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Abstract: We explore the chemical potential of a QCD-motivated van der Waals (VDW) phase 

change model for the six-quark color-singlet, strangeness S = −2 particle known as the hexaquark 

with quark content (uuddss). The hexaquark may have internal structure, indicated by short range 

correlations that allow for non-color-singlet diquark and triquark configurations whose interactions 

will change the magnitude of the chemical potential. In the multicomponent VDW Equation of State 

(EoS), the quark-quark particle interaction terms are sensitive to the QCD color factor, causing the 

pairing of these terms to give different interaction strengths for their respective contributions to the 

chemical potential. This results in a critical temperature near 163 MeV for the color-singlet states 

and tens of MeV below this for various mixed diquark and triquark states. The VDW chemical po-

tential is also sensitive to the number density, leading to chemical potential isotherms that exhibit 

spinodal extrema, which also depend upon the internal hexaquark configurations. These extrema 

determine regions of metastability for the mixed states near the critical point. We use this chemical 

potential with the chemical potential modified TOV equations to investigate the properties of hex-

aquark formation in cold compact stellar cores in beta equilibrium. We find thresholds for hex-

aquark layers and changes in maximum mass values that are consistent with observations from high 

mass compact stellar objects such as PSR 09043 + 10 and GW 190814. In general, we find that the 

VDW-TOV model has an upper stability mass and radius bound for a chemical potential of 1340 

MeV with a compactness of C~0.2. 
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1. Introduction 

The thermodynamics of strongly interacting matter and the phase structure of QCD 
have been studied extensively from both a lattice perspective and from QCD-motivated 
phenomenological models. Many of these models have been bolstered by the rapidly 

growing accelerator measurements of the properties of quark gluon plasma and by astro-
physical observations of compact dense stellar cores. However, the complexities and non-

linear dynamics of QCD have made it difficult to directly understand all of the properties 
of novel quark matter-bound states, such as tetraquark [1], pentaquark [2,3], and hex-

aquark [4] particles (note: authors also refer to the 6-quark particle as the sexaquark so the 
H symbol will not be confused with the Higgs). In the appropriate limits, such states can 
be modeled as loosely bound molecular quark states—diquarks with bound mesons, with 

color states qi͞ qj δij or baryons, with color states εijk qi qj qk, as SU(3)c color-singlet states or 
more strongly bound compact single-particle states, or as less common hybrid states of 

quarks and gluons or pure gluonic states [5]. For states with more than three quarks, there 

exist more pairings that give color-singlet states, for example [6], the 3 3 1c c c =
 
and the 
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result in a varied spectrum of states. The existence of such states indicates that 

a system such as a cold compact stellar core can consist of a mixture of quark clusters such 

as diquarks and triquarks [7] or as short length correlated groups in a particle such as a 
hexaquark, along with various color-singlet states. Various hexaquark flavor, isospin, 

spin, and angular momentum states have been studied, beginning with Jaffe examining a 
JP = 0+ dihyperon [8] with a focus on the d*(2380) I(JP) = 0(3+) [9–11] and interest in the 

(uuddss) flavor-singlet, charge-neutral, even-parity, spin-zero boson with baryon number 
and strangeness B = 2, S = −2. This last case is especially interesting because, as noted by 
Farrar [12,13], it may have a long-life ground state, making it an interesting candidate for 

dark matter and impacting the internal structure of compact stellar cores. As the pressure 
increases towards the central region of the core, the number of particles in each state will 

change and the central core region at the highest pressure can undergo a phase transition 
from a bound to an unbound quark gaseous state. Several authors have investigated this 
phase change for a cold neutron star model that is charge neutral and in beta equilibrium 

utilizing a system of quark clusters [14], quasiparticles [15], and quark drops [16] as partial 
intermediate states as the system approaches a free-quark gaseous state. One widely used 

model to investigate this behavior is a simple analytical model based upon the multicom-
ponent van der Waals (VDW) equation of state (EoS), which incorporates particle species’ 
chemical potentials to accommodate changing particle numbers and includes a first-order 

phase transition. Such a generalized VDW model focused on dense fluids [17] was further 
developed by Vera [18] and extended the development of the Prigogine [19]-Flory [20]-

