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Abstract

We consider the 2 Higgs Doublet Model (2HDM) and compare two effective field theory (EFT)

approaches to it, according to whether the heavy degrees of freedom are integrated out before

(SMEFT) or after (HEFT) spontaneous symmetry breaking. By requiring decoupling and per-

turbativity in the 2HDM, we define a consistent EFT expansion in inverse powers of the heavy

masses which is applied to both the SMEFT and the HEFT tree level matchings to the 2HDM. We

organize this expansion with a dimensionless parameter ξ, and investigate the tree-level scatterings

hh → hh and WW → hh up to O(ξ2). We find no differences between the HEFT and the SMEFT

approaches at this order. We show scenarios where even including dimension-8 operators of the

SMEFT is insufficient to obtain an accurate matching to the 2HDM.
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I. INTRODUCTION

Since the discovery of the Higgs boson in 2012, the experimental focus in the electroweak

sector at the LHC has turned to precision measurements of Higgs observables and the search

for heavy Higgs-like particles. To date, no significant deviation from the Standard Model

(SM) predictions has been observed, suggesting that beyond the SM (BSM) physics, if it

exists, must be at a much higher energy scale than that probed at the LHC. In this scenario,

effective field theories (EFTs) are the tool of choice in the search for deviations from the

SM. In principle, the EFTs represent a model-independent formalism which can then be

matched to the predictions of specific ultraviolet (UV) complete models.

Two types of EFTs can be used to model the unknown BSM physics that potentially

affects the Higgs sector; they are the SM Effective Field Theory (SMEFT) [1–3] and the

Higgs Effective Field Theory (HEFT) [4–6] (cf. ref. [7] for a review). Both use exclusively

SM degrees of freedom, and both are invariant under the SM gauge groups SU(3)×SU(2)L×

UY(1). However, while the SMEFT considers the Higgs field h and the electroweak (EW)

would-be Goldstone bosons, ωa, to be embedded in the SU(2)L Higgs doublet, the HEFT

treats h as a gauge singlet and classifies the ωa as an SU(2)L triplet. As a consequence,

the SMEFT starts from the SM as it is before spontaneous symmetry breaking (SSB) of

SU(2)L × UY(1) → UEM(1), and adds to it a tower of higher dimensional operators, On
i ,

built out of the (before-SSB) SM fields:

LSMEFT = LSM +
∑
n,i

Cn
i O

n
i

Λn−4
, (1)

where n > 4 is the dimension of the operator, Cn
i are coefficients (usually known as Wilson

coefficients, WCs) and Λ the UV scale. By contrast, the HEFT starts by treating h and

the ωa separately, in such a way that the latter are embedded into a unitary matrix U .

Moreover, the HEFT is an expansion in the number of covariant derivatives; at the lowest

order, the part of the HEFT Lagrangian relevant for the scattering processes discussed in

this article is1

LHEFT ⊃ v2

4
F(h)Tr

{
DµU

†DµU
}
+

1

2
(∂µh)

2 − V (h), (2)

1 Only terms relevant for our current purposes are shown. In particular, fermions will not be relevant, and

will be omitted in what follows.
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where v = 246 GeV represents the vacuum expectation value (vev) of the Higgs field in

the SM, Dµ is the covariant derivative, and F(h) and V (h) are generic functions of h. In

general, one has DµU = ∂µU + igW a
µ
σa

2
U − ig′U σ3

2
Bµ, with U = 1 in the unitary gauge. The

fact that h is a gauge singlet means that symmetry invariance allows F(h) and V (h) to be

to be arbitrary power series in h. Considering again the lowest order HEFT Lagrangian, we

find

F(h) = 1 + 2a
h

v
+ b

h2

v2
+ ... , V (h) =

1

2
m2

hh
2

(
1 + d3

h

v
+

d4
4

h2

v2
+ ...

)
, (3)

where mh is the h mass, the dots stand for terms with higher powers of h, and a, b, d3 and

d4 are arbitrary couplings. These are normalized so that the SM is recovered when both

a = b = d3 = d4 = 1 and the remaining terms with higher powers of h are set to zero.

A significant effort has been made in recent years to derive techniques to distinguish

the SMEFT and the HEFT from one another from a pure bottom-up approach, i.e. with-

out assuming knowledge about any possible BSM model [8–14]. Yet, since the EFTs are

ultimately effective descriptions of a particular UV model, it is also relevant to discuss a

top-down approach. In this case, the BSM model is assumed to be known, and a matching

between the EFTs and the UV model is obtained by integrating out the heavy degrees of

freedom. This exercise has been done in the recent literature especially for the SMEFT,

considering several different UV models [15–29].

In this paper, we follow the top-down approach taking the 2 Higgs Doublet Model

(2HDM) [30] as the BSM model, and discuss the matching to both the SMEFT and the

HEFT. Ref. [19] performed an exercise along these lines, choosing as the BSM model a sin-

glet extension of the SM with a Z2 symmetry. It turns out that this model is very special,

as it allows an EFT expansion which is exclusively governed by inverse powers of the heavy

mass. By contrast, and as we will show, a consistent EFT approach cannot be applied

to a model like the 2HDM unless one makes further assumptions besides those related to

the physical masses. This aspect is intimately related to the notions of decoupling and

perturbativity, which shall be discussed in detail below.

We will focus on the tree-level scattering processes WW → hh and hh → hh, where

the HEFT and SMEFT may have potential differences when matched to the 2HDM. We

pay particular attention to performing consistent expansions in the different EFTs, and

investigate how accurately they reproduce the results of the 2HDM.
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This paper is organized as follows. We start by recapping the 2HDM in section II.

Section III is devoted to the notion of decoupling and to its consequences for an EFT

expansion. That allows us to study the SMEFT and HEFT matchings to the 2HDM, which

we do in sections IV and V, respectively. Finally, we present our results in section VI and

our conclusions in section VII. We provide further details on the 2HDM and on the model

of ref. [19] in the appendices.

II. 2HDM

For this review of the 2HDM, we follow Ref. [29] closely (for more details, cf. Refs. [31,

32]). The model adds an extra doublet Φ2 to the SM scalar doublet Φ1, and we define

their vevs as v2/
√
2 and v1/

√
2, respectively (we take them to be real). We impose a softly

broken Z2 symmetry, under which the scalar doublets transform as Φ1 → Φ1 and Φ2 → −Φ2,

whereas the fermion fields can transform in four different ways (each one corresponds to a

different type of 2HDM).2 It is convenient to introduce an angle β such that tβ = v2/v1,

which allows us to move to the Higgs basis [33–36] as:3 H1

H2

 =

 cβ sβ

−sβ cβ

 Φ1

Φ2

 . (4)

In the Higgs basis, the second doublet (H2) has no vev, whereas H1 has the vev v/
√
2,

with v ≡
√

v21 + v22 = 246 GeV. Among the terms of the Lagrangian, we focus on just two,

L2HDM ∋ Lkin − V , the former being the scalar kinetic piece and the latter the potential. In

the Higgs basis, they read:

Lkin = (DµH1)
† (DµH1) + (DµH2)

† (DµH2) , (5a)

V = Y1H
†
1H1 + Y2H

†
2H2 +

(
Y3H

†
1H2 + h.c.

)
+
Z1

2

(
H†

1H1

)2

+
Z2

2

(
H†

2H2

)2

+ Z3

(
H†

1H1

)(
H†

2H2

)
+ Z4

(
H†

1H2

)(
H†

2H1

)
+

{
Z5

2

(
H†

1H2

)2

+ Z6

(
H†

1H1

)(
H†

1H2

)
+ Z7

(
H†

2H2

)(
H†

1H2

)
+ h.c.

