Various ideas were proposed in the last three
decades, as external wavepackets [12, 13], weak-process states [14] and the flavor Fock-space approach [15–21]. The
latter is based on the discovery [15] that the flavor and the mass representations of the equal-time anticommutation
relations of neutrino fields, are unitarily inequivalent [22–25]. Therefore, the Hilbert space where flavor fields are
defined is explicitly built in and the oscillation probability is computed by taking the expectation value of lepton
currents/charges on the one-particle neutrino states at a reference time. Such modified formula differs from the
classic Pontecorvo result in two respects [26]: i) apart from the usual oscillation term which depends on the difference
of neutrino energies/frequencies, the oscillation formula of Ref.[26] shows up a fast-oscillation term which depends on
the sum of the frequencies; ii) in the formula of Ref.[26], there are energy dependent oscillation amplitudes which are
the coefficients of a Bogoliubov transformation [15].

In this paper we introduce a different approach, in a close analogy to what is done in the study of unstable particles
[27, 28]. In fact, we employ the interaction (Dirac) picture, where the interaction Lagrangian in the Dyson series only
contains the mixing term between different flavor-fields. For simplicity, we limit our calculation to the case of two
flavors. Then we compute amplitudes for the various decay channels at the first order, which describe both flavor
changing and survival processes. Three examples are here analyzed: a quantum mechanical (QFT in 0+1D) toy
model, a scalar field model and a fermion (“neutrino”) model in 3+1D. Remarkably, we find the that the fermion
flavor-transition formula non-trivially agrees, within the approximation adopted, with the non-perturbative formula
of the flavor-Fock space approach. Let us remark that the comparison is not possible in the boson case, where the
flavor charge expectation value is not positive-definite and thus it cannot be interpreted as a probability [29, 30]. In
this respect, the present work represents also a viable approach to compute the oscillation probability in this tricky
situation.

The paper is organized as follows: in Section II we present general considerations on field mixing and the interaction
picture approach. In Section III we study the 0+1D toy model, while in Sections IV and V we extend our consideration
to 3+1D scalar and fermion models, respectively. Finally, we present discussion and conclusions in Section VI. For
reader’s convenience, in Appendix A we briefly review the non-perturbative flavor Fock space approach.
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II. GENERAL CONSIDERATIONS

The charged-current lepton sector of weak interaction is described (in the case of two-flavors) by the Lagrangian

L =
∑

σ=e,µ

[

νσ
(

i/∂ −mσ

)

νσ + lσ (iγµ∂
µ − m̃σ) lσ

]

+ Lmix + Lwint , (1)

with

Lmix = −meµ (νeνµ + νµνe) , (2)

Lwint = − g

2
√
2

∑

σ=e,µ

[

W+
µ νσ γ

µ (1− γ5) lσ + h.c.
]

(3)

The neutrino kinetic term (including Lmix) can be diagonalized by the mixing transformation [31, 32]

νσ =
∑

j=1,2

U∗
σjνj , (4)

U is the mixing matrix. In the two flavor case, here analyzed

U =

(

cos θ sin θ
− sin θ cos θ

)

, (5)

with tan 2θ = 2meµ/(mµ −me).
If one employs the interaction picture to compute transition amplitudes, L must be decomposed into a free and an

interaction part. A possible choice is

L = Lm
0 + Lm

int , (6)

with

Lm
0 =

∑

j

νj (iγµ∂
µ −mj) νj +

∑

σ

l (iγµ∂
µ − m̃σ) l , (7)

Lm
int = − g

2
√
2

∑

σ,j

[

W+
µ νj U

∗
jσ γ

µ (1− γ5) lσ + h.c.
]

. (8)

In such a case the effect of mixing is incorporated in the weak-interaction vertex. Following this approach, one is led
to calculate transition amplitudes in which neutrinos appear only as internal lines [12, 13, 33] 1.
However, in charged current weak interaction processes, neutrinos are produced with a definite flavor. Therefore,

another reasonable possibility is to take the following split

L = L0 + Lg
int , (9)

with

L0 =
∑

σ=e,µ

νσ
(

i/∂ −mσ

)

νσ +
∑

σ=e,µ

lσ
(

i/∂ − m̃σ

)

lσ , (10)

Lg
int = Lmix + Lwint . (11)

In this approach, Lwint is diagonal in the asymptotic fields appearing in Eq.(10). Thus, in order to describe neutrino
oscillations, we can safely disregard Lwint (zeroth-order in g), so that the charged-lepton part also decouples. In other
words, we can treat the mixing term as an interaction, and we can compute the transition amplitudes among different
flavors by means of the usual Dyson formula for the time evolution operator

U(ti, tf ) = T exp

[

i

∫ tf

ti

d4x : Lint(x) :

]

= T exp

[

−i

∫ tf

ti

d4x : Hint(x) :

]

, (12)

1 Note that, in this approach, the issue of inequivalence of flavor and mass vacua for neutrinos (see Appendix) is not taken into account.
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where Lint ≡ Lg=0
int = −meµ (νeνµ + νµνe), Hint(x) = −Lint(x) is the interaction Hamiltonian density and T is the

chronological product. In the following we will only need the expression of the operator up to the second order

U(ti, tf ) = 1− i

∫ tf

ti

dt1 Hint(t1) + (−i)2
∫ tf

ti

dt1 Hint(t1)

∫ t1

ti

dt2 Hint(t2) + ... (13)

where Hint =
∫

d3xHint(x) is the interaction Hamiltonian.
Notice that we look at the time evolution operator and not at the S-matrix. This is because the phenomenon

of flavor oscillations can only be described at finite time. This amounts to say that flavor neutrino states do not
exist as asymptotically stable states. As it will be clear from the various examples below, the limits ti → −∞ and
tf → +∞ forbid the flavor-changing processes under study. At the same time, such a limit guarantees strict energy
conservation. This is in agreement with the flavor-energy uncertainty relation derived in Ref. [34] and it is analogous
to what happens for unstable particles [27, 28, 35–38] (see also [39, 40], where the importance of finite-time QFT in
the study of decay has been emphasized). As a matter of fact, both the decay of unstable particles [41] and neutrino
oscillations [42] can be viewed in terms of the time-energy uncertainty relations.
In the following we will first study the case of 0+1D QFT (that is, QM), and a 3+1D scalar model. This preliminary

analysis permits to grasp the main features of the problem, without the complication of dealing with spinors.

III. A QUANTUM MECHANICS TOY MODEL OF FLAVOR MIXING

Let us consider the quantum mechanical problem of two interacting harmonic oscillators with bare frequencies ωA,B.
We treat this problem as a 0 + 1D field theory described by the Lagrangian

L =
1

2

(

dxA

dt

)2

− ω2
A

2
x2
A +

1

2

(

dxB

dt

)2

− ω2
B

2
y2 − ω2

ABxAxB . (14)

In agreement with the previous discussion, we regard the term Lint = ω2
ABxAxB as an interaction, where ω2

AB (with
dimension Energy2) plays the role of the coupling constant. Hence, the fields in the interaction picture take the form:

xA(t) =
1√
2ωA

(

aAe
−iωAt + a†Ae

iωAt
)

, (15)

xB(t) =
1√
2ωB

(

aBe
−iωBt + a†Be

iωBt
)

, (16)

in which the creation and annihilation operators (with usual commutation relations [aA, a
†
A] = [aB, a

†
B] = 1 and zero

otherwise) have been introduced.
We can safely perform calculations by means of the formula (13), taking Hint(t) = ω2

ABxA(t)xB(t). As initial state

ti, we consider an excitation along the A-direction: |A〉 = a†A|0〉. We then evaluate the probability that the state
has changed at the time tf > ti, a situation that roughly speaking corresponds to a decay of the initial state. The

first possible transition is the mixing |A〉 = a†A|0〉 → a†B|0〉 = |B〉 driven by the interaction term. The corresponding
amplitude reads:

