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Abstract

We investigate a class of composite nonconvex functions, where the outer function is the
sum of univariate extended-real-valued convex functions and the inner function is the limit of
difference-of-convex functions. A notable feature of this class is that the inner function may fail
to be locally Lipschitz continuous. It covers a range of important yet challenging applications,
including inverse optimal value optimization and problems under value-at-risk constraints. We
propose an asymptotic decomposition of the composite function that guarantees epi-convergence
to the original function, leading to necessary optimality conditions for the corresponding mini-
mization problem. The proposed decomposition also enables us to design a numerical algorithm
such that any accumulation point of the generated sequence, if exists, satisfies the newly intro-
duced optimality conditions. These results expand on the study of so-called amenable functions
introduced by Poliquin and Rockafellar in 1992, which are compositions of convex functions with
smooth maps, and the prox-linear methods for their minimization. To demonstrate that our
algorithmic framework is practically implementable, we further present verifiable termination
criteria and preliminary numerical results.

Keywords: epi-convergence; optimality conditions; nonsmooth analysis; difference-of-convex
functions

1 Introduction.

We consider a class of composite optimization problems of the form:

minimize
x∈Rn

m∑
p=1

[
Fp(x) ≜ φp

(
fp(x)

)]
, (CP0)

where for each p = 1, · · · ,m, the outer function φp : R → R ∪ {+∞} is proper, convex, lower
semicontinuous (lsc), and the inner function fp : Rn → R is not necessarily locally Lipschitz
continuous.
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If each inner function fp is continuously differentiable, then the objective in (CP0) belongs to the
family of amenable functions under a constraint qualification [25, 26]. For a thorough exploration
of the variational theory of amenable functions, readers are referred to [30, Chapter 10(F)]. The
properties of amenable functions have also led to the development of prox-linear algorithms, where
convex subproblems are constructed through the linearization of the inner smooth mapping [16, 4,
5, 19, 14].

However, there are various applications of composite optimization problem in the form of (CP0)
where the inner function fp is nondifferentiable. In the following, we provide two such examples.

Example 1.1 (The inverse optimal value optimization). For p = 1, · · · ,m, consider the optimal
value function

fp(x) ≜ inf
y∈Rd

{
(c p + C px)⊤y +

1

2
y⊤Q p y

∣∣∣∣ A px+B py ≤ b p
}

x ∈ Rn (1)

with appropriate dimensional vectors b p and c p, and matrices A p, B p, C p and Q p. The function fp
is not smooth in general. The inverse (multi) optimal value problem [2, 24] finds a vector x ∈ Rn

that minimizes the discrepancy between observed optimal values {νp}mp=1 and true optimal values
{fp(x)}mp=1 based on a prescribed metric, such as the ℓ1-error:

minimize
x∈Rn

m∑
p=1

|νp − fp(x)| . (2)

If fp is real-valued for p = 1, · · · ,m, one can express problem (2) in the form of (CP0) by defining
the outer function φp(t) = |νp − t|.

Example 1.2 (The portfolio optimization under a value-at-risk constraint). Given a random
variable Y , the Value-at-risk (VaR) of Y at a confidence level α ∈ (0, 1) is defined as VaRα(Y ) ≜
min {γ ∈ R | P(Y ≤ γ) ≥ α}. Let Z be the random return of investments and c(·, ·) be a lsc function
representing the profit of Z parameterized by x ∈ Rn. An agent’s goal is to maximize the expected
profit, denoted by E[ c(x, Z)], while also controlling the risk via a constraint on VaRα[c(x, Z)] under
a prescribed level r. The model can be written as

minimize
x∈Rn

−E [ c(x, Z)] subject to VaRα[ c(x, Z)] ≥ r. (3)

Define δA as the indicator function of a set A, where δA(t) = 0 for t ∈ A and δA(t) = +∞ for t /∈ A.
Problem (3) can then be put into the framework (CP0) by setting φ1(t) = −t, f1(x) = E[ c(x, Z)],
φ2(t) = δ[r,+∞)(t), and f2(x) = VaRα[ c(x, Z)]. We note that the function VaRα[ c(·, Z)] can be
nondifferentiable even if the function c(·, z) is differentiable for every z.

Due to the nondifferentiablity of the inner function fp in (CP0), the overall objective is not
amenable and the prox-linear algorithm [16] is not applicable to solve this composite optimization
problem. In this paper, we develop an algorithmic framework for a subclass of (CP0), where each
inner function fp, although nondifferentiable, can be derived from DC functions through a limiting
process. We refer to this class of functions as approachable difference-of-convex (ADC) functions
(see section 2.1 for the formal definition). It is important to note that ADC functions are ubiquitous.
In particular, we will show that the optimal value function fp in (1) and VaRα[ c(·, Z)] in (3) are
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instances of ADC functions under mild conditions. In fact, based on the result recently shown in
[31], any lsc function is the epi-limit of piecewise affine DC functions.

With this new class of functions in hand, we have made a first step to understand the variational
properties of the composite ADC minimization problem (CP0), including an in-depth analysis of
its necessary optimality conditions. The novel optimality conditions are defined through a handy
approximation of the subdifferential mapping ∂fp that explores the ADC structure of fp. Using
the notion of epi-convergence, we further show that these optimality conditions are necessary
conditions for any local solution of (CP0). Additionally, we propose a double-loop algorithm to
solve (CP0), where the outer loop dynamically updates the DC functions approximating each fp,
and the inner loop finds an approximate stationary point of the resulting composite DC problem
through successive convex approximations. It can be shown that any accumulation point of the
sequence generated by our algorithm satisfies the newly introduced optimality conditions.

Our strategy to handle the nondifferentiable and possibly discontinuous inner function fp
through a sequence of DC functions shares certain similarities with the approximation frameworks
in the existing literature. For instance, Ermoliev et al. [15] have designed smoothing approxima-
tions for lsc functions utilizing convolutions with bounded mollifier sequences, a technique akin to
local “averaging”. Research has sought to identify conditions that ensure gradient consistency for
the smoothing approximation of composite nonconvex functions [10, 8, 6, 7]. Notably, Burke and
Hoheisel [6] have emphasized the importance of epi-convergence for the approximating sequence,
a less stringent requirement than the continuous convergence assumed in earlier works [10, 3]. In
recent work, Royset [32] has studied the consistent approximation of the composite optimization
in terms of the global minimizers and stationary solutions, where the inner function is assumed
to be locally Lipschitz continuous. Our notion of subdifferentials and optimality conditions for
(CP0) takes inspiration from these works but adapts to accommodate nonsmooth approximating
sequences that exhibit the advantageous property of being DC.

The rest of the paper is organized as follows. Section 2 presents a class of ADC functions and
introduces a new associated notion of subdifferential. In section 3, we investigate the necessary
optimality conditions for problem (CP0). Section 4 is devoted to an algorithmic framework for
solving (CP0) and its convergence analysis to the newly introduced optimality conditions. We
also discuss termination criteria for practical implementation in section 4.3. Preliminary numerical
experiments on the inverse optimal value problems are presented in the last section.

Notation and Terminology. Let ∥ · ∥ denote the Euclidean norm in Rn. We use the symbol
B(x̄, δ) to denote the Euclidean ball {x ∈ Rn | ∥x−x̄∥ ≤ δ}. The set of nonpositive and nonnegative
are denoted by R− and R+, respectively, and the set of nonnegative integers is denoted by N. We
write N♯

∞ ≜ {N ⊂ N | N infinite} and N∞ ≜ {N | N \N finite}. Notation {tk} is used to simplify
the expression of any sequence {tk}k∈N, where the elements can be points, sets, or functions. By
tk → t and tk →N t, we mean that the sequence {tk} and the subsequence {tk}k∈N indexed by

N ∈ N♯
∞ converge to t, respectively.

Given two sets A and B in Rn and a scalar λ ∈ R, the Minkowski sum and the scalar multiple
are defined as A+ B ≜ {a+ b | a ∈ A, b ∈ B} and λA ≜ {λ a | a ∈ A}. We also define 0 · ∅ = {0}
and λ · ∅ = ∅ whenever λ ̸= 0. When A and B are nonempty and closed, we define the one-sided
deviation of A from B as D(A,B) ≜ supx∈A dist(x,B), where dist(x,B) ≜ infy∈B ∥y − x∥. The
Hausdorff distance between A and B is given by H(A,B) ≜ max{D(A,B), D(B,A)}. The boundary
and interior of A are denoted by bdry(A) and int(A). The topological closure and the convex hull
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of A are indicated by cl(A) and conA.

For a sequence of sets {Ck}, we define its outer limit as

Lim sup
k→+∞

Ck ≜ {u | ∃N ∈ N♯
∞, u

k →N u with uk ∈ Ck},

and the horizon outer limit as

Lim sup
k→+∞

∞Ck ≜ {0} ∪
{
u | ∃N ∈ N♯

∞, λk ↓ 0, λkuk →N u with uk ∈ Ck
}
.

The outer limit of a set-valued mapping S : Rn ⇒ Rm is defined as

Lim sup
x→x̄

S(x) ≜
⋃

xk→x̄

Lim sup
k→+∞

S(xk) = {u | ∃xk → x̄, uk → u with uk ∈ S(xk)} x̄ ∈ Rn.

We say S is outer semicontinuous (osc) at x̄ ∈ Rn if Lim supx→x̄ S(x) ⊂ S(x̄). Consider some index

set N ∈ N♯
∞. A sequence of sets {Ck}k∈N is equi-bounded if there exists a bounded set B such that

Ck ⊂ B for all k ∈ N . Otherwise, the sequence is unbounded. If there is an integer K ∈ N such
that {Ck}k∈N,k≥K is equi-bounded, then the sequence {Ck}k∈N is said to be eventually bounded.
Interested readers are referred to [30, Chapter 4] for a comprehensive study of set convergence.

The regular normal cone and the limiting normal cone of a set C ⊂ Rn at x̄ ∈ C are given by

N̂C(x̄) ≜
{
v
∣∣∣ v⊤(x− x̄) ≤ o(∥x− x̄∥) for all x ∈ C} and NC(x̄) ≜ Lim sup

x(∈C)→x̄
N̂C(x).

The proximal normal cone of a set C at x̄ ∈ C is defined as N p
C(x̄) ≜ {λ(x− x̄) | x̄ ∈ PC(x), λ ≥ 0},

where PC is the projection onto C that maps any x to the set of points in C that are closest to x.

For an extended-real-valued function f : Rn → R ≜ R ∪ {±∞}, we write its effective domain
as dom f ≜ {x ∈ Rn | f(x) < +∞}, and the epigraph as epi f ≜ {(x, α) ∈ Rn+1 | α ≥ f(x)}. We
say f is proper if dom f is nonempty and f(x) > −∞ for all x ∈ Rn. We adopt the common rules
for extended arithmetic operations, and the lower and upper limits of a sequence of scalars in R
(cf. [30, Chapter 1(E)]).

Let f : Rn → R be a proper function. We write x →f x̄, if x → x̄ and f(x) → f(x̄). The
regular subdifferential and the limiting subdifferential of f at x̄ ∈ dom f are respectively defined as

∂̂f(x̄) ≜ {v | f(x) ≥ f(x̄) + v⊤(x− x̄) + o(∥x− x̄∥) for all x} and ∂f(x̄) ≜ Lim sup
x→f x̄

∂̂f(x).

For any x̄ /∈ dom f , we set ∂̂f(x̄) = ∂f(x̄) = ∅. When f is locally Lipschitz continuous at x̄,
con ∂f(x̄) equals to the Clarke subdifferential ∂Cf(x̄). We further say f is subdifferentially regular
at x̄ ∈ dom f if f is lsc at x̄ and ∂̂f(x̄) = ∂f(x̄). When f is proper and convex, ∂̂f , ∂f , and ∂Cf
coincide with the concept of the subdifferential in convex analysis.

Finally, we introduce the notion of function convergence. A sequence of functions {fk : Rn →
R} is said to converge pointwise to f : Rn → R, written fk p→ f , if limk→+∞ fk(x) = f(x) for any
x ∈ Rn. The sequence {fk} is said to epi-converge to f , written fk

e→ f , if for any x, it holds lim inf
k→+∞

fk(xk) ≥ f(x) for every sequence xk → x,

lim sup
k→+∞

fk(xk) ≤ f(x) for some sequence xk → x.

The sequence {fk} is said to converge continuously to f , written fk
c→ f , if limk→+∞ fk(xk) = f(x)

for any x and any sequence xk → x.
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2 Approachable difference-of-convex functions.

In this section, we formally introduce a class of functions that can be asymptotically approximated
by DC functions. A new concept of subdifferential that is defined through the approximating
functions is proposed. At the end of this section, we provide several examples that demonstrate
the introduced concepts.

2.1 Definitions and properties.

An extended-real-valued function can be approximated by a sequence of functions in various notions
of convergence, as comprehensively investigated in [30, Chapter 7(A-C)]. Among these approaches,
epi-convergence has a notable advantage in its ability to preserve the global minimizers [30, Theorem
7.31]. Our focus lies on a particular class of approximating functions, wherein each function exhibits
a DC structure.

Definition 1. A function f is said to be DC on its domain if there exist proper, lsc and convex
functions g, h : Rn → R such that dom f = [ dom g ∩ domh ] and f(x) = g(x) − h(x) for any
x ∈ dom f .

With this definition, we introduce the concept of ADC functions.

Definition 2 (ADC functions). Let f : Rn → R be a proper function.
(a) f is said to be pointwise approachable DC (p-ADC) if there exist proper functions {fk : Rn →
R}, DC on their respective domains, such that fk

p→ f .
(b) f is said to be epigraphically approachable DC (e-ADC) if there exist proper functions {fk :
Rn → R}, DC on their respective domains, such that fk

e→ f .
(c) f is said to be continuously approachable DC (c-ADC) if there exist proper functions {fk :
Rn → R}, DC on their respective domains, such that fk

c→ f .
A function f is said to be ADC associated with {fk} if {fk} confirms one of these convergence

properties. By a slight abuse of notation, we denote the DC decomposition of each fk as fk =
gk − hk, although the equality may only hold for x ∈ dom fk.

A p-ADC function may not be lsc. An example is given by f(x) = 1{0}(x) + 2 · 1(0,+∞)(x),
where for a set C ⊂ Rn, we write 1C(x) = 1 if x ∈ C and 1C(x) = 0 if x /∈ C. In this case, f is not
lsc at x = 0. However, f is p-ADC associated with fk(x) = max ( 0, 2kx+ 1 )−max ( 0, 2kx− 1 ).
In contrast, any e-ADC function must be lsc [30, Proposition 7.4(a)], and any c-ADC function is
continuous [30, Theorem 7.14].

The relationships among different notions of function convergence, including the unaddressed
uniform convergence, have been thoroughly examined in [30]. Generally, pointwise convergence and
epi-convergence do not imply one another, but they coincide when the sequence {fk} is asymp-
totically equi-lsc everywhere [30, Theorem 7.10]. In addition, {fk} converges continuously to f if
and only if both fk

e→ f and (−fk) e→ (−f) are satisfied [30, Theorem 7.11]. While verifying epi-
convergence is often challenging, it becomes simpler for a monotonic sequence {fk} that converges
pointwise to f [30, Proposition 7.4(c-d)].
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2.2 Subdifferentials of ADC functions.

Characterizing the limiting and Clarke subdifferentials can be challenging when dealing with func-
tions that exhibit complex composite structures. Our focus in this subsection is on numerically
computable approximations of the limiting subdifferentials. We begin with the definitions.

Definition 3 (approximate subdifferentials). Consider an ADC function f : Rn → R associated
with {fk = gk − hk}. The approximate subdifferential of f (associated with {fk = gk − hk}) at
x̄ ∈ Rn is defined as

∂Af(x̄) ≜
⋃

xk→x̄

Lim sup
k→+∞

[
∂gk(xk)− ∂hk(xk)

]
.

The approximate horizon subdifferential of f (associated with {fk = gk−hk}) at x̄ ∈ Rn is defined
as

∂∞A f(x̄) ≜
⋃

xk→x̄

Lim sup
k→+∞

∞ [
∂gk(xk)− ∂hk(xk)

]
.

Unlike the limiting subdifferential which requires xk →f x̄, ∂Af(x) is defined using all the
sequences xk → x̄ without necessitating the convergence of function values. It follows directly from
the definitions that the mappings x 7→ ∂Af(x) and x 7→ ∂∞A f(x) are osc. The following proposition
presents a sufficient condition for ∂Af(x̄) = ∂f(x̄) = ∅ at any x̄ /∈ dom f .

Proposition 1. Let x̄ /∈ dom f . Then ∂Af(x̄) = ∅ if for any sequence xk → x̄, we have xk /∈ dom fk

for all sufficiently large k. The latter condition is particularly satisfied whenever dom f is closed
and dom fk ⊂ dom f for all sufficiently large k.

Proof. Note that for any xk → x̄ /∈ dom f , we have [∂gk(xk)−∂hk(xk)] = ∅ for all sufficiently large
k due to xk /∈ dom fk = [dom gk ∩ domhk]. Thus, ∂Af(x̄) = ∅ for any x̄ /∈ dom f .

In the subsequent analysis, we restrict our attention to x̄ ∈ dom f . Admittedly, the set ∂Af(x̄)
depends on the approximating sequence {fk} and the DC decomposition of each fk, which may
contain irrelevant information concerning the local geometry of epi f . In fact, for a given ADC
function f , we can make the set ∂Af(x̄) arbitrarily large by adding the same nonsmooth functions
to both gk and hk. By Attouch’s theorem (see for example [30, Theorem 12.35]), for proper, lsc,
convex functions f and {fk}, if fk e→ f , we immediately have ∂Af = ∂f when taking gk = fk

and hk = 0. In what follows, we further explore the relationships among ∂Af and other commonly
employed subdifferentials in the literature beyond the convex setting. As it turns out, with respect
to an arbitrary DC function fk that is lsc, ∂Af(x̄) contains the limiting subdifferential of f at any
x̄ ∈ dom f whenever fk

e→ f .