}
, (5b)

2 Since the fermions will not be the focus of this paper, we refer the reader to ref. [32] for details on the

different types of 2HDMs.
3 Here and in the following, it should be clear that, for any angle x, we use cx ≡ cos(x), sx ≡ sin(x), tx ≡
tan(x).
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in such a way that, on the one hand, the minimization equations imply:

Y1 = −Z1

2
v2, Y3 = −Z6

2
v2 , (6)

and, on the other, the Z2 symmetry (which is only explicit in the basis of Φ1, Φ2) is mani-

fested by the circumstance that only 5 of the 7 Zi are independent. Although the parameters

Y3, Z5, Z6, Z7 are in general complex (the remaining parameters are real by hermiticity), we

restrict ourselves to the solution in which they have real values.4 CP symmetry is thus

preserved at the leading order in the scalar sector, in which case H1 and H2 can be param-

eterized as:

H1 =

 G+

1√
2
(v + hH

1 + iG0)

 , H2 =

 H+

1√
2
(hH

2 + iA)

 , (7)

with hH
1 , h

H
2 , G0 and A real fields, and G+, H+ complex ones. With the exception of hH

1 , h
H
2 ,

all of these states are already mass states (G0 and G+ are the would-be Goldstone bosons,

and A and H+ are the pseudo-scalar and the charged scalar bosons, respectively). The mass

matrix for hH
1 and hH

2 can be diagonalized by introducing a mixing angle α such that: h

H

 =

 sβ−α cβ−α

cβ−α −sβ−α

 hH
1

hH
2

 , (8)

where h and H are the neutral scalar mass states, with h being the scalar that is observed

at the LHC. Finally, defining the masses of h,H,A and H± to be mh,mH ,mA and mH± ,

respectively, we shall take the following parameters as independent:

cβ−α, β, v, mh, Y2, mH , mA, mH± . (9)

The expressions for the Zi parameters in terms of the independent parameters can be found

in Appendix A.

III. DECOUPLING AND PERTURBATIVITY

In the following sections, we shall derive EFTs for the model described in section II,

which is taken as our UV model. Such a derivation requires a separation of scales in the UV

4 As stressed in Ref. [37], though, one should keep in mind that those parameters are generally complex,

since issues with renormalization would otherwise follow.
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model. Let us focus on the UV model, and assume that it has two disparate mass scales,

Λ and v, such that Λ ≫ v. Intuition leads to the expectation that the physical effects of

the particle(s) with mass of O(Λ) should be suppressed at low energies, i.e. at O(v). This

is, in fact, the main idea of decoupling, which is formalized in the Appelquist-Carazzone

decoupling theorem [38] (see also ref. [7]).

Yet there is an important caveat here. The decoupling theorem was formulated in ref. [38]

for a model without SSB, where the masses are independent parameters in the Lagrangian;

in particular, they are independent of interaction couplings. It follows that a given mass

can be rendered very large (of O(Λ)) without affecting the interaction couplings — and, in

particular, without requiring these couplings to become very large. In this way, taking a

particle to be very heavy in a model without SSB does not jeopardize perturbativity, which

is an implicit assumption of the decoupling theorem.5

In models with SSB, the situation changes considerably [39–44]. The reason is that

particles in models with SSB often get their masses from the product of a (fixed) vev and

an interaction coupling. To obtain a very heavy mass for a particle, one would thus need

to take the interaction coupling to be very large — which would, however, inevitably make

perturbation theory invalid. Therefore, decoupling is not possible in this scenario: one

cannot take a particle to be infinitely massive without violating perturbativity (see also the

discussion in ref. [7]).

It should be clear, on the other hand, that this does not mean that decoupling is impos-

sible in a model with SSB. For it may happen that, in such theory, a particle gets at least

part of its mass from a mass parameter of the Lagrangian — which, as mentioned above,

is independent of the remaining Lagrangian parameters, and in particular of the interaction

ones. Hence, by taking that mass parameter to be very heavy (while keeping the interaction

parameters fixed), one renders the particle at stake to be very massive, without endangering

the validity of a perturbative description.

We can apply this discussion to the 2HDM described in the previous section, which is the

focus of this paper. Our goal is to make the particles which do not belong to the SM (H, A

and H±) very heavy, so that an EFT for the 2HDM can be build using solely the degrees of

5 In this paper, we assume that decoupling requires perturbativity, and we do not consider the scenario in

which the UV model violates perturbativity.
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freedom of the SM. To that end, we must have:

mH ≃ mA ≃ mH+ ≫ mh = 125 GeV. (10)

To see how this can be obtained in a consistent way, it is convenient to write these masses

in terms of v, cβ−α and parameters of the potential:

m2
h =

c2β−α

2 c2β−α − 1
Y2 +

2 (c2β−α − 1)Z1 + c2β−αZ345

4 c2β−α − 2
v2, (11a)

m2
H =

(c2β−α − 1)

2 c2β−α − 1
Y2 +

c2β−α(2Z1 + Z345)− Z345

4 c2β−α − 2
v2, (11b)

m2
A = Y2 +

Z345 − 2Z5

2
v2, (11c)

m2
H+ = Y2 +

Z3

2
v2 , (11d)

with Z345 ≡ Z3 + Z4 + Z5. As suggested above, each of the squared masses (m2
h included)

contains two parts: one of them proportional to a mass parameter of the Lagrangian (Y2), the

other one proportional to the product between interaction couplings (Zi) and the squared vev

(v2). This means that Y2 plays a fundamental role in decoupling, as it can be used to render

mH , mA and mH+ very large without compromising the validity of the perturbation theory.6

It is also clear that, if eq. (10) is to be obeyed, and if cβ−α is chosen as an independent

parameter, then taking Y2 to be very large is not enough; more than that, cβ−α must behave

so as to ensure that mh stays fixed as Y2 is increased. Another way to realize this is to

consider eqs. (A1), which show the Zi parameters written in terms of the parameters of

eq. (9). From those equations (in particular eq. (A1a)), it is clear that the only way eq. (10)

can hold without having large Zi (i.e. without violating perturbativity) is to require that

cβ−α scales with Λ−2.

All of this leads us to define the decoupling limit of the 2HDM [45–48] — which ensures

eq. (10) while complying with Zi/(4π) ≲ O(1) — as:7

Y2 = Λ2, m2
H = Λ2 +∆m2

H , m2
A = Λ2 +∆m2

A, m2
H+ = Λ2 +∆m2

H+ , (12a)

6 This also shows that, in a 2HDM with an exact (i.e. not softly broken) Z2 symmetry, it is not possible

to decouple H, A and H+. The reason is that, in that case, Y2 ∼ O(Ziv
2), so that Y2 cannot be taken to

be very large without violating perturbativity [45].
7 Although Y2 could be written Y2 = Λ2 + ∆Y2, with ∆Y2 a real parameter, the latter can be set to zero

without loss of generality.
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Λ2 ≫ v2, m2
h ∼ O(v2), ∆m2

H ,∆m2
A,∆m2

H+ ∼ O(v2), (12b)

cβ−α ∼ O(v2/Λ2), (12c)

with ∆m2
H , ∆m2

A and ∆m2
H+ real parameters. In the following sections, the decoupling limit

defined in eqs. (12) will be used to build expansions, corresponding to either the SMEFT

or the HEFT. This can be more easily done if we introduce an auxiliary dimensionless

parameter ξ, which acts as the de facto expansion parameter. Then, assuming eq. (12a), we

implement the scaling v2/Λ2, cβ−α ∼ O(ξ) of eqs. (12b) and (12c) at the practical level (in

our codes) through:
1

Λ2
→ ξ

Λ2
, cβ−α → ξ cβ−α , (13)

while all the other scales and parameters are O(ξ0) and are left untouched.8 In this way, the

expansion will correspond to a series of positive powers of ξ. The trivial order — O(ξ0) —

implies the alignment limit, which is defined by cβ−α → 0 and corresponds to the scenario in

which the h couplings are exactly those of the SM. In this way, decoupling implies alignment.9

Several aspects are worth mentioning here. The first one is that eq. (10) is found if and

only if we have both Y2 ≫ v2 and perturbativity. That is, assuming eq. (10) or assuming

Y2 ≫ v2 and Zi/(4π) ≲ O(1) are just two equivalent ways to describe the same physical

scenario corresponding to the decoupling limit. Eqs. (12) are yet another equivalent way,

which specifies how the parameters of eq. (9) behave in that physical scenario.