Patterson [21] theory. For dense matter, the general VDW partition function and statistical 
method of Eu [22] with the multicomponent partition function method of Keffer [23], as 
developed by Vovchenko [24–27], has the advantages of including the excluded particle 

volume, incorporating attractive and repulsive interactions, exhibiting a first-order phase 
transition, including multicomponent mixtures, showing binodal and spinodal behavior, 

having a well-defined chemical potential, and exhibiting a critical point. VDW-based 
models have become an important way to gain insight into the hadronic deconfining 
phase transition [28–30] and as a model for a hadronic gaseous state [31]. Here we will 

apply the VDW EoS to a system of hexaquarks where the hexaquarks can have different 
internal structures consisting of diquark and triquark states [32]. The different binding 

strengths given by the color factors are represented by the VDW mixing parameters; the 
multicomponent VDW equations are used to analyze a system with combinations of the 
various hexaquark states. For example, we can analyze the properties of a hexaquark fluid 

consisting of hexaquarks that have a three-diquark internal structure. Or we can have a 
two-component fluid consisting of one component made from hexaquarks with a two-

triquark substructure and the other component consisting of hexaquarks with three di-
quarks. While the VDW equations allow us to find the chemical potential and critical point 
for each fluid, the multicomponent VDW equations allow us to find the chemical potential 

and critical point for the mixture. 
A potential arena where the impact of hexaquark internal structure, critical points, 

chemical potentials, and phase change phenomena could take place, and be constrained 
by observation, is in the dense core of a neutron star or a possible quark star [33]. As the 
observational data have become more robust and refined, more detailed models have 

emerged to help understand the varied mechanisms at play in dense QCD matter. Several 
models are gaining support from the observations of quark–gluon plasma, QGP, demon-

strating the existence of a high-temperature, low-chemical-potential state of unconfined 
quarks, as seen at the SPS [34], LHC [35], and RHIC [36] laboratories. These experiments 
give a transition temperature near 155 MeV and an energy density near 0.8 GeV/fm3 [37]. 

Stellar cores represent systems of high baryon chemical potential, with high density and 
pressure which might be capable of exhibiting a deconfinement phase transition at high 

pressure as noted by Baym, et al. [38]. Isolated nonaccreting neutron stars are cold, less 
than ~0.1 MeV, and after a few hundred years can be nearly isothermal [39]. For larger 
masses and higher pressures, a transition to a quark star can occur which may have spin 
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or tidal deformation [40], strange quarks [41,42], magnetic field effects [43], or color su-
perconductivity [44]. For the known transition temperature, there is a baryon chemical 
potential, or, equivalently, a density or pressure, where the phase transition will occur 

which can be described by the EoS [45] and, when considering the case of an isotropic 
density and pressure as source terms, can be described by the TOV equations. As outlined 

in Baym [46], the constraints of charge neutrality and beta equilibrium can be used to 
estimate the chemical potential within the context of the MIT bag model, while at high 
temperatures, T > 1 MeV, the matter is out of beta equilibrium [47]. Charge neutrality for 

particle number density nj, mass density ρf, and electric charge qj for particle type, j, or 

flavor, f, can be expressed as 
f f e eq n q n=  

and B u d s   = + + . The three-light quark fla-

vors, changing weak interaction equilibrium conditions from the quark interactions, given 

by 
ed u e − + +  , 

es u e − + +  , and s u d u+  +  , constrain the chemical poten-

tials. We consider the late-time case, in which the neutrinos and antineutrinos have exited 

the collapsed core on a time scale that is short compared to the long-term cooling time, 
effectively causing their chemical potentials to vanish to establish beta equilibrium, result-

ing in and .d u s de
    −= + =   Then, the pressure and energy density ε are given by 

( )2/ / /P U V n n n n  = −  =   = −  , where the chemical potential is / n =    

and n is the number density where the nuclear saturation density is nsat ~ 0.16 fm−3. For 
compact stars, these models allow for comparison to the MIT bag model [48] and the mod-

ified MIT bag model [49–50] for the pressure, P, energy density, ε, and chemical potential, 