Theorem 1 (subdifferentials relationships). Consider an ADC function f : Rn → R. The following
statements hold for any x̄ ∈ dom f .
(a) If f is e-ADC associated with {fk} and fk is lsc, then ∂f(x̄) ⊂ ∂Af(x̄) and ∂∞f(x̄) ⊂ ∂∞A f(x̄).
(b) If f is locally Lipschitz continuous and bounded from below, then there exists a sequence of DC
functions {fk} such that fk

c→ f , ∂f(x̄) ⊂ ∂Af(x̄) ⊂ ∂Cf(x̄), and ∂
∞
A f(x̄) = {0}. Consequently,

con ∂Af(x̄) = ∂Cf(x̄), the set ∂Af(x̄) is nonempty and bounded, and ∂f(x̄) = ∂Af(x̄) when f is
subdifferentially regular at x̄.
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Proof. (a) Let gk − hk be a DC decomposition of fk. Since f is e-ADC, it must be lsc [30,
Proposition 7.4(a)]. Using epi-convergence of {fk} to f , we know from [30, corollary 8.47(b)]
and [30, Proposition 8.46(e)] that any element of ∂f(x̄) can be generated as a limit of regular
subgradients at xk with xk →N x̄ and fk(xk)→N f(x̄) for some N ∈ N∞. Indeed, we can further
restrict xk ∈ dom fk since fk(xk)→N f(x̄) and x̄ ∈ dom f . Then, we have

∂f(x̄) ⊂
⋃

xk(∈dom fk)→x̄

Lim sup
k→+∞

∂̂fk(xk) ⊂
⋃

xk(∈dom fk)→x̄

Lim sup
k→+∞

[
∂gk(xk)− ∂hk(xk)

]
⊂ ∂Af(x̄),

where the second inclusion can be verified as follows: Firstly, due to the lower semicontinuity of
fk and hk, and xk ∈ dom fk ⊂ dom gk, it follows from the sum rule of regular subdifferentials [30,
corollary 10.9] that ∂̂gk(xk) ⊃ ∂̂fk(xk) + ∂̂hk(xk). Consequently, ∂̂fk(xk) ⊂ ∂̂gk(xk)− ∂̂hk(xk) =
∂gk(xk)− ∂hk(xk) since gk and hk are proper and convex [30, Proposition 8.12]. Similarly, by [30,
corollary 8.47(b)], we have

∂∞f(x̄) ⊂
⋃

xk(∈dom fk)→x̄

Lim sup
k→+∞

∞ ∂̂fk(xk) ⊂
⋃

xk(∈dom fk)→x̄

Lim sup
k→+∞

∞[∂gk(xk)−∂hk(xk)] ⊂ ∂∞A f(x̄).
(b) For a locally Lipschitz continuous function f , consider its Moreau envelope eγf(x) ≜

infz{f(z) + ∥z − x∥2/(2γ)} and the set-valued mapping Pγf (x) ≜ argminz{f(z) + ∥z − x∥2/(2γ)}.
For any sequence γk ↓ 0, we demonstrate in the following that {fk ≜ eγkf} is the desired sequence
of approximating functions. Firstly, since f is bounded from below, it must be prox-bounded and,
thus, each fk is continuous and fk(x̄) ↑ f(x̄) for all x̄ (cf. [30, Theorem 1.25]). By the continuity
of f and fk, we have fk

c→ f from [30, Proposition 7.4(c-d)]. It then follows from part (a) that
∂f(x̄) ⊂ ∂Af(x̄). Consider the following DC decomposition of each fk:

fk(x) =
∥x∥2

2γk︸ ︷︷ ︸
≜gk(x)

− sup
z∈Rn

{
−f(z)− ∥z∥

2

2γk
+
z⊤x

γk

}
︸ ︷︷ ︸

≜hk(x)

x ∈ Rn.

It is clear that f(z) + ∥z∥2/(2γk) + z⊤x/γk is level-bounded in z locally uniformly in x, since for
any r ∈ R and any bounded set X ⊂ Rn, the set{
z ∈ Rn

∣∣∣∣x ∈ X, f(z) + ∥z∥22γk
− z⊤x

γk
≤ r
}
⊂
{
z ∈ Rn

∣∣∣x ∈ X, ∥z − x∥2 ≤ ∥x∥2 + 2γk

[
r − inf

z
f(z)

]}
is bounded. Due to the level-boundedness condition, we can apply the subdifferential formula of
the parametric minimization [30, Theorem 10.13] to get

∂(−hk)(x) ⊂
⋃

z∈Pγkf (x)

{
y

∣∣∣∣ (0, y) ∈ ∂(z,x)(f(z) + ∥z∥22γk
− z⊤x

γk

)}
⊂

⋃
z∈Pγkf (x)

{
∂f(z)− x

γk

}
,

where the last inclusion is due to the calculus rules [30, Proposition 10.5 and exercise 8.8(c)]. Since
hk is convex, we have −∂hk(x) = ∂C(−hk)(x) = con ∂(−hk)(x) by [30, Theorem 9.61], which
further yields that[

∂gk(x)− ∂hk(x)
]
⊂ con

⋃
{∂f(z) | z ∈ Pγkf (x)} ∀x ∈ Rn, k ∈ N. (4)
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For any xk → x̄ and any zk ∈ Pγkf (x
k), we have

1

2γk
∥zk − xk∥2 + inf

x
f(x) ≤ 1

2γk
∥zk − xk∥2 + f(zk) ≤ 1

2γk
∥x̄− xk∥2 + f(x̄).

Then, ∥zk − xk∥ ≤
√
∥x̄− xk∥2 + 2γk[f(x̄)− infx f(x)] → 0 due to the assumption that f is

bounded from below and therefore zk → x̄. By the local Lipschitz continuity of f , it follows from
[30, Theorem 9.13] that the mapping ∂f : x 7→ ∂f(x) is locally bounded at x̄. Thus, there is a
bounded set S such that

⋃
{∂f(zk) | zk ∈ Pγkf (x

k)} ⊂ S for all sufficiently large k. It follows
directly from [30, Example 4.22] and the definition of the approximate horizon subdifferential that
∂∞A f(x̄) = {0}.

Next, we will prove ∂Af(x̄) ⊂ ∂Cf(x̄). For any u ∈ ∂Af(x̄), from (4), there exist sequences of
vectors xk → x̄ and uk → u with each uk taken from the convex hull of a bounded set

⋃
{∂f(zk) |

zk ∈ Pγkf (x
k)}. By Carathéodory’s Theorem (see, e.g. [27, Theorem 17.1]), for each k, we have

uk =
∑n+1

i=1 λk,i v
k,i for some nonnegative scalars {λk,i}n+1

i=1 with
∑n+1

i=1 λk,i = 1 and a sequence{
vk,i ∈ ∂f(zk,i)

}n+1

i=1
with {zk,i ∈ Pγkf (x

k)}n+1
i=1 . It is easy to see that the sequences {λk,i}k∈N and

{vk,i}k∈N are bounded for each i. We can then obtain convergent subsequences λk,i →N λ̄i ≥ 0
with

∑n+1
i=1 λ̄i = 1 and vk,i →N v̄ i for each i. Since zk,i → x̄, we have v̄ i ∈ ∂f(x̄) by using the

outer semicontinuity of ∂f . Thus, uk →N u =
∑n+1

i=1 λ̄i v̄
i ∈ con ∂f(x̄) = ∂Cf(x̄). This implies that

∂Af(x̄) ⊂ ∂Cf(x̄). The rest of the statements in (b) follows from the fact that ∂Cf(x̄) is nonempty
and bounded whenever f is locally Lipschitz continuous [30, Theorem 9.61].

Under suitable assumptions, Theorem 1(b) guarantees the existence of an ADC decomposition
that has its approximate subdifferential contained in the Clarke subdifferential of the original
function. Notably, this decomposition may not always be practically useful due to the necessity of
computing the Moreau envelope for a generally nonconvex function. Another noteworthy remark
is that the assumptions and results of Theorem 1 can be localized to any specific point x̄. This can
be accomplished by defining a notion of “local epi-convergence” at x̄ and extending the result of
[30, corollary 8.47] accordingly.

2.3 Examples of ADC functions.

In this subsection, we provide examples of ADC functions, including functions that are discontinu-
ous relative to their domains, with explicit and computationally tractable approximating sequences.
Moreover, we undertake an investigation into the approximate subdifferentials of these ADC func-
tions.

Example 2.1 (implicitly convex-concave functions). The concept of implicitly convex-concave
(icc) functions is introduced in the monograph [13], and is further generalized to extended-real-
valued functions in [20]. A proper function f : Rn → R is icc if there exists a lifted function
f : Rn × Rn → R such that the following three conditions hold:

(i) f(z, x) = +∞ if z /∈ dom f, x ∈ Rn, and f(z, x) = −∞ if z ∈ dom f, x /∈ dom f ;
(ii) f(·, x) is convex for any fixed x ∈ dom f , and f(z, ·) is concave for any fixed z ∈ dom f ;
(iii) f(x) = f(x, x) for any x ∈ dom f .
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A notable example of icc functions is the optimal value function fp in (1), which is associated with
the lifted function defined by (the subscripts/superscripts p are omitted for brevity):

f(z, x) ≜ inf
y∈Rd

{
(c+ Cx)⊤y +

1

2
y⊤Qy

∣∣∣∣ Az +By ≤ b
}

(x, z) ∈ dom f × dom f. (5)

Let ∂1f(·, x) and ∂2(−f)(z, ·) denote the subdifferentials of the convex functions f(·, x) and (−f)(z, ·),
respectively, for any (x, z) ∈ dom f × dom f . For any γ > 0, the partial Moreau envelope of an icc
function f associated with f is given by

inf
z∈Rn

{
f(z, x) +

1

2γ
∥z − x∥2

}
=
∥x∥2

2γ︸ ︷︷ ︸
≜gγ(x)

− sup
z∈Rn

{
−f(z, x)− ∥z∥

2

2γ
+
z⊤x

γ

}
︸ ︷︷ ︸

≜hγ(x)

x ∈ dom f. (6)

This decomposition, established in [20], offers computational advantages compared to the standard
Moreau envelope, as the maximization problem defining hγ is concave in z for any fixed x. In
what follows, we present new results on the conditions under which the icc function f is e-ADC
and c-ADC based on the partial Moreau envelope. Additionally, we explore a relationship between
∂Af(x̄) and ∂1f(x̄, x̄)− ∂2(−f)(x̄, x̄), where the latter is known to be an outer estimate of ∂Cf(x̄)
[13, Proposition 4.4.26]. The proof is deferred to Appendix A.

Proposition 2. Let f : Rn → R be a proper, lsc, icc function associated with f , where dom f is
closed and f is lsc on Rn × dom f , bounded below on dom f × dom f , and continuous relative to
int(dom f)× int(dom f). Given a sequence of scalars γk ↓ 0, we have:
(a) f is e-ADC associated with {fk}, where each fk(x) ≜ gγk(x)− hγk(x)+ δdom f (x). In addition,
if dom f = Rn, then f is c-ADC associated with {fk}.
(b) ∂Af(x̄) ⊂ ∂1f(x̄, x̄)− ∂2(−f)(x̄, x̄) and ∂∞A f(x̄) = {0} for any x̄ ∈ int(dom f).

Example 2.2 (VaR for continuous random variables). Given a continuous random variable Y : Ω→
R, its conditional value-at-risk (CVaR) at a confidence level α ∈ (0, 1) is defined as CVaRα(Y ) ≜
E[Y | Y ≥ VaRα(Y )], where VaRα is the value-at-risk given in Example 1.2 (see, e.g., [29]). For
any α ∈ (0, 1) and k > 1/α, we define

gk(x) ≜ [k(1− α) + 1]CVaRα−1/k[ c(x, Z)], hk(x) ≜ k(1− α) CVaRα[ c(x, Z)] x ∈ Rn. (7)

The following properties of VaR for continuous random variables hold, with proofs provided in
Appendix A.

Proposition 3. Let c : Rn × Rm → R be a lsc function and Z : Ω → Rm be a random vector.
Suppose that c(·, z) is convex for any fixed z ∈ Rm, and c(x, Z) is a random variable having a
continuous distribution induced by that of Z for any fixed x ∈ Rn. Additionally, assume that
E[ |c(x, Z)| ] < +∞ for any x ∈ Rn. For any given constant α ∈ (0, 1), the following properties
hold.
(a) VaRα[ c(·, Z)] is lsc and e-ADC associated with {gk − hk} (with the definitions of gk and hk in
(7)). Additionally, if c(·, ·) is continuous, then VaRα[ c(·, Z)] is continuous and c-ADC associated
with {gk − hk}.
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(b) If there exists a measurable function κ : Rm → R+ such that E[κ(Z)] < +∞ and |c(x, z) −
c(x′, z)| ≤ κ(z)∥x− x′∥ for all x, x′ ∈ Rn and z ∈ Rm, then for any x̄ ∈ Rn,

∂AVaRα[ c(·, Z)](x̄) =
⋃

xk→x̄

Lim sup
k→+∞

E
[
∂1 c(x

k, Z)
∣∣∣VaRα−1/k[ c(x

k, Z)] < c(xk, Z) < VaRα[ c(x
k, Z)]

]
,

where E[A(Z) | B] for a random set-valued mapping A and an event B is defined as the set of
conditional expectations E[ a(Z) | B] for all measurable selections a(Z) ∈ A(Z).

3 The convex composite ADC functions and minimization.

This section aims to derive necessary optimality conditions for (CP0), particularly focusing on the
inner function fp that lacks local Lipschitz continuity. Throughout the rest of this paper, we assume
that φp : R→ R∪ {+∞} is proper, convex, lsc and fp : Rn → R is real-valued for all p = 1, · · · ,m.
Depending on whether φp is nondecreasing or not, we partition {1, · · · ,m} into two categories:

I1 ≜ { p ∈ {1, · · · ,m} |φp nondecreasing} and I2 ≜ {1, · · · ,m}\I1. (8)

We do not specifically address the case where φp is nonincreasing, as one can always redefine

φ̃p(t) = φp(−t) and f̃p(x) = −fp(x), enabling the treatment of these indices in the same manner
as those in I1. Therefore, the set I2 should be viewed as the collection of indices p where φp is not
monotone. We further make the following assumptions on the functions φp and fp.

Assumption 1 For each p, we have

(a) fp is e-ADC associated with {fkp = gkp − hkp}k∈N, and dom gkp = domhkp = Rn;

(b) −∞ < lim inf
x′→x, k→+∞

fkp (x
′) ≤ lim sup

x′→x, k→+∞
fkp (x

′) < +∞ for all x ∈ Rn;

(c)
[
F k
p ≜ φp ◦ fkp

] e→ Fp.

From Assumption 1(a), each fkp is locally Lipschitz continuous since any real-valued convex

function is locally Lipschitz continuous. Obviously, fkp
c→ fp is sufficient for Assumption 1(b)

to hold. Since fkp
e→ fp, we have lim infx′→x,k→+∞ fkp (x

′) ≥ fp(x) > −∞ for each p at any

x ∈ Rn. However, lim supx′→x,k→+∞ fkp (x
′) < +∞ does not hold trivially. For example, consider a

continuous function f and

fk(x) =


f(x) + k2x+ k if x ∈ [−1/k, 0]
f(x)− k2x+ k if x ∈ (0, 1/k]

f(x) otherwise
,

which results in fk
e→ f but lim supk→+∞ fk(0) = +∞. Additionally, Assumption 1(b) ensures

that at each point x and for any sequence xk → x, the sequence {fkp (xk)}k∈N must be bounded.

It follows from [30, Exercise 7.8(c)] and [32, Theorem 2.4] that there are several sufficient
conditions for Assumption 1(c) to hold, which differ based on the monotonicity of each φp: (i)
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For p ∈ I1, either φp is real-valued or fkp ≤ fp; (ii) For p ∈ I2, fp is c-ADC and for all x with

fp(x) ∈ bdry(domφp), there exists a sequence xk → x with f(xk) ∈ int(domφp). In addition,
according to [30, Proposition 7.4(a)], Assumption 1(c) implies that Fp = φp ◦fp is lsc. We also note

that Assumption 1(c) doesn’t necessarily imply
∑m

p=1 F
k
p

e→
∑m

p=1 Fp. To maintain epi-convergence
under addition of functions, one may refer to the sufficient conditions in [30, Theorem 7.46].

3.1 Asymptotic stationarity under epi-convergence.

In this subsection, we introduce a novel stationarity concept for problem (CP0), grounded in a
monotonic decomposition of univariate convex functions. We demonstrate that under certain con-
straint qualifications, epi-convergence of approximating functions ensures this stationarity concept
as a necessary optimality condition. Alongside the known fact that epi-convergence also ensures
the consistency of global optimal solutions [30, Theorem 7.31(b)], this highlights the usefulness of
epi-convergence as a tool for studying the approximation of problem (CP0).

The following lemma is an extension of [13, Lemma 6.1.1] from real-valued univariate convex
functions to extended-real-valued univariate convex functions.

Lemma 1 (a monotonic decomposition of univariate convex functions). Let φ : R→ R be a proper,
lsc and convex function. Then there exist a proper, lsc, convex and nondecreasing function φ↑, as
well as a proper, lsc, convex and nonincreasing function φ↓, such that φ = φ↑ +φ↓. In addition, if
int(domφ) ̸= ∅, then ∂φ(z) = ∂φ↑(z) + ∂φ↓(z) for any z ∈ domφ.

Proof. From the convexity of φ, domφ is an interval on R, possibly unbounded. In fact, we can
explicitly construct φ↑ and φ↓ in following two cases.
Case 1. If φ has no direction of recession, i.e., there does not exist d ̸= 0 such that for any z,
φ(z + λd) is a nonincreasing function of λ > 0, it follows from [27, Theorem 27.2] that φ attains
its minimum at some z∗ ∈ domφ. Define

φ↑(z) =

{
φ(z∗) if z ≤ z∗
φ(z) if z > z∗

and φ↓(z) =

{
φ(z)− φ(z∗) if z ≤ z∗

0 if z > z∗
.

Observe that ∅ ≠ int(domφ) ⊂
[
int(domφ↑)∩ int(domφ↓)

]
. Consequently, from [27, Theorem

23.8], we have ∂φ(z) = ∂φ↑(z) + ∂φ↓(z) for any z ∈ R.
Case 2. Otherwise, there exists d ̸= 0 such that for any z ∈ R, φ(z+λd) is a nonincreasing function
of λ > 0. Consequently, domφ must be an unbounded interval on R. Let d = 1 (or −1) be such
a recession direction, then φ is nonincreasing (or nondecreasing) on R. We can set φ↑ = 0 and
φ↓ = φ (or φ↑ = φ and φ↓ = 0). In this case, it is obvious that ∂φ(z) = ∂φ↑(z) + ∂φ↓(z) for any
z ∈ R. The proof is thus completed.

In the subsequent analysis, we use φ↑ and φ↓ to denote the monotonic decomposition of any
univariate, proper, lsc, and convex function φ constructed in the proof of Lemma 1 and, in partic-
ular, we take φ↓ = 0 whenever φ is nondecreasing. We are now ready to present the definition of
asymptotically stationary points.

Definition 4 (asymptotically stationary points). Let each fp be an ADC function associated with
{fkp = gkp − hkp}k∈N. For each p, define

Tp(x) ≜
{
tp

∣∣∣ ∃N ∈ N♯
∞, x

k → x with fkp (x
k)→N tp

}
x ∈ Rn. (9)
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We say that x̄ is an asymptotically stationary (A-stationary) point of problem (CP0) if for each
p, there exists yp ∈

⋃
{∂φp(tp) | tp ∈ Tp(x̄)} such that

0 ∈
m∑
p=1

( {
yp ∂Afp(x̄)

}
∪
[
± ∂∞A fp(x̄)\{0}

] )
. (10)

We say that x̄ is a weakly asymptotically stationary (weakly A-stationary) point of problem (CP0)

if for each p, there exist t̄p ∈ Tp(x̄), yp,1 ∈ ∂φ↑
p(t̄p) and yp,2 ∈ ∂φ↓

p(t̄p) such that

0 ∈
m∑
p=1

(
{yp,1 ∂Afp(x̄) + yp,2 ∂Afp(x̄)} ∪

[
± ∂∞A fp(x̄)\{0}

] )
.

Remark 1. (i) Given that the approximate subdifferential ∂Afp is determined by the approximating
sequence {fkp }k∈N and their corresponding DC decompositions, the notion of (weak) A-stationarity
also depends on these sequences and decompositions. (ii) It follows directly from Lemma 1 that an
A-stationary point must be a weakly A-stationary point if int(domφp) ̸= ∅ for each p = 1, · · · ,m.
(iii) When each φp is nondecreasing or nonincreasing, the concepts of weak A-stationarity and
A-stationarity coincide. (iv) Given a point x̄, we can rewrite (10) as

0 ∈
∑
p∈I

[
± ∂∞A fp(x̄)\{0}

]
+

∑
p∈{1,··· ,m}\I

{yp ∂Afp(x̄)}

for some index set I ⊂ {1, · · · ,m} that is potentially empty. For each p ∈ I, although the scalar yp
does not explicitly appear in this inclusion, its existence implies that

⋃
{∂φp(tp) | tp ∈ Tp(x̄)} ̸= ∅,

which plays a role in ensuring x̄ ∈ dom(φp ◦ fp). For instance, if fkp
c→ fp for some p ∈ I,

then Tp(x̄) = {fp(x̄)}, and the existence of yp ∈
⋃
{∂φp(tp) | tp ∈ Tp(x̄)} = ∂φp(fp(x̄)) yields

x̄ ∈ dom(φp ◦ fp).