This implies that the power-counting of the SMEFT and the HEFT matchings are going

to be equivalent. It is true that, as shall be seen in detail, the SMEFT performs the expansion

before SSB and the HEFT after it — such that the former uses the Lagrangian parameter

Y2 as an expansion parameter, whereas the latter uses physical masses mH ,mA,mH+ . Yet,

since those physical masses can be made large if and only if Y2 ≫ v2 and Zi/(4π) ≲ O(1),

the two expansions are the same, in the sense that they follow the same power-counting.

Given the set of independent parameters of eq. (9), that power-counting is organized by

powers of ξ, as defined in eq. (13).

8 Ref. [49] followed a similar procedure. One might wonder whether it would be possible to have alternatives

to eq. (13) for which β might also scale in a non-trivial way. Yet, by considering eqs. (A1b) and (A1g), it

is easy to conclude that any scaling of β would violate perturbativity.
9 The reverse is in general not true: it is possible to have alignment without decoupling [47, 50, 51]. An

EFT approach to the 2HDM in general does not work in this case [20].
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This leads to another aspect, related to the role of cβ−α. The special scaling of cβ−α in

eq. (12c), as well as the subsequent ξ power-counting introduced in eq. (13), both follow

from the choice of cβ−α as an independent parameter. If, instead of cβ−α, one of the Zi

were chosen as independent — say, Z6 — one would simply need to require Z6 to obey

Z6/(4π) ≲ O(1), in which case the expansion would simply be in inverse powers of Λ2.10

The two scenarios — the one in which cβ−α is independent, and the one in which Z6 is

independent — are perfectly equivalent. Note also that, if Z6 were independent, we would

find cβ−α = Z6 v
2/Y2+O(v4/Y 2

2 ) ∼ O(ξ1), so that the scaling of the cβ−α mixing in eq. (13)

would show up in a natural way.

Also relevant is an aspect concerning the mass states. As suggested above, the extreme

case of the decoupling limit — namely, Y2 → ∞ taken in a way consistent with perturbativity

— implies cβ−α → 0. This, in turn, implies hH
1 → h and hH

2 → −H by eq. (8). It follows

that hH
1 and hH

2 effectively correspond to mass states in the extreme decoupling. In the case

in which Y2 is very large but finite, there will be differences between hH
2 and the mass state

−H which are proportional to cβ−α ∼ O(v2/Λ2).

Finally, we have been discussing how eq. (10) can be obtained without spoiling pertur-

bativity. We should keep in mind, however, that the latter (perturbativity) is not restricted

to that equation. Put another way, there are issues concerning perturbativity which are

independent of the limit of heavy scalar masses. A simple example is provided by β; even

though this parameter is independent of eq. (10), its values can be such that perturbativity

is violated.11 Note that this feature is already present in the full 2HDM, so that it is not

specific to an EFT expansion. This also means that the expansion of eq. (13) does not

ensure that perturbativity will be obeyed order by order in ξ; it only ensures that eq. (10)

can be obtained without violating perturbativity.

10 Just as cβ−α ∼ O(v2/Λ2), the scaling Z6/(4π) ≲ O(1) would ensure not only perturbativity, but also

that mh would be fixed. This last aspect can be seen by considering eq. (A3a), which is equivalent to

eq. (11a), but with cβ−α replaced by Z6. It is clear that, as long as perturbativity is ensured (all Zi obeying

Zi/(4π) ≲ O(1)), the scenario of very large Y2 will imply the cancellation of Y2 in the expression (A3a).
11 For example, via the interactions of between h and fermions (cf. e.g. ref. [52]), or via Z2 and Z7 (cf.

eqs. (A1)). Finally, in some of the four types of 2HDM, β can also cause a delayed decoupling [47, 52, 53].
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IV. SMEFT

As referred to in the Introduction, the starting point of the SMEFT is the SM before

SSB (to which higher-dimensional operators are added). Therefore, the SMEFT matching

to the 2HDM must be done in such a way that the integration out of the heavy degrees of

freedom of the 2HDM happens before SSB. Yet, here we are faced with a problem: not all

the mass states of the 2HDM are defined before SSB. In fact, as seen above, the states hH
1

and hH
2 mix after SSB, and their mass matrix is diagonalized to yield the mass states h and

H. In that case, how can the heavy state H be integrated out before SSB, if it is not even

defined by then?

The answer has to do with the decoupling limit. We saw above that, in the extreme

decoupling limit (Y2 → ∞), hH
2 becomes a mass state. In that case, the doublet H2 of the

Higgs basis can be integrated out before SSB: on the one hand, the fact that H2 is a doublet

of SUL(2) means that the states contained in it can be integrated out as a whole (without

violating the symmetries of the theory before SSB). On the other hand, by eq. (7), all its

states become very heavy in that extreme decoupling scenario.

H2 is then integrated out at tree-level. This means a) assuming H2 can be expressed as an

expansion in inverse powers of Y2, b) deriving a truncated solution for H2 using equations of

motion (EoM) and c) plugging that solution back in the original Lagrangian. The resulting

Lagrangian will thus be itself an expansion in inverse powers of Y2.
12 This parameter is

identified with the squared UV scale Λ2, and the resulting EFT can be written in the format

of the SMEFT. This exercise has been performed up to O(1/Λ4) in ref. [29]; in terms of the

operators of dimension-6 and dimension-8 of the bases of refs. [54] and [55], respectively, the

result reads:

LSMEFT = LSM +
CH

Λ2
(H†H)3 +

CH8

Λ4
(H†H)4 +

C
(1)

H6

Λ4
(H†H)2 (DµH)† (DµH) + ... +O(1/Λ6),

(14)

where LSM is the SM Lagrangian, H is the Higgs doublet of the SMEFT expansion and the

12 Recall that we assumed the extreme decoupling scenario. Relaxing this assumption (i.e. taking Y2 to be

not so large) corresponds to considering higher powers in 1/Y2.
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ellipses represent terms with fermions.13 The expressions for the WCs read [29]:

CH

Λ2
=

Z2
6

Λ2
+

2

Λ4

(
Y3Z1Z6 − Y3Z345Z6 + Y1Z

2
6

)
, (15a)

CH8

Λ4
=

1

Λ4

(
2Z1Z

2
6 − Z345Z6

2
)
, (15b)

C
(1)

H6

Λ4
= −Z6

2

Λ4
. (15c)

We can rewrite these matching relations in terms of the parameters of eq. (9). To that

end, we use eqs. (A1) and, after assuming eq. (12a), we consider the scaling of eq. (13) and

expand up to O(ξ2). The result is:

CH

Λ2
= c2β−α (

√
2GF )

2
[
Λ2 − 4 (m2

h −∆m2
H)

]
, (16a)

CH8

Λ4
= 2 c2β−α (

√
2GF )

3
(
m2

h −∆m2
H

)
, (16b)

C
(1)

H6

Λ4
= −c2β−α (

√
2GF )

2, (16c)

where GF is the Fermi constant.14 The appearance of Λ in the numerator of the right-hand

side of eq. (16a) is a consequence of our choice of cβ−α as independent parameter. Note also

that there is no information about β or asymmetry in cβ−α (i.e. odd powers of cβ−α). Finally,

among the ∆m2 parameters introduced in eq. (12a), only ∆m2
H shows up, and always in the

form m2
h −∆m2

H .

