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ON COVERING RADII IN FUNCTION FIELDS

NOY SOFFER ARANOV

Abstract. In this paper, we shall discuss topics in geometry of numbers in the function field
setting, such as covering radii. We find a closed form for covering radii with respect to convex
bodies, which will lead to a proof of the function field analogue of Woods’ conjecture in this
setting. Then, we will prove a function field analogue of Minkowski’s conjecture about the
multiplicative covering radius. To do this, we shall prove a function field analogue of Solan’s
result that every diagonal orbit intersects the set of well rounded lattices. This implies that
the Gruber-Mordell spectrum in function field is trivial in every dimension.

Keywords. Geometry of Numbers, Diophantine Approximation, function field, Product of
Linear Forms
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1. Introduction

Let d ≥ 2, let G = SLd(R), let Γ = SLd(Z), and let Xd = G/Γ. Then Xd can be identified
with the space of unimodular lattices via the identification

gΓ 7→ gZd

Then, G acts naturally on Xd by g ·hZd = ghZd. In this paper, we shall discuss several function
field analogues of fundamental theorems in geometry of numbers. This builds upon and extends
the results of [Mah41]. One such theorem is Minkowski’s convex body theorem.

Theorem 1.1. Let C be a convex set that is symmetric around the origin such that Vol(C) > 2d.
Then, for every Λ ∈ Xd, Λ ∩ C 6= {0}.

Given C convex and symmetric around the origin and a lattice Λ ∈ Xd, one can ask how well
Theorem 1.1 can be improved for this particular C. In other words, given a convex symmetric
set C, we can ask what is the largest r > 0 such that Λ∩ rC = {0}. This question has been well
studied when C is a symmetric box. Explicitly, given a lattice Λ ∈ Xd and a symmetric box of
the form

B = [−a1, a1]×, . . . ,×[−ad, ad],

we say that B is admissible for Λ if B ∩ Λ = {0}. We define the Mordell constant of Λ as

κ(Λ) =
1

2d
sup

B admissible

Vol(B).

Define the Gruber-Mordell spectrum as

MGd = {κ(Λ) : Λ ∈ Xd}.

Theorem 1.1 implies that κ(Λ) ≤ 1 for every Λ ∈ Xd. Moreover, it is easy to see that the box
B = (−1, 1)d is admissible for the lattice Zd. Hence, κ(Zd) = 1. Furthermore, κ is invariant
under the group of diagonal matrices with determinant 1,

A =

{







a1
. . .

ad






:

d
∏

i=1

|ai| = 1

}

.
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Since A acts ergodically on Xd, then, κ is constant almost everywhere. In addition, by [SW14,
Corollary 1.3], κ(Λ) = 1 for almost every Λ ∈ Xd.

Often times, it will be interesting to understand whether a ball contains at least k linearly
independent lattice points. A way to describe this is through successive minima. For r > 0 and
x ∈ Rd, we denote

B(x, r) = {y ∈ Rd : ‖x− y‖2 < r}.

For i = 1, . . . , d and a lattice Λ = gZd ⊆ Rd, we define the i-th successive minima of Λ as

λi(Λ) = inf{r > 0 : Λ ∩B(0, r) contains r linearly independent vectors}.

We denote det(Λ) = |det(g)|.

Theorem 1.2 (Minkowski’s 2nd Theorem). Let Λ = gZd be a lattice. Then,

2d

d! Vol(B(0, 1))
|det(g)| ≤

d
∏

i=1

λi(Λ) ≤
2d

Vol(B(0, 1))
|det(g)|.

Theorem 1.2 can also be interpreted geometrically. The determinant of a lattice is bounded
by above an below by two universal constants times the volume of the parallelopiped formed by
a set of linearly independent vectors, whose lengths correspond to the successive minima of a
lattice.

Another example of a function which provides geometric information about a lattice is the
covering radius. For Λ ∈ Xd and a compact convex body C ⊆ Rd, we define the covering radius
of Λ with respect to C, CovRadC(Λ) as the smallest r ≥ 0 such that Λ + rC = Rd. Since C is
compact, then the function CovRadC : Xd → R is a proper function. In particular, it is not
bounded by above. In [Rog59], Rogers proved that

inf
x∈Xd

CovRadC(x) ≤ dlog2 log d+O(1)

In [ORW22], Ordentlich, Regev and Weiss improved Rogers’ bound on CovRadC .

Theorem 1.3. [ORW22, Theorem 1.1] For any compact convex body C,

inf
Λ∈Xd

CovRadC(Λ) = O(d2).

The functions Θd,C = infΛ∈Xd
CovRadC(Λ) and Θd = infΛ∈Xd

CovRadB(0,1)(Λ) have been
studied extensively [Rog59, CS87, GL11, ORW22]. In general, it is interesting to understand
covering radii of lattices with respect to functions. Given a function F : Rd → R+ with F (0) = 0
and a lattice Λ ∈ Xd, we define CovRadF (Λ) to be the smallest r > 0 such that for every R > r,

Λ+ {v ∈ Rd : F (v) < R} = Rd. (1.1)

For example if F (v) = ‖v‖2, then, CovRadF = CovRadB(0,1). An interesting covering radius is

the Minkowski function, µ = CovRadN , where N(v) =
∏d

i=1 |vi|. It is clear that µ is invariant
under the group A, and therefore, due to ergodicity of the A-action [Mau54], µ is constant
almost everywhere. Furthermore due to upper semicontinuity, the generic value of µ is its lower
bound, which is 0, as Shapira showed in [Sha11].

Conjecture 1.4 (Minkowski). For every Λ ∈ Xd, we have that

(1) µ(Λ) ≤ 2−d = µ(Zd) and
(2) µ(Λ) = 2−d if and only if Λ ∈ AZd.

Conjecture 1.4 has been proved for d ≤ 10 [Min00, Rem23, Dys48, Sku73, Woo72, HGRS09,
HGRS11, KR16, KR22, Sol19]. One method to prove Conjecture 1.4(1) is to use A invariance
of µ to prove that the conclusion of Conjecture 1.4(1) holds for a subset of Xd which intersects
every A orbit.

Theorem 1.5. Assume that there exists a set Y ⊆ Xd such that

(1) For every Λ ∈ Y , µ(Λ) ≤ q−d.
2



(2) For every Λ ∈ Xd, AΛ ∩ Y 6= ∅.

Then, every Λ ∈ Xd satisfies that µ(Λ) ≤ 2−d.

This method was utilized in [McM05, LSW14, Sol19] when Y is the set of well rounded lattices.

Definition 1.6. For Λ ∈ Xd, we say that Λ is well rounded if λ1(Λ) = · · · = Λd(Λ). We denote
by WRd the set of well rounded lattices in Xd.

Solan [Sol19] proved that for every d ≥ 2, the set of well rounded lattices satisfy (2). Thus,
to conclude the proof of Conjecture 1.4)(1), it suffices to prove that the well rounded lattices
satisfy (1). One method to prove that a subset Y ⊆ Xd satisfies condition (1) is to prove that

CovRad‖·‖2 is bounded from above by
√
d
2 .