〈B|U(tf , ti)|A〉 = 〈0|aBU(tf , ti)a
†
A|0〉 = −i

ω2
AB√

2ωA

√
2ωB

∫ tf

ti

dt1e
−i(ωA−ωB)t1

=
ω2
AB√

2ωA

√
2ωB

e−i(ωA−ωB)tf − e−i(ωA−ωB)ti

(ωA − ωB)
. (17)

Hence, the probability for this “transition” to happen is:

PA→B(∆t) =
ω4
AB

ωAωB

sin2
[

(ωA−ωB)∆t
2

]

(ωA − ωB)2
, ∆t = tf − ti . (18)

The formula includes an oscillation whose frequency is proportional to the frequency differences, that we shall call

the “low frequency” term. Note, for short times PA→B(∆t) ≃ ω4
AB∆t2

4ωAωB
.
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There is, however, at first order another possible transition: a†A|0〉 →
(a†

A)
2

√
2

a†B |0〉 , that is a single excitation along

A converts into AAB. The corresponding amplitude reads:

1√
2
〈0|aBa2A U(tf , ti) a

†
A|0〉 = −i

√
2ω2

AB√
2ωA

√
2ωB

∫ tf

ti

dt1e
−i(ωA+ωB)t

=

√
2ω2

AB√
2ω1

√
2ω2

e−i(ωA+ωB)tf − e−i(ωA+ωB)ti

(ωA + ωB)
, (19)

hence

PA→AAB(∆t) =
2ω4

AB

ωAωB

sin2
[

(ωA+ωB)∆t
2

]

(ωA + ωB)2
, (20)

which involves the sum of the frequencies and is denoted as the ‘high frequency’ term. For short times, PA→AAB(∆t) ≃
ω4

ABt2

2ωAωB
.

Summarizing, the total transition probability (in other words, the A transition probability (loosely speaking its
decay probability) is given as the sum of both terms.

PA
D(∆t) = PA→B(∆t) + PA→AAB(∆t) =

ω4
AB

ωAωB





sin2
[

(ωA−ωB)∆t
2

]

(ωA − ωB)2
+ 2

sin2
[

(ωA+ωB)∆t
2

]

(ωA + ωB)2



 . (21)

For short times, PA
D(∆t) ≃ 3ω4

AB∆t2

4ωAωB
.

Similarly, one can easily calculate within the same framework the survival probability. To this end we need to
evaluate

〈A|U(tf , ti)|A〉 = 〈0|aAU(tf , ti)a
†
A|0〉 . (22)

Up to the second order we get:

〈A|U(tf , ti)|A〉 = 1− i T 〈0|aA
∫ tf

ti

dt1Hint(t1)

∫ t1

ti

dt2Hint(t2)a
†
A|0〉 . (23)

Upon using the equality

〈0|aAHint(t1)Hint(t2)a
†
A|0〉 =

2ω4
AB

4ωAωB
e−i(ωA+ωB)t1ei(ωA+ωB)t2 +

ω4
AB

4ωAωB
ei(ωA−ωB)t1e−i(ωA−ωB)t2 , (24)

one gets the survival probability of the state |A〉 as:

PA→A(∆t) =

∣

∣

∣

∣

1− ω4
AB

4ωAωB

[

2
t

i(ωA + ωB)
− 2

e−i(ωA+ωB)∆t − 1

(ωA + ωB)2
+

t

−i(ωA − ωB)
− ei(ωA−ωB)∆t − 1

(ωA − ωB)2

]∣

∣

∣

∣

2

(25)

= |1−R− iI|2 = (1−R− iI)(1−R+ iI) = 1−R+ iI −R+R2 − iRI − iI − iIR+ I2 (26)

= 1− 2R+ ... , (27)

where R and I are real. In particular:

R =
ω4
AB

4ωAωB

(

1− cos [(ωA − ωB)∆t]

(ωA − ωB)2
+ 2

1− cos [(ωA + ωB)∆t]

(ωA + ωB)2

)

=
ω4
AB

2ωAωB





sin2
[

(ωA−ωB)∆t
2

]

(ωA − ωB)2
+ 2

sin2
[

(ωA+ωB)∆t
2

]

(ωA + ωB)2



 , (28)
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hence

PA
S (∆t) = PA→A(∆t) = 1− ω4

AB

ωAωB





sin2
[

(ωA−ωB)∆t
2

]

(ωA − ωB)2
+ 2

sin2
[

(ωA+ωB)∆t
2

]

(ωA + ωB)2



 , (29)

which leads to (at order g2):

PA
S (∆t) + PA

D(∆t) = 1 , (30)

for each t, as it must. For small t, pAS (t) ≃ 1− ω4
AB

ωAωB

(

2∆t2

4 + ∆t2

4

)

= 1− 3ω4
AB∆t2

4ωAωB
.

Of course, the present problem can be also solved by introducing the rotation

(

x1

x2

)

=

(

cos θ − sin θ
sin θ cos θ

)(

xA

xB

)

(31)

with

θ =
1

2
arctan

2ω2
AB

ω2
B − ω2

A

, (32)

and

ω2
1 = ω2

A cos2 θ + ω2
B sin2 θ − ω2

AB sin(2θ) , (33)

ω2
2 = ω2

A sin2 θ + ω2
B cos2 θ + ω2

AB sin(2θ) , (34)

ω2
A = ω2

1 cos
2 θ + ω2

2 sin
2 θ , (35)

ω2
B = ω2

1 sin
2 θ + ω2

2 cos
2 θ . (36)

The position operators become

x1(t) =
1√
2ω1

(

a1e
−iω1t + a†1e

iω1t
)

, (37)

x2(t) =
1√
2ω2

(

a2e
−iω2t + a†2e

iω2t
)

. (38)

Upon denoting |Ω〉 as the vacuum of the full Hamiltonian (a1 |Ω〉 = a2 |Ω〉 = 0), one may also consider the state

|a〉 = cos θa†1 |Ω〉+ sin θa†2 |Ω〉 , (39)

yet it is clear that |a〉 6= |A〉 = a†A |a〉,
In terms of |a〉, the survival probability takes the form:

Pa
S(∆t) = 1− sin2 2θ sin2

[

(ω1 − ω2)∆t

2

]

. (40)

In the limit of small θ, the previous expression is approximated by:

Pa
S(∆t) ≃ 1− 4ω4

AB

(ω2
B − ω2

A)
2 sin2

[

(ωA − ωB)∆t

2

]

= 1− 4ω4
AB

(ωB + ωA)
2

sin2
[

(ωA−ωB)∆t
2

]

(ωB − ωA)
2 . (41)

We then realize that the functions Pa
S(∆t) and PA

S (∆t) are different in various ways. First, the expression Pa
S(∆t)

contains only the low frequency term but not the high frequency one. Second, the ratio of the coefficients in front of
the terms with frequency (ωA − ωB) reads 4ωAωB/ (ωA + ωB)

2
, which is in general different from unity (it approaches

for it in the limit of equal bare masses). This discrepancy is due to the fact that the states |a〉 and |A〉 are different,
thus they have different survival probabilities. In the framework of QM, one may “engineer” both initial states. In
QFT it is different, and it is not a priori clear to what the field xA corresponds to.
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IV. SCALAR FIELD MIXING IN THE INTERACTION PICTURE

We now move from QM to QFT. To this end, we investigate the mixing for scalar fields in the interaction picture.
Let us consider two fields φA = φA(t,x) and φB = φB(t,x) that correspond to our flavor bare states A and B,

whose Lagrangian density is given by

L =
1

2
(∂αφA)