V. HEFT

We saw in the Introduction that the HEFT considers the SM Higgs field h to be a gauge

singlet. This means that the HEFT matching to the 2HDM can only be accomplished if

the heavy degrees of freedom of the 2HDM are integrated out after SSB. Contrary to the

SMEFT approach, then, the HEFT matching to the 2HDM starts with physical states, i.e.

states with well defined masses, without mixing terms in the propagator. As a result, one can

directly integrate out the heavy mass states H, A and H±. Consistent with the discussion

13 Again, fermions are not relevant for our purposes. H is related to H1 by a normalization factor; cf. ref. [29]

for details.
14 Ref. [29] considered the scenario in which ∆mH = ∆mA = ∆mH+ = 0, which is stronger than what is

required by the decoupling limit of eqs. (12). We write the expressions in terms of GF instead of the vev,

since the relation between the two gets corrections in the SMEFT; see ref. [29] for details.
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of section III, however, we will show that such an operation cannot be done by considering

an expansion simply in inverse powers of mH , mA and mH+ . More than that, the scaling

of cβ−α must be taken into account, or else there will be no consistent decoupling, since

perturbativity is lost.

This danger can be illustrated by considering the cubic self-interaction of h. As with any

three-point function, this interaction is not affected by the integration out of the heavy states

at tree-level.15 Thus, the cubic self-interaction of h of the HEFT Lagrangian is obtained by

considering the same interaction in the 2HDM Lagrangian and simply applying the EFT

expansion. The Feynman rule for the cubic self-interaction of h in the 2HDM reads:

3i csc2(2β)

2v

{
sβ−α cos(4β)

[
− 3c4β−αm

2
H − 2c2β−αY2 +

(
3c4β−α + c2β−α + 1

)
m2

h

]
+c3β−α sin(4β)

[ (
1− 3c2β−α

)
m2

h +
(
3c2β−α − 2

)
m2

H + 2Y2

]
+sβ−α

[
2c2β−αY2 − c4β−αm

2
H +

(
c4β−α − c2β−α − 1

)
m2

h

]}
. (17)

with sβ−α =
√

1− c2β−α. From this expression, we realize that an EFT expansion that

considers simply inverse powers of mH , mA and mH+ is doomed to inconsistency. This is

because eq. (17) contains positive powers of those heavy masses, so that the final HEFT

Lagrangian can never be simply an expansion in inverse powers of those masses.16 Note

that this has physical consequences, since observables like WW → hh would suffer the

same inconsistency. On the other hand, an expansion according to the ξ-scaling in eqs. (12)

and (13) leads to a well-behaved cubic self-interaction of h.

The conclusion is then clear: the HEFT Lagrangian cannot be obtained from the 2HDM

simply by performing an expansion in inverse powers of the heavy masses. Decoupling and

15 The reason is that the solution of the EoM for a given heavy particle will always depend on terms which

contain at least two light fields (since there are no bilinear terms in the Lagrangian which depend on two

different fields, by definition of mass eigenstates). This means that, when replacing this heavy-particle

EoM solution in the original UV Lagrangian, the two-point functions containing the heavy field will yield

effective operators with four or more light fields. UV interaction terms with only one heavy field must

also contain at least another two light fields and, hence, the corresponding effective operator has at least

four light particles when the heavy scalar EoM solution is substituted. The same thing happens for UV

interaction terms with two or more heavy fields, which give place to low-energy operators with four or

more light fields for identical reasons [64].
16 This is also true for the quartic self-interaction of h. As discussed in Appendix B, the singlet model of

ref. [19] is very special, since the cubic light-Higgs interactions does not scale with the heavy mass.
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perturbativity in the UV theory require the consistent scaling in eqs. (12) and (13), which

leads to a well defined expansion. The heavy states H, A and H+ can then be integrated

out. As mentioned above, this operation cannot affect three-point functions, which are thus

trivially derived from the equivalent function in the UV model simply by applying eq. (12a)

and expanding according to eq. (13). By contrast, vertices with four particles or more receive

contributions from integrating out the heavy states.

It is to this procedure that we now turn. To that end, and as described in the Introduction,

we treat h and the ωa separately, such that the latter are embedded into a unitary matrix

U . The scalar doublets of the Higgs basis then take the form:17

H1 =
v + hH

1√
2

U(ω)

0

1

 , H2 = U(ω)

 H+

1√
2
(hH

2 + iA)

 . (18)

We choose the unitary gauge, where the Goldstone bosons are eliminated from the theory,

i.e. U = 1 (our results were checked in an arbitrary Rξ gauge). This has the advantage that

there are no interactions with more than four fields.18 Following ref. [19], we write the terms

of L2HDM involving scalars in such a way that we isolate the heavy scalars:

L2HDM ⊃ 1

2
(∂µH

a)2 − 1

2
(M2)abHaHb + J0 + Ja

1H
a

+Jab
2 HaHb + Jabc

3 HaHbHc + Jabcd
4 HaHbHcHd , (19)

where (M2)ab is a diagonal matrix, Ha = (H, A, H3, H4), with H± ≡ (H3 ∓ iH4)/
√
2, and

the Jk contain only light fields.19 The expressions for the Jk are given in Appendix A.

Each heavy scalar Ha is integrated out at tree-level by solving its EoM:

Ja
1 + (−∂2 −M2 + 2J2)

abHb + 3Jabc
3 HbHc + 4Jabcd

4 HbHcHd = 0 . (20)

17 The inclusion of the U matrix in the second doublet H2 removes the Goldstone bosons from the potential

in eq. (5b). This was also noted in Ref. [65], but a different parametrization was used to eliminate the

problem.
18 Alternative parameterizations of U are common, such as the spherical one ( U =

√
1− ωaωa/v2+iωaσa/v )

or the exponential one (U = exp{iωaσa/v}). In general, one would need to expand U up to the desired

order.
19 In particular, the part of the Lagrangian without heavy fields is encoded in J0. Note that the derivation

could also be done for H+ and H− (instead of H3 and H4), but the expressions would not be as symmetric

and simple as those presented here. The two bases are related by H3J
H3 +H4J

H4 = H+JH−
+H−JH+

,

with JH±
= (JH3 ∓ iJH4)/

√
2. Also note that the Lagrangian terms quadratic in Ha have been split in

the form: terms without light fields are provided by 1
2 (∂µH

a)2 − 1
2 (M

2)abHaHb; terms with light fields

have been placed in Jab
2 HaHb.
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As mentioned before, the auxiliary parameter ξ will act as the de facto parameter of the

expansion, as in the SMEFT case. This means that eq. (20) will be solved iteratively in

powers of ξ, so that the solution for the heavy fields will itself be given as a series in ξ. As can

be anticipated, even the lowest orders contain a long a list of terms. We present only those

which are relevant for the tree-level scattering processes we are interested in: WW → hh and

hh → hh.20 Other processes such as WW → WW depend solely on one EFT parameter, i.e

the a HEFT coupling that does not receive a modification from integrating out a heavy field

at lowest order in HEFT and is the same as in the 2HDM. This is in contrast to WW → hh

and hh → hh that involve corrections to b and d4, respectively. For this reason we will focus

on these processes for our comparison. 21 The heavy state A does not play any role in these

scatterings, so that it will be ignored in the following. We then have:

H =
∞∑
i=0

H(ξi), H+ =
∞∑
i=0

H+
(ξi)

, (21)

where the lowest orders are,

H(ξ0) = H+
(ξ0) = 0, (22a)

H(ξ1) = −3cβ−αh
2

2v
, (22b)

H+
(ξ1) = 0, (22c)

H(ξ2) =
2cβ−α

vΛ2
∆m2

Hh
2 +

2cβ−α

vΛ2
m2

WWµW
†µ +

3cβ−α

vΛ2

[
(∂µh∂µh) + h

(
∂2 h

)]
, (22d)

H+
(ξ2) = −icα−βMW

2vΛ2
[h (∂µW

µ) + 2Wµ (∂
µh)] , (22e)