In the following, we take a detour to compare the A-stationarity with the stationarity defined
in [32], where the author has focused on a more general composite problem

minimize
x∈Rn

φ (f(x)) ,

where φ : Rm → R is proper, lsc, convex and f ≜ (f1, · · · , fm) : Rn → Rm is a locally Lipschitz
continuous mapping. Consider the special case where φ(z) =

∑m
p=1 φp(zp) with z = (z1, · · · , zm).

Under this setting, a vector x̄ is called a stationary point in [32] if there exist ȳ and z̄ such that

0 ∈ S(x̄, ȳ, z̄) ≜
{
(f1(x̄), · · · , fm(x̄))−z̄

}
×
{
∂φ1(z̄1)×· · ·×∂φm(z̄m)−ȳ

}
×

 m∑
p=1

ȳp ∂Cfp(x̄)

 , (11)

which can be equivalently written as

0 ∈
m∑
p=1

ȳp ∂Cfp(x̄) for some ȳp ∈ ∂φp(fp(x̄)) p = 1, · · · ,m. (12)
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For any fixed k ∈ N, a surrogate set-valued mapping Sk can be defined similarly as S in (11)
by substituting fp and φp with fkp and φk

p for each p. The cited paper provides sufficient conditions

to ensure Lim supk→+∞(gphSk) ⊂ gphS, which asserts that any accumulation point (x̄, ȳ, z̄) of
a sequence {(xk, yk, zk)} with 0 ∈ Sk(xk, yk, zk) yields a stationary point x̄. Our study on the
asymptotic stationarity differs from [32] in the following aspects:

1. Our outer convex function φ is assumed to have the separable form
∑m

p=1 φp, while [32] allows
a general proper, lsc, convex function. In addition, each φp is fixed in our approximating
problem while [32] considers a sequence of convex functions {φk

p}k∈N that epi-converges to
φp.

2. We do not require the inner function fp to be locally Lipschitz continuous.

If each fp is locally Lipschitz continuous and bounded from below, it then follows from
Theorem 1 that fp is c-ADC associated with {fkp = gkp−hkp}k∈N such that ∂fp(x) ⊂ ∂Afp(x) ⊂
∂Cfp(x) and ∂∞A fp(x) = {0} for any x. Moreover, by fkp

c→ fp, one has Tp(x) = {fp(x)}.
Thus, for any A-stationary point x̄ induced by these ADC decompositions, there exists ȳp ∈
∂φp(fp(x̄)) for each p such that

0 ∈
m∑
p=1

{ȳp ∂Afp(x̄)} ⊂
m∑
p=1

{ȳp ∂Cfp(x̄)} . (13)

Hence, x̄ is also a stationary point defined in (12). Indeed, A-stationarity here can be sharper
than the latter one as the last inclusion in (13) may not hold with equality.

When fp fails to be locally Lipschitz continuous for some p, it is not known if (11) is still
a necessary condition for a local solution of (CP0). This situation further complicates the
fulfillment of conditions outlined in [32, Theorem 2.4], especially the requirement of fkp

c→ fp,
due to the potential discontinuity of fp. As will be shown in Theorem 2 below, despite
these challenges, weak A-stationarity continues to be a necessary optimality condition under
Assumption 1.

To proceed, for each p and any x ∈ dom(φp ◦ fp), we define Sp(x) to be a collection of sequences:

Sp(x) ≜
{
{xkp}k∈N

∣∣∣xkp → x with φp(f
k
p (x

k
p))→ φp(fp(x))

}
. (14)

Theorem 2 (necessary conditions for optimality). Let x̄ ∈
⋂m

p=1 domFp be a local minimizer of
problem (CP0). Suppose that Assumption 1 and the following two conditions hold:
(i) For each p and any sequence {xkp}k∈N ∈ Sp(x̄), there is a positive integer K such that

0 /∈ ∂Cfkp (xkp) or Ndomφp(f
k
p (x

k
p)) = {0} ∀ k ≥ K, (15)

and [
0 ∈ yp ∂Afp(x̄), yp ∈

⋃{
Ndomφp(tp) | tp ∈ Tp(x̄)

}]
=⇒ yp = 0, p = 1, · · · ,m. (16)

(ii) One has  m∑
p=1

wp = 0, wp ∈ ∂∞(φp ◦ fp)(x̄)

 =⇒ w1 = · · · = wm = 0. (17)
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Then x̄ is an A-stationary point of (CP0). Additionally, x̄ is a weakly A-stationary point of (CP0)
if int(domφp) ̸= ∅ for each p = 1, · · · ,m.

Proof. By using Fermat’s rule [30, Theorem 10.1] and the sum rule of the limiting subdifferentials
[30, Corrollary 10.9] due to the condition (17), we have

0 ∈ ∂

 m∑
p=1

(φp ◦ fp)(x̄)

 ⊂ m∑
p=1

∂(φp ◦ fp)(x̄)
(i)
⊂

m∑
p=1

⋃
{xk

p}k∈N∈Sp(x̄)

Lim sup
k→+∞

∂(φp ◦ fkp )(xkp)

(ii)
⊂

m∑
p=1

⋃
{xk

p}k∈N∈Sp(x̄)

Lim sup
k→+∞

⋃{
∂(ykp f

k
p )(x

k
p)
∣∣∣ ykp ∈ ∂φp(f

k
p (x

k
p))
}

(iii)
⊂

m∑
p=1

⋃
{xk

p}k∈N∈Sp(x̄)

Lim sup
k→+∞

{
ykp v

k
p

∣∣∣ ykp ∈ ∂φp(f
k
p (x

k
p)), v

k
p ∈ ∂Cfkp (xkp)

}
(iv)
⊂

m∑
p=1

⋃
{xk

p}k∈N∈Sp(x̄)

Lim sup
k→+∞

{
ykp v

k
p

∣∣∣ ykp ∈ ∂φp(f
k
p (x

k
p)), v

k
p ∈

[
∂gkp(x

k
p)− ∂hkp(xkp)

]}
.

(18)

The inclusion (i) is due to φp ◦ fkp
e→ φp ◦ fp in Assumption 1(c) and approximation of subgradi-

ents under epi-convergence [30, corollary 8.47] and [30, Proposition 8.46(e)]; (ii) follows from the
nonsmooth Lagrange multiplier rule [30, Exercise 10.52] due to the local Lipschitz continuity of
fkp [30, Example 9.14] and the condition (15); (iii) and (iv) use the calculus rules of the Clarke

subdifferential [12, Chapter 2.3]. For each p, any sequence {xkp}k∈N ∈ Sp(x̄) and any element

w̄p ∈ Lim sup
k→+∞

{
ykp v

k
p

∣∣∣ ykp ∈ ∂φp(f
k
p (x

k
p)), v

k
p ∈

[
∂gkp(x

k
p)− ∂hkp(xkp)

]}
,

there is a subsequence wk
p →N w̄p with wk

p = ykp v
k
p for some N ∈ N♯

∞. Next, we show the existence
of ȳp ∈

⋃
{∂φp(tp) | tp ∈ Tp(x̄)} for each p such that

w̄p ∈ { ȳp ∂Afp(x̄) } ∪
[
± ∂∞A fp(x̄)\{0}

]
. (19)

By Assumption 1(b), the subsequence {fkp (xkp)}k∈N is bounded. Taking a subsequence if necessary,

we can suppose that fkp (x
k
p) →N z̄p ∈ Tp(x̄). If {ykp}k∈N is unbounded, then {vkp}k∈N has a

subsequence converging to 0 and, thus, 0 ∈ ∂Afp(x̄). Additionally, there exists ỹp ̸= 0 such that

ykp
|ykp |
→N ỹp ∈ Lim sup

k(∈N)→+∞

∞ ∂φp(f
k
p (x

k
p))

(v)
= Lim sup

k(∈N)→+∞

∞ ∂̂φp(f
k
p (x

k
p))

(vi)
⊂ ∂∞φp(z̄p)

(vii)
= Ndomφp(z̄p).

(20)
The equation (v) follows from [30, Proposition 8.12] by the convexity of φp. From {xkp}k∈N ∈ Sp(x̄)
and x̄ ∈ domFp, we must have fkp (x

k
p) ∈ domφp for sufficiently large k ∈ N . Since φp is lsc, it holds

that φp(z̄p) ≤ lim infk(∈N)→+∞ φp(f
k
p (x

k
p)) = φp(fp(x̄)) and, thus, z̄p ∈ domφp. Also, notice that

φp is continuous relative to its domain as it is univariate convex and lsc [27, Theorem 10.2]. This
continuity implies φp(f

k
p (x

k
p)) →N φp(z̄p). The inclusion (vi) follows directly from the definition

of the horizon subdifferential. Lastly, (vii) is due to the lower semicontinuity of the proper convex
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function φ and [30, Proposition 8.12]. Therefore, we have (0 ̸=)ỹp ∈
⋃
{Ndomφp(tp) | tp ∈ Tp(x̄)

}
with 0 ∈ ỹp∂A fp(x̄) due to 0 ∈ ∂Afp(x̄), contradicting (16). So far, we conclude that {ykp}k∈N is a

bounded sequence. Suppose that ykp →N ȳp and, thus, ȳp ∈ ∂φp(z̄p) by the outer semicontinuity of
∂φp [30, Proposition 8.7].

Case 1. If ȳp = 0, inclusion (19) holds trivially for w̄p = 0, and for w̄p ̸= 0 we can find a subsequence
{|ykp |}k∈N ′ ↓ 0 such that {|ykp | vkp}k∈N ′ converges to w̄p or −w̄p(̸= 0) with vkp ∈

[
∂gkp(x

k
p)− ∂hkp(xkp)

]
for all k ∈ N ′. Therefore, (19) follows from

w̄p ∈
[(
± Lim sup

k→+∞

∞ [
∂gkp(x

k
p)− ∂hkp(xkp)

])
\{0}

]
⊂
[
± ∂∞A fp(x̄)\{0}

]
.

Case 2. Otherwise, ∥vkp∥ →N ∥w̄p∥/|ȳp|. This means that {vkp}k∈N is bounded. Suppose vkp →N v̄p.

Then, v̄p ∈ Lim supk→+∞
[
∂gkp(x

k
p)− ∂hkp(xkp)

]
⊂ ∂Afp(x̄), and (19) is evident from w̄p = ȳp v̄p.

In either case, we have proved (19). Combining (18) with (19), for some ȳp ∈
⋃
{∂φp(tp) | tp ∈

Tp(x̄)}, we know that x̄ is an A-stationary point of (CP0). The final assertion follows from Remark
1(ii).

3.2 An example of A-stationarity.

We present an example to illustrate the concept of A-stationarity and to study its relationship with
other known optimality conditions.

Example 3.1 (bi-parametrized two-stage stochastic programs). Consider the following bi-parametrized
two-stage stochastic program with fixed scenarios described in [21]:

minimize
x∈Rn

θ(x) +
1

m1

m1∑
p=1

fp(x) subject to ϕp(x) ≤ 0, p = 1, · · · ,m2, (21)

where θ, ϕp : Rn → R are convex, continuously differentiable for p = 1, · · · ,m2, and fp, as defined in
(1), is real-valued for p = 1, · · · ,m1. At x = x̄, let Yp(x̄) and Λp(x̄) represent the optimal solutions
and multipliers for each second-stage problem (1). Suppose that Yp(x̄) and Λp(x̄) are bounded.
Note that θ and ϕp are ADC functions since they are convex. Example 2.1 shows that fp is an
ADC function, and therefore, problem (21) is a specific case of the composite model (CP0). Given
an A-stationary point x̄ of (21), under the assumptions of Example 2.1, we have

0 ∈ ∇θ(x̄) + 1

m1

m1∑
p=1

(
{∂Afp(x̄)} ∪ [±∂∞A fp(x̄)\{0}]

)
+

m2∑
p=1

µ̄m1+p∇ϕp(x̄)

⊂ ∇θ(x̄) + 1

m1

m1∑
p=1

{
∂1fp(x̄, x̄)− ∂2(−fp)(x̄, x̄)

}
+

m2∑
p=1

µ̄m1+p∇ϕp(x̄),
(22)

where µ̄m1+p ∈ N(−∞,0](ϕp(x̄)) for p = 1, · · · ,m2 and fp is defined in (5) for p = 1, · · · ,m1. By
assumptions, both Λp(x̄) and Yp(x̄) are nonempty, bounded, and

Λp(x̄)× Yp(x̄) =
{
(ȳp, µ̄p)

∣∣∣ cp + Cpx̄+Qp ȳp + (Bp)⊤µ̄p = 0, 0 ≤ bp −Apx̄−Bpȳp ⊥ µ̄p ≥ 0
}
.
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It then follows from Danskin’s Theorem [11, Theorem 2.1] that

∂1fp(x̄, x̄) = con
{
(Ap)⊤µ̄p

∣∣∣ µ̄p ∈ Λp(x̄)
}
=
{
(Ap)⊤µ̄p

∣∣∣ µ̄p ∈ Λp(x̄)
}
,

∂2(−fp)(x̄, x̄) = con
{
−(Cp)⊤ȳp

∣∣∣ ȳp ∈ Yp(x̄)} =
{
−(Cp)⊤ȳp

∣∣∣ ȳp ∈ Yp(x̄)} .
Combining these expressions with (22), we obtain

0 = ∇θ(x̄) + 1

m1

m1∑
p=1

[
(Cp)⊤ȳp + (Ap)⊤µ̄p

]
+

m2∑
p=1

µ̄m1+p∇ϕp(x̄),

c p + Cpx̄+Qp ȳp + (Bp)⊤µ̄p = 0, 0 ≤ bp −Apx̄−Bpȳp ⊥ µ̄p ≥ 0, p = 1, · · · ,m1,

0 ≤ ϕp(x̄) ⊥ µ̄m1+p ≥ 0, p = 1, · · · ,m2,

which are the Karush-Kuhn-Tucker (KKT) conditions for the deterministic equivalent of (21).

4 A computational algorithm.

In this section, we consider a double-loop algorithm for solving problem (CP0). The inner loop
finds an approximate stationary point of the perturbed composite optimization problem

minimize
x∈Rn

m∑
p=1

[
F k
p (x) ≜ φp(f

k
p (x))

]
(23)

by solving a sequence of convex subproblems, while the outer loop drives k → +∞. It is important
to note the potential infeasibility in (23) because [F k

p = φp ◦fkp ]
e→ Fp in Assumption 1(c), together

with dom(φp ◦ fp) ̸= ∅, does not guarantee dom(φp ◦ fkp ) ̸= ∅ for all k ∈ N. This can be seen from

the example of φ(t) = δ(−∞,0](t), f(x) = max{x, 0} − 1/10 and fk(x) = max{x, 0} + 1/k − 1/10.

Obviously dom(φ ◦ f) = (−∞, 1/10] and φ ◦ fk e→ φ ◦ f by [32, Theorem 2.4(d)], but we have
dom(φ ◦ fk) = ∅ for k = 1, · · · , 9. Even though dom(φp ◦ fkp ) ̸= ∅ for all k ∈ N and each p, this
does not imply the feasibility of convex subproblems used in the inner loop to approximate (23).

For simplicity of the analysis, we assume that in problem (CP0), φp is real-valued for p =
1, · · · ,m1, and φp = δ(−∞,0] for p = m1 +1, · · · ,m. Namely, the problem takes the following form:

minimize
x∈Rn

m1∑
p=1

[
Fp(x) = φp

(
fp(x)

)]
subject to fp(x) ≤ 0, p = m1 + 1, · · · ,m. (CP1)

For p = 1, · · · ,m1, the convexity of each real-valued function φp implies its continuity by [27,
corollary 10.1.1]. Consequently, the composite function F k

p = φp ◦ fkp is also continuous for p =

1, · · · ,m1 and k ∈ N due to the continuity of each approximating function fkp . It is important to note
that model (CP1) still covers discontinuous objective functions since each fp can be discontinuous,
even though the approximating sequence {fkp }k∈N only consists of locally Lipschitz continuous
functions.
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4.1 Assumptions and examples.

Firstly, we make an assumption to address the feasibility issue outlined at the start of this section.
For all k ∈ N and p = m1 + 1, · · · ,m, define

αk
p ≜ sup

x∈Xk

[
fk+1
p (x)− fkp (x)

]
+
with Xk ≜

{
x ∈ Rn

∣∣∣ fkp (x) ≤ 0, p = m1 + 1, · · · ,m
}
.

Based on these auxiliary sequences, we need an initial point x0 that is strictly feasible to the
constraints f0p (x) ≤ 0 for each p = m1 + 1, · · · ,m.

Assumption 2 (strict feasibility) There exist x0 and nonnegative sequences
{
α̂k
p

}
k∈N for

p = m1 + 1, · · · ,m, such that αk
p ≤ α̂k

p for all k ∈ N and
+∞∑
k′=0

α̂k′
p < +∞, f0p (x

0) ≤ −
+∞∑
k′=0

α̂k′
p , p = m1 + 1, · · · ,m.

To streamline our notation and analysis, we extend the definitions of αk
p and introduce α̂k

p for

p = 1, · · · ,m1 by setting αk
p = α̂k

p = 0 for all k ∈ N and p = 1, · · · ,m1. Since the quantity αk
p

depends on the sequence {fkp }k∈N, Assumption 2 poses a condition for this approximating sequence.

Consider a fixed index p ∈ {m1 +1, · · · ,m}. One can use the following way to construct {αk
p}k∈N .

Suppose that there exist a function f̃p : Rn × [0, 1] → R and a nonnegative sequence γk ↓ 0 such
that

f̃p(x, γk) = fkp (x) and f̃p(x, 0) = fp(x).

Additionally, assume that for any fixed x, the function f̃p(x, ·) is continuous on [0, 1] and dif-

ferentiable on (0, 1), and there exists a constant Cp such that
∣∣∇γ f̃p(x, γ)

∣∣ ≤ Cp for any x and
γ ∈ (0, 1). For any fixed x, by the mean value theorem, there exists a point γ̄k ∈ (γk+1, γk) such
that fk+1

p (x)− fkp (x) = (γk+1 − γk)∇γ f̃p(x, γ̄k). Thus,

+∞∑
k′=0

αk′
p ≤

+∞∑
k′=0

(γk′ − γk′+1) sup
x∈Rn

∣∣∣∇γ f̃p(x, γ̄k′)
∣∣∣ ≤ +∞∑

k′=0

[
α̂k′
p ≜ Cp(γk′ − γk′+1)

]
= Cpγ0 < +∞.

Two more assumptions on the approximating sequences {fkp }k∈N are needed.

Assumption 3 (smoothness of gkp or hkp) For each k ∈ N, there exists ℓk > 0 such that

min
{
H
(
∂gkp(x), ∂g

k
p(x

′)
)
, H
(
∂hkp(x), ∂h

k
p(x

′)
)}
≤ ℓk∥x′ − x∥ ∀x, x′ ∈ Rn, p = 1, · · · ,m.