2 − m2
A

2
φ2
A +

1

2
(∂αφB)

2 − m2
B

2
φ2
B −m2

ABφAφB . (42)

The Hamiltonian density is

H =
πA

2
+

πB

2
+

1

2
(∇φA)

2
+

1

2
(∇φB)

2
+

m2
A

2
φ2
A +

m2
A

2
φ2
B +m2

ABφAφB , (43)

with πA = ∂tφA and πB = ∂tφB. We regard the mixing term as a perturbation, thus:

H0 =
πA

2
+

πB

2
+

1

2
(∇φA)

2
+

1

2
(∇φB)

2
+

m2
A

2
φ2
A +

m2
A

2
φ2
B , Hint = m2

ABφAφB . (44)

Upon quantizing the system, in the interaction picture we get for the field A:

φA(x) = φA(t,x) =
1√
V

∑

k=2πn/L

1
√

2ωk,A

(

ak,Ae
−ikx + a†k,Ae

ikx
)

, (45)

πA(x) = πA(t,x) =
−i√
V

∑

k=2πn/L

√

ωk,A

2

(

ak,Ae
−ikx − a†k,Ae

ikx
)

, (46)

with k0 = ωk,A =
√

k2 +m2
A. The commutation relation [φA(t,x), πA(t,y)] =

1
V

∑

k e
ik·(x−y) = iδV (x− y) implies

that
[

ak,A, a
†
p,A

]

= δk,p, zero otherwise. Analogous expressions hold for φB(x) and πB(x).

The interacting Hamiltonian (in the interaction picture) reads:

Hint(t) =

∫

d3x1Hint(x) =
∑

q

m2
AB

√

2ωq,A

√

2ωq,B

(

aq,Aa
†
q,Be

−i(ωq,A−ωq,B)t

+a†q,Aaq,Be
i(ωq,A−ωq,B)t + aq,Aa−q,Be

−i(ωq,A+ωq,B)t + a†q,Aa
†
−q,Be

i(ωq,A+ωq,B)t
)

. (47)

Next, we define the “flavor state” A with three-momentum p as:

|A,p〉 = a†p,A |0〉 . (48)

Assuming that such a state is created at t = 0, we evaluate the probability that it has transformed into a different
state at the time t > 0 or, conversely, that it has not changed.
For the case of the transition into a different state, let us first calculate the probability amplitude for the transition

|A,p〉 → |B,k〉:

AA→B (p,k; ti, tf ) = 〈B,k|U(tf , ti)|A,p〉 = −i

∫ tf

ti

dt1〈0|ak,B Hint(t1) a
†
p,A|0〉+ ...

=
m2

AB
√

2ωp,A

√

2ωk,B

δk,p
e−i(ωp,A−ωk,B)tf − e−i(ωp,A−ωk,B)ti

ωp,A − ωk,B
. (49)

The probability that a particle A with momentum p converts into a particle B is obtained upon summing over the
density of final states

∑

k :

PA→B(p; ∆t) =
∑

k

|AA→B (p,k; ti, tf) |2 =
m4

AB

ωp,Aωp,B

sin2
[

(ωp,A−ωp,B)∆t
2

]

(ωp,A − ωp,B)
2 . (50)
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The result is finite and well behaved. Note, for short time PA→B(p; ∆t) ≃ m4
AB

4ωp,Aωp,B
t2.

Yet, other transitions are possible. Namely, we may have the transition A → AAB of the type

|A,p〉 → |A,k1〉 |A,k2〉 |B,k3〉 = a†A,k1
a†A,k2

a†B,k3
|0〉 , (51)

where the two emitted A particles have different momentum, k1 6= k2. The corresponding amplitude of this process
reads

Ak1 6=k2

A→AAB(p,k1,k2,k3; ti, tf ) = −i

∫ tf

ti

dt1〈0|aA,k1
aA,k2

aB,k3
Hint(t1)a

†
A,p|0〉 . (52)

After an explicit calculation up to first order, its squared modulus turns out to be:

|Ak1 6=k2

A→AAB(p,k1,k2,k3, ti, tf )|2 =
m4

AB

ωk3,Aωk3,B

sin2
[

(ωk3,A+ωk3,B)∆t

2

]

(ωk3,A + ωk3,B)
2 (δk1,pδk2,−k3

+ δk1,−k3
δk2,p) . (53)

Next, one needs to sum over final states k1,k2,k3. leading to the probability:

Pk1 6=k2

A→AAB(p; ∆t) =
1

2

∑

k1,k2,k3

∣

∣

∣Ak1 6=k2

A→AAB(p,k1,k2,k3, ti, tf )
∣

∣

∣

2

=
∑

k3

m4
AB

ωk3,Aωk3,B

sin2
[

(ωk3,A+ωk3,B)∆t

2

]

(ωk3,A + ωk3,B)
2 − m4

AB

ωp,Aωp,B

sin2
[

(ωp,A+ωp,B)∆t
2

]

(ωp,A + ωp,B)
2 , (54)

where the factor 1/2 in front of the sum takes into account that the two A in the final state are identical bosons. The
subtracted term in the last equation is due to the condition k2 6= k1. Note, the sum term diverges, thus a certain
cutoff is implicitly introduced so to keep the intermediate results finite (which is then sent to infinity at the very end
of the calculation). When the volume is sufficiently large, the previous expression becomes

Pk1 6=k2

A→AAB(p; ∆t) = V

∫

d3k3

(2π)3
m4

AB

ωk3,Aωk3,B

sin2
[

(ωk3,A+ωk3,B)∆t

2

]

(ωk3,A + ωk3,B)
2 − m4

AB

ωp,Aωp,B

sin2
[

(ωp,A+ωp,B)∆t
2

]

(ωp,A + ωp,B)
2 , (55)

where, again, a cutoff is implicit in the integral over k3. The term proportional to V is a typical vacuum term that
needs to be subtracted. However, the second term in Eq.(55) needs to be kept, see below.
The last possible transition is the case in which k2 = k1, thus

|A,p〉 → 1√
2
a†k1,A

a†k1,A
a†k3,B

|0〉 . (56)

The amplitude at first order is

Ak1=k2

A→AAB(p,k1,k3; ti, tf ) = − i√
2

∫ tf

ti

dt1〈0|ak1,Aak1,Aak3,BHint(t1)a
†
p,A|0〉 , (57)

whose squared modulus is

|Ak1=k2

A→AAB(p,k1,k3; ti, tf )|2 = δk1,pδk1,−k3
2

m4
AB

ωp,Aωp,B

sin2
[

(ωp,A+ωp,B)∆t
2

]

(ωp,A + ωp,B)
2 . (58)

Upon summing over the final momenta k1,k3:

Pk1=k2

A→AAB(p,∆t) =
∑

k1,k3

∣

∣

∣Ak1=k2

A→AAB(p,k1,k3; ti, tf )
∣

∣

∣

2

= 2
m4

AB

ωp,Aωp,B

sin2
[

(ωp,A+ωp,B)∆t
2

]

(ωp,A + ωp,B)
2 . (59)

Note, the factor 2 appears just as in the QM toy model of SectionIII.
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Putting all the pieces together, the total probability of A going into something else (thus, a decay probability) is:

PA
D(p; ∆t) = PA→B(p; ∆t) + Pk1 6=k2

A→AAB(p; ∆t) + Pk1=k2

A→AAB(p; ∆t)

=
m4

AB

ωp,Aωp,B

sin2
[

(ωp,A−ωp,B)∆t
2

]

(ωp,A − ωp,B)
2 +

m4
AB

ωp,Aωp,B

sin2
[

(ωp,A+ωp,B)∆t
2

]