Lemma 1.7. Assume that Λ ∈ Xd satisfies CovRad‖·‖2(Λ) ≤
√
d
2 . Then, µ(Λ) ≤ q−d.

Woods [Woo72] conjectured that the set of well rounded lattices satisfy the conditions of
Lemma 1.7. Regev, Shapira, and Weiss [RSW17] proved that Woods’ conjecture is false for
d ≥ 30. In [SW16], Shapira and Weiss conjectured that the stable lattices, which are lattices
whose subgroups all have covolume at least 1, satisfy the conditions of Lemma 1.7. If this is
indeed true, this would conclude the proof of Conjecture 1.4(1), due to [Sol19].

In this paper, we shall discuss geometry of numbers in function field. In particular, we
shall provide a closed form of the function field analogue of CovRadC and prove a function
field analogue of Theorem 1.3. Furthermore, we shall also obtain a complete description of the
function field analogue of the function µ in dimension 2 and the function κ in every dimension,
as well as prove a function field analogue of Conjecture 1.4(1). Several of these results will stem
from a decomposition theorem, which improves the function field analogue of Theorem 1.2.

1.1. Definitions. Let d ≥ 2, let p be a prime, q be a power of p, and let R = Fq[x] be the ring
of polynomials over Fq. Let K = Fq(x) be the field of rational functions over Fq. We define an

absolute value on R by |f | = qdeg(f) and extend it to an absolute value on K by
∣

∣

∣

∣

f

g

∣

∣

∣

∣

=

{

qdeg(f)−deg(g) f 6= 0

0 f = 0
.

Then the topological completion of K with respect to the metric d(f, g) = |f − g| is the field of

Laurent series K̃ defined by

K̃ = Fq

((

x−1
))

=

{ ∞
∑

n=−N

anx
−n : an ∈ Fq, N ∈ Z

}

.

Given d ≥ 2, we define the norm on K̃d by ‖v‖ = maxi=1,...,d |vi|.

Lemma 1.8. Ultrametric Inequality

(1) For all α, β ∈ Fq((x
−1)), we have |α+ β| ≤ max{|α|, |β|}.

(2) For all u,v ∈ Fq((x
−1))n, we have ‖u+ v‖ ≤ max{‖u‖, ‖v‖}.

Let O be the maximal compact order of K̃, that is

O = Fq

[[

x−1
]]

= {f ∈ K̃ : |f | ≤ 1}.

Denote the group of units in O by U, that is

U = {f ∈ K̃ : |f | = 1} =

{ ∞
∑

n=0

anx
−n : an ∈ Fq, a0 ∈ F∗

q

}

= O∗.

We can view K̃∗ as the direct product K̃∗ ∼= Z×U in the following way:

f 7→

(

logq |f |,
f

xlogq |f |

)

.
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Definition 1.9. Define the functions ρ(f) = logq |f | and π(f) = f

x
logq |f | . By abuse of notation,

we write ρ(v) = (ρ(v1), . . . , ρ(vd)) and similarly π(v) = (π(v1), . . . , π(vd)) for vectors v ∈ K̃d.

Similarly, for g ∈ GLd(K̃) we define (ρ(g))ij = ρ(gij) and (π(g))ij = π(gij).

Let G = SLd(K̃) be the group of invertible d × d matrices over K̃ with |det(g)| = 1. Let
Γ = SLd(R) < G be the group of invertible d× d matrices with entries in R with |det(g)| = 1.

Let Ld = G/Γ. Then, Ld is identified with the space of unimodular lattices in K̃d under the
identification

gΓ 7→ gRd.

Let A be the group of diagonal matrices in G with determinant 1.

Definition 1.10. Given a lattice Λ = gΓ ⊆ K̃d, we define the length of the shortest non-zero
vector in Λ as

ℓ(Λ) = min
{

‖v‖ : v ∈ gΓ \ {0}
}

, (1.2)

where ‖(v1, . . . , vd)
t‖ = maxi |vi|.

In Ld, Mahler’s compactness criterion gives a necessary and sufficient condition for compact-
ness (see [Cas59] for the real case, [Gho07, Theorem 3.3] for the function field case, and [KST16,
Theorem 1.1] for general S-adic fields).

Theorem 1.11 (Mahler’s Compactness Criterion). A closed set of lattices Y ⊆ Ld is compact
if and only if there exists ε > 0 such that infΛ∈Y ℓ(Λ) > ε.

We shall now state the function field analogue of Theorem 1.1. To do so, we define the Haar
measure on K̃d as the unique left invariant measure m on K̃d, such that m(Od) = 1. Mahler

[Mah41] proved that every convex set in K̃d is a linear image of Od.

Theorem 1.12 ([Mah41]). A set C ⊆ K̃d is an open compact O-module, if and only if there

exists h ∈ GLd(K̃) such that C = hOd. In this case we say that C is a convex body. We denote
m(C) = Vol(C) = |det(h)|.

Notice that due to the definition of a convex body, any convex body must contain 0. We can
now state the function field analogue of Theorem 1.1, which is a corollary of Serre Duality (see
for example [Cla14]).

Theorem 1.13. Let C ⊆ K̃d be a convex set and let Λ ∈ Ld be a lattice. If m(C) ≥ q−(d−1),
then C ∩ Λ 6= {0}.

In function field, we have the following version of Theorem 1.2.

Theorem 1.14. [Mah41] For any lattice Λ = gRd ⊆ K̃d and i = 1, . . . d, we define the i-th
successive minima of Λ as

λi(Λ) = min{r > 0 : there exist i linearly independent vectors in Λ of norm ≤ r}.

Then,
d
∏

i=1

λi(Λ) = |det(g)|. (1.3)

Theorem 1.14 can be generalized for general convex bodies (for the proof, see for example
[BK23, Corollary 5.3]).

Theorem 1.15. For a lattice Λ = gRd ⊆ K̃d, a convex body C, and i = 1 . . . d, define

λi,C(Λ) = min{r > 0 : there exist i linearly independent vectors Λ in rC}.

Then,
d
∏

i=1

λi,C(Λ) =
|det(g)|

Vol(C)
. (1.4)
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Another well studied notion in parametric geometry of numbers is orthogonality [KST16,
RW17, AB24].

Definition 1.16. We say that v1, . . . ,vm ∈ K̃d are orthogonal if

‖v1 ∧ · · · ∧ vm‖ =
d
∏

i=1

‖vi‖. (1.5)

Equivalently, for any α1, . . . , αm ∈ K̃, we have

‖α1v1 + · · ·+ αmvm‖ = max
i=1,...,m

‖αivi‖,

that is the equality case of Lemma 1.8 holds.

By Theorem 1.14, if v1, . . . ,vd satisfy ‖vi‖ = λi(Λ), then, v1, . . . ,vd are orthogonal.

1.2. Main Results.

1.2.1. Bases of Lattices.

Definition 1.17. We say that a set of linearly independent vectors v(1), . . . ,v(d) ∈ Λ is a set
of successive minima vectors for Λ if

∥

∥v(i)
∥

∥ = λi(Λ) for each i = 1, . . . , d.