H(ξ3) =
cβ−αh

2

4t2βvΛ
4

[
c2β−α

(
3t4β − 2t2β + 3

)
Λ4 − 3cβ−α

(
t2β − 1

)
tβΛ

22(2∆m2
H −m2

h)− 8∆m2
H

2
t2β

]
−7∆m2

Hcβ−α

Λ4v

[
(∂µh) (∂µh) + h

(
∂2h

)]
− 3cβ−α

Λ4v

[(
∂2h

) (
∂2h

)
+ h

(
∂2∂2h

)]
−6cβ−α

Λ4v
[(∂µh∂νh)(∂µh∂νh)+( ∂µh

)
(∂µ∂2h) + (∂νh) (∂

2∂νh)
]

−2cβ−αm
2
W

vΛ4

[
W †ν (∆m2

HWν + ∂2Wν

)
+ 2 (∂µW ν)

(
∂µW

†
ν

)
+Wν

(
∂2W †ν)] , (22f)

H+
(ξ3) = −imW cβ−α

vΛ4

[
h(∂2∂νWν) + (∂2h)(∂νWν)

]
20 Since the process ZZ → hh would allow us to find the same matching as WW → hh, and the comparison

between the 2HDM and the EFT yield similar results for both processes, we have chosen WW → hh to

assess the accuracy of the EFT fit.
21 The general solution for H and H+ (containing all terms up to O(ξ3), up to interactions with four

particles) will be provided as supporting material with this manuscript.
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+
icβ−αmW

vΛ4

[
h
(
∂2∂νWν

)
+ 2W ν

(
∂2∂νh

)]
− 4imW cβ−α

vΛ4
(∂µ∂νh) (∂µWν)

−
icβ−α∆m2

H+
mW

vΛ4
[h (∂νWν) + 2W ν (∂νh)] . (22g)

Note that the first non-vanishing solution starts at O(ξ) for H, and at O(ξ2) for H+. As a

consequence, the integration out of H and H+ will contribute to WW → hh at order O(ξ2)

and O(ξ3), respectively. Finally, contrary to what was done in the SMEFT, we performed

the expansion in the HEFT up to O(ξ3). We justify this difference of truncations between

the SMEFT and the HEFT matchings at the end of this section.

By substituting the solutions for the heavy fields of eq. (21) in L2HDM, we obtain the

effective HEFT Lagrangian.22 Note that, for the two-to-two tree-level scatterings discussed

in this article (WW → hh and hh → hh), only the first line in eq. (19) is required — at

any order in ξ. Since the Ha EoM solutions contain at least two light fields, the effective

operators in the second line of eq. (19) will contain five or more light fields. Comparing the

effective HEFT Lagrangian with that of eqs. (2) and (3) results in the following matching

equations:

∆a2 ≡ a2 − 1 = −c2β−α , (23a)

∆b ≡ b − 1 = − 3c2β−α + 4c2β−α

∆m2
H

Λ2
+ O(ξ4) , (23b)

∆d3 ≡ d3 − 1 = −2c2β−α

Λ2

m2
h

+
1

2
c2β−α (23c)

+c3β−α

[
− cot(2β)

(
1− 2∆m2

H

m2
h

)
+ 2cβ−α cot

2(2β)
Λ2

m2
h

]
+O(ξ4) ,

∆d4 ≡ d4 − 1 = −12c2β−α

Λ2

m2
h

+ c2β−α

(
16∆m2

H

m2
h

− 11

)
(23d)

+c2β−α

[
2c2β−α

Λ2

m2
h

(
22 cot2(2β)− 17

)
− 22cβ−α cot(2β)

(
1− 2∆m2

H

m2
h

)
+16

∆m2
H

Λ2

(
2−∆m2

H

m2
h

)]
+O(ξ4) .

In order to more easily compare with the SM, we introduced the quantities with ∆; from

eqs. (12) and (13), it is easy to see that the SM limit (∆a2 = ∆b = ∆d3 = ∆d4 = 0) is

22 This contains in general terms that cannot be written in the form of eqs. (2) and (3), since they would

require terms in the HEFT Lagrangian with additional derivatives. In the expressions for the HEFT

matching in this paper, we will not be presenting such terms.
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recovered at O(ξ0). For both a2 and b, the first deviation from the SM occurs at O(ξ2);

this happens in such a way that a2 has no additional contributions. Note also that the β

dependence appears for the first time at O(ξ3) for ∆d3 and ∆d4 (second lines of eqs. (23c)

and (23d), respectively). Finally, the factors cot(2β) = (1− tan2 β)/(2 tan β) become large

for β ∼ 0 or β ∼ π/2 (i.e., when tan β → 0 or ∞, respectively), and vanish for θ = π/4 (i.e.,

when tan β = 1).

We can compare the analytical results obtained in this section with the ones from SMEFT.

We start by realizing that, up to O(ξ2), and just as in the SMEFT matching, there is no

information about β or odd powers in cβ−α, and the only ∆m2 parameter present is ∆m2
H .

We also observe that the relation found between eqs. (23a) and (23b), ∆b = 3∆a2+O(ξ3), is

not compatible with the usual dimension-6 SMEFT constraint ∆b = 2∆a2 [11]. That is, the

HEFT matching to the 2HDM cannot be described by means of a SMEFT Lagrangian that

starts with dimension-6 operators. On the other hand, if one assumes that the contributions

from the dimension-6 SMEFT operators to a and b vanish (as is indeed the case in the

SMEFT matching to the 2HDM, see ref. [29]), one obtains a dimension-8 constraint, which

is precisely ∆b = 3∆a2 [11, 66]. Regarding the Higgs potential term, a SMEFT Lagrangian

starting at dimension–6 also requires the relation ∆d4 = 3∆d23−2∆a2/3 between the HEFT

couplings [11, 12], where the latter ∆a2 comes from a finite Higgs field redefinition. It is

easy to observe that the values of ∆d3 and ∆d4 in the 2HDM obey this relation at O(ξ), as

∆a = 0 at that order.

We end this section with a remark about the difficulty of implementation of the two EFT

approaches to the 2HDM. The HEFT approach is considerably simpler to implement than

the SMEFT one for the processes considered here. First of all, the higher orders terms in

SMEFT in general contain the SM Higgs doublet, which contains the SM vev. This means

that two-point functions are in general affected; in particular, kinetic terms and the relations

between masses and Lagrangian parameters need to be redefined. In the HEFT approach,

this never happens, since the integration out of the heavy states only affects four-point

functions or higher, as discussed above. This is related to a second advantage, which is that

the three-point functions in the HEFT approach at tree-level are trivially obtained from

the corresponding functions in the 2HDM, which is not the case in the SMEFT approach.

Finally, for the processes considered here, the HEFT approach at tree-level does not require

the formal procedure of integrating out heavy states. The same results can be obtained
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simply by considering the amplitudes of the 2HDM contributing to the process at stake, and

applying the expansion of eqs. (12) and (13) directly to them. All of this allows us to easily

derive the O(ξ3) results in the HEFT expansion (Appendix A). The derivation of the same

order results in the SMEFT (which involve dimension-10 operators) is beyond the scope of

this work.

VI. RESULTS

We now turn to our numerical results. We assume that H, A and H+ are all degenerate

and we define the quantity ∆Λ, such that:23

mH = mA = mH+ = Λ+∆Λ. (24)

Comparing with eqs. (11c) and (11d), and recalling that Y2 = Λ2 (eq. (12a)), we realize that

∆Λ measures the amount of mass in mA and mH+ which is not generated by the Lagrangian

parameter Y2. In other words, ∆Λ = 0 implies that mA and mH+ are entirely generated by

Y2, whereas larger and larger values of ∆Λ imply larger and larger contributions from the

vev.24 Eq. (24) implies that the quantities defined in eq. (12a) obey:

∆m2
H = ∆m2

A = ∆m2
H+ = 2Λ∆Λ + (∆Λ)2. (25)

Accordingly, the new parameter scales as ∆Λ ∼ O(v2/Λ) ∼ O(ξ1/2).