μ, with the bag constant, B, expressed as ( ) ( )43 4 4 3 / 4P B   = − = − , relating the bar-

yon chemical potential to the bag constant, which is subject to the Franzon [51] constraint 
by stability requirements in neutron star models: 30 MeV/fm3 < B < 75.5 MeV/fm3. The 

chemical potential for multiquark particles is given by μ = m+EF, where EF is the Fermi 
energy. For a system of noninteracting fermions, the Fermi energy is given by

( ) ( )( )
2/32/3 4/3 1/3 23 2 / 2 1 /FE n s m −= +  for the reduced Planck constant, , spin, s, number 

density, n, and mass, m [52,53]. For hexaquark states consisting of quarks, diquarks, and 
triquarks, which can have spin states s = 0, 1/2, 1, 3/2, the Fermi energy is in the range of 

55 –500 MeV and chemical potentials are in the range of 850 MeV–2100 MeV [54,55]. 
Knowledge of the baryon chemical potential and pressure in the core provides an im-

portant method for identifying a deconfining phase transition. Within the context of the 
Maxwell construction [56], this occurs when the hadronic and quark pressures and chem-
ical potentials of quarks and leptons [57] are equal: Ph = Pq and μh = μq, where 

3 /q q q l l q

quarks leptons quarks

n n n  
 

= + 
 
  

 and 
/h h h l l h

hadrons leptons hadrons

n n n  
 

= + 
 
  

 for the hadron, h, and lepton, l, 

labels for the chemical potentials and number densities. We only consider the case after 

the neutrinos have escaped; however, a more careful treatment by Dexheimer considers 
the protostar case with trapped neutrinos [58]. 

Here we will develop this model to find the range of chemical potentials of the hex-
aquark that can exist in a compact core within the Franzon stability range [59,60]. We will 
first introduce the VDW model and match the parameters to the quark interactions appli-

cable to the determination of the chemical potential of the hexaquark. Using the multi-
component VDW equation, we examine the differences in the chemical potential that re-

sult from the molecular and independent constituent models of the hexaquark substruc-
ture. Values from the SHM [61] at RHIC [62]and ALICE [63] are matched with lattice val-

ues [64] to determine the functional form of the temperature dependent chemical poten-
tials. We then examine the variation in chemical potential exhibited in a dense stellar core 
by solving the TOV system for the chemical potential. We use natural units where the 

Boltzmann constant, the speed of light, and Newton’s gravitational constant are set to 
unity. 
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2. van der Waals Model Chemical Potential in a Hadronic Mixture 

In this application of the VDW EoS, we consider a uniform state of bound quark clus-

ters that can undergo a phase transition to free quarks, as performed by Zakout for the 
quark gluon plasma [65]. In the multicomponent VDW EoS, the system can consist of sev-

eral different components which correspond to different types of clusters; here we are 
limiting the model to clusters that yield a hexaquark, i.e., each system consists of hex-
aquarks but the underlying hexaquark structure is governed by different short-range cor-

relations giving different color factors which are modeled in the VDW mixing factors. 
These can consist of diquark and triquark clusters, each of which form hexaquarks, that 

can be mixed with a hexaquark with no internal structure. This system can then be viewed 
as a multicomponent fluid where each component is described by its own chemical po-
tential. Following the statistical development of VDW EoS, we consider the multicompo-

nent, Nc, van der Waals partition function given by 

( ) 1

3
11

1
, , exp

!

i
c

c c

N
N

j jN N
j i

vdw i j ij

ji i i

V N b
N

Z N V T N a
N VkT

=

==

 
− 

 
 =  
   
 
 


  (1) 

Where bj is the van der Waals effective volume of the jth particle of number Nj, the 

thermal de Broglie wavelength is  

1

2
i

imT
 =  (2) 

and the van der Waals interaction parameter is aij. We adopt the notation of aii = ai, noting 

that the aij is symmetric (aij = aji) and that there is a mixing rule, ( )1ij i j ija a a k= − , 

where kij is a mixing parameter that is used to account for the color factor interaction dif-

ferences between the strength of the diquark color interaction for non-singlet states and 
for color-singlet states. Using Sterling’s approximation, the pressure is 

2
1 1,

1

ln c c

c

N N

i i
j ijN

i jN T
j j

j

N NZ
p T T N a

V V T
V N b

= =

=

 
 