Lemma 1.18. Let Λ ⊆ K̃d be a lattice and let v(1), . . . ,v(d) ∈ Λ be a set of successive minima
vectors for Λ. Then, Λ is spanned over R by v(1), . . . ,v(d).

Remark 1.19. Due to Lemma 1.18, from now on, we shall call a set of successive minima vectors
for Λ a basis of successive minima for Λ.

Remark 1.20. Lemma 1.18 does not hold over R. For example, take the lattice

L = {v ∈ Rd : ∀1 ≤ i, j ≤ d, vi ≡ vj mod Z} = 2Zd + Z







1
...
1






∈ Xd.

If d ≥ 5, then, 2e1, . . . , 2ed are the shortest linearly independent vectors of L. On the other

hand, the vector







1
...
1






∈ L is not spanned over Z by 2e1, . . . , 2ed.

From Theorem 1.14 and Lemma 1.18, we deduce that any set of successive minima for a lattice
are an orthogonal R basis for the lattice. Moreover, all orthogonal R bases for a lattice are a
basis of successive minima.

Theorem 1.21. Let Λ ⊆ K̃d be a lattice. Then, every orthogonal R basis of Λ is a basis of
successive minima of Λ.

1.2.2. Covering Radii with Respect to Convex Bodies. In this paper, we shall discuss several
covering radii.

Definition 1.22. Let d ≥ 2.

(1) Given a convex body C ⊆ K̃d and a lattice Λ ⊆ K̃d, we define CovRadC(Λ) to be the
smallest r > 0 such that

Λ+ rC = K̃d. (1.6)

We define the norm ‖ · ‖C on K̃d by ‖v‖C = inf{r ≥ 0 : v ∈ rC}.
(2) In general, given a function F : K̃d → R+ with F (0) = 0, we can define CovRadF (Λ) to

be the smallest r > 0 such that for every R > r,

Λ+ {v ∈ K̃d : F (v) < R} = K̃d. (1.7)

Remark 1.23. We can reinterpret CovRadC and λi,C using the terminology ‖ · ‖C .
5



(1) We have that CovRadC = CovRad‖·‖C
(2) For i = 1 . . . d, λi,C(Λ) is the i-th successive minima of Λ when measured with respect

to the norm ‖ · ‖C .

We shall use the following stronger version of Theorem 1.14 to provide a closed form of
CovRadC for a convex body C. This can be viewed as a direct consequence of Grothendieck’s
classification of vector bundles over P1. We shall provide a self contained proof of this result.

Theorem 1.24. Let g ∈ GLd(K̃) and let Λ = gRd. Then, there exist u ∈ SLd(O) and h ∈
SLd(R) such that

ugh = diag
{

xlogq λ1(Λ), . . . , xlogq λd(Λ)
}

. (1.8)

From Theorem 1.24, we shall conclude the following claim regarding the covering radius with
respect to Od.

Theorem 1.25. CovRadOd(Λ) = q−1λd(Λ).

Corollary 1.26. Let C = hOd be a convex body and let Λ = gRd be a lattice. Then,

CovRadC(Λ) =
1

q
λd
(

h−1Λ
)

=
1

q
λd

(

h−1gRd
)

.

Proof. Notice that (1.6) holds if and only if

h−1gRd + rOd = K̃d. (1.9)

Hence, by Theorem 1.25, CovRadC(Λ) = CovRadOd

(

h−1gRd
)

= 1
q
λd
(

h−1gRd
)

. �

Furthermore, Corollary 1.26 along with Theorem 1.14 enable us to prove a function field
analogue of the main theorem in [Rog59, ORW22].

Theorem 1.27. For any convex body C with Vol(C) = 1, infΛ∈Ld
CovRadC(Λ) = 1

q
.

1.2.3. The Minkowski Function. One application of Theorem 1.25 is proving the function field
analogue of Conjecture 1.4(1). We first define the Minkowski function in function fields. Define

N : K̃d → R+ by N(v) =
∏d

i=1 |vi|. For Λ ∈ Ld, we define the Minkowski function by
µ(Λ) = CovRadN (Λ). Explicitly, we can define µ in the following manner

µ(Λ) = sup
v∈K̃d

inf
u∈Λ

N(v − u).

For d ≥ 2, we define the Minkowski Spectrum by

Sd = {µ(Λ) : Λ ∈ Ld}.

It is easy to see that µ is invariant under the group of diagonal matrices with determinant of
absolute value 1, which we denote by A. Moreover, µ(Rd) = q−d. Furthermore, we can bound
µ by above in every dimension, which is a function field analogue of Conjecture 1.4(1).

Theorem 1.28. For every Λ ∈ Ld, µ(Λ) ≤ q−d.

We note that due to [Ara23, Theorem 1.9], for every d ≥ 2, there are infinitely many lattices
in distinct A-orbits AΛ 6= ARd such that µ(Λ) = q−d. Hence, the function field analogue of
Conjecture 1.4(2) does not hold. Furthermore, a corollary of the main theorem from [Agg69] is
that in dimension 2, µ is a trivial function.

Theorem 1.29. S2 = {q−2}.

Similarly to the real case, a good strategy towards proving Theorem 1.28 is to use the fact
that µ is A-invariant in order to bound µ on a nice set of lattices instead of on all of Ld.

Theorem 1.30. Assume that Y ⊆ Ld satisfies the following properties:

(1) For every Λ ∈ Y , µ(Λ) ≤ q−d.
(2) For every Λ ∈ Ld, AΛ ∩ Y 6= ∅.

6



Then, Theorem 1.28 holds in dimension d.

In this paper, we shall prove that when Y is the set of well rounded lattices, the conditions
of Theorem 1.30 hold. This will lead to a proof of Theorem 1.28.

Definition 1.31. We say that Λ ∈ Ld is well rounded if Λ contains d linearly independent
vectors of norm ℓ(Λ). We denote the set of well rounded lattices by WRd. In particular, due to
Theorem 1.14, λj(Λ) = 1 for every j = 1 . . . d.

Theorem 1.25 implies the following function field analogue of Woods’ conjecture. This is in
stark contrast to the real case, in which Woods’ conjecture does not hold for dimensions d ≥ 30
[RSW17]. This is a consequence of Theorem 1.14.

Remark 1.32. In [SW16], Shapira and Weiss conjectured that Woods’ conjecture holds when
replacing well rounded lattices with stable lattices. In our setting, well rounded and stable
lattices coincide.

Corollary 1.33. For every Λ ∈ WRd, we have CovRadOd(Λ) = q−1.

From here we obtain that every Λ ∈ WRd must satisfy the conclusion of Theorem 1.28.

Theorem 1.34. For every Λ ∈ WRd, we have µ(Λ) ≤ q−d.

Proof. We first notice that rOd = {v ∈ K̃d : ‖v‖ ≤ r}. Hence, CovRadOd = CovRad‖·‖.
Therefore, by Corollary 1.33, for every Λ ∈ WRd,

Λ + {v ∈ K̃d : ‖v‖ ≤ q−1} = K̃d. (1.10)

If ‖v‖ ≤ q−1, then N(v) =
∏d

i=1 |vi| ≤ q−d. Therefore,

Λ + {v ∈ K̃d : N(v) ≤ q−d} = K̃d. (1.11)

Hence, for every Λ ∈ WRd, µ(Λ) ≤ q−d. �

To conclude the proof of Theorem 1.28, we prove that the set of well rounded lattices must
intersect every A orbit. This can be viewed as a function field analogue of the main result of
[Sol19].