(ωp,A + ωp,B)
2

+V

∫

d3k3

(2π)3
m4

AB

ωk3,Aωk3,B

sin2
[

(ωk3,A+ωk3,B)∆t

2

]

(ωk3,A + ωk3,B)
2 . (60)

The factor 2 of Pk1=k2

A→AAB(p; ∆t) combines with the factor −1 in Pk1 6=k2

A→AAB(p; ∆t) in order to give the same factor in
front of the high-frequency term. Finally, the term proportional to V , being a vacuum term, is subtracted. Then the
probability that the oscillation takes place up to second order is:

PA
D(p; ∆t) =

m4
AB

ωp,Aωp,B





sin2
[

(ωp,A−ωp,B)∆t
2

]

(ωp,A − ωp,B)
2 +

sin2
[

(ωp,A+ωp,B)∆t
2

]

(ωp,A + ωp,B)
2



 . (61)

It is important to verify the correctness of the previous result. Just as in the QM toy model, one needs to check
the survival probability of the state |A,p〉. To this end, we calculate the probability of the transition

|A,p〉 → |A,k〉 , (62)

and then sum over k. The corresponding amplitude, up to second order, reads:

AA→A(p,k; ti, tf ) = 〈0|a†k,AU(tf , ti)a
†
p,A|0〉 = δk,p + (−i)2

∫ tf

ti

dt1

∫ t1

ti

dt2〈0|ak,AHint(t1)Hint(t2)a
†
p,A|0〉. (63)

Its modulus square takes the form:

|AA→A(p,k; ti, tf )|2 = δpk



1− m4
AB

ωp,Aωp,B

sin2
[

(ωp,A−ωp,B)∆t
2

]

(ωp,A − ωp,B)
2 − m4

AB

ωp,Aωp,B

sin2
[

(ωp,A+ωp,B)∆t
2

]

(ωp,A + ωp,B)
2





−δpk
∑

q1

m4
AB

ωq1,A2ωq1,B

sin2
[

(ωq1,A+ωq1,B)∆t

2

]

(

ωq1,A + ωq1,B

)2 + ... , (64)

where dots refer to higher order terms.
Then, upon summing over the final three-momentum k and taking the large volume limit, the survival probability

reads (up to second order):

PA
S (p; ∆t) = PA→A(p;∆t) =

∑

k

|AA→A(p,k; ti, tf )|2

= 1− m4
AB

ωp,Aωp,B

sin2
[

(ωp,A−ωp,B)∆t
2

]

(ωp,A − ωp,B)
2 − m4

AB

ωp,Aωp,B

sin2
[

(ωp,A+ωp,B)∆t
2

]

(ωp,A + ωp,B)
2

−V

∫

d3q1

(2π)3
m4

AB

ωq1,A2ωq1,B

sin2
[

(ωq1,A+ωq1,B)∆t

2

]

(

ωq1,A + ωq1,B

)2 , (65)

where the latter term corresponds, in diagrammatic term, to the disconnected vacuum diagram with an AB loop.
This term coincides exactly with the one obtained previously. Upon subtracting this term, we find:

PA
S (p; ∆t) = 1− m4

AB

ωp,Aωp,B





sin2
[

(ωp,A−ωp,B)∆t
2

]

(ωp,A − ωp,B)
2 +

sin2
[

(ωp,A+ωp,B)∆t
2

]

(ωp,A + ωp,B)
2



 , (66)
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with

PA
D(p; ∆t) + PA

S (p; ∆t) = 1 , (67)

as it must.
We thus obtain the probability that the flavor A oscillates (or does not oscillate) as the sum of two distinct term

involving the low-frequency and the high-frequency term, where the frequencies ωp,A and ωp,B depend on the chosen
momentum p. Note, the structure of the solution is very similar to the QM toy model besides the factor 2 of the
high-frequency term. It turns out that only 1 survives the process of renormalization.
Also in the scalar QFT case one may introduce a suitable diagonalization of the fields

(

φ1

φ2

)

=

(

cos θ − sin θ
sin θ cos θ

)(

φA

φB

)

, (68)

with

θ =
1

2
arctan

2m2
AB

m2
B −m2

A

. (69)

The fields φ1 and φ2 contain the annihilation (creation) operators a1,p, a2,p, (a
†
1,p,a

†
2,p). If we introduce the “Pon-

tecorvo state”

|a,p〉 = cos θa†1 |Ω〉+ sin θa†2 |Ω〉 , (70)

the corresponding survival probability takes the form:

Pa
S(p; ∆t) = 1− sin2 2θ sin2

[

(ωp,1 − ωp,2)∆t

2

]

, (71)

with ωp,j =
√

|p|2 +m2
j , j = 1, 2. In the limit of small θ, the previous expression is approximated by:

Pa
S(p; ∆t) ≃ 1− 4m4

AB

(m2
B −m2

A)
2 sin2

[

(ωp,A − ωp,B)∆t

2

]

, (72)

which, just as in the QM toy model, differs from Eq.(66) since the high-frequency term is missing and because the
factor in front of the low-frequency one is not the same (but the two expressions degenerate for large |p|). The
difference is expected because |a,p〉 6= |A,p〉 .

V. NEUTRINO OSCILLATIONS IN THE INTERACTION PICTURE

Let us now deal with the fermion case, which can be naturally applied to neutrino oscillations and it will be then
referred as neutrino case.
In the interaction picture νσ (σ = e, µ), defined by the Lagrangian Eq.(1), can be expanded as free fields, evolving

under the action of L0:

νσ(x) =
1√
V

∑

k,r

[

ur
k,σ(t)α

r
k,σ + vr−k,σ(t)β

r†
−k,σ

]

eik·x , (73)

with ur
k,σ(t) = e−iωk,σt ur

k,σ , vrk,σ(t) = eiωk,σt vrk,σ, ωk,σ =
√

|k|2 +m2
σ. Annihilation operators satisfy

αr
k,σ|0〉 = 0 = βr

k,σ|0〉 . (74)

The anticommutation relations are

{αr
k,ρ, α

s†
q,σ} = δkqδrsδρσ , {βr

k,ρ, β
s†
q,σ} = δkqδrsδρσ, (75)

and the spinors are normalized so that

ur†
k,ρu

s
k,ρ = vr†k,ρv

s
k,ρ = δrs , ur†

k,ρv
s
−k,ρ = 0 . (76)
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As in the previous examples, the idea is to perform the perturbative calculation up the first in meµ. The interacting
Hamiltonian reads:

Hint(t) = meµ

∑

s,s′=1,2

∑

p

[

βs
p,µβ

s†
p,eδss′W

∗
p(t) + αr†

p,µα
r
p,eδss′Wp(t)

+ βs
−p,µα

s′

e,p

(

Y ss′

p (t)
)∗

+ αs†
p,µβ

s′†
−p,eY

ss′

p (t) + e ↔ µ
]

, (77)

where we defined

Wp(t) = us
p,µu

s
p,ee

i(ωk,µ−ωk,e)t = Wp ei(ωp,µ−ωp,e)t (78)

Y ss′

p (t) = us
p,µv

s′

−p,ee
i(ωk,µ+ωk,e)t = Y ss′

p ei(ωp,µ+ωp,e)t (79)

Explicitly

Wp =

√

(ωp,e +me) (ωp,µ +mµ)

4ωp,eωp,µ

(

1− |p|2
(ωp,e +me)(ωp,µ +mµ)

)

, (80)

Y 22
p = −Y 11

p =
p3

√

4ωp,eωp,µ

(√

ωp,µ +mµ

ωp,e +me
+

√

ωp,e +me

ωp,µ +mµ

)

, (81)

Y 12
p =

(

Y 21
p

)∗
= − p1 − ip2

√

4ωp,eωp,µ

(√

ωp,µ +mµ

ωp,e +me
+

√

ωp,e +me

ωp,µ +mµ

)

