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Charm content of the proton: An analytic calculation
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According to general understanding, the proton as one of the main ingredients of the nucleus is composed

of one down and two up quarks bound together by gluons, described by Quantum Chromodynamics (QCD). In

this view, heavy quarks do not contribute to the primary wave function of the proton. Heavy quarks arise in

the proton perturbatively by gluon splitting and the probability gradually increases as Q2 increases (extrinsic

heavy quarks). In addition, the existence of non-perturbative intrinsic charm quarks in the proton has also

been predicted by QCD. In this picture, the heavy quarks also exist in the proton’s wave function. In fact,

the wave function has a five-quark structure |uudcc̄〉 in addition to the three-quark bound state |uud〉. So far,

many studies have been done to confirm or reject this additional component. One of the recent studies has

been done by the NNPDF collaboration. They established the existence of an intrinsic charm component at

the 3-standard-deviation level in the proton from the structure function measurements. Most of the studies

performed to calculate the contribution of the intrinsic charm so far have been based on the global analyses of

the experimental data. In this article, for the first time we directly calculate this contribution by an analytic

method. We estimate a xcc̄ = (1.36 ± 0.67)% contribution for the |uudcc̄〉 component of the proton.

Introduction The existence of a non-perturbative intrin-

sic charm quark component in the nucleon plays an increas-

ingly important role in hadron physics. Although the struc-

ture of the proton is known in the form of a three-quark bound

state, QCD predicts the existence of a non-perturbative intrin-

sic heavy charm quark contribution to the fundamental struc-

ture of the proton. A Fock states of the proton’s wave func-

tion with a five-quark structure |uudcc̄〉 was proposed for the

first time by Brodsky, Hoyer, Peterson, and Sakai (BHPS) in

Refs. [1, 2] to explain the large cross-section measured for

the forward open charm production in pp collisions at the en-

ergies of the Intersecting Storage Rings (ISR) at CERN [3–

6]. According to the BHPS model, charm quarks in the nu-

cleon could be either extrinsic or intrinsic. Perturbative ex-

trinsic charm quarks arise in the proton where the gluon splits

into charm-anti-charm pairs in the DGLAP Q2 evolution and

are produced more and more when the Q2 scale increases.

On the other hand, non-perturbative intrinsic charm quarks

emerge through the fluctuations of the nucleon state to the

five-quark or virtual meson-baryon states. In recent years, in-

trinsic charm has been an interesting subject for research from

the theoretical, phenomenological, and experimental points of

view [7–13].

In addition to the BHPS model, there have also been some

other models to explain the intrinsic charm distribution inside

the proton. For instance, in the meson cloud model (MCM)

which is more dynamical compared to the BHPS, the nucleon

can fluctuate to the virtual states composed by a charmed

baryon plus a charmed meson [14, 15]. This picture can also

be extended to the intrinsic strange content of the nucleon

[16]. The main difference between the BHPS and MCM mod-

els is that the charm and anti-charm distributions are different
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in MCM [17], while they are the same in the BHPS. The scalar

five-quark model is another approach which was presented by

Pumplin [18]. In this approach, the distribution for the state

|uudcc̄〉 can be derived from Feynman rules (see [18, 19] for

review of these models).

Although QCD effectively describes the shape of the in-

trinsic charm distribution, it has nothing to say quantitatively

about the probability of finding the nucleon in the configura-

tion |uudcc̄〉. However, the experiment can shed light on this

issue. From the historical point of view, trials to determine the

probability of the intrinsic charm content of the proton were

started in 1983 when people were motivated to use the BHPS

model to explain the data of the European Muon Collabora-

tion (EMC) [20–22]. Although these first analyses were not

global, they indicated that an intrinsic charm component with

probability (0.86 ± 0.6)% can exist in the nucleon. The first

global analyses of Parton Distribution Functions (PDFs) con-

sidering an intrinsic charm component for the nucleon was

performed by the CTEQ collaboration. The aim was also to

determine the probability of finding intrinsic charm state in the

proton [23–25]. Utilizing a wide range of the hard-scattering

experimental data, they demonstrated that the charm content

can be 2-3 times larger than the value predicted by the BHPS

(1%), while this probability was considered to be about 0.3%
by the MSTW group [26]. In 2014, the CTEQ collaboration