Theorem 1.35. For every Λ ∈ Ld, AΛ ∩WRd 6= ∅.

Proof of Theorem 1.28. Let Λ ∈ Ld. Then, by Theorem 1.35, there exists a ∈ A such that
aΛ ∈ WRd. Hence, by Theorem 1.34 and A invariance of µ, µ(Λ) = µ(aΛ) ≤ q−d. �

Due to Theorem 1.9 in [Ara23], Theorem 1.28, Theorem 1.29, and computer calculations, we
propose the following conjecture.

Conjecture 1.36. For every d ≥ 2, Sd = {q−d}.

1.2.4. The Mordell Function. In addition, we shall prove that the function field analogue of the
Mordell function is trivial. Given a box of the form

B = B(0, r1)×, . . . ,×B(0, rd) ⊆ K̃d,

and a lattice Λ ∈ Ld, we say that B is admissible for Λ if B ∩ Λ = {0}. We define the Mordell
function κ : Ld → R+ by

κ(Λ) = sup
B admissible

Vol(B).

We define the Gruber Mordell spectrum by

MGd = {κ(Λ) : Λ ∈ Ld}.

Then, by Theorem 1.13, κ(Λ) ≤ q−d. Like its real analogue κ is A-invariant and lower semicon-
tinuous. Therefore, it is constant almost everywhere and its generic value is its upper bound.
We shall prove that in Ld, κ is a trivial function which a direct consequence of Theorem 1.13
and Theorem 1.35.

7



Theorem 1.37. For every d ≥ 2, MGd =
{

q−d
}

.

We note that Theorem 1.37 can be viewed as an easy corollary of Lemma 6.2 in [BK23] and
Theorem 1.13 but we shall include an alternative proof, since this proof uses dynamical tools
and an improvement to Dirichlet’s Theorem.

1.3. Acknowledgements. I would like to thank Moshe Teutsch for help with writing the Sage
code used in §3.3, Erez Nesharim for useful discussions regarding Theorem 1.29. I would also like
to thank Omri Nisan Solan for discussions leading to the proof of Theorem 1.35. I would also
like to thank Angelot Behajaina for reading a preliminary version of this paper and providing
helpful comments. Most of all, I would like to thank Uri Shapira for introducing me to these
questions and for countless discussions over the years about geometry of numbers, which enabled
this paper to be possible. This work is supported by the ERC grant "Dynamics on Homogeneous
Spaces" (no. 754475). I would also like to thank the anonymous referee for his comments, which
helped make this paper clearer.

2. Bases and Covering Radii with Respect to Convex Bodies

In this section we shall prove the results in §1.2.2. We shall first prove Lemma 1.18 and
deduce Theorem 1.25 and Theorem 1.27 from Theorem 1.24.

Proof of Lemma 1.18. Assume towards a contradiction that there exists some u ∈ Λ which is not
spanned over R by v(1), . . . ,v(d). Since v(1), . . . ,v(d) span K̃d over K̃, then there exist ni ∈ R
and |αi| < 1, which are not all 0, such that

u =

d
∑

i=1

niv
(i) +

d
∑

i=1

αiv
(i). (2.1)

Notice that
∑d

i=1 niv
(i) ∈ Λ and thus

0 6=
d
∑

i=1

αiv
(i) = u−

d
∑

i=1

niv
(i) ∈ Λ.

Moreover, since u /∈ spanR
{

v(1), . . . ,v(d)
}

, then
∑d

i=1 αiv
(i) /∈ spanR

{

v(1), . . . ,v(d)
}

. On the
one hand, by Lemma 1.8,

∥

∥

∥

∥

∥

d
∑

i=1

αiv
(i)

∥

∥

∥

∥

∥

≤ max
i

|αi|‖v
(i)‖ ≤

1

q
λd(Λ). (2.2)

On the other hand, since

∥

∥

∥

∥

∑d
i=1 αiv

(i)

∥

∥

∥

∥

< λd(Λ) and
∑d

i=1 αiv
(i) ∈ Λ, then,

d
∑

i=1

αiv
(i) ∈ spanK̃

{

v(1), . . . ,v(d−1)
}

.

Hence αd = 0. On the other hand,
∥

∥

∥

∥

∥

d−1
∑

i=1

αiv
(i)

∥

∥

∥

∥

∥

≤ max
i=1,...,d−1

|αi| ·
∥

∥v(i)
∥

∥ ≤
1

q
λd−1(Λ) < λd−1(Λ). (2.3)

Hence,
∑d−1

i=1 αiv
(i) ∈ spanK̃

{

v(1), . . . ,v(d−2)
}

and thus αd−1 = 0. We can continue in such a
manner to obtain that αi = 0 for every i = 1, . . . , d, which is a contradiction to the assumption
that (α1, . . . , αd) 6= (0, . . . , 0). �

Proof of Theorem 1.21. Let {v1, . . . ,vd} be an orthogonal basis for Λ satisfying

‖v1‖ ≤ · · · ≤ ‖vd‖.
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Assume towards a contradiction that {v1, . . . ,vd} is not a basis of successive minima for Λ.
Then, there exists a minimal i0 such that ‖vi0‖ > λi0(Λ). Hence, in order for

d
∏

i=1

‖vi‖ = ‖v1 ∧ · · · ∧ vd‖ = det(Λ),

there must exist some i1 > i0 such that ‖vi1‖ < λi1(Λ). On the other hand, by the definition of
the successive minima, span(B(0, ‖vi1‖)∩Λ) ⊆ span(B(0, λi1(Λ)) has dimension at most i1 − 1.
Thus, dim span{v1, . . . ,vi1} ≤ i1 − 1, which contradicts the assumption that v1, . . . ,vi1 are
orthogonal. Therefore, for every i = 1, . . . , d, we have ‖vi‖ = λi(Λ). �

2.1. Proofs Assuming Theorem 1.24. We can obtain Theorem 1.25 as a corollary of Theorem
1.24.

Proof of Theorem 1.25. Since CovRad is invariant under SLd(O), then, by Theorem 1.24, it

suffices to prove Theorem 1.25 for Λ = diag
{

xlogq λ1(Λ), . . . , xlogq λd(Λ)
}

Rd.

Thus for any v ∈ K̃d there exist ni ∈ R and |αi| ≤ q−1 such that

v =
d
∑

i=1

(ni + αi)x
logq λi(Λ)e(i).