   = = − 
  

− 
 

 


 (3) 

The pressure expression is the equation of state, EoS, for our system. In terms of the 

single component number density, n = N/V, Equation (3) can be used to find the VDW 
speed of sound as 

( )
2

2

1 2

1
s

P T an
c

m n mm bn

 
= = − 

  −
 (4) 

which in the limit of vanishing VDW constants gives the ideal gas law value of T/m. The 

critical point of the phase diagram can be found by solving the system of equations, 



Particles 2023, 6, FOR PEER REVIEW  5 
 

 

2

2

1 1 1 1

2
1

1 11

( , , ), 0, 0

8

, , 3

2727

c c c c

c

c c
c

N N N N

i j ij i j ij N
i j i j

c c c j jN NN
j

i j jj j
i jj

P P
P P V T N

V V

N N a N N a

P T V b N

k N b Nb N

= = = =

=

= ==

 
= = =

 

   
   
   = = =

   
   

   

   


 

 (5) 

for the critical values Pc, Vc, and Tc, while the resulting chemical potential for the ith species 
is 

1

3
1 1, ,

1

ln 2
ln ln

c

c c

c

j i

N

j j N N
j i

i i j j ijN
j ji iT V N

j j

j
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bZ

T T N T N N a
N VT

V N b





=

= =

=
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  


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

 
(6) 

When the van der Waals volume correction is small compared to the total volume, 
the logarithm term can be expanded as a power series and regrouped to express the chem-
ical potential as the sum of a term that is independent of the van der Waals constants and 

a term with the explicit dependence on the van der Waals constants 

( )

1 1 1 1

1

3
3

1 2

ln ln ,

c c c

o ab o c

o

k
N N N

j j i
i i i i j j ijN

k j j j

j j

j

i i
i i i

N b b
T N N a

k V VT
V N b

N
T T n

V

   





= = = =

=

 
  
 = + = − − + 
   − 
 

 
= =  

 

   
  (7) 

where, for a single component small particle volume, bj/V << 1, with i = j=k = 1, the chem-
ical potential in terms of the number density, nj = Nj/V, simplifies to  

( )
2 2

31 1 11 1 1
1 1

1 1

2
ln

1

n a n b
n

T T n b

  
=  − − 

− 
 (8) 

This result can now be used with the measured values of the quark chemical poten-

tials to determine the van der Waals constants and the chemical potential in dense matter, 
such as the central core of a compact star. For Nc particles in a system with equal number 
densities for each particle, n = n1 = n2, and symmetric interaction mixing for color factors, 

kii = kji, at equilibrium, the total chemical potential is 

( ) ( )

1

1/2

1 1

1

2
2 1

1

c

c c

o c

N

i

i

N N

i
i i j j i j ijN

j j

j

j

nb
T n b n a a k

n b

 

 

=

= =

=

=

 
 
 = − − − −
 

− 
 



 


 (9) 

In the VDW model, the chemical potential is singular at the phase transition where 

the effective volume of the constituents approaches the volume of the object when the 
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number density is sufficiently large; such a density can arise in a compact stellar core dur-
ing collapse. We use the chemical potentials for baryon number, isospin, and strangeness 
from SHM and lattice models to find the VDW constants consistent with Equation (8) for 

the three lightest quarks and the mass values from the PDG review of particle properties 
[66]. These values are then used to determine the chemical potentials and VDW constants 

for the systems of combined quarks forming particles with net-color or color-singlet states, 
the diquark, and triquark states. These form the building blocks for the hexaquark color-
singlet states containing six quarks in the VDW model.  

The composite particle states are constructed using the quark values from Table 1 
with color factors to match the resulting state and find the chemical potential. These values 

represent the scalar S ground states which are nearly 220 MeV below their axial counter-
parts and are given in Table 2 [67,68]. 

Table 1. Quark VDW constants from baryon, isospin, and strangeness chemical potentials. 

Particle m [MeV] a [GeV−2] b [GeV−3] 

Up 2.2 0.0011 0.00201 

Down 4.7 0.0012 0.00217 

Strange 93 0.0037 0.00683 

Table 2. van der Waals constants for the diquark and triquark, as well as different representations 
of the internal structure of the hexaquark. 