Assumption 4 (level-boundedness) For each k ∈ N, the function Hk ≜
∑m

p=1 F
k
p is level-

bounded, i.e., for any r ∈ R, the setx ∈ Rn

∣∣∣∣∣∣
m1∑
p=1

φp(f
k
p (x)) +

m∑
p=m1+1

δ(−∞,0](f
k
p (x)) ≤ r

 =

x ∈ Rn

∣∣∣∣∣∣
m1∑
p=1

φp

(
fkp (x)

)
≤ r

 ∩Xk

is bounded.
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Assumption 3 imposes conditions on the Lipschitz continuity of the subdifferential mapping ∂gkp
or ∂hkp, which will be used to determine the termination rule of the inner loop. A straightforward

sufficient condition for this assumption is that, for each p and k, at least one of the functions gkp
and hkp is ℓk-smooth, i.e., ∥∇gkp(x) − ∇gkp(x′)∥ ≤ ℓk∥x − x′∥ or ∥∇hkp(x) − ∇hkp(x′)∥ ≤ ℓk∥x − x′∥
for any x, x′ ∈ Rn. We also remark that Assumption 3 can hold even though both gkp and hkp
are nondifferentiable. This can be seen from the following univariate example: gkp(x) = |x| and
hkp(x) = |x − 1| for any x ∈ R. It is not difficult to verify that Assumption 3 holds for ℓk = 2.
Assumption 4 is a standard condition to ensure the boundedness of the generated sequences for
each k ∈ N.

In addition, we need a technical assumption to ensure the boundedness of the multiplier se-
quences in our algorithm.

Assumption 5 (an asymptotic constraint qualification) For any x̄ ∈
⋂m

p=1 domFp, if there
exists {yp}mp=1 satisfying 0 =

∑m
p=1 yp vp where for each p (with the definition of Tp(x̄) in (9)),

(yp, vp) ∈
(⋃{

Ndomφp(tp) | tp ∈ Tp(x̄)
}
× con ∂Afp(x̄)

)
∪
(
R× [ ∂∞A fp(x̄)\{0} ]

)
, (24)

then we must have y1 = · · · = ym = 0.

The normal cone Ndomφp(tp) in (24) reduces to {0} for p = 1, · · · ,m1 and N(−∞,0](tp) for
p = m1 + 1, · · · ,m. According to the definitions of ∂Afp(x̄) and ∂

∞
A fp(x̄), Assumption 5 depends

on the approximating sequences {fkp }k∈N for p = 1, · · · ,m. It holds trivially if each φp is real-
valued and ∂∞A fp(x̄) = {0}. By Theorem 1(b), the condition ∂∞A fp(x̄) = {0} holds when the ADC
decompositions are constructed using the Moreau envelope, provided that fp is locally Lipschitz
continuous and bounded from below. However, in general, Assumption 5 is not easy to verify. For
Example 3.1, the assumption translates intom2∑

p=1

λp∇ϕp(x̄) = 0, λp ∈ N(−∞,0](ϕp(x̄)), p = 1, · · · ,m2

 =⇒ λ1 = · · · = λm2 = 0.

This is equivalent to the Mangasarian-Fromovitz constraint qualification (MFCQ) for problem (21)
by [30, Example 6.40]; see also [28].

Furthermore, if each fp is c-ADC associated with {fkp = gkp − hkp}k∈N such that con ∂Afp(x̄) =
∂Cfp(x̄), and ∂

∞
A fp(x̄) = {0}, Assumption 5 states that 0 ∈

m∑
p=1

yp ∂Cfp(x̄), yp ∈ Ndomφp(fp(x̄)), p = 1, · · · ,m

 =⇒ y1 = · · · = ym = 0.

This condition aligns with the constraint qualification for the composite optimization problem in
[32, Proposition 2.1], and is stronger than the condition in the nonsmooth Lagrange multiplier
rule [30, Exercise 10.52]. Finally, Assumption 5 implies the constraint qualifications (15)-(17)
in Theorem 2. We formally present this conclusion in the following proposition. The proof of
Proposition 4 is given in Appendix B.

Proposition 4 (consequences of Assumption 5). Suppose that Assumptions 1 and 5 hold, and
fkp

e→ fp for each p. If supφp = +∞ for p ∈ I1, and fp is locally Lipschitz continuous for p ∈ I2
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(with the definitions of I1 and I2 in (8)), then conditions (15), (16), and (17) hold at any feasible
point x̄ of (CP1). Consequently, any local solution of (CP1) is a (weakly) A-stationary point of
(CP1).

In the following, we use two examples to further illustrate Assumption 3 and the computation

of {α̂k
p}k∈N in Assumption 2.

Example 4.1 (icc constraints). Let fp be real-valued and icc associated with fp, where fp(·, x) is
Lipschitz continuous with modulus L for any x. For the sequence {fkp }k∈N in Example 2.1, it follows

from gkp(x) = ∥x∥2/(2γk) that Assumption 3 holds for ℓk = 1/γk. To construct the quantities α̂k
p in

Assumption 2, we notice that

αk
p ≤ sup

x∈Rn

[
fk+1
p (x)− fkp (x)

]
+
≤ sup

x∈Rn

[
fp(x)− fkp (x)

]
+
≤ γk L

2

2
≜ α̂k

p ∀ k ∈ N, (25)

where the second inequality is due to fk+1
p (x) ≤ fp(x) for any x, and the last one uses the bound

between the partial Moreau envelope and the original function [20, Lemma 3]. Thus, the sequence{
α̂k
p

}
k∈N satisfies

∑+∞
k′=0 α̂

k′
p < +∞ if {γk} is summable.

Alternatively, we can construct the quantities α̂k
p as follows. Let the partial Moreau envelope

in (6) be the function f̃p jointly defined for (x, γ) ∈ Rn × (0, 1], and f̃p(x, 0) = fp(x) for any x. We

claim that f̃p(x, ·) is continuous on [0, 1] and differentiable on (0, 1) for any fixed x. Continuity in
γ can be simply checked by a standard argument [30, Theorem 1.17(c)], noting that the optimal
value is achieved at a unique point as the function fp(·, x) + ∥ · −x∥2/(2γ) is strongly convex
for any fixed x. Differentiability follows from the Danskin’s Theorem [11, Theorem 2.1] that
∇γ f̃p(x, γ) = −∥z − x∥2/(2γ2) with z satisfying (x− z)/γ ∈ ∂1f̄(z, x) for any (x, γ) ∈ Rn × (0, 1].

It then follows from the Lipschitz continuity of fp(·, x) that
∣∣∇γ f̃p(x, γ)

∣∣ ≤ L2/2 ≜ Cp for any

(x, γ) ∈ Rn × (0, 1]. Therefore, αk
p ≤ Cp(γk − γk+1) ≜ α̂k

p and
∑+∞

k′=0 α̂
k′
p = Cpγ0 < +∞ for any

sequence {f̃p(·, γk)}k∈N defined by the partial Moreau envelope with γk ↓ 0.

Example 4.2 (VaR constraints for log-normal distributions). Consider fp(x) = VaRα[ c(x, Z)]
with c(x, Z) = exp(x⊤Z) for some random vector Z ∼ Normal(µ,Σ), where Σ is a positive definite
covariance matrix. We have c(x, Z) ∼ Lognormal

(
x⊤µ,

√
x⊤Σx

)
. The variable x is restricted to

a compact set X ⊂ Rn. Denote the α-quantile of the standard normal distribution by qα and the
cumulative distribution function of the standard normal distribution by Φ(·). By direct calculation
(cf. [23, Section 3.2]), we have

VaRα[ c(x, Z)] = exp
(
x⊤µ+

√
x⊤Σx qα

)
, CVaRα[ c(x, Z)] = exp

(
x⊤µ+

x⊤Σx

2

)
Φ
(√
x⊤Σx− qα

)
1− α

.

Hence, fp(x) = VaRα[ c(x, Z)] is neither convex nor concave if qα < 0. For the sequence {fkp }k∈N
in Example 2.2, we can derive that

hkp(x) = k(1− α) CVaRα[ c(x, Z)] = k exp
(
x⊤µ+ x⊤Σx/2

)
Φ
(√
x⊤Σx− qα

)
.

Since Σ is positive definite, it is easy to see that hkp is twice continuously differentiable. Con-

sequently, hkp is ℓk-smooth relative to the compact set X for some ℓk, and Assumption 3 holds
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(relative to X). Next, we define f̃p(x, γ) =
1
γ

∫ α
α−γ VaRt[ c(x, Z)] dt for any (x, γ) ∈ Rn × (0, α2 ] and

f̃p(x, 0) = fp(x) for any x. Obviously, f̃p(x, ·) is continuous on [0, α2 ] and differentiable on (0, α2 ) for
any fixed x. By using the Leibniz rule for differentiating the parametric integral, for γ ∈ (0, α2 ), we
have ∣∣∣∇γ f̃p(x, γ)

∣∣∣ = 1

γ2

∫ α

α−γ
(VaRt[ c(x, Z)]−VaRα−γ [ c(x, Z)]) dt

≤ 1

γ
(VaRα[ c(x, Z)]−VaRα−γ [ c(x, Z)])

= exp(x⊤µ)
exp

(√
x⊤Σx qα

)
− exp

(√
x⊤Σx qα−γ

)
γ

= exp(x⊤µ) ·
[
exp

(√
x⊤Σx qα′

)√
x⊤Σx ∇αqα′

]
for some α′ ∈ (α − γ, α) by the mean-value theorem. By using the fact ∇αqα =

√
2π exp(q2α/2),

the monotonicity qα/2 < qα′ < qα, and the compactness of X, we further have

sup
x∈X

∣∣∣∇γ f̃p(x, γ)
∣∣∣ ≤ exp

(
max{q2α, q2α/2}

2

)
sup
x∈X

{
exp

(
x⊤µ+

√
x⊤Σx qα

)√
(2π)x⊤Σx

}
≜ Cp < +∞.

Therefore, αk
p ≤ Cp(γk − γk+1) ≜ α̂k

p and
∑∞

k′=0 α̂
k
p = Cpγ0 < +∞ for any sequence {f̃p(·, γk)}k∈N

with γk ↓ 0.

4.2 The algorithmic framework and convergence analysis.

We now formalize the algorithm for solving (CP1). For p = m1 + 1, · · · ,m, recall the nonnegative

sequences
{
α̂k
p

}
k∈N introduced in Assumption 2, and observe that

∑+∞
k′=k α̂

k′
p → 0 as k → +∞. For

consistency of our notation, we also set α̂k
p ≡ 0 for all k ∈ N and p = 1, · · · ,m1. At the k-th outer

iteration and for p = 1, · · · ,m, consider the upper and lower approximation of fkp at a point y by

taking some akp ∈ ∂hkp(y), bkp ∈ ∂gkp(y) and incorporating sequences
{
α̂k
p

}
k∈N:

fk,upperp (x; y) ≜ gkp(x)− hkp(y)− (akp)
⊤(x− y) +

+∞∑
k′=k

α̂k′
p ,

fk,lowerp (x; y) ≜ gkp(y) + (bkp)
⊤(x− y)− hkp(x).

(26)

Observe that, for fixed y, the upper approximation fk,upperp (· ; y) is convex while the lower approx-

imation fk,lowerp (· ; y) is concave. For p = 1, · · · ,m1, consider the following function

F̂ k
p (x; y) ≜ φ↑

p

(
fk,upperp (x; y)

)
+ φ↓

p

(
fk,lowerp (x; y)

)
, (27)

which is a convex majorization of F k
p at a point y by the fact that φ↑

p is nondecreasing and φ↓
p

is nonincreasing. For p = m1 + 1, · · · ,m, consider the convex constraint fk,upperp (x; y) ≤ 0 as an
approximation for fkp (x) ≤ 0.

We summarize the properties of all the surrogate functions as follows. Note that (28a) and
(28b) hold for p = 1, · · · ,m, while (28c) holds only for p = 1, · · · ,m1.
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fk,upperp (x; y) ≥ fkp (x) +
∞∑

k′=k

α̂k′
p ≥ fkp (x), fk,upperp (x;x) = fkp (x) +

∞∑
k′=k

α̂k′
p , (28a)

fk,lowerp (x; y) ≤ fkp (x), fk,lowerp (x;x) = fkp (x), (28b)

F̂ k
p (x; y) ≥ F k

p (x), F̂ k
p (x;x) = F k

p (x). (28c)

The proposed method for solving problem (CP1) is outlined in Algorithm 1. The inner loop of
the algorithm (indexed by i) is terminated when the following conditions are satisfied:

fk,upperp (xk,i+1;xk,i) ≤ fkp (xk,i+1) +
+∞∑
k′=k

α̂k′
p + ϵk, p = 1, · · · ,m,

fk,lowerp (xk,i+1;xk,i) ≥ fkp (xk,i+1)− ϵk, p ∈ I2,
∥xk,i+1 − xk,i∥ ≤ δk/(λ+ ℓk),

(29)

Algorithm 1 The prox-ADC method for solving (CP1)

Input: Given x0 and
{
α̂k
p

}
k∈N satisfying Assumption 2. Let {ℓk} be a sequence satisfying Assump-

tion 3. Choose λ > 0, a positive sequence (ϵk, δk) ↓ 0 such that δk/(λ+ ℓk) ↓ 0. Set k = 0.

1: while a prescribed stopping criterion is not met do
2: xk,0 = xk

3: for i = 0, 1, · · · do
4: Take ak,ip ∈ ∂ gkp(xk,i) for p = 1, · · · ,m and bk,ip ∈ ∂hkp(xk,i) for p = 1, · · · ,m1

5: Solve the strongly convex subproblem:

xk,i+1 =

 argmin
x∈Rn

m1∑
p=1

F̂ k
p (x;x

k,i) + λ
2∥x− x

k,i∥2

subject to fk,upperp (x;xk,i) ≤ 0, p = m1 + 1, · · · ,m

 (30)

6: if the conditions (29) hold for λ, ℓk, ϵk, δk, and
∑+∞

k′=k α̂
k′
p then

7: Break the for-loop
8: else
9: i← i+ 1

10: end if
11: end for
12: xk+1 = xk,i

13: k ← k + 1
14: end while

In contrast to the prox-linear algorithm that is designed to minimize amenable functions and
adopts complete linearization of the inner maps, the prox-ADC method retains more curvature
information inherent in these maps (see Figure 1). We emphasize that the prox-ADC method
differs from [13, Algorithm 7.1.2] that is designed for solving a problem with a convex composite
DC objective and DC constraints. Central to the prox-ADC method is the double-loop structure,
where, in contrast to [13, Algorithm 7.1.2], the DC sequence fkp is dynamically updated in the outer
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(a) F1 = φ1 ◦ f1 for a convex φ1 and a smooth f1. (b) F1 = φ1 ◦ f1 for a convex nondecreasing φ1 and a lsc f1.

Figure 1: Illustrations of the prox-ADC method. (a): a comparison of the prox-ADC and the prox-linear method for
minimizing an amenable function. (b): asymptotic approximations of a discontinuous composite function F1 = φ1◦f1
that are constructed by an epi-convergent sequence {F k

1 = φ1 ◦ fk
1 }, and a convex majorization F̂ k

1 (· ; y) for F k
1 .

loop rather than remaining the same. This adaptation necessitates specialized termination criteria

(29) and the incorporation of α̂k
p to maintain feasibility with each update of fkp . In the following,

we demonstrate the well-definedness of the prox-ADC method. Specifically, we establish that for
each iteration k, the criteria detailed in (29) are attainable in finitely many steps.

Theorem 3 (convergence of the inner loop). Suppose that Assumptions 1-4 hold. Then the follow-
ing statements hold.
(a) Problem (30) is feasible for any k, i ∈ N.
(b) The stopping rule of the inner loop is achievable in finitely many steps, i.e., the smallest integer
i satisfying conditions (29), denoted by ik, is finite for any k ∈ N.

Proof. We prove (a) and (b) by induction. For k = 0, notice from Assumption 2 and (28a) that

f0,upperp (x0;x0) = f0p (x
0) +

∑+∞
k′=0 α̂

k′
p ≤ 0 for p = m1 +1, · · · ,m. Thus, problem (30) is feasible for

k = i = 0. Assume that (30) is feasible for k = 0 and some i = ī (∈ N). Consequently, x0,̄i+1 is
well-defined and for p = m1 + 1, · · · ,m,

f0,upperp (x0,̄i+1;x0,̄i+1)
(28a)
= f0p (x

0,̄i+1) +
+∞∑
k′=0

α̂k′
p

(28a)

≤ f0,upperp (x0,̄i+1;x0,̄i) ≤ 0,

which yields the feasibility of (30) for k = 0, i = ī+1. Hence, by induction, problem (30) is feasible
for k = 0 and any i ∈ N. To proceed, recall the function Hk defined in Assumption 4. From the
update of x0,i+1, we have

H0(x0,i+1) =

m1∑
p=1

F 0
p (x

0,i+1)
(28c)

≤
m1∑
p=1

F̂ 0
p (x

0,i+1;x0,i) ≤ H0(x0,i)− λ

2
∥x0,i+1 − x0,i∥2 ∀ i∈ N. (31)

The last inequality follows from the definition of x0,i+1 and the second relation in (28c) that

F̂ 0
p (x

0,i;x0,i) = F 0
p (x

0,i) for p = 1, · · · ,m1. Observe that H0 is bounded from below by the conti-
nuity of F 0

p = φp ◦ f0p for p = 1, · · · ,m1 (see the discussion following model (CP1)) and the level-
boundedness of H0. Suppose for contradiction that the stopping rule of the inner loop is not achiev-
able in finitely many steps. Then from (31),

{
H0(x0,i)

}
converges and

∑∞
i=0 ∥x0,i+1−x0,i∥2 < +∞.
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The latter further yields ∥x0,i+1−x0,i∥ → 0 and thus the last condition in (29) is achievable in finitely
many iterations. Next, to derive a contradiction, it suffices to prove that the first two conditions in
(29) can also be achieved in finitely many steps. We only show the first one since the other can be
done with similar arguments. By the level-boundedness of H0, the set S0 ≜ {x | H0(x) ≤ H0(x0,0)}
is compact. Notice that x0,i ∈ S0 for all i ∈ N due to (31). For p = 1, · · · ,m, we then have

0 ≤ f0,upperp (x0,i+1;x0,i)−f0p (x0,i+1)−
+∞∑
k′=0

α̂k′
p = h0p(x

0,i+1)−h0p(x0,i)−(a0,ip )⊤(x0,i+1−x0,i) −→ 0,

because h0p is uniformly continuous on the compact set S0 and {a0,ip }i∈N ⊂
⋃{

∂h0p(x) | x ∈ S0
}

is bounded by [27, Theorem 24.7]. Therefore, for a fixed ϵ0 > 0, there exists some i0 such that

f0,upperp (x0,i0+1;x0,i0) ≤ f0p (x0,i0+1) +
∑+∞

k′=0 α̂
k′
p + ϵ0 holds for p = 1, · · · ,m. Thus, (a)-(b) hold for

k = 0.
Now assume that (a)-(b) hold for some k = k̄ (∈ N) and, hence ik̄ is finite. It then follows from

xk̄+1,0 = xk̄,ik̄ ∈ X k̄ and f k̄,upperp (xk̄,ik̄ ;xk̄,ik̄) ≤ 0 that for each p = m1 + 1, · · · ,m,

f k̄+1,upper
p (xk̄+1,0;xk̄+1,0)

(28a)
= f k̄+1

p (xk̄+1,0) +
+∞∑

k′=k̄+1

α̂k′
p

≤ f k̄p (x
k̄+1,0) + sup

x∈X k̄

[
f k̄+1
p (x)− f k̄p (x)

]
+
+

+∞∑
k′=k̄+1

α̂k′
p

≤ f k̄p (x
k̄+1,0) +

+∞∑
k′=k̄

α̂k′
p

(28a)
= f k̄,upperp (xk̄+1,0;xk̄,ik̄) ≤ 0.