. (82)

The first non-trivial flavor transition process we consider is

|νrp,e〉 → |νsk,µ〉 , |νrp,σ〉 ≡ αr†
p,σ|0〉 , (83)

whose amplitude reads

Ars
e→µ(p,k, ; ti, tf ) ≈ −imeµδrsδk,pWp

∫ tf

ti

dt ei(ωk,µ−ωp,e)t

= meµ δrsδk,p

(

ei(ωp,µ−ωp,e)tf − ei(ωp,µ−ωp,e)ti
) Wp

ωk,e − ωk,µ
= δrsδk,p Ãe→µ(k; ti, tf ) , (84)

where

Ãe→µ(p; ti, tf ) =
meµ Wp

ωp,e − ωp,µ

(

ei(ωp,µ−ωp,e)tf − ei(ωp,µ−ωp,e)ti
)

. (85)

Similarly as in the boson case (see Eq.(50)), the oscillation probability is computed by summing over the final density
of states, now involving the sum over the helicities:

Pe→µ(p; ∆t) =
∑

k,s

|Ars
e→µ(p,k; ti, tf )|2 = |Ãe→µ(p, ti, tf )|2

= W 2
p

2m2
eµ

(ωp,e − ωp,µ)
2 [1− cos [(ωp,µ − ωp,e)∆t]] , ∆t ≡ tf − ti . (86)

Another non-trivial process is the decay

|νrp,e〉 → |νs1k1,e
〉|νs2k2,µ

〉|νs3
k3,e

〉 . (87)

The amplitude explicitly reads

Ars1s2s3
e→eeµ (p,k1,k2,k3; ti, tf ) ≈ −imeµ Y s3s2

k2
δk1,pδk2,−k3

δrs1

∫ tf

ti

dt e−i(ωk2,µ+ωk2,e)t

= −meµ δrs1 δk1,pδk2,−k3

(

e−i(ωk2,µ+ωk2,e)tf − e−i(ωk2,µ+ωk2,e)ti
) Y s2s3

k2

ωk2,e + ωk3,µ

= δk1,pδk2,−k3
δrs1 Ãs2s3

e→eµµ(k2; ti, tf) , (88)
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where

Ãs2s3
e→eeµ(k; ti, tf ) = − meµ Y

s2s3
k

ωk,e + ωk,µ

(

e−i(ωk,µ+ωk,e)tf − e−i(ωk,µ+ωk,e)ti
)

. (89)

As done above, we thus find the probability as

Pe→eeµ(p; ∆t) =
∑

k1,k2,k3

∑

s1,s2,s3

|Ars1s2s3
e→eeµ (p,k1,k2,k3; ti, tf)|2 =

∑

k

∑

s2,s3

|Ãs2s3
e→eeµ(k; ti, tf )|2 . (90)

In the large-V limit

Pe→eeµ(p; ∆t) = V
∑

s2,s3

∫

d3k

(2π)3
(Y s2s3

k )
2

(ωk,e + ωk,µ)
2 sin2

(

(ωk,µ + ωk,e)∆t

2

)

. (91)

This is a divergent contribution (vacuum diagram) and it must be subtracted.
Finally, we have the process

|νrp,e〉 → |νs1k1,e
〉|νs2k2,e

〉|νs3
k3,µ

〉 , k1 6= k2 ∨ s1 6= s2 . (92)

The amplitude explicitly reads

Ars1s2s3
e→eeµ (p,k1,k2,k3; ti, tf ) = δk1,pδk2,−k3

δrs1 Ãs2s3
e→eeµ(k2; ti, tf )− δk2,pδk1,−k3

δrs2 Ãs1s3
e→eeµ(k1; ti, tf ) . (93)

where Ãs2s3
e→eeµ(k; ti, tf ) = Ãs2s3

e→eeµ(k; ti, tf ). Note this correctly goes to zero when k1 = k2 and s1 = s2. We thus find
the probability as

Pe→eeµ(p; ∆t) =
1

2

∑

k1,k2,k3

∑

s1,s2,s3

|Ars1s2s3
e→eeµ (p,k1,k2,k3; ti, tf )|2

=
∑

k,s2,s3

|Ãs2s3
e→eeµ(k; ti, tf )|2 −

∑

s3

|Ãrs3
e→eeµ(p; ti, tf )|2 . (94)

It is clear we can not simply subtract the first piece involving the sum over momenta: this procedure would give a
negative probability. This subtle issue can be solved by remembering that asymptotic states have to be representations
of momentum. Thus, we must isolate the contribution with k = p

Pe→eeµ(p; ∆t) =
∑

k 6=p,s2,s3

|Ãs2s3
e→eeµ(k; ti, tf )|2 +

∑

s2,s3

|Ãs2s3
e→eeµ(p; ti, tf )|2 −

∑

s3

|Ãrs3
e→eeµ(p; ti, tf )|2

=
∑

k 6=p,s2,s3

|Ãs2s3
e→eeµ(k; ti, tf )|2 +

∑

s3

|Ãrs3
e→eeµ(p; ti, tf )|2 . (95)

In other words, because of the Pauli principle, the vacuum should not carry the contribution with k = p. Then, in
the large-V limit

Pe→eeµ(p; ∆t) = V
∑

s2,s3

∫

d3k

(2π)3
|Ãs2s3

e→eeµ(k; ti, tf)|2 +
∑

s3

|Ãrs3
e→eeµ(p; ti, tf )|2 . (96)

The first piece diverges and must be subtracted, while the second piece gives a finite contribution. Explicitly

Pe→eeµ(p; ∆t) =
4m2

eµY
2
p

(ωp,e + ωp,µ)
2 sin2

(

(ωp,µ + ωp,e)∆t

2

)

, (97)

where

Y 2
p =

∑

s

(

Y rs
p

)∗
Y rs
p , (98)
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and

Yp =
|p|

√

4ωp,eωp,µ

(√

ωp,µ +mµ

ωp,e +me
+

√

ωp,e +me

ωp,µ +mµ

)

. (99)

Therefore, the total decay probability of νe is

Pe
D(p; ∆t) = 4m2

eµ

[

W 2
p

(ωp,e − ωp,µ)
2 sin2

(

(ωp,µ − ωp,e)∆t

2

)

+
Y 2
p

(ωp,e + ωp,µ)
2 sin2

(

(ωp,µ + ωp,e)∆t

2

)

]

. (100)

Note that all such decays (flavor transitions) are forbidden when ti → −∞, tf → +∞, unless me = mµ. In particular,
the last two processes are always forbidden for infinite time-intervals because of energy conservation. In fact, in that
case, the three-dimensional δs would be substituted by deltas on the four-momentum, which strictly employ energy
conservation. As we commented above, this is expected in analogy of what happens for unstable particles.
If we now define, following the notation of Ref. [15]

|Up| = Wp

mµ −me

ωp,e − ωp,µ
=

√

(ωp,e +me) (ωp,µ +mµ)

4ωp,eωp,µ

(

1 +
|p|2

(ωp,e +me) (ωp,µ +mµ)

)

, (101)

|Vp| = Yp

mµ −me

ωp,e + ωp,µ
=

√

(ωp,e +me) (ωp,µ +mµ)

4ωp,eωp,µ

( |p|
ωp,e +me

− |p|
ωp,µ +mµ

)

, (102)

we can rewrite the probability in the form

Pe
D(p; ∆t) = sin2 2θ

[

|Up|2 sin2
(

(ωp,µ − ωp,e)∆t

2

)

+ |Vp|2 sin2
(

(ωp,µ + ωp,e)∆t

2

)]