Particle m [MeV] a [GeV−2] b [GeV−3] 

Diquark (ud) 509 0.0098 0.0182 

Diquark (ds)  698 0.0137 0.0251 

Triquark (uds) 2077 0.0419 0.0748 

Hexaquark (uuddss) 2110 0.0472 0.0839 

3-diquarks (ud)(su)(ds) 1883 0.0518 0.0914 

2-triquarks (uds)(uds) 2324 0.0566 0.0987 

These values can then be used with Equations (6) and (7) to express the chemical 

potentials as functions of temperature; plots for special cases are given in Figure 1 below.  

  
(a) (b) 

Figure 1. (a) The chemical potential in terms of the dimensionless thermodynamic variable μ/T as a 
function of temperature with increasing mass values; using our extrema and midpoint, the masses 
are: m1 = 2.3 GeV, m2 = 1.4 GeV, and m3 = 509 MeV and (b) chemical potential isotherms near the 
critical point exhibt the spinodal and metastable regions characteristic of a VDW EoS for two differ-
ent mass values. The spinodal points are the local extrema of each curve. 

In our analysis, the chemical potential, which depends upon b2, needs to be real-
valued, and this provides an additional constraint on Equation (6) giving a relationship 

between a, n, T, and the chemical potential  



Particles 2023, 6, FOR PEER REVIEW  7 
 

 

( ) ( )2 3 2 3

1 1 1 1 1 1

1 1

4
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T T T ln n T T ln n
a

n n

 − + −  − 
   . (10) 

These results can be applied to an environment where the Fermi energy is on the 

order of the chemical potential to explore shifts in the chemical potential, such as in a 
dense stellar core, which can be modeled using the TOV equations. Near the critical point, 

the expressions for the pressure and chemical potential can be simplified by expanding 
about the critical point, where μc and nc denote the chemical potential and density evalu-
ated at the critical point, and using the dimensionless density ratio, z, resulting in the cubic 

expressions 

( ) ( )

2

3

9 1
1

4 4

2 8 1 1 3

c

c

c c
c

c

c

c c

n n
z

n

T n T
z z

T

p p T
z z z

p T
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−
=
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= + − + 

 

   −
− = − + +   

   

 (11) 

Using Equation (11), the pressure near the critical point can be expressed as a func-
tion of the chemical potential 

( )( )
( )( )

2 2 3 2 2 3

2

32 32 9 6 11 6

9 3

c c c c c c c c

c c c c

p n n n n n n n n n T
p

n n n n n T

 − − − + −
=

− −
 (12) 

which is monotonically increasing up to the neighborhood of the critical point in a fashion 
similar to the MIT bag model. The extremum behavior of the chemical potential allows us 
to identify regions of metastability for the system in the neighborhood of the critical tem-

perature. The chemical potential local minimum and maximum correspond to the spi-
nodal limits of metastability while the phase transition is taking place. For the isotherms 

with T < Tc, the Maxwell construction replaces the equal area regions above and below the 
Maxwell constant pressure line during the mixed-phase transition in the phase diagram. 
It is in this region where condensing nanoclusters will form and coexist with the vapor 

phase; this does not shift the critical points used here where the isotherm of interest is 
along T = Tc [69]. These points are located at 

( )

0

2
1 1 /

3
c c

n

n n T T


=



 
=  − 

 

 (13) 

For equal particle numbers of each component, the two-component critical tempera-

ture can be expressed as 

( ) ( ) ( )( )
( )

1 11 1 2 12 2 22

2

1 2

8 1 2 1 1

27
C

a k a a k a k
T

b b
−

− + − + −
=

+
 (14) 

which can be used to evaluate the critical chemical potential. The VDW constants can be 

used to determine the VDW critical temperature and chemical potential using Equations 
(4) and (10), where we consider the mixed states of the diquark and dibaryon hexaquark 
substructures and examples of mixed diquark-triquark-hexaquark combinations as 

shown in Table 3.. 
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Table 3. The critical values for the temperature from Equation (4) and chemical potential at the crit-
ical temperature for different hexaquark internal structures. 