followed their previous works and found a probability of 2%
for the intrinsic charm considering the BHPS model [25]. Af-

ter that, a global analyses was done by Jimenez-Delgado et

al [27] in which, to show how big the intrinsic charm com-

ponent could be, they used looser kinematic cuts to include

low-Q and high-x data. Their prediction was that the intrinsic

charm contribution in the proton is about 0.5%. Finally, in the

most recent global analyses that has been performed by the

NNPDF collaboration [28], the intrinsic charm contribution

in the flavor content of the proton at the 3-standard-deviation

level is estimated to be about (0.62± 0.28)%.

In addition to these global analyses, there have been some
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studies to restrict the upper limit on the intrinsic charm con-

tent. For instance, an upper limit on the intrinsic charm con-

tent of the proton, using ATLAS data on measurements of dif-

ferential cross sections of isolated prompt photons produced

in association with a c-jet in pp collision, is set in [29] as

1.93%. According to [30], using the ratio of ΛQCD to the

difference in the energies of the pentaquark and proton, the

upper bound of the state uudcc̄ is about 1%.

The existence of the intrinsic charm inside the proton has

remarkable and growing experimental support. Several pre-

vious and new experiments have been or will be conducted

to look for evidences of the intrinsic charm. One of the re-

cent is related to the LHCb data on Z+c-jets over Z+jets at

forward rapidity [31]. The data can be described very well af-

ter including a 1% intrinsic charm contribution in the proton.

Searching for intrinsic charm is also an interesting subject at

future experiments like AFTER@LHC [32–34] and ongoing

ones. The AFTER@LHC experiment is a more suitable lab-

oratory for studying the properties of doubly heavy baryons

and it will be interesting to investigate how and to what extent

the intrinsic charm affects the results.

The main goal of this article is to directly calculate, for

the first time, the charm component of proton in a five-quark

|uudcc̄〉 structure analytically using the two-point version of

the QCD Sum Rules (QCDSR). The remainder of the paper is

organized as follows: In the next part we describe the formal-

ism to calculate the proton mass via the two-point QCDSR.

Next, the numerical analyses and results are presented. The

final part is devoted to the concluding notes.

Formalism The starting point to calculate any quantity in

the QCDSR approach is to write a suitable correlation func-

tion (CF). In this case, we write the two-point CF as

Π(q) = i

∫

d4xeiqx〈0|T {η(x)η̄(0)}|0〉, (1)

where η(x) is the interpolating current of the proton which is

the dual of the wave function in the quark model. T represents

the time-ordering operator and q is the four-momentum of

the proton. The time-ordered production of currents is sand-

wiched between two QCD vacuum states, which corresponds

to the creation of the proton in one spacetime point (which

according to translational invariance can be chosen to be the

origin) and the annihilation in the spacetime point x; after that

the result is Fourier transformed to the momentum space.

The interpolating current has two components. The first

one corresponds to the ordinary |uud〉 part of the proton with

the spin-parity (12 )
+:

η(3q)(x) = 2εabc
2
∑

ℓ=1

[(

uTa(x)CAℓ
1d

b(x)
)

Aℓ
2u

c(x)
]

, (2)

where a, b, c are the color indices and C is the charge conju-

gation operator. The coefficients are A1
1 = I , A2

1 = A1
2 = γ5

and A2
2 = β where β is an auxiliary parameter which for

the Ioffe current is given by β = −1. The second part cor-

responds to the intrinsic charm component in terms of the

five-quark structure |uudcc̄〉. It has a scalar-diquark-scalar-

diquark-antiquark type current as:

η(5q)(x) = εilaεijkεlmn (3)

× uT
j (x)Cγ5dk(x)u

T
m(x)Cγ5cn(x) γ5Cc̄Ta (x) ,

where i, j, k, · · · are again color indices. This current com-

ponent has the spin-parity (12 )
+, as well.