Naively, ∆Λ is expected to control the increase of accuracy of the HEFT matching over

the SMEFT one. The reason is that the heavy mass parameter in the SMEFT matching

is Y2 (which is set equal to Λ2), whereas in the HEFT the heavy mass parameters are the

heavy masses (which are given by eq. (24)). The HEFT thus contains information about

∆Λ, so that, for large values of ∆Λ, the agreement of the HEFT matching to the 2HDM

is expected to be better than that of the SMEFT matching. A similar reasoning motivated

the v-improved matching proposed in ref. [17].

However, two aspects should not be neglected. First, the numerators of the expressions

of the SMEFT matching to the 2HDM in general depend on the masses. Therefore, they

23 For the processes considered here, A does not play any role, so that the results are independent of mA.
24 Negative values of ∆Λ are in principle also possible, but they are generally ruled out by theoretical

constraints.
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will in general depend on ∆Λ (and they indeed do: see eqs. (16)). Second, even if the HEFT

heavy mass parameters are the heavy masses of the 2HDM, these are constrained to follow

eqs. (12). It follows that the scaling ∆Λ ∼ O(v2/Λ) implies a suppressed dependence of the

HEFT matching on ∆Λ. All in all, then, it is to be seen if a correlation exists between ∆Λ

and an increase in accuracy of the HEFT matching over the SMEFT one.

For the numerical results that follow, we require our 2HDM results to comply with the

theoretical constraints of perturbative unitarity and boundedness from below [67–70], as

well as electroweak precision measurements via the oblique parameters S, T and U [32]. We

start by ascertaining the relevance of these contraints on the parameter space. This can be

seen in fig. 1, where the maximum value of cβ−α allowed (cmax
β−α) is shown versus ∆Λ, for

50 100 150 200
0.00

0.05

0.10

0.15

FIG. 1: Maximum value of cβ−α allowed by the theoretical constraints of the 2HDM, as a function

of ∆Λ. For each curve, the maximum value of cβ−α is determined by boundedness from below in

the region where the curve has positive slope, and by perturbative unitarity in the region where

the curve has negative slope.

different values of Λ and tan β. Each curve shows an abrupt inflexion point; in all cases, the

values of ∆Λ below that point are such that cmax
β−α is determined by boundedness from below,

whereas those above it have cmax
β−α determined by perturbative unitarity.25 The figure also

shows that the window of allowed values of cβ−α becomes narrower with both increasing Λ

25 Given the assumed degeneracy of H, A and H+, the oblique parameters play no relevant role in our

analyses. Boundedness from below requires that none of the elements of specific combinations of quartic

parameters of the potential (usually in the original basis of the doublets Φ1,Φ2) take negative values

(see e.g. ref. [67]). For the values of tanβ considered in the figure, the most important element is λ2.

When written in terms of the parameters involved in the plot, and when expanded to first order in cβ−α,

this quartic parameter is of the form c1 − c2 cβ−α. Here, c1 and c2 are real numbers which depend on
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and increasing tan β. We checked, in particular, that scenarios with tan β ∼ 1 and Λ ≫ 1

TeV have an extremely narrow allowed window, as do also scenarios with Λ ∼ 1 TeV and

tan β ≫ 1. Finally, for the (large) values of Λ shown, the largest value of cmax
β−α allowed is

around 0.15. The result is that one is restricted to be very close to the exact alignment limit

cβ−α = 0. Still, interesting results can be found inside that narrow window.

The 2HDM is limited by numerous experimental results, of which the most stringent are

Higgs coupling measurements, b meson decays and searches for heavy Higgs bosons. These

limits depend on the couplings of the fermions to the Higgs doublets, and we assume that

the couplings respect a Z2 symmetry. The limits from Higgs couplings typically require that

cβ−α be close to the alignment limit, and all of the values considered below are currently

allowed [71, 72]. The charged Higgs boson that is present in the 2HDM contributes to the

decay b → sγ and current experimental results require that tan β > 1.2 [73]. Additionally,

ATLAS and CMS have searched for heavy neutral scalars with the couplings of the 2HDM

and for tan β > 1.2, the limit is quite weak, mH > 400 GeV [74, 75]. In the following, we

shall take tan β = 1.2 since, from figure 1, this gives the largest theoretically allowed region

that is consistent with experiment. The results that follow were obtained independently via

FeynMaster [76, 77] (and its accompanying software [78–83]) and FeynArts [84].

Before considering our numerical analysis of the SMEFT and the HEFT matchings to

the 2HDM, we highlight that both approaches end up using the same expansion (in powers

of ξ, defined in eq. (13)), since the decoupling limit of eq. (12) needs to be obeyed by both in

order to have a weakly interacting perturbative 2HDM. Hence, even if they are structurally

different — the SMEFT matching complying with the symmetries of the SM before SSB, the

∆Λ and which, for the values of ∆Λ involved, are both positive. The requirement that c1 − c2 cβ−α is

non-negative thus imposes an upper limit on the value of cβ−α. Moreover, c1 turns out to grow with ∆Λ

twice as quickly as c2, which explains the linear character of the positive-slope branch of the curves. As

for the negative-slope branch, it is determined by perturbative unitarity, which requires all the elements

of another combination of quartic parameters of the potential to be smaller than a certain limit. For the

values at stake here, the decisive element is | 3 (λ1+λ2)+
√

9 (λ1−λ2)
2+4 (2λ3+λ4)

2

2 | ≤ 8π. Just as before, we

can write it in terms of the parameters involved in the plot and expand it to second order in cβ−α, in which

case it acquires the form c3 + c4 c
2
β−α ≤ 8π. Just as c1 and c2, also c3 and c4 are real positive numbers

(in the range of values at stake), such that c4 grows with ∆Λ. This happens in such a way that, from a

certain value of ∆Λ, the maximum allowed value of cβ−α is no longer determined by boundedness from

below, but rather from perturbative unitarity. The inflexion point in each curve (where the negative-slope

and the positive-slope unite) is thus a non-trivial combination of these two theoretical constraints.
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HEFT one with those after SSB — some of their results are very similar. For example, both

the three-point tree-level interactions between h and fermions and between h and gauge

bosons are exactly the same in the two effective Lagrangians at O(ξ2). This implies, in

particular, that the fits to global Higgs signal strengths performed in ref. [27] will be the

same in the SMEFT and in the HEFT matchings at that order.26

It turns out that the tree-level scatterings WW → hh and hh → hh are also identical

at O(ξ2). This result does not appear obvious to us, since the individual Feynman rules

contributing to the processes are different at O(ξ2). Specifically, the h3 coupling — which

contributes to bothWW → hh and hh → hh— involves derivatives in the SMEFT matching

(recall eq. (14)), whereas in the HEFT matching it does not (as can be seen by applying

eqs. (12) and to eq. (13) to eq. (14)). But the fact that the local 4-point interactions (WWhh

in WW → hh, and h4 in hh → hh) are also different exactly compensates for the difference

in h3 to O(ξ2).

Note that this conclusion holds even before the assumption of degenerate heavy masses,

eq. (24). That it holds in the case of degenerate heavy masses implies that it holds for all

∆Λ. In other words, the parameter ∆Λ is irrelevant to compare the SMEFT and the HEFT

matchings in WW → hh and hh → hh at tree-level at O(ξ2), since the two approaches

are analytically identical. In the following, we refer to the two identical matchings at O(ξ2)

simply as the EFT matching, and we investigate how accurately it describes the 2HDM

results.

We start by illustrating the case WW → hh, depicted in figure 2. The plot shows the

relative differential cross section between the 2HDM and the EFT matching at O(ξ2), for

different values of Λ and ∆Λ, and for a center-of-mass energy
√
s = 260GeV and a scattering

angle θ0 = π/8.27 The plot only shows positive values of cβ−α, and each curve is shown only

up to the value of cβ−α where the theoretical constraints start being violated (cf. figure 1). It

is manifest that the EFT matching reproduces quite well the 2HDM, with relative differences

smaller than 1%.