Hexaquark Structure Tc [MeV] Pc [MeV/fm3] nc [fm−3] μc [MeV] 

Hexaquark 166.7 429.1 2.29 2703.9 

3- diquarks 167.9 396.8 2.11 2720.5 

2- triquarks 169.9 371.8 1.95 2667.8 

Mixed: Diquark-hexaquark: k12 = 0, mixing 

1:1 
151.9 602.0 3.54 1125.8 

k12 = 0, mixing 2:1 150.0 725.0 4.32 1881.2 

k12 = 0.5 = k21, mixing 1:1 117.3 465.0 3.54 924.0 

k12 = 0.5 = k21, mixing 2:1 112.6 544.0 4.31 1465.8 

Mixed Triquark-hexaquark: k12 = 0, mixing 

1:1 
166.2 452.4 2.43 811.7 

k12 = 0=k21, mixing 2:1 166.1 460.9 2.47 858.7 

k12 = 0.5 = k21, mixing 1:1 124.7 339.4 2.43 669.8 

k12 = 0.5 = k21, mixing 2:1 128.5 356.5 2.48 714.3 

The critical values obey the VDW compressibility factor rule that the term Pc/(ncTc) is 
a constant at the critical point. It is useful to compare these results to the free quark MIT 

bag model. If we denote the bag constant by B, then the pressure, p, the baryon density, 
ρB, and the speed of sound, cs, are given by:  

( )
7/3

2/3 4/31 3 1 1
, ,

3 2 3 3
B B u d s sp B c     

 
= − = + + = 

 
 (15) 

In the MIT bag model the speed of sound is a constant but in the VDW model the 
speed of sound depends upon the temperature, particle mass, and density of the system. 
There is a causality limit to the temperature dependent speed of sound at the speed of 

light indicated in Figure 2. To compare these values and contrast the VDW case with the 
ideal gas law case, we plot the ratio of the speed of sound to the MIT bag model in Figure 

2 below. 

  
(a) (b) 

Figure 2. (a) The variation in the speed of sound squared with temperature for the 3- diquark, hex-
aquark, and 2- triquark cases for the VDW and the ideal gas law EoS compared to the MIT bag 
model. (b) The variation in the speed of sound with density for the hexaquark, diquark and triquark 
cases for the VDW and ideal gas law EoS compared to the MIT bag model. 

These values can now be used as indicators of potential quark states inside a compact 

stellar core of sufficient density where quark clustering, quasi-parton formation, mixed 
states, and phase changes can play a role in the possible final state configurations.  
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3. Stellar TOV Equations and the Chemical Potential 

To investigate the conditions where a chemical potential phase transition can occur, 

we consider a static spherically symmetric mass as a dense stellar core with an ideal fluid 
source using the metric ansatz 

2 2 ( ) 2 2 2 2 2 2 22 ( )
1 sinr m r

ds g dx dx e dt dr r d r d
r

 

   −   
= = + − + + 

 
 (16) 

with the Einstein and stress energy tensors given as 

( )

1
8

2
G R g R T

T P u u g P

   

   





= − =

= + −

 (17) 

The resulting TOV equations for the pressure and mass are 

( )

 

3

2

( ) ( ) ( ) 4 ( )

2 ( )

( )
4 ( )

r p r m r r p rdp

dr r r m r

dm r
r r

dr

 

 

 + + =
−

=

 (18) 

which, when combined with the EoS, provide a system of equations describing the stellar 
core. Here we follow Hajizadeh [70] and change variables from pressure and energy den-

sity, ε, to the chemical potential, μ, and express the pressure equation in terms of the total 
baryon chemical potential as 

 

3( ) ( ) 4 ( )

2 ( )

r m r r p rd

dr r r m r

   + =
−

 

(19) 

to examine the radial dependence in the interior of the stellar core. These equations rep-

resent a system of equations that can be solved numerically; however, to compare to the 
MIT Bag model, there is a stability requirement on the bag constant when strange matter 

is present. We will utilize the Franzon stability requirement to constrain values of the bag 
constant, 30 MeV/fm3 < B < 75.5 MeV/fm3, to compare the MIT bag model to the VDW 

model. There is also a constraint on the maximum mass for a given radius, requiring the 
core to not form a Schwarzschild black hole (R < 2 M or, in terms of compactness, C=M/R 
< 0.3). To incorporate the bag constant constraint, we solve the TOV equations with the 

MIT bag model EoS at the two limits and then identify a chemical potential value that 

gives the same mass radius curve. These curves are identified in Figure 3. 