Thus, problem (30) is feasible for k = k̄+1 and any i ∈ N. Building upon this, we can now clearly
see the validity of (b) for k = k̄ + 1, as we have shown similar results earlier in the case of k = 0.
By induction, we complete the proof of (a)-(b).

For any k ∈ N, define the set of multipliers for problem (30) as

Y k(xk+1) ≜




yk1,1
yk1,2
...

ykm,1

ykm,2



∣∣∣∣∣∣∣∣∣∣∣∣

0 ∈
m∑
p=1

[
ykp,1 ∂f

k,upper
p (xk,ik+1;xk,ik) + ykp,2 ∂f

k,lower
p (xk,ik+1;xk,ik)

]
+λ(xk,ik+1 − xk,ik),

ykp,1 ∈ ∂φ
↑
p(f

k,upper
p (xk,ik+1;xk,ik)), p = 1, · · · ,m,

ykp,2 ∈ ∂φ
↓
p(f

k,lower
p (xk,ik+1;xk,ik)), p = 1, · · · ,m.


.

Here xk,ik+1 is uniquely determined by xk+1 = xk,ik as the minimizer of a strongly convex problem
(30). Notice that ykp,2 = 0 for p ∈ I1 since φp is nondecreasing and φ↓

p = 0 for p ∈ I1. Let

{xk+1}k∈N be a subsequence that converges to some point x̄. As we will see in the following
lemma, the asymptotic constraint qualification in Assumption 5 implies the non-emptiness and
the compactness of Y k(xk+1) for all sufficiently large k ∈ N and the eventual boundedness of
{Y k(xk+1)}k∈N . These technical results play an important role in the convergence analysis of
the prox-ADC method. However, a stronger property of equi-boundedness appears necessary for
designing practical termination criteria for the algorithm. We will establish this strengthened
property in section 4.3 under non-asymptotic constraint qualifications.
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Lemma 2 (non-emptiness and eventual boundedness of multipliers). Let x̄ ∈
⋂m

p=1 domFp be a

feasible point of problem (CP1). Suppose that Assumptions 1-5 hold. Consider any sequence {xk}
generated by the prox-ADC method, with a subsequence {xk+1}k∈N converging to x̄. The following
statements hold.
(a) The set of multipliers Y k(xk+1) is non-empty and compact for all sufficiently large k ∈ N .
(b) Additionally, if ∂∞A fp(x̄) = {0} for p ∈ I2 (with the definition of I2 in (8)), then the sequence{
Y k(xk+1)

}
k∈N is eventually bounded.

Proof. (a) Observe that xk,ik+1 →N x̄ because xk+1 = xk,ik →N x̄ and ∥xk,ik − xk,ik+1∥ ≤ δk/(λ+
ℓk) ↓ 0 by conditions (29). The non-emptiness and compactness of Y k(xk+1) for all sufficiently
large k ∈ N is a direct consequence of the nonsmooth Lagrange multiplier rule [30, Exercise 10.52]
for problem (30) if we can show that, for all sufficiently large k ∈ N , ykm1+1 = · · · = ykm = 0 is the
unique solution of the following system

0 ∈
m∑

p=m1+1

ykp ∂f
k,upper
p (xk,ik+1;xk,ik), ykp ∈ N(−∞,0](f

k,upper
p (xk,ik+1;xk,ik)), p = m1 + 1, · · · ,m.

(32)
Suppose that the above claim does not hold. Then, there exists a subsequence N ′ ⊂ N such that
ykm1+1 = · · · = ykm = 0 is not the unique solution of (32) for all k ∈ N ′. Without loss of generality,
suppose N ′ = N and take {ykp}k∈N for p = m1 + 1, · · · ,m satisfying (32) and

∑m
p=m1+1 |ykp | = 1.

For each p and k ∈ N , define

Ak
p ≜

{
ykp v

k
p

∣∣∣ vkp ∈ {∂gkp(xk,ik)− ∂hkp(xk,ik)} ∪ {∂gkp(xk,ik+1)− ∂hkp(xk,ik+1)
}}

.

Then, for all k ∈ N , we have

dist

(
0,

m∑
p=m1+1

Ak
p

)
(i)

≤ dist

(
0,

m∑
p=m1+1

ykp
[
∂gkp(x

k,ik+1)− ∂hkp(xk,ik)
])

+
m∑

p=m1+1
D
(
ykp
[
∂gkp(x

k,ik+1)− ∂hkp(xk,ik)
]
, Ak

p

)
(ii)

≤ dist

(
0,

m∑
p=m1+1

ykp ∂f
k,upper
p (xk,ik+1;xk,ik)

)
+

m∑
p=m1+1

|ykp | ·min
{
D
(
∂gkp(x

k,ik+1), ∂gkp(x
k,ik)

)
, D
(
∂hkp(x

k,ik), ∂hkp(x
k,ik+1

)}
(iii)

≤ 0 +
m∑

p=m1+1
|ykp | ·min

{
H(∂gkp(x

k,ik+1), ∂gkp(x
k,ik)), H(∂hkp(x

k,ik+1), ∂hkp(x
k,ik))

}
(iv)

≤
m∑

p=m1+1
|ykp | · ℓk ∥xk,ik+1 − xk,ik∥

(v)

≤ δk,

where (i) uses the inequalities D(A,C) ≤ D(A,B) + D(B,C) and D(A+B,A′ +B′) ≤ D(A,A′) +
D(B,B′); the first term in (ii) is because of the construction of upper convex majorization (26);
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the second term in (ii) is due to D(A,B ∪ C) ≤ min{D(A,B),D(A,C)} so that

D
(
ykp
[
∂gkp(x

k,ik+1)− ∂hkp(xk,ik)
]
, Ak

p

)
= |ykp | · D

(
∂gkp(x

k,ik+1)− ∂hkp(xk,ik),
{
∂gkp(x

k,ik)− ∂hkp(xk,ik)
}
∪
{
∂gkp(x

k,ik+1)− ∂hkp(xk,ik+1)
})

≤ |ykp | ·min
{
D
(
∂gkp(x

k,ik+1), ∂gkp(x
k,ik)

)
, D
(
∂hkp(x

k,ik), ∂hkp(x
k,ik+1

)}
.

Inequality (iii) is due to (32) and D(A,B) ≤ H(A,B); (iv) is by Assumption 3; and (v) is implied
by conditions (29) and

∑m
p=m1+1 |ykp | = 1. Equivalently, for all k ∈ N and p = m1+1, · · · ,m, there

exist ykp ∈ N(−∞,0]

(
fk,upperp (xk,ik+1;xk,ik)

)
with

∑m
p=m1+1 |ykp | = 1 and

vkp ∈
{
∂gkp(x

k,ik)− ∂hkp(xk,ik)
}
∪
{
∂gkp(x

k,ik+1)− ∂hkp(xk,ik+1)
}

such that ∥
∑m

p=m1+1 y
k
p v

k
p∥ ≤ δk. For p = m1+1, · · · ,m, since the subsequence {fkp (xk,ik+1)}k∈N is

bounded by Assumption 1(b), we can assume without loss of generality that fkp (x
k,ik+1) converges

to some z̄p ∈ Tp(x̄) as k(∈ N) → +∞. Furthermore, it can be easily seen from (28a) and (29)

that fk,upperp (xk,ik+1;xk,ik) converges to the same limit point z̄p for p = m1+1, · · · ,m. Notice that

fk,upperp (xk,ik+1;xi,ik) ≤ 0 for all k ∈ N and p = m1 + 1, · · · ,m from Theorem 3(a) and, thus, each
z̄p must satisfy z̄p ≤ 0. Suppose that ykp →N ȳp for each p. Then, by the outer semicontinuity of
the normal cone [30, Proposition 6.6],

ȳp ∈ N(−∞,0](z̄p) ⊂
⋃{
Ndomφp(tp) | tp ∈ Tp(x̄)

}
, p = m1 + 1, · · · ,m.

Obviously,
∑m

p=m1+1 |ȳp| = 1, and the sequence {ȳp}mp=m1+1 has at least one nonzero element.
Consider two cases.

Case 1. If {vkp}k∈N is bounded for p = m1 + 1, · · · ,m, then there are vectors {v̄p}mp=m1+1 with

v̄p ∈ ∂Afp(x̄) such that vkp →N v̄p and 0 =
∑m

p=m1+1 ȳp v̄p ∈
∑m

p=m1+1 ȳp ∂Afp(x̄), contradicting
Assumption 5 since ȳm1+1, · · · , ȳm are not all zeros.

Case 2. Otherwise, there exists some p such that {vkp}k∈N is unbounded. Define the index sets

Iub ≜
{
p ∈ {m1 + 1, · · · ,m}

∣∣∣ {vkp}k∈N unbounded
}
( ̸= ∅) and Ib ≜ {m1 + 1, · · · ,m}\Iub.

Notice that
{∑

p∈Ib y
k
p v

k
p

}
k∈N is bounded. Without loss of generality, assume that this sequence

converges to some w̄ and, thus,
∑

p∈Iub y
k
p v

k
p →N (−w̄).

Step 1: Next we prove by contradiction that, for each p ∈ Iub, the sequence {ykp vkp}k∈N is

bounded. Suppose that the boundedness fails and
∑

p∈Iub ∥y
k
p v

k
p∥ →N +∞ by passing to a sub-

sequence. Consider w̃k
p ≜ ykp v

k
p/
∑

p∈Iub ∥y
k
p v

k
p∥ for p ∈ Iub. Then

∑
p∈Iub w̃

k
p →N 0. Since∑

p∈Iub ∥w̃
k
p∥ = 1 for all k ∈ N , we can assume that there exist p1 ∈ Iub and w̃p1 ̸= 0 such that

w̃k
p1 →N w̃p1 . It then follows from the construction of w̃k

p that {w̃k
p}k∈N has a subsequence con-

verging to some element of ±∂∞A fp(x̄) for each p ∈ Iub and, in particular, w̃p1 ∈
[
±∂∞A fp1(x̄)\{0}

]
.

From
∑

p∈Iub w̃
k
p →N 0, we obtain

0 ∈ [±∂∞A fp1(x̄)\{0} ] +
∑

p∈Iub\{p1}

[±∂∞A fp(x̄) ] ,
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a contradiction to Assumption 5 since the coefficient of the term [±∂∞A fp1(x̄)\{0} ] is nonzero. So
far, we have shown the boundedness of {ykp vkp}k∈N for each p ∈ Iub.

Step 2: Now suppose that ykp v
k
p →N w̄p for each p ∈ Iub with

∑
p∈Iub w̄p = −w̄. Thus ykp →N 0

and w̄p ∈ [±∂∞A fp(x̄) ] for each p ∈ Iub. Since
∑m

p=m1+1 |ȳp| =
∑

p∈Ib |ȳp| = 1, there exists p2 ∈ Ib
such that ȳp2 ̸= 0. Then

∑m
p=m1+1 y

k
p v

k
p →N 0 implies

0 ∈ ȳp2 ∂Afp2(x̄) +
∑

p∈Ib\{p2}

ȳp ∂Afp(x̄) +
∑
p∈Iub

[±∂∞A fp(x̄) ] ,

which leads to a contradiction to Assumption 5. Thus, Y k(xk+1) is non-empty and compact for all
sufficiently large k ∈ N .

(b) By part (a), assume from now on that Y k(xk+1) ̸= ∅ for all k ∈ N without loss of
generality. We also assume that {fkp (xk,ik+1)}k∈N converges to some point z̄p ∈ Tp(x̄) for p =

1, · · · ,m. Then, by (28a), (28b) and (29), fk,upperp (xk,ik+1;xk,ik) →N z̄p for p = 1, · · · ,m and

fk,lowerp (xk,ik+1;xk,ik) →N z̄p for p ∈ I2. For any k ∈ N and any (yk1,1, y
k
1,2, · · · , ykm,1, y

k
m,2) ∈

Y k(xk+1), we have ykp,1 ∈ ∂φ↑
p(f

k,upper
p (xk,ik+1;xk,ik)) and ykp,2 ∈ ∂φ↓

p(f
k,lower
p (xk,ik+1;xk,ik)) for

p = 1, · · · ,m satisfying

0 ∈
m∑
p=1

[
ykp,1
[
∂gkp(x

k,ik+1)−∂ hkp(xk,ik)
]
+ykp,2

[
∂gkp(x

k,ik)−∂ hkp(xk,ik+1)
]]
+λ(xk,ik+1−xk,ik). (33)

Due to Assumption 3 and similar arguments in the proof of part (a), the optimality condition (33)
implies that

∥∥∥∥∥∥
m∑
p=1

(
ykp,1 v

k
p,1 + ykp,2 v

k
p,2

)∥∥∥∥∥∥≤
λ+

m∑
p=1

(
|ykp,1|+ |ykp,2|

)
ℓk

 δk
λ+ ℓk

≤ max

1,

m∑
p=1

(
|ykp,1|+ |ykp,2|

) δk,[
vkp,1 ∈ ∂gkp(xk,ik)− ∂hkp(xk,ik)

vkp,2 ∈ ∂gkp(xk,ik+1)− ∂hkp(xk,ik+1)

]
or

[
vkp,1 ∈ ∂gkp(xk,ik+1)− ∂hkp(xk,ik+1)

vkp,2 ∈ ∂gkp(xk,ik)− ∂hkp(xk,ik)

]
, p = 1, · · · ,m.

(34)

Note that, for p ∈ I1, φp is nondecreasing, i.e., φ↓
p = 0. Then ykp,2 = 0 for all k ∈ N and p ∈ I1, and

the first inequality of (34) is equivalent to∥∥∥∥∥∥
∑
p∈I1

ykp,1 v
k
p,1 +

∑
p∈I2

(
ykp,1 v

k
p,1 + ykp,2 v

k
p,2

)∥∥∥∥∥∥ ≤ max

1,
∑
p∈I1

|ykp,1|+
∑
p∈I2

(
|ykp,1|+ |ykp,2|

) δk. (35)

Observe that the sequences {vkp,1}k∈N and {vkp,2}k∈N must be bounded for p ∈ I2. Otherwise, we

could assume ∥vkp,1∥ →N +∞. Then every accumulation point of the unit vectors {vkp,1/∥vkp,1∥}k∈N
would be in the set ∂∞A fp(x̄), contradicting our assumption that ∂∞A fp(x̄) = {0} for each p ∈ I2.

For p ∈ I2 ⊂ {1, · · · ,m1}, given that φ↑
p is convex, real-valued, and fk,upperp (xk,ik+1;xk,ik)→N

z̄p, we can invoke [27, Theorem 24.7] to deduce the boundedness of {ykp,1}k∈N . A parallel reasoning

applies to demonstrate the boundedness of {ykp,2}k∈N .

For p ∈ I1, we proceed by contradiction to establish the boundedness of {ykp,1}k∈N based

on Assumption 5. Suppose that
{∑

p∈I1 |y
k
p,1|
}
k∈N is unbounded and

∑
p∈I1 |y

k
p,1| →N +∞ by

26



passing to a subsequence. Consider the normalized subsequences
{
ỹkp,1 ≜ ykp,1/

∑
p′∈I1 |y

k
p′,1|
}
k∈N

and
{
ỹkp,2 ≜ ykp,2/

∑
p′∈I1 |y

k
p′,1|
}
k∈N for each p. Consequently, ỹkp,1 →N 0 and ỹkp,2 →N 0 for p ∈ I2.

By the triangle inequality and (35), we have∣∣∣∣∣∣
∥∥∥∥∥∥
∑
p∈I1

ỹkp,1 v
k
p,1

∥∥∥∥∥∥−
∥∥∥∥∥∥
∑
p∈I2

(
ỹkp,1 v

k
p,1 + ỹkp,2 v

k
p,2

)∥∥∥∥∥∥
∣∣∣∣∣∣ ≤

∥∥∥∥∥∥
∑
p∈I1

ỹkp,1 v
k
p,1 +

∑
p∈I2

(
ỹkp,1 v

k
p,1 + ỹkp,2 v

k
p,2

)∥∥∥∥∥∥
≤ max

{
1∑

p∈I1 |y
k
p,1|

, 1 +

∑
p∈I2

(
|ykp,1|+ |ykp,2|

)∑
p∈I1 |y

k
p,1|

}
δk −→N 0,

which further implies
∥∥∑

p∈I1 ỹ
k
p,1 v

k
p,1

∥∥ →N 0 by the boundedness of {vkp,1}k∈N and {vkp,2}k∈N for

p ∈ I2. Now suppose that ỹkp,1 →N ỹp,1 for p ∈ I1. Then from a similar reasoning in (20), for p ∈ I1,

ỹp,1 ∈ Lim sup
k(∈N)→+∞

∞ ∂φ↑
p

(
fk,upperp (xk,ik+1;xk,ik)

)
⊂ ∂∞φ↑

p(z̄p) = Ndomφ↑
p
(z̄p),

and obviously
∑

p∈I1 |ỹp,1| = 1. The remaining argument to derive a contradiction to Assumption
5 follows the same steps as the proof of part (a) for the two cases, with the exception that the
index set {m1 + 1, · · · ,m} is replaced by I1. Thus, the sequences {ykp,1}k∈N for p ∈ I1 ∪ I2 and

{ykp,2}k∈N for p ∈ I1 are bounded. We can conclude that
⋃
{Y k(xk+1) | k ∈ N, k ≥ K} is bounded

for sufficiently large integer K, because otherwise we could extract a subsequence of multipliers
from Y k(xk+1) whose norms diverge to +∞ as k(∈ N) → +∞, in contradiction to the result of
boundedness that we have shown. Hence, the subsequence {Y k(xk+1)}k∈N is eventually bounded.

We make a remark on Lemma 2(b) about the additional assumption. According to the proof
of part (b), the assumption ∂∞A fp(x̄) = {0} for p ∈ I2 ensures the boundedness of the set ∂Afp(x̄)
for p ∈ I2. There are some sufficient conditions for ∂∞A fp(x̄) = {0} to hold: (i) If fp is locally
Lipschitz continuous and bounded from below, by Theorem 1(b), we have ∂∞A fp(x) = {0} at any
x ∈ dom fp for the approximating sequence generated by the Moreau envelope. (ii) If fp is icc
associated with fp satisfying all assumptions in Proposition 2, it then follows from Proposition
2(b) that ∂∞A fp(x) = {0} at any x ∈ int(dom fp) for the approximating sequence based on the
partial Moreau envelope. It is worth mentioning that the icc function fp under condition (ii) is not
necessarily locally Lipschitz continuous.

The main convergence result of the prox-ADC method follows.

Theorem 4. Suppose that Assumptions 1-5 hold. Let {xk} be the sequence generated by the prox-
ADC method. Suppose that {xk} has an accumulation point x̄ and, in addition, ∂∞A fp(x̄) = {0} for
p ∈ I2. Then x̄ is a weakly A-stationary point of (CP1). Moreover, if for each p ∈ I2, the functions
gkp and hkp are ℓk-smooth for all k ∈ N, i.e., there exists a sequence {ℓk} such that for all k ∈ N,

max
{∥∥∇gkp(x)−∇gkp(x′)∥∥, ∥∥∇hkp(x)−∇hkp(x′)∥∥} ≤ ℓk∥x′ − x∥ ∀x, x′ ∈ Rn, p ∈ I2, (36)

then x̄ is also an A-stationary point of (CP1).
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Proof. Let {xk+1}k∈N be a subsequence converging to x̄. By the stopping conditions (29) and
xk,ik →N x̄, we also have xk,ik+1 →N x̄. First, we prove x̄ ∈

⋂m
p=1 domFp. From Theorem 3(a), we

have fkp (x
k,ik+1) ≤ 0 for p = m1 + 1, · · · ,m and all k ∈ N. Due to epi-convergence in Assumption

1(c), it holds that

δ(−∞,0](fp(x̄)) ≤ lim inf
k(∈N)→+∞

δ(−∞,0](f
k
p (x

k,ik+1)) = 0, p = m1 + 1, · · · ,m.