The state of proton including the intrinsic charm component

is a superposition of 3q- and 5q-components which is:

|P 〉 = N
(

|uud〉+ α|uudcc̄〉
)

, (4)

where α is a number which indicates the amplitude of the

intrinsic charm contribution of the proton and N = (1 +
|α|2)−1/2 is the normalization constant. Therefore the whole

interpolating current is

η(x) = N
[

η(3q)(x) + α
η(5q)(x)

m3
P

]

. (5)

The factor m3
P is introduced to ensure that both terms

have the same mass dimension. Therefore, in the CF,

〈0|T {η(x)η̄(0)}|0〉 contains four terms where the cross terms

〈0|T {η(3q)(x)η̄(5q)(0)}|0〉 and 〈0|T {η(5q)(x)η̄(3q)(0)}|0〉
give zero contributions according to Wick’s theorem for the

contraction of the quark fields. Therefore, one has:

Π(q) = i

∫

d4xeiqxN 2
[

〈0|T {η(3q)(x)η̄(3q)(0)}|0〉

+
|α|2
m6

P

〈0|T {η(5q)(x)η̄(5q)(0)}|0〉
]

. (6)

The intrinsic charm contribution which is the probability that

the charm component being found in the proton [1] is defined

as xcc̄ = N 2|α|2 that we are going to determine.

The only two independent Lorentz structures which can

contribute to the CF are /q and U and therefore we have

Π(q) = /qΠ1(q
2) + UΠ2(q

2), (7)

where the invariant functions Π1(q
2) and Π2(q

2) have to be

calculated. To relate the physical observables like the mass

to the QCD calculations, the above mentioned CF has to be

calculated in two different regimes. One in terms of hadronic

parameters called the physical side which is the real part of the

CF and is calculated in the timelike region of the light cone.

The other side, called QCD, is evaluated in terms of quarks

and gluons using the Operator Product Expansion (OPE) of

the CF. It is the imaginary part of the CF and is calculated

in the spacelike region of the light cone. These two sides

are related to each other via a dispersion integral using the

quark-hadron duality assumption which eventually gives us

the corresponding sum rule for the mass of the proton. There

are contributions from higher states and the continuum which

contaminate the ground state. To suppress these and to en-

hance the ground state contribution we apply the Borel trans-

formation as well as continuum subtraction on both sides of

the CF.
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The Borel transformation technically enlarges the radius of

convergence of the CF integral while leaving the observables

unaffected. This transformation along with continuum sub-

traction introduce two auxiliary parameters, the Borel param-

eter M2 and the continuum threshold s0, into the calculation,

the working regions of which have to be determined consider-

ing the standard prescriptions of the method.

To calculate the physical side, we insert a complete set of

hadronic state with the same quantum numbers as the interpo-

lating current of the proton. We obtain:

Π(q) =
〈0|η(0)|P (q, λ)〉〈P (q, λ)|η̄(0)|0〉

q2 −m2
P

+ ..., (8)

where the first term is the isolated ground state proton and

dots refer to the higher states and continuum contributions.

The matrix element 〈0|η(0)|P (q, λ)〉 is determined as

〈0|η(0)|P (q, λ)〉 = ΛPu(q, λ), (9)

where u(q, λ) is the spinor of the proton with spin λ and ΛP

is its residue. Inserting (9) into (8) and summing over the

proton’s spin one finds the final expression for the physical

side of the CF as follows:

Π(q) =
Λ2
P (/q +mPU)

q2 −m2
P

+ ..., (10)

where the only two independent Lorentz structures /q and U
emerged as is expected from (7).