  
(a) (b) 

Figure 3. Chemical Potential vs radius inside a TOV star. In (a) the chemical potential as a function 
of radius is given for a 2 M star with the hexaquark threshold lines with the hexaquark, diquark, 
and mixed states shown. In (b) we numerically solve the chemical potential-modified TOV 
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equations, Equations (18) and (19), showing the maximum mass for the hexaquark, diquark, and 
triquark systems and indicating their respective chemical potentials. 

Solving the TOV equations numerically for a sample stellar core results in a class of 
curves similar to the one shown in Figure 3. Likewise, plotting the mass-radius parametri-
zation gives limiting curves, as seen in Figure 3, where three curves exhibiting the maxi-

mum mass and radius are given the MIT bag model constraints. The hexaquark chemical 
potential values for the mixed states indicate a more complex phase-change structure, es-

pecially for the non-color-singlet states. 

4. Conclusions 

We have investigated the chemical potential of the hexaquark using a phase changing 
multicomponent van der Waals equation of state within the context of high-density nu-

clear matter in the core of a cold beta equilibrium system. In particular, we have examined 
different internal quark clustering models of the hexaquark that involve diquark and tri-

quark states that may not be in a color-singlet combination and simple mixtures of these 
states. This leads to different color factors to describe the different color force interaction 
strengths. Such differences can be approximately modeled in the multicomponent VDW 

EoS by using the mixing parameter for pairwise interactions that obey the VDW mixing 
rule. As a result, different hexaquark internal structure arrangements will give different 

values for the magnitude of the chemical potential of the hexaquark as shown in Table 4. 

Table 4. The maximum mass and radius values that give the maximum compactness for different 
quark combinations corresponding to hexaquark internal structure with chemical potentials from 
Equation (9), where a Schwarzschild black hole has a compactness of 0.5. 

 

 

Quark Configuration Mass [M/Mꙩ] Radius [km] Compactness 

3-diquarks 2.05 11.9 0.172 

2-triquarks 2.09 10.3 0.202 

Hexaquarks 2.16 11.2 0.192 

Diquark:Hexaquark 

k
12

=0.5 1:1 

1.64 12.1 0.136 

k
12 

= 0.5 2:1 
1.58 12.8 0.078 

Triquark:Hexaquark 

k
12

=0.5 1:1 

1.73 11.6 0.149 

k
12

=0.5 2:1 
1.85 11.3 0.164 
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Our results are similar to Eduardo  [71] and Kang [72], where they examined QCD 
EoS in compact stellar cores and analyzed chiral chemical potential limits associated with 
maxima in stellar mass values. Our values are closer to the chemical potential of Lopes in 

the Maxwell construction, assuming charge neutrality to establish lepton number densi-
ties for the stable values of the bag constant [73]. Here we find that, in comparison, the 

VDW model overestimates the magnitude of the chemical potential but does give a max-
imum limit for the hexaquark case, indicating they could form in a specific type of com-
pact stellar core. In the TOV representation with a VDW EoS of a compact core, stability 

bounds, causality limits, and black hole formation all constrain the range of the chemical 
potential or induce phase changes for hexaquarks that would result in a layering of the 

core. Our key result for the VDW EoS in the TOV framework with a cold beta equilibrium 
system is that, for chemical potentials 700 MeV > μ > 1340 MeV with 1.73 > M/MSolar > 2.37 
and 10.3 km > R > 11.9 km, there is no single state pure hexaquark core that remains stable 

without a phase transition. However, the mixed states of correlated diquarks and tri-
quarks can cluster to form layers of increasing chemical potential towards the center of 

the star. This analysis did not include any boson- or color-superconducting formation 
properties which would soften the EoS in a fashion similar to a phase transition, but which 
allow for much higher chemical potentials (μ > 1400 MeV [74]) and include features we 

are now exploring. As higher resolution multispectral observations improve, it will soon 
be possible to begin to determine the nature of the interior of high-density neutron stars 

and or quark star candidates such as GW 170817 [75]. 
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