. (103)

with θ = meµ/(mµ −me) ≈ sin θ. In the approximation we used this coincides with the oscillation probability (A11),
firstly derived in [26]. This is a remarkable result because the method we adopted is quite different from the approach
of Ref. [26] (which is briefly reviewed in appendix), and it does not rely on the construction of a flavor vacuum (see
Eq.(A6)).
The second term on the r.h.s. of the Eq.(103) is the main correction with respect to the usual Pontecorvo oscillation

formula (A16). The effect of such term is negligible for relativistic neutrinos, e.g. when mσ/|p| → 0, while is maximal
when |p| = √

memµ which, in our approximation is equivalent to |p| = √
m1m2, i.e. when the momentum is of the

order of neutrino masses. In such a case

|Up|2 = 1− |Vp|2 =
1

2
+

ξ

2
, (104)

where

ξ = 2

√
memµ

me +mµ
. (105)

Possible phenomenological implications in this regime could be studied in a cosmological context, how it will be
discussed in the conclusions.
Let us now compute the survival probability Pe

S(k,∆t). The zeroth order contribution gives Pe
S(k,∆t) = 1. To

find a non-trivial contribution to the survival probability we should compute the second order terms. In the present
case it is useful to write

U(ti, tf) = 1I− imeµ

∫ tf

ti

d4x : νe(x)νµ(x) + νµ(x)νe(x) :

−
m2

eµ

2

∫ tf

ti

d4x1

∫ tf

ti

d4x2 T
[

(: νe(x1)νµ(x1) + νµ(x1)νe(x1) :) (: νe(x2)νµ(x2) + νµ(x2)νe(x2) :)
]

+ . . . .(106)

The second order piece can be further expanded using Wick theorem:

U (2)(ti, tf ) = −
m2

eµ

2

∫ tf

ti

d4x1

∫ tf

ti

d4x2

[

: νe(x1)νµ(x1)νe(x2)νµ(x2) : + : νe(x1)νµ(x1)νµ(x2)νe(x2) :

+ : νµ(x1)νe(x1)νe(x2)νµ(x2) : + : νµ(x1)νe(x1)νµ(x2)νe(x2) :

+ 2 i
(

Se
αβ(x2 − x1) : νβµ(x2)ν

α
µ (x1) : +Sµ

αβ(x2 − x1) : νβe (x2)ν
α
e (x1) :

) ]

, (107)
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where

Sσ
αβ(x) =

∫

d4p

(2π)4
e−ipx

(

/p+mσ

)

αβ

p2 −m2
σ + iε

, σ = e, µ , (108)

is the Dirac propagator. The employment of Wick theorem makes evident that the divergent vacuum contributions
come from the terms containing the propagator, which can be neglected.
The survival process is

|νrp,e〉 → |νsk,e〉 . (109)

Saving only up to linear terms in meµ, the amplitude can be written as

Ars
e→e(p,k; ti, tf ) = δk,pδrs +

1

2
A(2)rs

e→e (p,k; ti, tf ) , (110)

where A
(2)rs
e→e (k,p; ti, tf ) is the second-order piece, which goes as m2

eµ. Taking the square, and summing over the final

momenta and helicities, the only pieces which cannot be disregarded are the one which go as m2
eµ or lower powers,

i.e.

Pe
S(p; ∆t) =

∑

k,s

Ars
e→e(p,k, ti, tf ) ≈ 1 + 2ℜe

(

Ã(2)
e→e(p; ti, tf )

)

, (111)

with

Ã(2)
e→e(p; ti, tf ) ≡

∑

k,s

A(2)rs
e→e (p,k; ti, tf ) . (112)

Explicitly one finds

Pe
S(p; ∆t) = 1− sin2 2θ

[

|Up|2 sin2
(

(ωp,µ − ωp,e)∆t

2

)

+ |Vp|2 sin2
(

(ωp,µ + ωp,e)∆t

2

)]

. (113)

Then

Pe
D(p; ∆t) + Pe

S(p; ∆t) = 1 , (114)

as expected.

VI. CONCLUSIONS

In this paper we have shown that neutrino oscillations can actually be described as a standard perturbative QFT,
with the mixing handled by the interaction picture. A 0+1D toy model, “scalar” neutrinos and their “realistic”
Dirac fermion counterparts can all be described by this approach, the various transition amplitudes can be related
via Feynman diagrams and the differences reduced to spin-statistics differences. In the fermionic case, the same
oscillation formula as in non-perturbative flavor-Fock space approach [26], is here independently recovered, within
the approximations involved in the perturbative calculation. In particular, we find a term which depends on the
sum of the frequencies, in addition to the usual Pontecorvo term which only involves their difference. Moreover, the
pre-factors in front of such terms are exactly the Bogoliubov coefficients derived in Ref.[15].
This description sheds new light on the long-standing arguments in the literature as to the “true basis” of neutrino

Fock space. As in other quantum field theories, provided interacting and free states have the same quantum num-
bers, the Kallen-Lehmann representation can be used to convert between the two perturbatively. In such a picture,
experimental data selects the physical degrees of freedom, to be related to the Lagrangian ones via Renormalization.
Since interaction happens via weak charge, the perturbation series defined in this work shows that neutrino physical
states can be consistently defined.
The methods developed in this work can be applied to a calculation of observables beyond tree level which system-

atically includes oscillation effects. An obvious candidate is the magnetic dipole moment of the neutrino, which so
far has only been obtained by effective field theory techniques [43]. A proper calculation will include the interaction
included here (which corrects the magnetic mass) with the same footing as the W-lepton bubble (which provides the
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electric current generating the magnetic moment). Given the non-trivial momentum dependence of QFT neutrino
oscillation effects noticed in [15] the interplay of all these effects could yield surprises, which might be observable [44].
There are however subtleties not present in other usual quantum field theories. Unlike other interactions, neutrino

oscillations are 2-field operators, analogous to coupled harmonic oscillators. The vacuum of the theory should therefore
be analytically obtainable, and it is well known that perturbative terms can not capture such vacuum corrections. As
a related issue, the self-interaction due to the vacuum self energy will result in a “mass” correction to the flavor state,
tilting the perturbative series examined in this work. Since the theory examined here is perfectly Lorentz invariant,
violations derived using the quantum field theory approach to fermion mixing (see e.g. [45]) can only be a feature of
the vacuum and to properly assess such effects a perturbative series must be derived from such a vacuum. This is left
to a forthcoming work.
Moreover, it is interesting to stress that the physical corrections to the usual neutrino oscillation formula (A16)

could be relevant in the measurements of the so-called cosmic neutrino background (CNB). This will be studied, e.g.,
by the PTOLEMY experiment [46–49]. The basic idea of such experiment is to detect the relic neutrinos of the CNB
(which decoupled around one second after the Big Bang) through the neutrino capture by tritium νe+

3H → e−+3He.
With the standard approach to neutrino oscillations, the rate of the capture process reads [49]

ΓCNB =
∑

j

|Uej |2 σ̄ vν fe,i n0 , (115)

where U is the mixing matrix, vν is the neutrino velocity as measured at Earth, σ̄ is the average cross-section, n0 is
the average neutrino number density on large scale and fe,i are the clustering factors. We expect that the analysis
of this paper modifies the above expression, with the inclusion of the coefficients |Up| and |Vp|. This could be easily
understood looking at Ref. [21], where the rate of β-decay 3H → e− + 3He + νe was computed within the flavor
Fock-space approach. As discussed in the text (see Eqs. (104)-(105)), the corrections in that case, and then in the
present case, become relevant in the non-relativistic regime. However, a quantitative analysis requires to consider the
three-flavor phenomenology and it will be postponed to a forthcoming work.
Finally, another phenomenon which is suited to be investigated within the approach here introduced are chiral oscil-

lations [50–52], which again are relevant in the non-relativistic regime and have been recently discussed in connection
with CNB [53]. Work is in progress in this direction.
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Appendix A: The non-perturbative approach – the Heisenberg picture