Let w =
∑d

i=1 nie
(i) ∈ Λ. Then, by the Lemma 1.8

‖v −w‖ =

∥

∥

∥

∥

d
∑

i=1

xlogq λi(Λ)αie
(i)

∥

∥

∥

∥

≤ max
i=1,...,d

λi(Λ)|αi| ·
∥

∥e(i)
∥

∥ ≤
1

q
λd(Λ). (2.4)

Hence, (2.4) implies that CovRad(Λ) ≤ 1
q
λd(Λ). Let v = xlogq λd(Λ)−1e(d) ∈ Λ. We shall show

that

min
w∈Λ

‖v −w‖ = ‖v‖ =
1

q
λd(Λ). (2.5)

If w ∈ Λ, then, there exists a1, . . . , ad ∈ R such that w =
∑d

i=1 x
logq λi(Λ)aie

(i). Hence

‖v −w‖ = max

{

max
i=1,...,d−1

|ai|λi(Λ),

∣

∣

∣

∣

ad −
1

x

∣

∣

∣

∣

λd(Λ)

}

. (2.6)

Notice that (2.6) is minimal when a1 = · · · = ad = 0, and then, ‖v −w‖ = 1
q
λd(Λ). Hence,

CovRadOd(Λ) ≥ ‖v −w‖ ≥ ‖v‖ =
1

q
λd(Λ), (2.7)

so that CovRadOd(Λ) = 1
q
λd(Λ). �

We shall now obtain Corollary 1.33 as a consequence of Theorem 1.14 and Theorem 1.25.

Proof of Corollary 1.33. Let Λ ∈ WRd. Then, by Theorem 1.14, λd(Λ) = 1 and thus, Theorem
1.25 implies that CovRadOd(Λ) = 1

q
. �

Now Corollary 1.26 and Theorem 1.14 imply Theorem 1.27.

Proof of Theorem 1.27. Let C = hOd be with Vol(C) = 1. Then, |det(h)| = 1. Thus, Corollary

1.26 implies that for any g ∈ SLd(K̃), CovRadC(gRd) = 1
q
λd(h

−1gRd). Since h−1gRd is uni-

modular, then, by Theorem 1.14, λd(h
−1gRd) ≥ 1. Furthermore, by taking g = h, we obtain

that λd(h
−1gRd) = 1, so that minΛ∈Ld

CovRadC(Λ) =
1
q
. �
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2.2. Proof of Theorem 1.24. Theorem 1.24 follows from Grothendieck’s classification of vector
bundles. We shall provide a self contained proof of Theorem 1.24 which does not use algebraic
geometry.

Proof of Theorem 1.24. Let Λ = gRd ⊆ K̃d. By Lemma 1.18, there exists a basis of successive

minima for Λ, which we denote by v(1), . . . ,v(d). By Theorem 1.14, det(Λ) =
∏d

i=1

∥

∥v(i)
∥

∥.

Let g′ be the matrix whose columns are v(1), . . . ,v(d). Then, g′Rd = gRd, and therefore,

h = g−1g′ ∈ SLd(R). Let u′ = g′ diag
{

x− logq λ1(Λ), . . . , x− logq λd(Λ)
}

be the matrix with columns

x− logq λ1(Λ)v(1), . . . , x− logq λd(Λ)v(d). Then, |det(u′)| = 1 and u′ ∈ Md×d(O). Hence, u′ ∈
SLd(O). Let u = (u′)−1 ∈ SLd(O). Thus,

ugh = diag
{

xlogq(λ1(Λ), . . . , xlogq λd(Λ)
}

h−1g−1gh = diag
{

xlogq λ1(Λ), . . . , xlogq λd(Λ)
}

. (2.8)

As a consequence,

uΛ = diag

{

xlogq λ1(Λ), . . . , xlogq λd(Λ)

}

Rd.

�

3. Well Rounded Lattices and the Minkowski Function

3.1. Proof of Theorem 1.35. To prove Theorem 1.35, we shall first show that the well rounded
lattices must have a very particular form.

Lemma 3.1. WRd = SLd(O)Rd.

Proof. Let Λ = gRd ∈ WR. By Theorem 1.14, λ1(Λ) = 1. By Lemma 1.18, there exists a
basis for Λ over R of the form

{

v(1), . . . ,v(d)
}

such that
∥

∥v(i)
∥

∥ = 1 for every i = 1, . . . , d. Let

g ∈ SLd(K̃) be defined by v(i) = ge(i). Then, Λ = gRd. Since |(ge(i))j | ≤ 1 for every i, j, then

g must have entries in O and thus, g ∈ SLd(O) so that Λ ∈ SLd(O)Rd.
On the other hand, if g ∈ SLd(O), then, g is an isometry. Hence, for every v ∈ Rd, we

have ‖gv‖ = ‖v‖ ≥ 1. On the other hand, for every i = 1, . . . , d, ‖ge(i)‖ = 1 and therefore,

ge(1), . . . , ge(d) form a set of successive minima vectors for gRd. Hence, by Lemma 1.18, gRd is
spanned over R by ge(1), . . . , ge(d), so that gRd is well rounded. �

In order to prove Theorem 1.35, we shall use the methods of [Sol19]. We shall first introduce
some terminology which will enable us to reinterpret Theorem 1.35 in the language of flags.

3.1.1. Wedge Products and Flags. We shall need some terminology pertaining to wedge products.
Let e(1), . . . , e(d) be the standard basis of K̃d.

Definition 3.2. For 1 ≤ k ≤ d, define
∧k K̃d be the k-th exterior product of K̃d. We define the

standard basis for
∧k K̃d by eJ = e(j1) ∧ . . . e(jk) where J = {j1 < · · · < jk} ⊆ {1, . . . , d}. Given

v ∈
∧k K̃d, we can write

v =
∑

J⊆[d]:|J |=k

φJ(v)eJ .

where φJ(v) is the coefficient of eJ in the above decomposition. We define the norm on
∧k K̃d

by

‖v‖k−vec := max
|J |=k

|φJ (v)|.

and we define the support of v by

supp(v) = {J : φJ(v) 6= 0}.

We define
∧

K̃d =
⋃d

k=0

∧k K̃d. Note that this union is disjoint, and it is often called the
Grassmanian.
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Definition 3.3. A k dimensional measured space is a vector space M ⊆ K̃d equipped with a non-

zero wedge product det(M) ∈
∧kM . We often denote a measured space and its determninant

by (M,det(M)). We define ‖M‖ms = ‖det(M)‖k−vec.

Let ∆ ⊆ K̃d be a discrete subgroup defined by ∆ = spanR
{

v(1), . . . ,v(k)
}

. Then, we define
the measured space corresponding to ∆ by

M(∆) = spanK̃(∆).

We define the determinant of M(∆) as

det(M(∆)) = v(1) ∧ · · · ∧ v(k).

If ∆ = {0}, then, we define det ({0}) = 1, and M ({0}) = ({0}, 1). Notice that the determinant
is defined up to SLd(O) and ‖det(M(∆))‖ is well defined.

Definition 3.4. A measured flag of length k is a sequence of measured spaces

F =

{

0 = V (0) < V (1) < · · · < V (k) = K̃d

}

.

We denote the space of measured flags by Fd and we define
∥

∥F‖flag = max
0<j<k

‖V (j)
∥

∥

ms
.

We define the trivial flag as
{

({0}, 1) <
(

K̃d, e(1) ∧ · · · ∧ e(d)
)}

.