The QCD side of the CF is calculated in the spacelike sector

of the light cone which is the deep Euclidean region. Apply-

ing the OPE and using Wick’s theorem to contract the quark-

antiquark pairs, one can calculate the QCD side of the CF

in terms of quark propagators. The propagator for the light

quarks (u and d) reads [35, 36]:

Sij
q (x) =

i/x

2π2x4
δij −

mq

4π2x2
δij −

〈qq〉
12

(1− i
mq

4
/x)δji

− x2

192
〈qgsσGq〉(1 − i

mq

6
/x)δij

−igs

∫ 1

0

du

ß

/x

16π2x2
Gµν

ij (ux)σµν − iuxµ

4π2x2
Gµν

ij (ux)γν

− imq

32π2
Gµν

ij (ux)σµν

ï

ln(
−x2Λ2

4
) + 2γE

ò™

, (11)

where the subscript q stands for either u or d quark. It is writ-

ten up to dimension 5, where 〈qq〉 is the quark condensate

and 〈qgsσGq〉 the quark-gluon mixed condensate. The first

two terms correspond to the free part and the third and fourth

terms to the quark and mixed condensates, respectively. The

integral part represents the one-gluon emission contribution

and Λ is a cutoff which separates the perturbative and non-

perturbative parts. The propagator of the charm quark can be

written as [35, 36]:

Sij
c (x) =

m2
c

4π2

K1

Ä

mc

√
−x2
ä

√
−x2

δij + i
m2

c

4π2

/xK2

Ä

mc

√
−x2
ä

Ä√
−x2
ä2 δij

−gsmc

16π2

∫ 1

0

dvGµν
ij (vx)

[

i(σµν/x+ /xσµν)
K1

Ä

mc

√
−x2
ä

√
−x2

+2σµνK0

Ä

mc

√

−x2
ä

]

− δij〈g2sG2〉
576(2π)2

ß

(i/xmc

−6)
K1(mc

√
−x2)√

−x2
(−x2) +mc(x

2)2
K2(mc

√
−x2)

(
√
−x2)2

™

,

(12)

where Kn(z) is the n-th order modified Bessel function of the

second kind. In (11) and (12) we have

Gµν
ij = Gµν

A λA
ij/2, (13)

where A = 1, 2 . . . 8 and λA are the Gell-Mann matrices.

Here we use the exponential representation of Kn(z) as:

Kn(mc

√
−x2)

(
√
−x2)n

=
1

2

∫

dt

tn+1
exp

ï

−mc

2

Å

t− x2

t

ãò

, (14)

where −x2 > 0 for the spacelike sector (deep Euclidean re-

gion).

In (7), the coefficients Πi(q
2) can be written as a dispersion

integral as follows:

Πi(q
2) =

∫

ρi(s)

s− q2
ds. (15)

Here ρi are the spectral densities and can be calculated from

the imaginary parts of the Πi functions as:

ρi(s) =
1

π
Im
{

Πi(s)
}

. (16)

We do not show the very lengthy expressions for the spectral

densities in this study. According to (6), the spectral densities

can be decomposed into ordinary and intrinsic charm contri-

butions as:

ρi(s) = N 2
[

ρ
(3q)
i (s) +

|α|2
m6

P

ρ
(5q)
i (s)

]

. (17)

The last step is to match the coefficients of the correspond-

ing Lorentz structures in (7), in both the QCD and physical

sides, which gives us the sum rules for the mass and residue

of the proton. Considering the ordinary |uud〉 part only, after

applying the Borel transformation and continuum subtraction,

as well as using quark hadron duality assumption, one finds

the following sum rules:

Λ2
P e

−m
2

P

M2 =

∫ s0

sL

dsρ
(3q)
1 (s)e

−s

M2 ,

Λ2
PmP e

−m
2

P

M2 =

∫ s0

sL

dsρ
(3q)
2 (s)e

−s

M2 , (18)

where M2 and s0 are the auxiliary Borel and continuum

threshold parameters for the ordinary |uud〉 part respectively

and sL = (2mu + md)
2. Then the mass can be calculated

from either of the equations (18) (i.e. from either of Lorentz
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structure /q or U ) by differentiating the corresponding equation

with respect to z = − 1
M2 and dividing it over the equation it-

self which reads:

[

m
(3q)
P

]2

=

∫ s0
sL

dssρ
(3q)
i (s)e

−s

M2

∫ s0
sL

dsρ
(3q)
i (s)e

−s

M2

. (19)

A similar equation is valid for m
(5q)
P , the mass of the intrinsic

charm contribution |uudcc̄〉, with corresponding Borel param-

eter M ′2 and continuum threshold s′0.