The mixing transformation (4) can be rewritten as [15]

νσ(x) = G−1
θ (t) νj(x)Gθ(t) , (A1)

with (σ, j) = (e, 1), (µ, 2) and Gθ(t) given by

Gθ(t) = exp

[

θ

∫

d3x
(

ν†1(x)ν2(x) − ν†2(x)ν1(x)
)

]

. (A2)

Fields with definite masses can be expanded as

νj(x) =
∑

r

∫

d3k

(2π)
3
2

[

ur
k,j(t)α

r
k,j + vr−k,j(t)β

r†
−k,j

]

eik·x , (A3)

with ur
k,j(t) = e−iωk,jt ur

k,j , vrk,j(t) = eiωk,jt vrk,j , ωk,j =
√

|k|2 +m2
j . From (A3) and (A1) it follows that flavor

fields can be also Fourier expanded:

νσ(x) =
∑

r

∫

d3k

(2π)
3
2

[

ur
k,j(t)α

r
k,σ(t) + vr−k,j(t)β

r†
−k,σ(t)

]

eik·x , (A4)
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where the flavor ladder operators are given by

(

αr
k,σ(t)

βr
−k,σ(t)

)

= G−1
θ (t)

(

αr
k,j(t)

βr
−k,j(t)

)

Gθ(t) . (A5)

In the Heisenberg picture, the flavor vacuum is

|0〉e,µ = G−1
θ (0) |0〉1,2 , (A6)

where |0〉1,2 denotes the mass vacuum, annihilated by αr
k,j,β

r
k,j . One can easily verify that |0〉e,µ is annihilated by the

flavor operators introduced in Eq. (A5). Now, flavor states can be naturally defined as

|νrk,σ〉 = αr†
k,σ|0〉e,µ . (A7)

where flavor operators are taken at reference time t = 0. These are eigenstates of the lepton/flavor charges

Qσ(t) ≡
∫

d3x ν†σ(x) νσ(x) , (A8)

i.e.

Qσ(0)|νrk,σ〉 = |νrk,σ〉 . (A9)

We can then evaluate oscillation formulas as the expectation value of the flavor charges on a reference neutrino
state [26]

Qσ→ρ(t) = 〈Qρ(t)〉σ , (A10)

where 〈· · · 〉σ = 〈νrk,σ| · · · |νrk,σ〉. Explicitly

Qσ→ρ(t) = sin2(2θ)
[

|Uk|2 sin2
(

ω−

k

2
t

)

+ |Vk|2 sin2
(

ω+

k

2
t

)

]

,

Qσ→σ(t) = 1 − Qσ→ρ(t) , σ 6= ρ , (A11)

with ω±

k ≡ ωk,2 ± ωk,1, and

Uk(t) ≡ ur†
k,2u

r
k,1 ei(ωk,2−ωk,1)t = |Uk| ei(ωk,2−ωk,1)t , (A12)

Vk(t) ≡ ǫr ur†
k,1v

r
−k,2 ei(ωk,2+ωk,1)t = |Vk| ei(ωk,2+ωk,1)t . (A13)

Explicitly

|Uk| = Ak

(

1 +
|k|2

(ωk,1 +m1) (ωk,2 +m2)

)

, |Vk| = Ak

( |k|
ωk,1 +m1

− |k|
ωk,2 +m2

)

, (A14)

with Ak =
√

(ωk,1+m1)(ωk,2+m2)
4ωk,1ωk,2

, |Uk|2 = 1− |Vk|2. Note that

Qσ→ρ(t) ≈ P(P )
σ→ρ(t) when mi/|k| → 0 , ω−

k 6= 0 , (A15)

i.e. in the relativistic limit one re-obtained the Pontecorvo formula [4]

P(P )
e→µ(t) = sin2(2θ) sin2

(

ωk,1 − ωk,2

2
t

)

. (A16)

We thus recover the usual phenomenological results in such limit. Notice that formulas (A11) are also recovered in a
relativistic QM treatment based on Dirac equation [50].

[1] V. N. Gribov and B. Pontecorvo, Phys. Lett. B 28, 493 (1969).

https://doi.org/10.1016/0370-2693(69)90525-5


16

[2] S. M. Bilenky and B. Pontecorvo, Phys. Lett. B 61, 248 (1976).
[3] S. M. Bilenky and B. Pontecorvo, Lett. Nuovo Cim. 17, 569 (1976).
[4] S. M. Bilenky and B. Pontecorvo, Comments Nucl. Part. Phys. 7, 149 (1977).
[5] P. Vogel, L. Wen, and C. Zhang, Nature Commun. 6, 6935 (2015), arXiv:1503.01059 [hep-ex].
[6] M. G. Aartsen et al. (IceCube), Phys. Rev. Lett. 120, 071801 (2018), arXiv:1707.07081 [hep-ex].
[7] Y. Nakano (Super-Kamiokande), J. Phys. Conf. Ser. 1342, 012037 (2020).
[8] N. Agafonova et al. (OPERA), Sci. Data 8, 218 (2021).
[9] A. Strumia and F. Vissani, (2006), arXiv:hep-ph/0606054.

[10] C. Giunti and C. Kim, Fundamentals of Neutrino Physics and Astrophysics (OUP Oxford, 2007).
[11] G. Fantini, A. Gallo Rosso, F. Vissani, and V. Zema, Adv. Ser. Direct. High Energy Phys. 28, 37 (2018),

arXiv:1802.05781 [hep-ph].
[12] C. Giunti, C. W. Kim, J. A. Lee, and U. W. Lee, Phys. Rev. D 48, 4310 (1993).
[13] M. Beuthe, Phys. Rept. 375, 105 (2003), arXiv:hep-ph/0109119.
[14] C. Giunti, C. W. Kim, and U. W. Lee, Phys. Rev. D 45, 2414 (1992).
[15] M. Blasone and G. Vitiello, Annals Phys. 244, 283 (1995), [Erratum: Annals Phys. 249, 363–364 (1996)],

arXiv:hep-ph/9501263.
[16] K. Fujii, C. Habe, and T. Yabuki, Phys. Rev. D 59, 113003 (1999).
[17] K. C. Hannabuss and D. C. Latimer, J. Phys. A 33, 1369 (2000).
[18] K. Fujii, C. Habe, and T. Yabuki, Phys. Rev. D 64, 013011 (2001).
[19] C.-R. Ji and Y. Mishchenko, Phys. Rev. D 65, 096015 (2002).
[20] K. C. Hannabuss and D. C. Latimer, J. Phys. A 36, L69 (2003), arXiv:hep-th/0207268.
[21] C.-Y. Lee, Mod. Phys. Lett. A 35, 2030015 (2020), arXiv:1709.06306 [hep-ph].
[22] K. Friedrichs, Mathematical Aspects of the Quantum Theory of Fields, Mathematical Aspects of the Quantum Theory of