26 We refer to the fits which do not include the effects of the Higgs trilinear coupling, fig. 6 of ref. [27]. Note

that even one-loop processes such as gg → h or h → γγ are the same in both EFT approaches (at O(ξ2)).
27 The general features of the plot are not sensitive to the specific values of

√
s and θ0. Moreover, the

expressions for dσWW→hh
HEFT,O(ξ2) and dσWW→hh

SMEFT,O(ξ2) are consistently of O(ξ2), in the sense that higher order

effects resulting from squaring the amplitude were excluded.
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FIG. 2: Relative difference between the differential tree-level cross-sections for WW → hh in the

2HDM and in the EFT matching to the 2HDM at O(ξ2) with dσ ≡ dσ
dθ |θ=θ0 . 4 pairs of values

of Λ and ∆Λ are considered, according to the labels. For each curve, only the range of (positive

values of) cβ−α allowed by the theoretical constraints is shown. All results assume a center-of-mass

energy
√
s = 260GeV, a scattering angle θ0 = π/8 and tanβ = 1.2.

This is to be contrasted to what is shown in figure 3, which considers the same as in

figure 2, but now for hh → hh. The EFT matching no longer faithfully reproduces the 2HDM

result, allowing differences larger than 40% for Λ = 750 GeV, ∆Λ = 125 GeV, cβ−α ∼ 0.08.

These large values demonstrate that, in the region of parameter space considered, O(ξ2) is

not enough in the EFT expansion. This means that, to accurately reproduce the 2HDM

result, one would need a matching to dimension-10 operators in SMEFT, and to operators

beyond the leading order in the derivative expansion in HEFT.

Figure 4 displays again WW → hh and hh → hh, but with three main differences: first,

it shows the absolute values of the differential cross-sections; second, it includes negative

values of cβ−α; finally, it separately shows the different orders in the HEFT expansion, up

to O(ξ3).28 Several aspects are worth mentioning here. First, we stress that the plots show

28 For the values of tβ , Λ and ∆Λ considered, some values of cβ−α more negative than the ones shown in

the plots are still allowed by theoretical constraints. Moreover, even if we are not showing all the terms

O(ξ3) in eqs. (22), we are including them in these plots. Finally, the O(ξ1) curve yields negative values

for dσhh→hh for |cβ−α| > 0.07. These are unphysical (and thus not shown), and result from neglecting
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FIG. 3: The same as in figure 2, but for hh → hh.
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FIG. 4: Left: differential cross section for WW → hh at tree-level, both for the 2HDM (black), as

well as for three different truncations of the HEFT matching (the black and the red are behind the

beige). Right: the same, but for hh → hh. Both panels take
√
s = 260 GeV, θ0 = π/8,Λ = 750

GeV, ∆Λ = 125 GeV and tanβ = 1.2. The region of values of cβ−α shown is allowed by the

theoretical constraints.

the HEFT matching, which we performed up to O(ξ3), but which we are only assured of

being identical to the SMEFT matching up to O(ξ2). Then, the right panel shows that the

2HDM result is slightly asymmetric in cβ−α, even though the EFT matchings at O(ξ2) do

the higher order terms when taking the square of the amplitude.
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not contain this information, as discussed above.29

Concerning the different truncations, the right plot of figure 4 illustrates that, while the

lowest truncation in enough to reproduce the 2HDM for values of cβ−α very close to zero, the

O(ξ3) truncation is clearly the most appropriate one for the whole range of cβ−α shown. On

the other hand, even that truncation is far from an exact reproduction of the 2HDM result,

which indicates that the next order would be relevant. In other words, the convergence

of the EFT expansion is quite slow for hh → hh for larger values of cβ−α. This is to be

contrasted with the left panel, which shows the equivalent plot for WW → hh. There, a

faithful reproduction of the 2HDM results is obtained immediately at O(ξ2), in which case

higher orders are not needed. Nevertheless, both panels also show that, again for larger

values of cβ−α, the O(ξ1) truncation clearly fails to reproduce the UV model.

In figure 5, we investigate the scenario in which the decoupling is lost. These plots are

equivalent to those of figure 4, but with Λ = ∆Λ = 300 GeV. Note that, even if this means
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FIG. 5: The same as in figure 4, but for Λ = ∆Λ = 300 GeV (on the left plot, the blue is behind

the red). As before, the region of values of cβ−α shown is allowed by the theoretical constraints.

mH = mA = mH+ = 600 GeV, the choice Λ = 300 GeV is a blatant violation of the

assumptions of eq. (12). Indeed, both plots of figure 5 clearly show that the EFT is no

longer valid according to the expansion of eqs. (12) and (13): the different orders do not

29 As we also noted, the EFT matching at O(ξ2) does not have information about tanβ. This suggests that

the two approaches will poorly reproduce the 2HDM whenever the latter shows a strong dependence on

that parameter. On the other hand, and as discussed in the context of figure 1, a scenario with large Λ

and tanβ significantly different from 1 will lead to the alignment limit cβ−α, where the EFT matching

coincides with the 2HDM.
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improve the convergence to the 2HDM results. We verified that the same conclusion holds

for even smaller values of Λ.

VII. CONCLUSIONS

In this work, we presented two EFT matchings to the 2HDM: the SMEFT and the

HEFT. We began with the 2HDM as our UV complete theory and imposed decoupling and

perturbativity on the model. This implies that in the large mass limit of the heavy Higgs

masses, the mixing angle cβ−α must obey the scaling cβ−α ∼ ξ, where ξ parameterizes the

approach to the alignment limit, cβ−α → 0. We organized our studies of the SMEFT and

HEFT matching in terms of an expansion in powers of ξ.

We discussed the matching of the HEFT to the 2HDM at O(ξ2) (the matching of the

SMEFT to that order was discussed in a previous paper, [29]) and used the unitary gauge to

simplify the results, which were checked in an arbitrary Rξ gauge. The matching equations

for the parameters of the HEFT Lagrangian relevant for the processes discussed in this paper

were given analytically.

We found that the SMEFT and the HEFT matchings to the 2HDM were identical to

O(ξ2) when the UV theory is required to obey decoupling and perturbativity. This holds

for the fits to global Higgs signal strength, as well as the tree-level scatterings WW → hh

and hh → hh. We investigated how accurately the EFT matching at O(ξ2) reproduces

the 2HDM results in both these scatterings. In WW → hh, the EFT matching accurately

reproduces the 2HDM result, with differences smaller than the percent level. In the case of

hh → hh, by contrast, it fails to properly reproduce the 2HDM result in some regions of

the parameter space. In this case, therefore, even the second order of the SMEFT (HEFT)

expansion is not enough, and one should in principle consider dimension-10 operators (next-

to-leading order operators in p2). We further showed that the convergence to the 2HDM

could be improved if O(ξ3) effects are included in the HEFT. Finally, we probed the case

without decoupling, and concluded that the EFT expansion in powers of ξ does not converge

in that case.

This paper is a first exploration of the matchings of a UV model to both the SMEFT

and the HEFT in a way consistent with decoupling and perturbativity. Several directions

of future work are open. It would be particularly interesting to ascertain if the similarities
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between the two approaches found here will also hold for higher orders in the EFT expansion,

as well for other processes. UV models other than the 2HDM could also be explored, with

the purpose of ascertaining the consequences of pertubativity for the matchings in those

cases. Also interesting would be the study of loops, and their impact in the comparison

between the SMEFT and the HEFT matchings to a UV model [92].