Thus fp(x̄) ≤ 0 for p = m1+1, · · · ,m and x̄ ∈
⋂m

p=m1+1 domFp. By Assumption 1(a), domφp = Rn

for all p = 1, · · · ,m1. This implies x̄ ∈
⋂m1

p=1 domFp, and we can conclude that x̄ ∈
⋂m

p=1 domFp.

By Lemma 2(a), for all sufficiently large k ∈ N , we have

0 ∈
m∑
p=1

[
ykp,1

(
∂gkp(x

k,ik+1)− ∂ hkp(xk,ik)
)
+ ykp,2

(
∂gkp(x

k,ik)− ∂ hkp(xk,ik+1)
) ]

+ λ(xk,ik+1 − xk,ik),

(37)

where ykp,1 ∈ ∂φ↑
p(f

k,upper
p (xk,ik+1;xk,ik)) and ykp,2 ∈ ∂φ↓

p(f
k,lower
p (xk,ik+1;xk,ik)) for p = 1, · · · ,m.

It follows from Lemma 2(b) that the subsequences {ykp,1}k∈N and {ykp,2}k∈N are bounded for

p = 1, · · · ,m. Suppose that ykp,1 →N ȳp,1 and ykp,2 →N ȳp,2 for p = 1, · · · ,m. Recall that

the subsequence {fkp (xk,ik+1)}k∈N is bounded by Assumption 1(b) for p = 1, · · · ,m. With-

out loss of generality, assume that {fkp (xk,ik+1)}k∈N converges to some point z̄p ∈ Tp(x̄) for

p = 1, · · · ,m. Then, by (28a), (28b) and (29), fk,upperp (xk,ik+1;xk,ik) →N z̄p for p = 1, · · · ,m
and fk,lowerp (xk,ik+1;xk,ik) →N z̄p for p ∈ I2. From the outer semicontinuity of ∂φ↑

p and ∂φ↓, we

have ȳp,1 ∈ ∂φ↑
p(z̄p) for p = 1, · · · ,m and ȳp,2 ∈ ∂φ↓

p(z̄p) for p ∈ I2.
To proceed, we prove by contradiction that the sequence {ykp,1 vkp,1}k∈N is bounded for p ∈ I1.

Suppose that
∑

p∈I1 ∥y
k
p,1 v

k
p,1∥ →N +∞. For each p ∈ I2, the boundedness of {vkp,1}k∈N and

{vkp,2}k∈N follows from the assumption ∂∞A fp(x̄) = {0}; otherwise, any accumulation point of the

unit vectors {vkp,1/∥vkp,1∥}k∈N would be in ∂∞A fp(x̄), leading to a contradiction. Since {ykp,1}k∈N
and {ykp,1}k∈N for p ∈ I2 are also bounded, we conclude that the subsequence

{∑
p∈I2(y

k
p,1 v

k
p,1 +

ykp,2 v
k
p,2)
}
k∈N is bounded. Thus, we can assume that

∑
p∈I2

(
ykp,1 v

k
p,1 + ykp,2 v

k
p,2

)
→N w̄

∈∑
p∈I2

(ȳp,1 ∂Afp(x̄) + ȳp,2 ∂Afp(x̄))

 .

By (35), it follows that
∑

p∈I1 y
k
p,1 v

k
p,1 →N (−w̄). Consider w̃k

p ≜ ykp,1 v
k
p,1/

∑
p′∈I1 ∥y

k
p′,1 v

k
p′,1∥ for

p ∈ I1, and then
∑

p∈I1 w̃
k
p →N 0. Given

∑
p∈I1 ∥w̃

k
p∥ = 1 for all k ∈ N , there must exist p1 ∈ I1

such that w̃k
p1 →N w̃p1 ̸= 0. For each p ∈ I1, it then follows from ykp,1/

∑
p′∈I1 ∥y

k
p′,1v

k
p′,1∥ →N 0

that {w̃k
p}k∈N has a subsequence converging to some element in ∂∞A fp(x̄). In particular, w̃p1 ∈

∂∞A fp1(x̄)\{0}. Since
∑

p∈I1 w̃
k
p →N 0, this implies that

0 ∈ [ ∂∞A fp1(x̄)\{0} ] +
∑

p∈I1\{p1}

∂∞A fp(x̄),

which contradicts Assumption 5. Hence, {ykp,1 vkp,1}k∈N is bounded for p ∈ I1.
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We are now ready to prove that x̄ is a weakly A-stationary point. Suppose that ykp,1 v
k
p,1 →N w̄p

for p ∈ I1 with
∑

p∈I1 w̄p = −w̄. It remains to show that for each p ∈ I1, there exists ȳp,1 ∈⋃
{∂φ↑

p(tp) | tp ∈ Tp(x̄)} such that

w̄p ∈ { ȳp,1 ∂Afp(x̄) } ∪ [ ∂∞A fp(x̄)\{0} ] ,

which can be derived similarly as the proof of (19) in Theorem 2. Summarizing these arguments,
we conclude that x̄ is a weakly A-stationary point of (CP1).

Under the additional assumption of the theorem, there exist ykp,1 ∈ ∂φ
↑
p(f

k,upper
p (xk,ik+1;xk,ik)),

ykp,2 ∈ ∂φ
↓
p(f

k,lower
p (xk,ik+1;xk,ik)) for p = 1, · · · ,m, and

vkp,1 ∈
{
∂gkp(x

k,ik)− ∂hkp(xk,ik)
}
∪
{
∂gkp(x

k,ik+1)− ∂hkp(xk,ik+1)
}

for p ∈ I1

such that∥∥∥∥∥∥
∑
p∈I1

ykp,1 v
k
p,1 +

∑
p∈I2

(ykp,1 + ykp,2)
[
∇gkp(xk,ik)−∇hkp(xk,ik)

]∥∥∥∥∥∥
(vi)

≤ λ∥xk,ik+1 − xk,ik∥+
∑
p∈I1

|ykp,1| ·min
{
H
(
∂gkp(x

k,ik+1), ∂gkp(x
k,ik)

)
, H
(
∂hkp(x

k,ik+1), ∂hkp(x
k,ik)

)}
+
∑
p∈I2

(
|ykp,1| · ∥∇gkp(xk,ik)−∇gkp(xk,ik+1)∥+ |ykp,2| · ∥∇hkp(xk,ik+1)−∇hkp(xk,ik)∥

)
(vii)

≤

λ+

∑
p∈I1

|ykp,1|+
∑
p∈I2

(
|ykp,1|+ |ykp,2|

) ℓk

 ∥xk,ik+1 − xk,ik∥

(viii)

≤ max

1,
∑
p∈I1

|ykp,1|+
∑
p∈I2

(
|ykp,1|+ |ykp,2|

) δk ∀ k ∈ N,

where (vi) is implied by the optimality condition (37), (vii) employs (36) and Assumption 3, and
(viii) follows from conditions (29). This inequality is a tighter version of (35) in the sense that, for
each p ∈ I2 and k ∈ N, vkp,1 and vkp,2 are elements taken from the single-valued mapping ∇gkp(·) −
∇hkp(·) evaluated at the same point xk,ik . A straightforward adaptation of the preceding argument
confirms that x̄ is an A-stationary point of (CP1).

4.3 Termination criteria.

The previous subsection demonstrates the asymptotic convergence of the algorithm, showing that
any accumulation point of the sequence generated by the prox-ADC method is weakly A-stationary.
This subsection is dedicated to the non-asymptotic analysis of verifiable termination criteria for
practical implementation.
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Assumption 6 (non-asymptotic constraint qualifications) Let λ be the parameter in Al-
gorithm 1. For all k ∈ N and any pair (x′, x′′) satisfying

x′′ =

 argmin
x∈Rn

m1∑
p=1

F̂ k
p (x;x

′) + λ
2∥x− x

′∥2

subject to fk,upperp (x;x′) ≤ 0, p = m1 + 1, · · · ,m

 ,
if there exist ykp ∈ N(−∞,0](f

k,upper
p (x′′;x′)) for p = m1 + 1, · · · ,m such that

0 ∈
m∑

p=m1+1

ykp ∂f
k,upper
p (x′′;x′),

then we must have ykm1+1 = · · · = ykm = 0.

A direct consequence of Assumption 6 and the nonsmooth Lagrange multiplier rule [30, Exercise
10.52] is that the set of multipliers Y k(xk+1) is non-empty and compact for any fixed k ∈ N. This
is in contrast with Lemma 2(a), where the results only hold for sufficiently large k ∈ N . We will
show below that the result on the eventual boundedness of the subsequence {Y k(xk+1)}k∈N can be
strengthened to the equi-boundedness under this assumption.

Proposition 5 (equi-boundedness of multipliers). Suppose that Assumptions 1-6 hold. Consider
any sequence {xk} generated by the prox-ADC method. The following statements hold.
(a) If there is a subsequence {xk+1}k∈N converging to some x̄ and ∂∞A fp(x̄) = {0} for p ∈ I2, then
the subsequence

{
Y k(xk+1)

}
k∈N is equi-bounded.

(b) If {xk} is bounded and ∂∞A fp(x) = {0} for any x ∈
⋂m

p=1 domFp and p ∈ I2, then the sequence{
Y k(xk+1)

}
is equi-bounded, i,e,

D ≜ sup
k∈N

sup
y∈Y k(xk+1)

∥y∥ < +∞. (38)

Proof. (a) We know from Lemma 2(b) that the subsequence {Y k(xk+1)}k∈N is eventually bounded.
This implies the existence of an index K ∈ N such that

⋃
{Y k(xk+1) | k ∈ N, k ≥ K} is bounded.

On the other hand, it follows from Assumption 6 that Y k(xk+1) is non-empty and compact for any
fixed k ∈ N . Thus,

⋃
{Y k(xk+1) | k ∈ N} is bounded, and {Y k(xk+1)}k∈N is equi-bounded.

(b) Suppose for contradiction that {Y k(xk+1)} is not equi-bounded. Then for any nonnegative
integer j, there is an index kj ∈ N such that ∥ykj∥ ≥ j for some multiplier ykj ∈ Y kj

(
xkj+1

)
.

Observe that the nonnegative sequence of indices {kj}j∈N is either bounded or unbounded. It
suffices to consider these two cases separately.

Suppose first that {kj}j∈N is bounded. There must be an index k̄ ∈ N that appears infinitely

many times in {kj}j∈N. Consequently, the set Y k̄(xk̄+1) is unbounded, a contradiction to Assump-
tion 6.

Suppose next that {kj}j∈N is unbounded. For some index set N ′ ∈ N♯
∞, we have kj → +∞

as j(∈ N ′) → +∞. Notice that the subsequence {xkj}j∈N ′ is bounded since {xk} is bounded.
By passing to a subsequence if necessary, we assume that {xkj}j∈N ′ converges to some x̃. Using
epi-convergence in Assumption 1(c) and following the same procedure as in the proof of Theorem
4, we can obtain that x̃ ∈

⋂m
p=1 domFp. Then, by the assumption in (b), ∂∞A fp(x̃) = {0} for p ∈ I2.

Henceforth, there is a subsequence {xkj}j∈N ′ ⊂ {xk} converging to some x̃ with a corresponding
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subsequence of multipliers {ykj ∈ Y kj (xkj+1)}j∈N ′ such that ∥ykj∥ → +∞ as j(∈ N ′) → +∞,
which is a contradiction to the result of part (a).

We have obtained contradictions for the two cases where {kj}j∈N is bounded or unbounded.
Then we can conclude that {Y k(xk+1)} is equi-bounded and the quantity D defined in (38) is
finite.

After obtaining the equi-boundedness of the multipliers, we next introduce a relaxation of the
weakly A-stationary point for preparation of the termination criteria. For a proper and convex
function f and any β > 0, we denote ∂βf(x̄) ≜

⋃
{∂f(x) | x ∈ B(x̄, β)}, which is related to the

Goldstein’s β-subdifferential [18].

Definition 5. Given any η̄ > 0, β̄ > 0 and k̄ ∈ N, we say a point x is a (η̄, β̄, k̄)-weakly A-
stationary point of problem (CP0) if there exists a nonnegative integer k ≥ k̄ such that

dist

0,

m∑
p=1

⋃{
yp,1
[
∂β̄gkp(x)− ∂β̄hkp(x)

]
+ yp,2

[
∂β̄gkp(x)− ∂β̄hkp(x)

] ∣∣∣∣∣ yp,1 ∈ ∂β̄φ↑
p(fkp (x)),

yp,2 ∈ ∂β̄φ↓
p(fkp (x))

} ≤ η̄.
We remark that, if each outer function φp is an identity function, i.e., φp(t) = t for any t ∈ R,

and each inner function fp is DC rather than ADC, the above definition in the context of a DC
program is independent of k and says about nearness to a η̄-critical point [35, definition 2]. For
nonsmooth optimization problem, similar definitions based on the idea of small nearby subgradients,
together with the termination criteria, have appeared in the literature [18, 9].

The following proposition reveals the relationship between a (η̄, β̄, k̄)-weakly A-stationary point
and a weakly A-stationary point.

Proposition 6. Let x̄ ∈
⋂m

p=1 domFp be a feasible point of (CP0). Suppose that Assumption 1
holds and ∂∞A fp(x̄) = {0} for each p = 1, · · · ,m. For any nonnegative sequence (ηk, βk) ↓ 0 and

some index set N ∈ N♯
∞, if each xk is a (ηk, βk, k)-weakly A-stationary point of (CP0) for k ∈ N

and xk →N x̄, then x̄ is a weakly A-stationary point of (CP0).

Proof. By Assumption 1(b), the subsequence {fkp (xk)}k∈N is bounded for each p. Then, there is an

index set N ′(⊂ N) ∈ N ♯
∞ such that {fkp (xk)}k∈N ′ converges to some t̄p ∈ Tp(x̄) for each p. Using

the outer semicontinuity of the subdifferential mapping of a convex function, we have

Lim sup
k(∈N ′)→+∞

∂βkφ↑
p(f

k
p (x

k)) ⊂ ∂φ↑
p(t̄p), Lim sup

k(∈N ′)→+∞
∂βkφ↓

p(f
k
p (x

k)) ⊂ ∂φ↓
p(t̄p)

and
Lim sup

k(∈N ′)→+∞

[
∂βkgkp(x

k)− ∂βkhkp(x
k)
]
⊂ ∂Afp(x̄).

Thus, by taking an outer limit of the subdifferentials involved in the condition that xk is (ηk, βk, k)-
weakly A-stationary for all k ∈ N , we know that x̄ is a weakly A-stationary point of (CP0).

We conclude this section with our main result on the termination criteria.
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Proposition 7 (termination criteria). Suppose that Assumptions 1-6 hold. Let {xk} be the sequence
generated by the prox-ADC method. Suppose that {xk} is bounded and ∂∞A fp(x) = {0} for any
x ∈

⋂m
p=1 domFp and p ∈ I2. For any η̄ > 0, β̄ > 0 and k̄ ∈ N, there exists a nonnegative integer

k0 ≥ k̄ such that

max
1≤p≤m

+∞∑
k′=k0

α̂k′
p + ϵk0 ≤ β̄,

δk0
λ+ ℓk0

≤ β̄, δk0 ≤ η̄. (39)

Consequently, xk0,ik0+1 is a
(
η̄ ·max{1,

√
2mD}, β̄, k̄

)
-weakly A-stationary point of problem (CP1),

where D is the constant defined in (38).

Proof. The existence of k0 ≥ k̄ satisfying (39) is a direct consequence of
∑+∞

k′=0 α̂
k′
p < +∞, (ϵk, δk) ↓

0, and δk/(λ + ℓk) ↓ 0. Recalling (34) in the proof of Lemma 2, at the k0-th outer iteration, we
have

∥∥∥∥∥∥
m∑
p=1

(
yk0p,1 v

k0
p,1 + yk0p,2 v

k0
p,2

)∥∥∥∥∥∥ ≤ max

1,
m∑
p=1

(
|yk0p,1|+ |y

k0
p,2|
) δk0 , vk0p,1 ∈ ∂gk0p (xk0,ik0 )− ∂hk0p (xk0,ik0 )

vk0p,2 ∈ ∂gk0p (xk0,ik0+1)− ∂hk0p (xk0,ik0+1)

 or

 vk0p,1 ∈ ∂gk0p (xk0,ik0+1)− ∂hk0p (xk0,ik0+1)

vk0p,2 ∈ ∂gk0p (xk0,ik0 )− ∂hk0p (xk0,ik0 )

 , p = 1, · · · ,m,

where yk0p,1 ∈ ∂φ
↑
p(f

k0,upper
p (xk0,ik0+1;xk0,ik0 )), yk0p,2 ∈ ∂φ

↓
p(f

k0,lower
p (xk0,ik0+1;xk0,ik0 )) for p = 1, · · · ,m.

Thus, at the point x∗ = xk0,ik0+1, we have

dist

0,
m∑
p=1

⋃{
yp,1
[
∂βgk0p (x∗)− ∂βhk0p (x∗)

]
+ yp,2

[
∂βgk0p (x∗)− ∂βhk0p (x∗)

] ∣∣∣∣∣ yp,1 ∈ ∂βφ↑
p(fk0p (x∗)),

yp,2 ∈ ∂βφ↓
p(fk0p (x∗))

} ≤ η,
where the parameters β and η are given by

β = max


max

1≤p≤m

[
fk0,upperp (x∗ ;xk0,ik0 )− fk0p (x∗)

]
,

max
1≤p≤m

[
fk0p (x∗)− fk0,lowerp (x∗ ;xk0,ik0 )

]
,

∥x∗ − xk0,ik0∥


(29)

≤ max

 max
1≤p≤m

+∞∑
k′=k0

α̂k′
p + ϵk0 ,

δk0/(λ+ ℓk0)


(39)

≤ β̄,

η = max

{
1,

m∑
p=1

(
|yk0p,1|+ |y

k0
p,2|
)}

δk0
Proposition 5
≤ max{1,

√
2mD} · δk0

(39)

≤ η̄ ·max{1,
√
2mD}.

Henceforth, for k0 satisfying (39), x∗ = xk0,ik0+1 is a
(
η̄ ·max{1,

√
2mD}, β̄, k̄

)
-weakly A-stationary

point of problem (CP1).

5 Numerical examples.

We present some preliminary experiments to illustrate the performance of our algorithm on the
inverse optimal value optimization with or without constraints. The first experiment aims to
demonstrate the practical performance of the prox-ADC method under the termination criteria
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in section 4.3, by varying different approximating sequences and initial points. To demonstrate

the computation of ADC constrained problems, especially the choice of the quantity α̂k
p and a

feasible initial point in Assumption 2, we further consider the constrained inverse optimal value
optimization. These experiments were tested on a MacBook Air laptop with an Apple M1 chip and
16GB of memory using Julia 1.10.2.