Fields (Interscience Publishers, 1953).
[23] G. Barton, Introduction to Advanced Field Theory , Interscience Tracts on Physics and Astronomy (Wiley, 1963).
[24] J. Berezin, F. Berezin, E. S. . T. (Firm), N. Mugibayashi, and A. Jeffrey, The Method of Second Quantization , Pure and

applied physics : a series of monographs and textbooks. 24 (Academic Press, 1966).
[25] H. Umezawa, Advanced Field Theory: Micro, Macro, and Thermal Physics (American Inst. of Physics, 1993).
[26] M. Blasone, P. A. Henning, and G. Vitiello, Phys. Lett. B 451, 140 (1999), arXiv:hep-th/9803157.
[27] C. Bernardini, L. Maiani, and M. Testa, Phys. Rev. Lett. 71, 2687 (1993).
[28] P. Facchi and S. Pascazio, La regola d’oro di Fermi , Quaderni Di Fisica Teorica (Bibliopolis, 1999).
[29] M. Blasone, A. Capolupo, O. Romei, and G. Vitiello, Phys. Rev. D 63, 125015 (2001), arXiv:hep-ph/0102048.
[30] M. Blasone, P. Jizba, N. E. Mavromatos, and L. Smaldone, Phys. Rev. D 102, 025021 (2020), arXiv:2002.11072 [hep-th].
[31] S. M. Bilenky and B. Pontecorvo, Phys. Rept. 41, 225 (1978).
[32] S. M. Bilenky and S. T. Petcov, Rev. Mod. Phys. 59, 671 (1987), [Erratum: Rev.Mod.Phys. 61, 169 (1989), Erratum:

Rev.Mod.Phys. 60, 575–575 (1988)].
[33] D. V. Naumov and V. A. Naumov, Phys. Part. Nucl. 51, 1 (2020).
[34] M. Blasone, P. Jizba, and L. Smaldone, Phys. Rev. D 99, 10.1103/physrevd.99.016014 (2019).
[35] F. Giacosa and G. Pagliara, Mod. Phys. Lett. A 26, 2247 (2011), arXiv:1005.4817 [hep-ph].
[36] F. Giacosa, Found. Phys. 42, 1262 (2012), arXiv:1110.5923 [nucl-th].
[37] F. Giacosa, Adv. High Energy Phys. 2018, 4672051 (2018), arXiv:1804.02728 [hep-ph].
[38] F. Giacosa, Phys. Lett. B 831, 137200 (2022), arXiv:2108.07838 [quant-ph].
[39] D. Anselmi, (2023), arXiv:2304.07643 [hep-ph].
[40] D. Anselmi, (2023), arXiv:2304.07642 [hep-th].
[41] K. Bhattacharyya, Journal of Physics A: Mathematical and General 16, 2993 (1983).
[42] S. M. Bilenky, F. von Feilitzsch, and W. Potzel, J. Phys. G 36, 078002 (2009).
[43] R. E. Shrock, Nucl. Phys. B 206, 359 (1982).
[44] S. Jana, Y. P. Porto-Silva, and M. Sen, JCAP 09, 079, arXiv:2203.01950 [hep-ph].
[45] M. Blasone, A. Capolupo, S. Capozziello, S. Carloni, and G. Vitiello, Phys. Lett. A 323, 182 (2004), arXiv:gr-qc/0402013.
[46] S. Betts et al., in Snowmass 2013: Snowmass on the Mississippi (2013) arXiv:1307.4738 [astro-ph.IM].
[47] A. G. Cocco, PoS NOW2016, 092 (2017).
[48] M. Messina, Frascati Phys. Ser. 66, 286 (2018).
[49] M. G. Betti et al. (PTOLEMY), JCAP 07, 047, arXiv:1902.05508 [astro-ph.CO].
[50] A. E. Bernardini and S. D. Leo, Phys. Rev. D 71, 076008 (2005), arXiv:hep-ph/0504239.
[51] V. A. S. V. Bittencourt, A. E. Bernardini, and M. Blasone, Eur. Phys. J. C 81, 411 (2021), arXiv:2009.00084 [hep-ph].
[52] V. A. S. V. Bittencourt, A. E. Bernardini, and M. Blasone, EPL 139, 44002 (2022).
[53] S.-F. Ge and P. Pasquini, Phys. Lett. B 811, 135961 (2020), arXiv:2009.01684 [hep-ph].

https://doi.org/10.1016/0370-2693(76)90141-6
https://doi.org/10.1007/BF02746567
https://doi.org/10.1038/ncomms7935
https://arxiv.org/abs/1503.01059
https://doi.org/10.1103/PhysRevLett.120.071801
https://arxiv.org/abs/1707.07081
https://doi.org/10.1088/1742-6596/1342/1/012037
https://doi.org/10.1038/s41597-021-00991-y
https://arxiv.org/abs/hep-ph/0606054
https://books.google.cz/books?id=SdAcSwTR0CgC
https://doi.org/10.1142/9789813226098_0002
https://arxiv.org/abs/1802.05781
https://doi.org/10.1103/PhysRevD.48.4310
https://doi.org/10.1016/S0370-1573(02)00538-0
https://arxiv.org/abs/hep-ph/0109119
https://doi.org/10.1103/PhysRevD.45.2414
https://doi.org/10.1006/aphy.1995.1115
https://arxiv.org/abs/hep-ph/9501263
https://doi.org/10.1103/PhysRevD.59.113003
https://doi.org/10.1088/0305-4470/33/7/307
https://doi.org/10.1103/PhysRevD.64.013011
https://doi.org/10.1103/PhysRevD.65.096015
https://doi.org/10.1088/0305-4470/36/4/101
https://arxiv.org/abs/hep-th/0207268
https://doi.org/10.1142/S0217732320300153
https://arxiv.org/abs/1709.06306
https://books.google.cz/books?id=B-o-AAAAIAAJ
https://books.google.cz/books?id=z3IKAAAAMAAJ
https://books.google.cz/books?id=fAlRAAAAMAAJ
https://books.google.cz/books?id=d7DvAAAAMAAJ
https://doi.org/10.1016/S0370-2693(99)00155-0
https://arxiv.org/abs/hep-th/9803157
https://doi.org/10.1103/PhysRevLett.71.2687
https://books.google.it/books?id=EBSsAAAACAAJ
https://doi.org/10.1103/PhysRevD.63.125015
https://arxiv.org/abs/hep-ph/0102048
https://doi.org/10.1103/PhysRevD.102.025021
https://arxiv.org/abs/2002.11072
https://doi.org/10.1016/0370-1573(78)90095-9
https://doi.org/10.1103/RevModPhys.59.671
https://doi.org/10.1134/S1063779620010050
https://doi.org/10.1103/physrevd.99.016014
https://doi.org/10.1142/S021773231103670X
https://arxiv.org/abs/1005.4817
https://doi.org/10.1007/s10701-012-9667-3
https://arxiv.org/abs/1110.5923
https://doi.org/10.1155/2018/4672051
https://arxiv.org/abs/1804.02728
https://doi.org/10.1016/j.physletb.2022.137200
https://arxiv.org/abs/2108.07838
https://arxiv.org/abs/2304.07643
https://arxiv.org/abs/2304.07642
https://doi.org/10.1088/0305-4470/16/13/021
https://doi.org/10.1088/0954-3899/36/7/078002
https://doi.org/10.1016/0550-3213(82)90273-5
https://doi.org/10.1088/1475-7516/2022/09/079
https://arxiv.org/abs/2203.01950
https://doi.org/10.1016/j.physleta.2004.02.004
https://arxiv.org/abs/gr-qc/0402013
https://arxiv.org/abs/1307.4738
https://doi.org/10.22323/1.283.0092
https://doi.org/10.1088/1475-7516/2019/07/047
https://arxiv.org/abs/1902.05508
https://doi.org/10.1103/PhysRevD.71.076008
https://arxiv.org/abs/hep-ph/0504239
https://doi.org/10.1140/epjc/s10052-021-09209-2
https://arxiv.org/abs/2009.00084
https://doi.org/10.1209/0295-5075/ac8446
https://doi.org/10.1016/j.physletb.2020.135961
https://arxiv.org/abs/2009.01684

	Neutrino oscillations in the interaction picture
	Abstract
	Introduction
	General considerations
	A quantum mechanics toy model of flavor mixing
	Scalar field mixing in the interaction picture
	Neutrino oscillations in the interaction picture
	Conclusions
	Acknowledgments
	The non-perturbative approach – the Heisenberg picture
	References