To add the intrinsic charm contribution of the proton, fol-

lowing the above recipe, one has to differentiate the sum of

3q- and 5q-spectral contributions with respect to z. Since the

Borel parameter for the 5q-part is z′ = − 1
M ′2 , we need to

apply the chain rule

∂

∂z
=

∂z′

∂z

∂

∂z′
. (20)

To this, using

z

z′
=

M ′2

M2
≃
(

m(5q)

m(3q)

)2

= b , (21)

one finds the final sum rule for the proton mass as follows:

m2
P = (22)
∫ s0
sL

dssρ
(3q)
i (s)e

−s

M2 + |α|2

m6

P

∫ s′
0

sL
ds( sb )ρ

(5q)
i (s)e

−s

bM2

∫ s0
sL

dsρ
(3q)
i (s)e

−s

M2 + |α|2

m6

P

∫ s′
0

sL
dsρ

(5q)
i (s)e

−s

bM2

.

At low energies, sL ≤ s ≤ s0, the charm component be-

haves as sea quarks and the probability of being observed is

considerably low. But at high energies, sL ≪ s ≤ s′0, the

charm component emerges as valence-like component and can

be detected with an observable probability.

Numerical Analysis The input parameters in the final sum

rule (22) include quark masses and different quark, gluon

and mixed condensates. The condensates are universal non-

perturbative parameters, which are determined according to

the analyses of many hadronic processes. The values of these

parameters are listed as follows [37–39]:

mu = 2.2+0.5
−0.4 MeV, md = 4.7+0.5

−0.3 MeV,

mc = 1.27± 0.02 GeV,

〈qq〉 = −(0.24± 0.01)3 GeV3,

〈qgsσGq〉 = m2
0〈qq〉, (23)

m2
0 = (0.8± 0.2) GeV2,

〈αsG
2/π〉 = (0.012± 0.004) GeV4.

Moreover, there are four auxiliary parameters (M2, s0, s′0 and

β) that enter the calculations. The working regions of these

parameters have to be determined. We should calculate their

working windows such that the physical quantities be possi-

bly independent of or have only weak dependence on these

parameters. The residual dependencies appear as the uncer-

tainties in the final results.

The interval for β as a mathematical object can be evalu-

ated as follows. Defining a new parameter θ as β = tan θ
in order to scan β in the whole region from −∞ to +∞ by

−1 ≤ cos θ ≤ 1, and plotting m(3q) and the OPE of the sum

rule for the 3q-part as a function of cos θ, one can find the in-

terval for cos θ where the physical quantities are more stable

and relatively less dependent on it based on the prescriptions

of the QCD sum rule method. As an example, we depict the

variation of m(3q) with respect to cos θ in Fig. (1) at aver-

age values of other auxiliary parameters. From our analyses

-1.0 -0.5 0.5 1.0
cos( )

1000

1100

1200

1300

1400

1500

1600

m(3 q)

FIG. 1. m(3q) (MeV ) as a function of cos θ at average values of

other auxiliary parameters in their working windows.

we find the working region −0.49 ≤ cos θ ≤ −0.36 which

corresponds to −2.60 ≤ β ≤ −1.80, in which one can see

that m(3q) practically demonstrates a relatively good stabil-

ity with respect to the changes of the cos θ. In other words,

the variations of m(3q) with respect to cos θ is minimal in this

working window. As we noted, the residual dependence on

the auxiliary parameters contributes to the final error bars of

the results.