5.1 Inverse optimal value optimization with simple constraints.

Based on the setting in (2), we aim to find a vector x ∈ [−1, 1]n to minimize the errors between
the observed optimal values {νp}mp=1 and true optimal values {fp(x)}mp=1:

minimize
x∈[−1,1]n

F (x) ≜
m∑
p=1

|νp − fp(x)| , (40)

where each fp is the optimal value function as defined in (1). We fix n = 10, m = 11, d = 10, and
the number of inequality constraints ℓ = 5 in the minimization problem (1). Vectors b p and c p, and
matrices A p, B p, C p are randomly generated with each entry independent and normally distributed
with mean µ = 0 and variance σ = 1. For numerical stability, we then normalize matrices C p and
A p by a factor of

√
n. We also generate a positive definite matrix Q p and a random solution

x∗ = u/∥u∥ with u ∼ Normal(0, In). We set νp = fp(x
∗) for each p and, therefore, F (x∗) = 0.

We adopt the ADC decomposition in (6), denoted by fkp = (gp)γk − (hp)γk with a sequence
{γk = 1/(k + 1)ρ} for some exponent ρ > 0. Consequently, ℓk = 1/γk = (k + 1)ρ. We apply the
prox-ADC algorithm to solve this example with ϵk = δk = 1/(k + 1)ρ and λ = 5. In this example,
the strongly convex subproblem (30) can be easily reformulated to a problem with linear objective
and convex quadratic constraints, which is solved by Gurobi in our experiments.

We first investigate the performance of our algorithm under the termination criteria with
different values of parameters. Figure 2 displays the logarithm of the objective values against the
number of outer iterations and the total number of inner iterations. We mark three different points
on the curve where the termination criteria (39) with η̄ = β̄ = 10−1, 10−2, 10−3 and k̄ = 10, 20, 40
are satisfied.

Figure 2: Performance of the prox-ADC method for problem (40), under the termination criteria (39) with η̄ = β̄ =
10−1, 10−2, 10−3 and k̄ = 10, 20, 40, for a fixed exponent ρ = 1.5 and a fixed initial point.
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We have also experimented with various values of exponent ρ that determine the convergence
rate of the approximating sequence and various initial points. In both cases, we terminate the
algorithm under the conditions (39) with η̄ = β̄ = 10−2 and k̄ = 10. In Figure 3, we observe
that setting different values of ρ under the same termination criteria leads to candidate solutions
with similar objective values, and there are roughly two phases of convergence in terms of the total
number of iterations. Initially, the objective value decreases faster for smaller ρ, corresponding
to poorer approximation. When the objective value is sufficiently small (10−3 on this particular
instance), larger ρ results in faster convergence to high accuracy. We remark that for ρ = 0.5, the
algorithm reaches the maximum number of outer iterations and does not output a (10−2, 10−2, 10)-
weakly A-stationary point. Figure 4 demonstrates the influence of using various initial points that
are uniformly distributed on [−1, 1]n. On this instance, two of the initial points find (10−2, 10−2, 10)-
weakly A-stationary points with large objective values. For these two initial points, we rerun the
algorithm with η̄ = β̄ = 10−3, and the algorithm still terminates with large objective values.

Figure 3: Performance of the prox-ADC method for problem (40) using different values of exponent ρ, under the termination
criteria (39) with η̄ = β̄ = 10−2 and k̄ = 10, for a fixed initial point.

Figure 4: Performance of the prox-ADC method for problem (40) using five initial points uniformly distributed on [−1, 1]n,
under the termination criteria (39) with η̄ = β̄ = 10−2 and k̄ = 10, for a fixed exponent ρ = 1.5.

34



5.2 Inverse optimal value optimization with ADC constraints.

We consider a variant of the inverse optimal value optimization that is defined as follows:

minimize
x∈[−1,1]n

F (x) =

m1∑
p=1

|νp − fp(x)|

subject to
νp − fp(x)
max{1, |νp|}

≤ ε, fp(x)− νp
max{1, |νp|}

≤ ε, p = m1 + 1, · · · ,m.
(41)

In this formulation, the observations of the optimal values {νp}mp=1 are divided into two groups
indexed by {1, · · · ,m1} and {m1 + 1, · · · ,m}. We aim to minimize the errors for the first group
while ensuring the relative errors for the second group do not exceed a specified feasibility tolerance,
denoted by ε. In our experiment, we fix n = 10, m = 11, m1 = 8, ε = 10−1, d = 10, and the
number of inequality constraints ℓ = 5 in the minimization problem (1). The solution x∗ and the
data, including {νp}mp=1, are randomly generated in the same way as in section 5.1. We can see
that x∗ is feasible to (41) and attains the minimal objective value F (x∗) = 0.

Similar to the first example, we adopt the ADC decomposition in (6), denoted by fkp = (gp)γk−
(hp)γk with a sequence {γk = 1/(k+k̃)ρ} for some positive integer k̃ and ρ > 0. Due to the feasibility
problem in Assumption 2, we introduce the additional parameter k̃ to control the approximating

sequences, which will be explained in details later. We also note that treating
νp−fp(x)

max{1,|νp|} ≤ ε

and
fp(x)−νp

max{1,|νp|} ≤ ε as two separate constraints for p = m1 + 1, · · · ,m leads to the failure of the

asymptotic constraint qualification in Assumption 5 because the approximate subdifferentials of
the ADC functions fp and −fp are linearly dependent. This issue can be resolved by rewriting

the constraints in a composite ADC form
|νp−fp(x)|
max{1,|νp|} ≤ ε and assuming a corresponding version of

Assumption 5. We omit this technical detail since the main focus of this section is to illustrate the
practical implementation of our algorithm.

To verify Assumption 2 that states the existence of a strictly feasible point, we first follow the

discussion after Assumption 2 to construct the quantity α̂k
p = (γk−γk+1)L

2
p/(2max{1, |νp|}) where

Lp is the Lipschitz constant of fp(·, x) for all x ∈ [−1, 1]n. We can derive the Lipschitz constant

Lp by characterizing the subdifferential ∂1fp(·, x) for a fixed x based on Danskin’s Theorem [11,
Theorem 2.1] and then upper bounding the norm of this subdifferential over x ∈ [−1, 1]n. The

extra denominator max{1, |νp|} in the expression of α̂k
p is due to the scaling of the constraints in

(41). Then, consider the following problem:

minimize
x∈[−1,1]n

V (x) ≜
m∑

p=m1+1

max

{
0,
∣∣νp − f0p (x)∣∣−

(
ε−

+∞∑
k′=0

α̂k′
p

)
max{1, |νp|}︸ ︷︷ ︸

≜ sp (constant)

}
, (Feas)

where the objective is the sum of the compositions of univariate convex functions φp(t) = max{0, |νp−
t| − sp} and DC functions f0p . Notice that problem (Feas) takes the same form as (23). Thus, we
can apply the inner loop of the prox-ADC method to solve it approximately. If solving this problem
gives a solution x0 with V (x0) = 0, then

|νp − f0p (x)|
max{1, |νp|}

≤ ε−
+∞∑
k′=0

α̂k′
p = ε− (Lp)

2

2 k̃ρ ·max{1, |νp|}
, (42)
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and x0 is a strictly feasible point satisfying Assumption 2. We emphasize that using the inner loop
of the prox-ADC method for solving problem (Feas) to obtain a strictly feasible point is merely a
heuristic. Although this approach works well in our experiments, it is generally not easy to verify
Assumption 2. We make a final remark on the role of k̃. For small values of ρ and k̃, it is possible

that ε <
(Lp)2

2 k̃ρ·max{1,|νp|}
, and, from (42), there is no strictly feasible point satisfying Assumption 2

for this fixed approximating sequence. Henceforth, the flexibility of the parameter k̃ is necessary
to ensure the validity of Assumption 2.

We implement the above procedure to find an initial point and then apply the prox-ADC
method with ϵk = δk = 1/(k + 1)ρ and λ = 5. On most of the randomly generated instances, we
observe that the point given by solving (Feas) is also feasible to the original problem (41) along the
iterations, although this result cannot be implied by Assumption 2. In Figure 5, we again plot the
logarithm of the objective values against the total number of iterations, using various combination
of k̃ and ρ and various initial points. It is worth mentioning that for this constrained problem,
the random initial point is not directly utilized in the prox-ADC method. Instead, it is first used
in problem (Feas) to generate a strictly feasible point satisfying Assumption 2, and the candidate
solution for (Feas) then becomes the initial point of the prox-ADC method for solving (41).

(a) Varying sequences {γk}. (b) Varying initial points.

Figure 5: Performance of the prox-ADC method for problem (41) under the termination criteria (39) with η̄ = β̄ = 2 × 10−2

and k̄ = 5. (a): using different sequences {γk} for a fixed initial point. (b): using five initial points uniformly distributed on
[−1, 1]n for a fixed sequence {γk = 1/(k + 10)2.5}.
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Appendix A. Proofs of Proposition 2 and Proposition 3.

Proof of Proposition 2. (a) We first generalize the convergence result of the classical Moreau en-
velopes when γk ↓ 0 (see, e.g., [30, Theorem 1.25]) to the partial Moreau envelopes. Fixing any
γ0 > 0, we consider the function ψ(z, x, γ) ≜ f(z, x) + δdom f (x) + ψ0(z, x, γ) with

ψ0(z, x, γ) ≜


∥z − x∥2/(2γ) if γ ∈ (0, γ0],

0 if γ = 0, z = x,
∞ otherwise.

Notice that fk(x) = gγk(x) − hγk(x) + δdom f (x) = infz ψ(z, x, γk). It is easy to verify that ψ is
proper and lsc based on our assumptions. Under the assumption that f is bounded from below
on dom f × dom f , we can also show by contradiction that ψ(z, x, γ) is level-bounded in z locally
uniformly in (x, γ). Consequently, it follows from [30, Theorem 1.17] that fk(x) = infz ψ(z, x, γk) ↑
f(x) for any fixed x and each fk is lsc.

Hence, fk
e→ f is a direct consequence of [30, Proposition 7.4(d)] by fk(x) ↑ f(x) for all x

and the lower semicontinuity of fk. If dom f = Rn, then f is continuous, and thus fk
c→ f by [30,

Proposition 7.4(c-d)]. We then complete the proof of (a).
(b) For any x̄ ∈ int(dom f),

∂Af(x̄) =
⋃

xk→x̄

Lim sup
k→+∞

{
∂gγk(x

k)− ∂hγk(x
k)
}

(i′)
=

⋃
xk→x̄

Lim sup
k→+∞

{
xk

γk
− ∂2(−f)(zk, xk)−

zk

γk

∣∣∣∣ zk = argmin
z∈Rn

[
f(z, xk) +

1

2γk
∥z − xk∥2

]}
(ii′)
⊂

⋃
(xk,zk)→(x̄,x̄)

Lim sup
k→+∞

[
∂1f(z

k, xk)− ∂2(−f)(zk, xk)
]

(iii′)
= ∂1f(x̄, x̄)− ∂2(−f)(x̄, x̄),

where (i′) follows from the convexity of (−f)(z, ·) for any z ∈ dom f and Danskin’s Theorem [11,
Theorem 2.1]; (ii′) is due to the optimality condition for zk, and zk → x̄ is obtained by similar
arguments in the proof of Theorem 1(b) due to our assumption that f is bounded from below on
dom f × dom f ; and (iii′) uses the outer semicontinuity of ∂1f and ∂2(−f) at (x̄, x̄) [20, Lemma
5]. Therefore, for any x̄ ∈ int(dom f), ∂f(x̄) ⊂ ∂Af(x̄) ⊂ ∂1f(x̄, x̄)− ∂2(−f)(x̄, x̄). Moreover, due
to the local boundedness of the mappings ∂1f and ∂2(−f) at (x̄, x̄) [20, Lemma 5], it follows from
[30, Example 4.22] that ∂∞A f(x̄) = {0}.
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Proof of Proposition 3. (a) Note that for any x ∈ Rn, CVaRα[ c(x, Z) ] is well-defined and takes
finite value due to E[ |c(x, Z)| ] < +∞. Since c(x, Z) follows a continuous distribution for any x ∈
Rn, we know from [29, Theorem 1] and [1] that CVaR has the following equivalent representations:

CVaRα[ c(x, Z) ] = inf
t∈R

{
t+

1

1− α
E [ max{c(x, Z)− t, 0}]

}
=

1

1− α

∫ 1

α
VaRt[ c(x, Z) ] dt.

Moreover, CVaRα[ c(·, Z) ] is convex by the convexity of c(·, z) for any fixed z ∈ Rm (cf. [29,
Theorem 2]). Therefore, both gk and hk defined in (7) are convex. By the definitions of gk and hk,
we have

gk(x)− hk(x) = [k(1− α) + 1]CVaRα−1/k[c(x, Z)]− k(1− α) CVaRα[c(x, Z)]

=
k(1− α) + 1

1− (α− 1/k)

∫ 1

α−1/k
VaRt[c(x, Z)] dt−

k(1− α)
1− α

∫ 1

α
VaRt[c(x, Z)] dt

= k

∫ 1

α−1/k
VaRt[c(x, Z)] dt− k

∫ 1

α
VaRt[c(x, Z)] dt

= k

∫ α

α−1/k
VaRt[c(x, Z)] dt.

Note that VaRt[c(x, Z)] is nondecreasing as a function of t for any fixed x ∈ Rn. Namely,∫ α

α−1/k
VaRα−1/k[c(x, Z)] dt ≤

∫ α

α−1/k
VaRt[c(x, Z)] dt ≤

∫ α

α−1/k
VaRα[c(x, Z)] dt.

Thus, VaRα−1/k[ c(x, Z) ] ≤ gk(x) − hk(x) ≤ VaRα[ c(x, Z) ] for any x ∈ Rn and k > 1/α. Since

VaRt[ c(x, Z) ] as a function of t on (0, 1) is left-continuous, it follows that [gk(x) − hk(x)] ↑
VaRα[ c(x, Z) ] for all x. Observe that

{x | VaRα[ c(x, Z) ] ≤ r} = {x | P(c(x, Z) ≤ r) ≥ α}.

Based on our assumptions and [34, Proposition 2.2], for any r ∈ R, the probability function
x 7→ −P(c(x, Z) ≤ r) is lsc, which implies the closedness of the level set {x | P(c(x, Z) ≤ r) ≥ α}
for any (r, α) ∈ R × (0, 1). Hence, VaRα[ c(·, Z)] is lsc for any given α ∈ (0, 1) and is continuous
if c(·, ·) is further assumed to be continuous. Then (a) is a direct consequence of [30, Proposition
7.4(c-d)] by the monotonicity [gk(x)− hk(x)] ↑ VaRα[ c(x, Z)] and the continuity of VaRα[ c(·, Z)].

(b) We use L1(Ω,F ,P) to denote the space of all random variablesX : Ω→ R with E[ |X(ω)|] <
+∞. According to [33, Example 6.19], the function CVaRα : L1(Ω,F ,P) → R is subdifferentiable
(see [33, (9.281)] for the definition). Consider any fixed x ∈ Rn. Given that c(x, Z) is a continuous
random variable in L1(Ω,F ,P), it follows from [33, (6.81)] that the subdifferential of CVaRα[·] at
c(x, Z) is:

∂ (CVaRα[ · ]) [ c(x, Z)] =

ϕ ∈ L∞(Ω,F ,P)

∣∣∣∣∣∣
ϕ(ω) = (1− α)−1 if c(x, Z(ω)) > VaRα[ c(x, Z)]
ϕ(ω) ∈ [0, (1− α)−1] if c(x, Z(ω)) = VaRα[ c(x, Z)]
ϕ(ω) = 0 if c(x, Z(ω)) < VaRα[ c(x, Z)]

 .

(43)
We would like to mention that the event {ω ∈ Ω | c(x, Z(ω)) = VaRα[ c(x, Z)]} has zero probability
and, thus, E[ϕ ] = (1 − α)−1 · (1 − α) = 1 for every random variable ϕ ∈ ∂ (CVaRα[ · ]) [ c(x, Z)].
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Let PZ denote the probability measure associated with Z. By using [33, Theorem 6.14], we obtain
the subdifferential of the convex function CVaRα[ c(·, Z) ] at x:

∂ (CVaRα[ c(·, Z) ]) (x) = cl

 ⋃
ϕ∈∂(CVaRα[ · ]) [ c(x,Z)]

∫
∂1 c(x, Z(ω))ϕ(ω) dPZ(ω)


(iv′)
= cl

(∫
∂1 c(x, Z(ω)) ϕ̄(ω) dPZ(ω)

)
∀ ϕ̄ ∈ ∂(CVaRα[ · ]) [ c(x, Z)]

(v′)
=

∫
∂1 c(x, Z(ω)) ϕ̄(ω) dPZ(ω) ∀ ϕ̄ ∈ ∂(CVaRα[ · ]) [ c(x, Z)].

(44)

To see (iv′), it suffices to show that, for arbitrary two elements ϕ1 and ϕ2 in the set ∂(CVaRα[ · ]) [ c(x, Z)],
we have ∫

∂1 c(x, Z(ω))ϕ1(ω) dPZ(ω) =

∫
∂1 c(x, Z(ω))ϕ2(ω) dPZ(ω). (45)

To this end, we take any measurable selection a(x, Z(ω)) ∈ ∂1c(x, Z(ω)). By the assumption that
|c(x, z) − c(x′, z)| ≤ κ(z)∥x − x′∥ for all x, x′ ∈ Rn and z ∈ Rm, it holds that ∥a(x, Z)∥ ≤ κ(Z)
since subgradients of a convex function are uniformly bounded in norm by the Lipschitz constant.
Consequently, both a(x, Z(ω))ϕ1(ω) and a(x, Z(ω))ϕ2(ω) are integrable as |ϕ1(ω)| ≤ (1 − α)−1

and |ϕ2(ω)| ≤ (1 − α)−1 for any ω by (43) and E[∥a(x, Z)∥] ≤ E[κ(Z)] < +∞ by our assump-
tion. Observing that a(x, Z(ω))ϕ1(ω) = a(x, Z(ω))ϕ2(ω) almost surely, we can conclude from [17,
Proposition 2.23] that

∫
a(x, Z(ω))ϕ1(ω) dPZ(ω) =

∫
a(x, Z(ω))ϕ2(ω) dPZ(ω). This completes the

proof of (45).
Next, we will explain why the closure can be removed in (44). By the convexity of c(·, z) for

any fixed z ∈ Rm and the existence of a measurable function κ, it follows from [12, Theorem 2.7.2]
that ∫

∂1c(x, Z(ω)) ϕ̄(ω) dPZ(ω) = ∂

(∫
c(·, Z(ω)) ϕ̄(ω) dPZ(ω)

)
(x),

where the right-hand-side is the subdifferential of a convex function and, thus, is a closed set. Then,
we can omit the closure to obtain the equation (v′) in (44).