Remark 3.5. The norms ‖ · ‖k−vec, ‖ · ‖ms and ‖ · ‖flag all depend on the norm chosen on K̃d.
To prove Theorem 1.35, we shall vary the norms by acting on them with A instead of acting on
lattices with A. In general, when we use some norm which is not ‖ · ‖∞, we shall denote the
norm of a measured space by ‖M‖‖·‖,ms, the successive minima with respect to the corresponding
norm by λj,‖·‖, and the flag norm by ‖F‖‖·‖,flag. When ‖ · ‖ = ‖ · ‖∞, we shall remove the norm
subscript completely and write ‖M‖ms, λ1 . . . λd, and ‖F‖flag.

We define

Rd
0 =

{

v =

d
∑

i=1

vie
(i) ∈ Rd :

d
∑

i=1

vi = 0

}

,

and we define the norm on Rd
0 by ‖a‖∞ = maxi |ai|. We will be interested in functions F : Rd

0 →
Fd with certain properties. This will be similar to the flag valued functions appearing in [Sol19,
Section 2].

Definition 3.6. A flag valued function F : Rd
0 → Fd is bounded if

sup
a∈Rd

0

‖F (a)‖flag <∞.

3.1.2. The Minkowski Flag. Given a norm ‖ ·‖ on K̃d, we define the ball of radius r with respect
to ‖ · ‖ by

B‖·‖(0, r) = {v ∈ K̃d : ‖v‖ ≤ r}.

We note that the norm ‖ · ‖ should be non-trivial. We define the Minkowski flag of a lattice
Λ ∈ Ld with respect to the norm ‖ · ‖ as

fMink,‖·‖(Λ) =
{

M
(

span(Λ ∩B‖·‖(0, r)) ∩ Λ
)

: r > 0
}

.

Then Λ ∈ WRd if and only if fMink,‖·‖∞(Λ) is the trivial flag. For simplicity, we denote

fMink(Λ) = fMink,‖·‖∞(Λ). For a ∈ Rd
0 we define a norm on K̃d by

‖v‖a = qmaxi=1,...,d(ai+log |vi|).
11



Notice that when a ∈ Zd
0, then this coincides with ‖xav‖, where xa = diag(xa1 , . . . , xad) ∈ A.

Define the function F : Rd
0 → Fd by

F (a) = fMink,‖·‖a(Λ).

Then, AΛ ∩ WRd 6= ∅ if and only if there exists a ∈ Zd
0 such that F (a) = fMink,‖·‖a(Λ) is

trivial. One of our main theorems of this section is the following function field analogue of
[Sol19, Theorem 2.3] for the special case of the Minkowski flag.

Theorem 3.7. For every Λ ∈ Ld, there exists a ∈ Rd
0 such that F (a) is trivial.

Thus, in view of Theorem 3.7 to prove Theorem 1.35, it suffices to show that we can choose
a ∈ Zd

0 such that F (a) is trivial.

Theorem 3.8. There exists a ∈ Zd
0 such that F (a) is trivial. As a consequence, AΛ∩WRd 6= ∅.

To prove Theorem 3.8, we shall prove the following proposition, which establishes a connection
between the norms ‖ · ‖a and convex bodies.

Proposition 3.9. Let a ∈ Rd
0. If F (a) is trivial, then a1, . . . ,ad are equal mod 1, where

a = (a1 . . . ad). This implies that there exists a convex body C and a constant c > 0, such that
‖ · ‖C = c‖ · ‖a.

Proof. Let a ∈ Rd
0 satisfy that F (a) is trivial, that is, Λ satisfies that

λ1,‖·‖a(Λ) = λ2,‖·‖a(Λ) = · · · = λd,‖·‖a(Λ).

Assume on the contrary that a1, . . . ,ad are not all equal mod 1. Denote r = λ1,‖·‖a(Λ).
Since F (a) is trivial, then we deduce that B‖·‖a(0, r) ∩ Λ contains d linear independent vec-

tors v(1) . . . v(d), while for every r′ < r we have

B‖·‖a(0, r
′) ∩ Λ = {0}. (3.1)

The image of ‖ · ‖a : K̃d → R is

Im(‖ · ‖a) = {0} ∪ {qs : s ∈ Z+ ai, i = 1 . . . d}.

Suppose that r = qai+n for some n ∈ Z and some 1 ≤ i ≤ d. Let r′ = qaj+m < r be the maximal
value in Im(‖ · ‖a) that is smaller then r. Since a1, . . . ,ad are not all equal mod 1, then by
choosing m properly, we can ensure that ai + n − (aj + m) > −1 whenever aj 6= ai mod 1.

Hence, r′ > r
q
. Since there exists some v ∈ K̃d such that ‖v‖a = r′, we deduce that

B‖·‖a

(

0,
r

q

)

( B‖·‖a(0, r
′) ( B‖·‖a(0, r).

Let
∑d

i=1 αiv
(i) ∈ B‖·‖a(0, r). By writing αi = [αi] + 〈αi〉, where |〈αi〉| ≤ q−1 and [αi] ≥ 1, we

obtain that
∑d

i=1〈αi〉v
(i) ∈ B‖·‖a

(

0, r
q

)

. Hence,

B‖·‖a(0, r)/B‖·‖a

(

0,
r

q

)

∼= Rd,

by identifying a coset
∑d

i=1 αiv
(i) +B‖·‖a

(

0, r
q

)

with the vector ([α1], . . . , [αd]). Thus,

dimR
(

B‖·‖a(0, r)/B‖·‖a(0, r
′)
)

< d.

Hence the images of v(1) . . .v(d) in

B‖·‖a(0, r)/B‖·‖a(0, r
′)

are linearly dependent. Thus, there exist b1, . . . , bn ∈ R such that

b1v
(1) + b2v

(2) + · · ·+ bdv
(2) ∈ B‖·‖a(0, r

′).
12



Then, b1v
(1)+ b2v

(2)+ · · ·+ bdv
(d) ∈ B‖·‖a(0, r

′)∩Λ. Since v(1) . . .v(d) are linearly independent,

then b1v
(1)+· · ·+bdv

(d) 6= 0. This contradicts (3.1), which implies that a1, . . . ,an are equal mod
1. Let c = qa1 mod 1 and let C = B‖·‖a(0, c). Then Im(‖ · ‖a) = {0}∪ cqZ and ‖ · ‖a = c‖ · ‖C . �

We shall now use Theorem 3.7 and Proposition 3.9 to prove Theorem 3.8.