To determine the working regions of M2, s0, and s′0, we

demand the dominance of Pole Contribution (PC) as well as

OPE convergence. They can be quantify by introducing

PC(j) =
Π(j)(M2

j , s
j
0)

Π(j)(M2
j ,∞)

, (24)

and

R(j)(M2) =
ΠDim−n(j)(M2

j , s
j
0)

Π(j)(M2
j , s

j
0)

, (25)

where j stands for either 3q- or 5q-component and

ΠDim−n(j)(M2
j , s

j
0) is the sum of the three highest dimension

operators contributions entered the OPE expansion of the CF

which are 13, 14, 15 for j = 3q and 17, 18, 19 for j = 5q. For

the non-perturbative contributions, we follow the principles

that the perturbative part exceeds the total non-perturbative

contribution and the higher the dimension of the operator, the

lower its contribution to the OPE expansion. Quantitatively,

we require that the PC obeys PC(3q) ≥ 0.5 which is used to
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determine M2
(max). The lower limit, M2

(min), can be found by

employing the condition R(3q)(M2
(min)) ≤ 0.05 for the sum

of last three highest dimensions. The above recipes lead to the

following windows for the auxiliary parameters:

1.15 ≤ M2 ≤ 1.50 (GeV2), 2.15 ≤ s0 ≤ 2.30 (GeV2),

24 ≤ s′0 ≤ 26 (GeV2).

(26)

s0 M2 β s′
0 xcc̄

s 0
M

2
β

s′ 0
xc

c̄

1.00 ̄0.34 ̄0.06 0.00 0.45

̄0.34 1.00 ̄0.32 0.00 0.63

̄0.06 ̄0.32 1.00 0.00 ̄0.51

0.00 0.00 0.00 1.00 0.00

0.45 0.63 ̄0.51 0.00 1.00
−0.3

0.0

0.3

0.6

0.9

FIG. 2. Symmetric heatmap of the correlation among auxiliary pa-

rameters and xcc̄. Dark green (dark violet) indicates perfect correla-

tion (anti-correlation). White is the intermediate case of no correla-

tion.

In order to check the dependence of the auxiliary param-

eters and the physical quantities to each other, we perform a

python analysis and plot the resulting heatmap in Fig. (2).

Skipping the last column and line of the figure, it is evident

that there is a correlation between M2 and β and also M2

and s0 (which are related to the dominant 3q component) as is

expected by consistency considerations [40]. The other aux-

iliary parameters are independent from each other. From the

last column and line, we see how xcc̄ depends on the auxiliary

parameters.

We now proceed to answer the main question of this re-

search work: What is the percentage of the charm content of

the proton? To this end, considering the working windows

of all auxiliary parameters and the values of other inputs, we

equate the mass of the proton in (22) to the world average of

the experimental mass of the proton presented in PDG [37].

This leads to xcc̄ = (1.36 ± 0.67)% which, within the uncer-

tainties, overlaps with the estimation of the NNPDF collabo-

ration [28]. The error presented in the result is due to the un-

certainties in the calculations of the windows for the auxiliary

parameters as well as errors of other inputs. We should note

that xcc̄ is the weight of the 5q component inside the proton

and not exactly the cc̄ contribution in our method. To calculate

the latter one should develop a method to separate the cc̄ con-

tribution from the 5q component. The cc̄ contribution would

be the expectation value 〈P |cc̄|P 〉, which would correspond

to the integrated probability of the cc̄ wave function inside the

proton in a non-relativistic quark model.

Conclusions In our work, for the first time we used the

method of QCD sum rules to determine the contribution of

the |uudcc̄〉 component in the structure of the proton. Using

the two-point correlation function, we found xcc̄ = (1.36 ±
0.67)% for the contribution of this component in the proton.

This result, within the presented uncertainties, overlaps with

the prediction of the NNPDF collaboration, and is compati-

ble in the upper limit with the one obtained using the global

analysis of the CTEQ collaboration. Our result persuades fur-

ther dedicated studies of intrinsic charm at future experiments

like AFTER@LHC [32–34] and the fixed-target programs of

LHCb [41]. If confirmed experimentally, it provides more in-

sights into the structure and properties of the proton. More-

over, the investigation of atmospheric neutrino measurements

presents a viable opportunity to explore the presence of intrin-

sic charm. As demonstrated in [42], such measurements have

revealed a noteworthy contribution of intrinsic charm to the

atmospheric neutrino flux.
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