Now we use the expression of ∂ (CVaRα[ c(·, Z) ]) (x) to characterize ∂AVaRα[ c(·, Z)](x̄). For
any k > 1/α, taking any ϕ3 ∈ ∂(CVaRα−1/k[ · ]) [ c(x, Z)] and ϕ4 ∈ ∂(CVaRα[ · ]) [ c(x, Z)], we have

∂gk(x)− ∂hk(x) = [k(1− α) + 1] ∂ CVaRα−1/k[ c(·, Z)](x)− k(1− α) ∂ CVaRα[ c(·, Z)](x)
(44)
=

∫
∂1c(x, Z(ω)) ·

(
[k(1− α) + 1]ϕ3(ω)− k(1− α)ϕ4(ω)

)
dPZ(ω)

(43)
=

∫
∂1c(x, Z(ω)) · ϕ(ω) dPZ(ω),

with

ϕ(ω) ≜


0 if c(x, Z(ω)) > VaRα[ c(x, Z)] or c(x, Z(ω)) < VaRα−1/k[ c(x, Z)]

[0, k] if c(x, Z(ω)) = VaRα[ c(x, Z)] or c(x, Z(ω)) = VaRα−1/k[ c(x, Z)]

k if VaRα−1/k[ c(x, Z)] < c(x, Z(ω)) < VaRα[ c(x, Z)]
.
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Since the event {ω ∈ Ω | c(x, Z(ω)) = VaRα[ c(x, Z)] or VaRα−1/k[ c(x, Z)]} has zero probability,
we have

∂gk(x)− ∂hk(x) =
∫
∂1c(x, Z(ω)) k 1{VaRα−1/k[ c(x, Z)] < c(x, Z) < VaRα[ c(x, Z)]} dPZ(ω)

=

∫
∂1c(x, Z(ω)) ·

1{VaRα−1/k[ c(x, Z)] < c(x, Z) < VaRα[ c(x, Z)]}
P(VaRα−1/k[ c(x, Z)] < c(x, Z) < VaRα[ c(x, Z)])

dPZ(ω)

= E
[
∂1c(x, Z)

∣∣VaRα−1/k[ c(x, Z)] < c(x, Z) < VaRα[ c(x, Z)]
]
.

By the definition of the approximate subdifferential, the proof is then completed.

Appendix B. Proof of Proposition 4.

We start with the chain rules for ∂(φ ◦ f) and ∂∞(φ ◦ f), where the inner function f is merely lsc.
These results are extensions of the nonlinear rescaling [30, Proposition 10.19(b)] to the case where
φ may lack the strictly increasing property at a given point. One can also derive the same results
through a general chain rule of the coderivative for composite set-valued mappings [22, Theorem
5.1]. However, to avoid the complicated computations accompanied by the introduction of the
coderivative, we give an alternative proof below that is more straightforward. To prepare for the
chain rules, we need a technical lemma about the proximal normal cone.

Lemma 3. Let f : Rn → R be a lsc function. For ᾱ > f(x̄), it holds that

N p
epi f (x̄, ᾱ) ⊂ N

p
epi f (x̄, f(x̄)).

Proof of Lemma 3. For ᾱ > f(x̄). By [30, Example 6.16], we have

N p
epi f (x̄, ᾱ) =

{
λ[(x, α)− (x̄, ᾱ)] | (x, α) ∈ Rn+1 such that (x̄, ᾱ) ∈ Πepi f (x, α), λ ≥ 0

}
,

where Πepi f : Rn+1 → epi f is the projection operator. For any (x, α) ∈ Rn+1 with (x̄, ᾱ) ∈
Πepi f (x, α), we have

(x̄, ᾱ) ∈ argmin
(u,t)∈epi f

∥(u, t)− (x, α)∥2,

which can be equivalently written as

(x̄, f(x̄)) ∈ argmin
(u,t+ᾱ−f(x̄))∈epi f

∥(u, t)− (x, α− ᾱ+ f(x̄))∥2.

Then restrict the feasible region of the above problem to a subset {(u, t) | (u, t) ∈ epi f}. Since
(x̄, f(x̄)) is still a feasible point in this subset, we have (x̄, f(x̄)) ∈ Πepi f (x, α− ᾱ+ f(x̄)). Hence,
(x̄, ᾱ) ∈ Πepi f (x, α) implies (x̄, f(x̄)) ∈ Πepi f (x, α− ᾱ+ f(x̄)). Using this result and the expression
of N p

epi f (x̄, ᾱ), we conclude that N p
epi f (x̄, ᾱ) ⊂ N

p
epi f (x̄, f(x̄)) for ᾱ > f(x̄).

We present the chain rules with a self-contained proof in the following lemma.
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Lemma 4 (chain rules for the limiting subdifferential). Let φ : R→ R be proper, lsc, convex, and
nondecreasing with supφ = +∞, and f : Rn → R be lsc. Consider x̄ ∈ dom(φ ◦ f). If the only
scalar y ∈ Lim supx→(φ◦f)x̄

Ndomφ(f(x)) with 0 ∈ y · Lim supx→x̄ ∂f(x) is y = 0, then

∂(φ ◦ f)(x̄) ⊂
⋃{

y · Lim sup
x→x̄

∂f(x)

∣∣∣∣∣ y ∈ Lim sup
x→(φ◦f) x̄

∂φ(f(x))

}
∪
[(

Lim sup
x→x̄

∞∂f(x)
)
\{0}

]
,

∂∞(φ ◦ f)(x̄) ⊂
⋃{

y · Lim sup
x→x̄

∂f(x)

∣∣∣∣∣ y ∈ Lim sup
x→(φ◦f) x̄

Ndomφ(f(x))

}
∪
[(

Lim sup
x→x̄

∞∂f(x)
)
\{0}

]
.

Proof of Lemma 4. The basic idea is to rewrite φ ◦ f as a parametric minimization problem and
apply [30, Theorem 10.13]. Note that φ

(
f(x)

)
= infα [g(x, α) ≜ δepi f (x, α) + φ(α)] for x ∈

dom(φ ◦ f). Define the corresponding set of optimal solutions as M(x) for any x ∈ dom(φ ◦ f).
Then, we have f(x̄) ∈ M(x̄) and φ(α) = φ(f(x̄)) for any α ∈ M(x̄). By our assumptions, it is
obvious that domφ ∈ {(−∞, b), (−∞, b]} for some b ∈ R ∪ {+∞}. Based on our assumption that
supφ = +∞ and f is lsc, it is easy to verify that g is proper, lsc, and level-bounded in α locally
uniformly in x. Then we apply [30, Theorem 10.13] to obtain

∂(φ◦f)(x̄) ⊂ {v | (v, 0) ∈ ∂g(x̄, ᾱ), ᾱ ∈M(x̄)} , ∂∞(φ◦f)(x̄) ⊂ {v | (v, 0) ∈ ∂∞g(x̄, ᾱ), ᾱ ∈M(x̄)} .
(46)

Step 1: We will show that for any ᾱ ∈M(x̄),

Nepi f (x̄, ᾱ) ∩
(
{0} × [−Ndomφ(ᾱ)]

)
= {0}. (47)

We divide the proof of (47) into two cases.

Case 1. If M(x̄) is a singleton {f(x̄)}, we can characterize Nepi f (x̄, f(x̄)) by using the result in [30,
Theorem 8.9]. Since ∂f(x̄) ⊂ Lim supx→x̄ ∂f(x) andNdomφ(f(x̄)) ⊂ Lim supx→(φ◦f) x̄

Ndomφ(f(x)),

it follows from our assumption that either 0 /∈ ∂f(x̄) or Ndomφ(f(x̄)) = {0}. Hence, based on the
characterization of Nepi f (x̄, f(x̄)), (47) is satisfied.

Case 2. Otherwise, there exists ᾱmax ∈ (f(x̄),+∞) such that M(x̄) = [f(x̄), ᾱmax] since φ is lsc,
nondecreasing and supφ = +∞. Thus, from (46),

∂(φ ◦ f)(x̄) ⊂
[
{v | (v, 0) ∈ ∂g(x̄, f(x̄))} ∪ {v | (v, 0) ∈ ∂g(x̄, ᾱ), f(x̄) < ᾱ ≤ ᾱmax}

]
,

∂∞(φ ◦ f)(x̄) ⊂
[
{v | (v, 0) ∈ ∂∞g(x̄, f(x̄))} ∪ {v | (v, 0) ∈ ∂∞g(x̄, ᾱ), f(x̄) < ᾱ ≤ ᾱmax}

]
.

(48)

Let M1(x̄) ≜
{
ᾱ ∈ (f(x̄), ᾱmax]

∣∣ ∃xk → x̄ with f(xk)→ ᾱ
}

and M2(x̄) ≜M(x̄)\M1(x̄). In the
following, we characterize Nepi f (x̄, ᾱ) and verify (47) separately for ᾱ ∈M1(x̄) and ᾱ ∈M2(x̄).

Case 2.1. For any ᾱ ∈M1(x̄), we first prove the inclusion:

Nepi f (x̄, ᾱ) ⊂
[{

λ(v,−1)
∣∣∣∣ v ∈ Lim sup

x→x̄
∂f(x), λ > 0

}
∪
{
(v, 0)

∣∣∣∣ v ∈ Lim sup
x→x̄

∞∂f(x)

}]
. (49)

Observe that for any ᾱ ∈M1(x̄), it holds that

Nepi f (x̄, ᾱ) ⊂ Lim sup
(x,α)(∈epi f)→(x̄,ᾱ)

N p
epi f (x, α) ⊂ Lim sup

x→x̄
N p

epi f (x, f(x)) ⊂ Lim sup
x→x̄

Nepi f (x, f(x)),

(50)
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where the first inclusion is because any normal vector is a limit of proximal normals at nearby
points [30, Exercise 6.18]; the second one uses Lemma 3; the last inclusion follows from the fact
that the proximal normal cone is a subset of the limiting normal cone [30, Example 6.16]. Based
on the the result of [30, Theorem 8.9] that

Nepi f (x, f(x)) = {λ(v,−1) | v ∈ ∂f(x), λ > 0} ∪ {(v, 0) | v ∈ ∂∞f(x)} ,

we conclude that Nepi f (x̄, ᾱ) ⊂ Rn × R− for any ᾱ ∈ M1(x̄). For any (v,−1) ∈ Nepi f (x̄, ᾱ) with
ᾱ ∈M1(x̄), there exist xk → x̄, vk → v with vk ∈ ∂f(xk). Then v ∈ Lim supx→x̄ ∂f(x).

To prove (49), it remains to show that v ∈ Lim sup∞x→x̄ ∂f(x) whenever (v, 0) ∈ Nepi f (x̄, ᾱ). It
follows from (50) that (v, 0) is a limit of proximal normals of epi f at (xk, f(xk)) for some sequence
xk → x̄. (i) First consider the case (vk, 0) → (v, 0) with (vk, 0) ∈ N p

epi f (x
k, f(xk)). Following the

argument in the proof of [30, Theorem 8.9], we can derive vk ∈ ∂∞f(xk). Therefore,

v ∈ Lim sup
k→+∞

∂∞f(xk) ⊂ Lim sup
k→+∞

 ⋃
xk,i→f xk

Lim sup
i→+∞

∞∂f(xk,i)

 ⊂ ⋃
xj→x̄

Lim sup
j→+∞

∞ ∂f(xj),

where the first inclusion is due to the definition of the horizon subdifferential, and the last inclusion
follows from a standard diagonal extraction procedure. (ii) In the other case, we have λk(v

k,−1)→
(v, 0) with λk ↓ 0 and vk ∈ ∂f(xk) for all k ∈ N. It is easy to see v ∈ Lim sup∞x→x̄ ∂f(x). So far, we
obtain inclusion (49). Since ᾱ ∈ M1(x̄), we have Ndomφ(ᾱ) ⊂ Lim supx→(φ◦f)x̄

Ndomφ(f(x)), and

our assumption implies that λ = 0 is the unique solution satisfying 0 ∈ λ · Lim supx→x̄ ∂f(x) with
λ ∈ Ndomφ(ᾱ). Combining this with (49), we immediately obtain (47).

Case 2.2. For any ᾱ ∈M2(x̄), consider any sequence
{
(xk, αk)

}
⊂ epi f converging to (x̄, ᾱ). Then

αk > f(xk) for all sufficiently large k since ᾱ /∈ M1(x̄). It is easy to see that N p
epi f (x

k, αk) ⊂
Rn×{0}, which gives us Nepi f (x

k, αk) ⊂ Rn×{0} due to [30, Exercise 6.18]. By following a similar
pattern as the final part of Case 2.1, it is not difficult to obtain, for any ᾱ ∈M2(x̄),

Nepi f (x̄, ᾱ) ⊂
{
(v, 0)

∣∣∣∣ v ∈ Lim sup
x→x̄

∞∂f(x)

}
. (51)

In this case, (47) holds trivially. Hence, we have verified (47) for cases 1 and 2.

Step 2: Based on (47) in step 1, we can now apply the sum rule [30, corollary 10.9] for ∂g(x̄, ᾱ)
to obtain

∂g(x̄, ᾱ) ⊂ Nepi f (x̄, ᾱ) + {0} × ∂φ(ᾱ), ∂∞g(x̄, ᾱ) ⊂ Nepi f (x̄, ᾱ) + {0} × Ndomφ(ᾱ). (52)

Case 1. For M(x̄) = {f(x̄)}, by combining (52) with (46), we can derive the stated results for
∂(φ ◦ f)(x̄) and ∂∞(φ ◦ f)(x̄) based on the observations that ∂φ(f(x̄)) ⊂ Lim supx→(φ◦f)x̄

φ(f(x))

and ∂∞f(x̄) ⊂ Lim sup∞x→x̄ ∂f(x).

Case 2. Otherwise, by (52), we have

{v | (v, 0) ∈ ∂g(x̄, ᾱ), f(x̄) < ᾱ ≤ ᾱmax}
(49)(51)
⊂

⋃{
y · Lim sup

x→x̄
∂f(x)

∣∣∣∣ y ∈ ∂φ(ᾱ), ᾱ ∈M1(x̄)

}
∪
[⋃{

Lim sup
x→x̄

∞∂f(x)

∣∣∣∣ 0 ∈ ∂φ(ᾱ), f(x̄) < ᾱ ≤ ᾱmax

}]
⊂

⋃{
y · Lim sup

x→x̄
∂f(x)

∣∣∣∣∣ y ∈ Lim sup
x→(φ◦f) x̄

∂φ(f(x))

}
∪
[(

Lim sup
x→x̄

∞∂f(x)
)
\{0}

]
,
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where the last inclusion is because 0 will be included in the first set if 0 ∈ ∂φ(ᾱ) for some ᾱ ∈
(f(x̄), ᾱmax] and the second set will be empty otherwise. Similarly,

{v | (v, 0) ∈ ∂g∞(x̄, ᾱ), f(x̄) < ᾱ ≤ ᾱmax}

⊂
⋃{

y · Lim sup
x→x̄

∂f(x)

∣∣∣∣∣ y ∈ Lim sup
x→(φ◦f) x̄

Ndomφ(f(x))

}
∪
[(

Lim sup
x→x̄

∞∂f(x)
)
\{0}

]
.

We then complete the proof by using the inclusions in (48).

Equipped with the chain rules, we are now ready to prove Proposition 4.

Proof of Proposition 4. Let x̄ be any feasible point, i.e., x̄ ∈
⋂m

p=1 domFp. Suppose for contra-

diction that (15) does not hold at x̄. Thus, there exist p1 ∈ {1, · · · ,m}, {xk} ∈ Sp1(x̄) and an

index set N ∈ N♯
∞ such that 0 ∈ ∂Cfkp1(x

k) and Ndomφp1

(
fkp1(x

k)
)
̸= {0} for all k ∈ N . Take an

arbitrary nonzero scalar yk ∈ Ndomφp1

(
fkp1(x

k)
)
for all k ∈ N . Let ỹ be any accumulation point

of the unit scalars {yk/|yk|}k∈N . Then, we have (0 ̸=)ỹ ∈
⋃
{Ndomφp1

(tp1) | tp1 ∈ Tp1(x̄)} and
0 ∈ con ∂Afp1(x̄), contradicting Assumption 5. This proves condition (15).

For any fixed p = 1, · · · ,m, let yp′ = 0 for any p′ ∈ {1, · · · ,m}\{p} in Assumption 5. Then the
only scalar yp ∈

⋃{
Ndomφp(tp) | tp ∈ Tp(x̄)

}
with 0 ∈ yp con ∂Afp(x̄) is yp = 0, which completes

the proof of (16).
To derive the constraint qualification (17), we consider two cases.

Case 1. For p ∈ I2, we have Ndomφp(fp(x̄)) ⊂
⋃{
Ndomφp(tp) | tp ∈ Tp(x̄)

}
due to fkp

e→ fp and
∂(yfp)(x̄) ⊂ y ∂Cfp(x̄) ⊂ y · con ∂Afp(x̄) for any y by Theorem 1(a). Together with Assumption 5,
we deduce that the only scalar y ∈ Ndomφp(fp(x̄)) with 0 ∈ ∂(yfp)(x̄) is y = 0. From this condition
and the local Lipschitz continuity of fp for p ∈ I2, we can apply the chain rule [30, Theorem 10.49]
to get

∂∞(φp ◦ fp)(x̄) ⊂
⋃{

y · con ∂Afp(x̄) | y ∈ Ndomφp(tp), tp ∈ Tp(x̄)
}
. (53)

Case 2. For p ∈ I1, to utilize the chain rules (Lemma 4) for ∂∞(φp ◦ fp), we must first confirm the
validity of the condition:[

0 ∈ y · Lim sup
x→x̄

∂fp(x), y ∈ Lim sup
x→Fp x̄

Ndomφp(fp(x))

]
=⇒ y = 0. (54)

Indeed, it suffices to consider the case of domφ↑
p = (−∞, rp) or (−∞, rp] for some rp ∈ R, because

the statement holds trivially when φ↑
p is real-valued. For any element ȳ ∈ Lim supx→Fp x̄ Ndomφp(fp(x)),

there exist (xk, yk) → (x̄, ȳ) with yk ∈ Ndomφp(fp(x
k)) and Fp(x

k) → Fp(x̄). Since x̄ ∈ domFp,

we must have xk ∈ domFp for all sufficiently large k, i.e., fp(x
k) ∈ domφ↑

p, and {fp(xk)}k∈N is

bounded from above due to domφ↑
p = (−∞, rp) or (−∞, rp]. The sequence {fp(xk)}k∈N is also

bounded from below since fp is lsc as a consequence of fkp
e→ fp. Then, we can assume that the

bounded sequence {fp(xk)}k∈N converges to some z̄p. Note that z̄p ∈ domφp due to Fp(x̄) =
lim infk→+∞ φp(fp(x

k)) ≥ φp(z̄p). Thus, by the outer semicontinuity, yk → ȳ ∈ Ndomφp(z̄p). By

fkp
e→ fp, each fp(x

k) can be expressed as the limit of a sequence {f ip(xk,i)}i∈N with xk,i → xk for
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any fixed k ∈ N. Using a standard diagonal extraction procedure, one can extract a subsequence
f ikp (xk,ik)→ z̄p with xk,ik → x̄. Hence, z̄p ∈ Tp(x̄) and

Lim sup
x→Fp x̄

Ndomφp(fp(x)) ⊂
⋃
{Ndomφp(tp) | tp ∈ Tp(x̄)}. (55)

Using the subdifferentials relationships in Theorem 1 and the outer semicontinuity of ∂Afp, we have

Lim sup
x→x̄

∂fp(x) ⊂ Lim sup
x→x̄

∂Afp(x) = ∂Afp(x̄). (56)

By (55), (56) and Assumption 5, we immediately get (54). Thus, we can apply the chain rule in
Lemma 4, and use (55), (56) again to obtain

∂∞(φp ◦ fp)(x̄) ⊂
⋃{

y ∂Afp(x)
∣∣ y ∈ Ndomφp(tp), tp ∈ Tp(x̄)

}
∪
[
Lim sup

x→x̄

∞∂fp(x)\{0}
]

⊂
⋃{

y ∂Afp(x)
∣∣ y ∈ Ndomφp(tp), tp ∈ Tp(x̄)

}
∪ [ ∂∞A fp(x̄)\{0} ] .

(57)

For the last inclusion, we use Lim sup∞x→x̄ ∂fp(x) ⊂ Lim sup∞x→x̄ ∂Afp(x) ⊂ ∂∞A fp(x̄) by Theorem
1(a) and using a standard diagonal extraction procedure. Combining inclusions (53), (57) for two
cases with Assumption 5, we derive (17) and complete the proof.
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