Proof of Theorem 3.8. Assume that Λ /∈ WRd. Otherwise, there is nothing to prove. Let

a = a(1) + a(2) satisfy the conclusion of Theorem 3.7, where a(1) ∈ Zd
0 and maxi a

(2)
i < 1. First

assume that a(1) = 0. Let v(1) . . .v(d) be a set of successive minima vectors for Λ with respect to
‖ · ‖a = ‖ · ‖

a(2) . Hence, by Proposition 3.9 there exist c > 0 and a convex body C = B‖·‖
a
(2)

(0, c)

such that c‖ · ‖C = ‖ · ‖
a(2) . Then, Vol

(

B‖·‖(2)a

(0, c)
)

= Vol(C) = cd and for every i = 1 . . . d,

λi,‖·‖
a
(2)
(Λ) = cλi,C(Λ). Thus by Theorem 1.15,

1 = cd
d
∏

i=1

λi,C(Λ) =
d
∏

i=1

λi,‖·‖
a
(2)
(Λ). (3.2)

Thus, if F (a(2)) were trivial, then, λ1,‖·‖
a
(2)

(Λ) = 1. On the other hand, since Λ /∈ WRd, then

there exists v ∈ Λ such that ‖v‖ ≤ q−1. Hence, for every i = 1 . . . d, a
(2)
i + log |vi| < 1− 1 = 0,

and therefore,
∥

∥v
∥

∥

a(2) = qmaxi=1...d(ai+log |vi|) < 1.

Thus, F (a(2)) cannot be trivial. Therefore, a(1) 6= 0.

On the other hand, if F
(

a(1)
)

is not trivial, then by the above claim, by replacing F with the
function

F̃ (a′) = FMink,‖·‖
a
′

(

xa
(1)
Λ
)

= FMink,‖·‖
a
′+a

(1)
(Λ),

we obtain that F̃
(

a(2)
)

= F
(

a(1) + a(2)
)

= F (a) is also not trivial which is a contradiction

to the assumption that F (a) is trivial. Hence F
(

a(1)
)

must be trivial. As a consequence,

xa
(1)
Λ ∈ WRd, and hence, AΛ ∩WRd 6= ∅. �

This concludes the proof of Theorem 1.35. Thus, it suffices to prove Theorem 3.7. We shall
now show that the Minkowski flag satisfies certain properties. Firstly, we will need an analogue
of [Sol19, Lemma 2.4]. This is a reinterpretation of the upper bound in Theorem 1.14 in the
language of flags.

Lemma 3.10. For any Λ ∈ Ld,
∥

∥fMink(Λ)
∥

∥

flag
≤ 1.

Proof. By Theorem 1.14, for every Λ ∈ Ld,
∏d

i=1 λi(Λ) = 1. Hence, for every k = 1 . . . d,
∏k

i=1 λi(Λ) ≤ 1. Let v(1) . . .v(d) ∈ Λ be a basis of successive minima for Λ. Let V =
M (span(Λ ∩B(0, r)) ∩ Λ) be of dimension k. We shall show that ‖V ‖ms ≤ 1. Then, by
definition of the successive minima λk(Λ) ≤ r < λk+1(Λ). Hence, V = spanK̃

{

v(1) . . .v(k)}

and thus, det(V ) = v(1) ∧ · · · ∧ v(k). Notice that if
∥

∥u(j)
∥

∥ ≤ 1 for every j = 1 . . . d, then
∥

∥u(1) ∧ · · · ∧ u(k)
∥

∥ ≤ 1. Hence,

∥

∥v(1) ∧ · · · ∧ v(k)
∥

∥ ≤ λ1(Λ) . . . λk(Λ)

∥

∥

∥

∥

∥

v(1)

λ1(Λ)
∧ · · · ∧

v(k)

λk(Λ)

∥

∥

∥

∥

∥

≤ 1. (3.3)

Hence, ‖V ‖ms =
∥

∥v(1) ∧ · · · ∧ v(k)‖ ≤ 1, and therefore,
∥

∥fMink(Λ)
∥

∥

flag
≤ 1. �
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3.1.3. Proof of Theorem 3.7. In order to prove Theorem 3.7, we shall use [Sol19, Theorem 1.4].
We shall first define the invariance dimension of a convex open set U ⊆ Rd.

Definition 3.11. It is well known that Rd acts on the set of convex open sets in Rd by trans-
lation. The invariance dimension of a convex open set U ⊆ Rd is the dimension of its stabilizer
under this action. We denote

invdim(U) = dim stabRd(U),

and we define invdim(∅) = −∞. Given a set U ⊆ Rd, we denote its convex hull by conv(U).

Theorem 3.12. [Sol19, Theorem 1.4] Let U be an open cover of Rd. Assume that

(1) The cover {conv(U) : U ∈ U} is locally finite, that is every compact set intersects at
most finitely many elements of the cover {conv(U) : U ∈ U}.

(2) For every k ≤ d and for every U1 . . . Uk ∈ U ,

invdimconv(U1 ∩ · · · ∩ Uk) ≤ d− k.

Then, there are d+ 1 sets in U with non-trivial intersection.

We shall now prove Theorem 3.7. Our proof is absolutely analogous to the proof of Theorem
2.3 in [Sol19], but we shall include it to portray the differences and similarities between the
real and function field settings. Unlike the real setting, in which Solan used the action of the
diagonal group on the Grassmanian, here we look at the A action on the norm on Rd

0.

Proof of Theorem 3.7. Assume to the contrary that F (a) is nowhere trivial, that is for every

a ∈ Rd
0, there exists some v ∈ F (a) such that 0 < v < K̃d. For every v ∈

∧

K̃d with
1 ≤ dim(v) ≤ d− 1, define

Uv = {a ∈ Rd
0 : v ∈ F (a)}.

We first note that due to the definition of F , Uv is non-empty if and only if v ∈
∧

Λ. Since
F (a) is nowhere trivial, then U = {Uv}v∈

∧
K̃d,1≤dim(v)≤d−1 = {Uv}v∈

∧
Λ,1≤dim(v)≤d−1 is a cover

of Rd
0
∼= Rd−1, and we shall now show that the cover U satisfies the conditions of Theorem 3.12.

We shall first show that U is an open cover. Firstly, notice that if a ∈ Uv, then, there exists
some r > 0 such that v =M

(

span(Λ ∩B‖·‖a(0, q
r)
)

∩ Λ). By definition

B‖·‖a(0, q
r) =

{

u ∈ K̃d : max
i
qai+log |ui| < qr

}

.

Since B‖·‖a(0, q
r) ∩ Λ is a finite set, then by varying r ∈ R while preserving B‖·‖a(0, q

r) ∩ Λ, we
can find some r1 < r2 such that

B‖·‖a(0, q
r1) ∩ Λ = B‖·‖a(0, q

r2) ∩ Λ,

and
v =M

(

span
(

B‖·‖a(0, q
r1
)

∩ Λ) ∩ Λ
)

=M
(

span(B‖·‖a(0, q
r2) ∩ Λ) ∩ Λ

)

.

Hence, if ‖a′ − a‖ < r2 − r1, then,

B‖·‖
a
′ (0, q

r1) =
{

u ∈ K̃d : max
i
qa

′
i+log |ui| < qr1

}

⊆
{

u ∈ K̃d : max
i
qai+log |ui| < qr2

}

= B‖·‖a(0, q
r2).