Note added: as this paper was being finished, ref. [93] was made publicly available. It

focuses on the SMEFT matching to the 2HDM and proposes a basis alternative to the Higgs

basis. That reference is an interesting complement to our paper.
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Appendix A: Further details on the 2HDM

The quartic couplings of eq. (5b) can be written in terms of the parameters of eq. (9) as:

Z1 =

(
1− c2β−α

)
m2

h + c2β−αm
2
H

v2
, (A1a)

Z2 =
1

2 v2 t3β

[
c2β−α tβ

(
3t4β − 8t2β + 3

) (
m2

h −m2
H

)
+
√

1− c2β−α cβ−α

(
t6β − 7t4β + 7t2β

−1
) (

m2
h −m2

H

)
−m2

h

(
t5β − 4t3β + tβ

)
+ 2tβ

(
t2β − 1

)2 (
m2

H − Y2

) ]
, (A1b)

Z3 =
2

v2
(
m2

H± − Y2

)
, (A1c)

Z4 =
c2β−α (m

2
h −m2

H) +m2
A +m2

H − 2m2
H±

v2
, (A1d)
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Z5 =
c2β−α (m

2
h −m2

H)−m2
A +m2

H

v2
, (A1e)

Z6 =
cβ−α

√
1− c2β−α (m2

h −m2
H)

v2
, (A1f)

Z7 =
1

2 v2 t2β

[
− 3c2β−αtβ

(
t2β − 1

) (
m2

h −m2
H

)
−
√

1− c2β−αcβ−α

(
t4β − 4t2β + 1

) (
m2

h −m2
H

)
+tβ

(
t2β − 1

) (
m2

h − 2m2
H + 2Y2

) ]
. (A1g)

As mentioned in section II, the Z2 symmetry implies that not all the Z’s are independent.

The two dependence relations read [20]:

Z2 − Z1 =
1− 2s2β
sβcβ

(Z6 + Z7) , (A2a)

Z345 − Z1 =
1− 2s2β
sβcβ

Z6 −
2sβcβ
1− 2s2β

(Z6 − Z7) . (A2b)

Eqs. (11a) and (11b) can be rewritten by replacing the dependence on cβ−α by Zi parameters

as:

m2
h =

2Y2 + v2(2Z1 + Z345)−
√[

2Y2 + v2(Z345 − 2Z1)
]2

+ 16v4Z2
6

4
, (A3a)

m2
H =

2Y2 + v2(2Z1 + Z345) +
√[

2Y2 + v2(Z345 − 2Z1)
]2

+ 16v4Z2
6

4
. (A3b)

In what follows, we present futher details concerning the integration out of H, A and H+

in the HEFT. As we saw in section V, the use of the unitary gauge implies a maximum of

four fields in each term of the 2HDM Lagrangian. Then, from eq. (19), it is clear that J0,

J1, J2, J3, and J4 will contain only light fields with a maximum number of four, three, two,

one, and zero, respectively. For the tree-level scattering processes WW → hh and hh → hh,

only the following J ’s are need: J0 (up to four light fields) and Ja
1 , with a = H,H+ (up to

two light fields). They read:

J0 =
1

2
∂µ(h)

2 − 1

2
h2m2

h +

(
1

2
m2

ZZ
µZµ +m2

WW µW †
µ

) (
1 +

2sβ−αh

v
+

h2

v2

)
+

1

4vt2β
h3

{(
t4β − 4t2β + 1

)
c4β−α

(
m2

h −m2
H

)
sβ−α + 3tβ

(
t2β − 1

)
c5β−α

(
m2

h −m2
H

)
−tβ

(
t2β − 1

)
c3β−α

(
m2

h − 2m2
H + 2Y2

)
− 2t2βc

2
β−α

(
m2

h − 2Y2

)
sβ−α − 2m2

ht
2
βsβ−α

}
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− 1

16v2t3β
h4

{[
t6β − 19t4β + 19t2β − 1

]
c5β−α

(
m2

H −m2
h

)
sβ−α

−4t2β
(
t2β
)
c3β−αsβ−α

(
m2

h − 2m2
H + 2Y2

)
+ tβ

(
7t4β − 26t2β + 7

)
c6β−α

(
m2

h −m2
H

)
+tβc

4
β−α

[
m2

h

(
−5t4β + 18t2β − 5

)
+ 6m2

H

(
t4β − 4t2β + 1

)
− 2Y2

(
t4β − 6t2β + 1

) ]
+2t3βc

2
β−α

(
m2

h +m2
H − 4Y2

)
+ 2m2

ht
3
β

}
, (A4)

JH
1 =

2cβ−α

v

(
m2

WW µW †
µ +

1

2
m2

ZZ
µZµ

)
+
cβ−α

4vt2β
h2

{
9tβ

(
t2β − 1

)
c3β−α

(
m2

h −m2
H

)
sβ−α

−3tβ
(
t2β − 1

)
cβ−αsβ−α

(
m2

h − 2m2
H + 2Y2

)
+ 3

(
t4β − 4t2β + 1

)
c4β−α

(
m2

h −m2
H

)
+c2β−α

[
m2

h

(
−3t4β + 8t2β − 3

)
+m2

H

(
3t4β − 14t2β + 3

)
+ 12Y2t

2
β

]
+ 2t2β

(
m2

H − 4Y2

)}
+O(h3) , (A5)

JH+

1 =
(
JH−

1

)†
=

imW cβ−α

v

[
h (∂µWµ) + 2W µ (∂µh)

]
, (A6)

where we express e, cW and sW by means of g = e/sW = 2mW/v and cW = mW/mZ .

The case a = A, with JA
1 = −cβ−α [h (∂

µZµ) + 2Zµ (∂µh)] (m
2
W +m2

Zs
2
W ) /(vmZ) would

contribute to the ZZ → hh process that is not studied here.

Appendix B: A note on the Z2 symmetric singlet extension of the SM

We briefly review the Z2 symmetric real singlet extension of the SM discussed in ref. [19]

in the context of the HEFT matching. Our purpose is to illustrate the crucial differences

between that model and the 2HDM. The potential in terms of a real singlet, S, and the

usual SUL(2) doublet, ϕ, is

V = −µ2
1

2
ϕ†ϕ− µ2

2

2
S2 +

λ1

4
(ϕ†ϕ)2 +

λ2

4
S4 +

λ3

2
ϕ†ϕS2 . (B1)

After SSB, ϕ and S get vevs v/
√
2 and vs/

√
2, respectively. The physical states h and H

have masses m and M , respectively (m is assumed to be light and M heavy). These are

determined by minimizing the potential and diagonalizing the mass matrix with the mixing

angle χ. This happens such that the Feynman rule for the cubic self-interaction of h reads:

i
m2

2vvs
(s3χ v − c3χ vs). (B2)

Therefore, in stark contrast with what happens in the 2HDM (recall eq. (17)), the cubic

self-interaction of h in the model of ref. [19] does not scale with positive powers of heavy
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masses (in this case, just M). This allows the authors to perform a HEFT matching as an

expansion in inverse powers of the heavy mass M . On the other hand, such an expansion

does not comply with decoupling and perturbativity.30 To see this, note that the quartic

couplings of the potential can be written in terms of the masses, the vevs and the mixing

angle as:

λ1 =
2

v2

[
M2s2χ−m2(s2χ−1)

]
, λ2 =

2

v2s

[
m2s2χ−M2(s2χ−1)

]
, λ3 =

2 cχ sχ
v vs

(M2−m2). (B3)

This clearly shows that, if M is taken to be very large and no other assumption is made,

perturbativity is violated. As a consequence, even if no inconsistency is found in the cubic

self-interaction of h, an expansion that simply assumes M to be very large and uses 1/M as

an expansion parameter does not comply with perturbativity. Such compliance thus requires

a different expansion, with more assumptions — specifically, assumptions about vs and χ.

Along the lines of eq. (13), the scalings 1/M2 ∼ O(ξ), 1/v2s ∼ O(ξ) and s2χ ∼ O(ξ) would

lead to well-behaved quartic couplings.
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