(3.4)

Similarly, by replacing the roles of a and a′,

B‖·‖a(0, q
r1) =

{

u ∈ K̃d : max
i
qai+log |ui| < qr1

}

⊆
{

u ∈ K̃d : max
i
qa

′
i+log |ui| < qr2

}

= B‖·‖
a
′ (0, q

r2).
(3.5)

Hence,
B‖·‖

a
′ (0, q

r1) ∩ Λ ⊆ B‖·‖a(0, q
r2) ∩ Λ,

and
B‖·‖a(0, q

r1) ∩ Λ ⊆ B‖·‖
a
′ (0, q

r2) ∩ Λ.
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Since B‖·‖
a
′ (0, q

r) ∩ Λ is finite then there exists some r1 ≤ r′ ≤ r2 such that

B‖·‖
a
′ (0, q

r′) ∩ Λ = B‖·‖a(0, q
r1) ∩ Λ.

Thus,

v =M
(

span
(

B‖·‖a(0, q
r1 ∩ Λ

)

∩ Λ
)

=M
(

span
(

B‖·‖
a
′ (0, q

r′ ∩ Λ
)

∩ Λ
)

.

Thus, a′ ∈ Uv, so that B(a, r2 − r1) ⊆ Uv. Thus, U is an open cover.
We shall now prove that U satisfies condition (1). Let

U ′
v
=
{

a ∈ Rd
0 : ‖v‖‖·‖a,ms ≤ 1

}

,

Since F is bounded by 1, then, Uv ⊆ U ′
v

for every v such that Uv 6= ∅. Let U ′ = {U ′
v
: v ∈

∧

Λ}.
We first prove that U ′ satisfies condition (1), which will imply that U satisfies condition (1).
Since Λ is discrete, then

∧

Λ is also discrete. Thus,
∧

Λ is locally finite, that is its intersection

with every compact set in
∧

K̃d is finite. Notice that if X ⊆ Rd
0 is compact, then, there exists

some r > 0, such that X ⊆ {a ∈ Rd
0 : maxi=1,...,d ai ≤ r}. Thus, for every a ∈ X and for every

v ∈
∧

K̃d, we have

‖v‖‖·‖a,ms = qmaxi=1,...,d(ai+logq |vi|) ≥ q−(d−1)r‖v‖ms. (3.6)

Thus, if ‖v‖‖·‖a,ms ≤ 1, then, ‖v‖ms ≤ q(d−1)r. Since
∧

Λ is discrete, then, there are finitely

many v ∈
∧

Λ satisfying ‖v‖ ≤ q(d−1)r. Hence, X intersects finitely many sets in U ′, so that U ′

is finite.
We shall now show that U satisfies condition (2). Let U

v(1) . . . Uv(l) ∈ U be distinct elements
with

U
v(1) ∩ · · · ∩ U

v(l) = V 6= ∅.

Then, for every a ∈ V , we have v(1), . . . ,v(l) ∈ F (a). Hence, v(1), . . . ,v(l) form a flag. Assume
without loss of generality that

0 < v(1) < · · · < v(l) < K̃d.

By [Sol19, Lemma 2.5], there exists a permutation σ : [d] → [d], such that σ
([

dimv(j)
])

∈

supp
(

v(j)
)

for every j = 1 . . . l, where [m] = {1 . . . m}. Assume without loss of generality that

σ = Id. Denote cj :=
∣

∣

∣ϕ[dim(v(j))]
(

v(j)
)

∣

∣

∣. Then, for any a ∈ V ,

1 > ‖F (a)‖flag ≥ max
j=1,...l

∥

∥v(j)
∥

∥

‖·‖a,ms
≥ max

j=1...l
cjq

∑

i∈[dim(v(j))] ai . (3.7)

Hence, V is contained in the convex set

P =

l
⋂

j=1

ψ−1
dim(v(j))

(−∞,− logq cj), (3.8)

where ψm : Rd
0 → R is defined by ψm(a) =

∑m
i=1 ai. Hence, conv(V ) ⊆ P . Since ψdim(v(j)) are

independent for j = 1 . . . l, then, invdim(P ) = d − 1− l. Hence, invdim(V ) ≤ d − 1 − l, which
proves that condition (2) holds.

Thus, by Theorem 3.12, there exist d sets U
v(1) . . . Uv(d) with nontrivial intersection. Thus,

there exists a ∈ U
v(1) ∩ · · · ∩ U

v(d) . Therefore, v(1), . . . ,v(d) ∈ F (a). Hence, they form a flag of
the form

{0} < v(1) < v(2) < · · · < v(d) < K̃d,

and this is impossible. Hence, there exists some a ∈ Rd
0 such that F (a) is trivial. �
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3.2. Proof of Theorem 1.29. We shall now deduce Theorem 1.29 from Theorem 1.28 and the
following theorem by Aggarwal (see [Agg69]).

Theorem 3.13. For any θ ∈ K̃, µ

((

1 θ
0 1

)

R2

)

= q−2.

To conclude the proof of Theorem 1.29, We shall show that almost every lattice of a certain
form has a dense A orbit. This is a well known theorem which we shall prove for completeness.
For the real analogue see [Sha11, Lemma 4.8].

Lemma 3.14. Let d ≥ 2, and let Id−1 denote the identity matrix of order d− 1× d− 1. Then

for almost each θ ∈ K̃d−1, the lattice

Λ =

(

Id−1 θ

0 1

)

Rd (3.9)

has a dense A orbit.

Proof of Theorem 1.29. By Lemma 3.14, for almost every θ ∈ K̃, Λθ has a dense A orbit. Hence,
by upper semicontinuity of µ, ergodicity of the A action [Mau54], and Theorem 3.13, for almost

every θ ∈ K̃, q−2 = µ(Λθ) = minS2. On the other hand, by Theorem 1.28, for every Λ ∈ L2,
µ(Λ) ≤ q−2. Hence S2 = {q−2}. �

Proof of Lemma 3.14. For θ ∈ K̃d−1 let uθ =

(

1 θ

0 1

)

and let Λθ = uθR
d. For k ≥ 0, let

ak = diag
{

xk, . . . xk, x−nk
}

It is well known that

U+(ak) =
{

g ∈ G : lim
k→∞

a−kgak = I
}

=
{

uθ : θ ∈ K̃d−1
}

.

Denote
U−(ak) =

{

g ∈ G : lim
k→∞

akga−k = I
}

,

U0(ak) = {g ∈ G : ∀k ∈ Z, akg = gak}.

Then, for each Λ ∈ Ld, there exist some neighborhoods of the corresponding identity elements,
W+

Λ ⊆ U+(ak), W
−
Λ ⊆ U−(ak) and W 0

Λ ⊆ U0(ak) such that the map W+
Λ ×W−

Λ ×W 0
Λ 7→ Ld

given by (c, g, uθ) 7→ cguθΛ is a homeomorphism with image WΛ ⊆ Ld. Notice that if Λ′ =
cguθΛ ∈ WΛ, then, as k → ∞, Thus, {akΛ

′}k≥0 is dense in Ld if and only if {akuθΛ}k≥0 is
dense in Ld. Since the one parameter group {ak} acts ergodically on Ld, then, for almost every
Λ′ ∈ WΛ, {akΛ

′}k≥0 is dense in Ld. Therefore, for almost every θ such that uθ ∈ U+(ak),
{akuθΛ}k≥0 is dense in Ld.

We now view U+(ak) as a subset of K̃d−1 by identifying uθ with θ. To finish the claim, we

take a countable union θk ∈ K̃d−1 such that K̃d−1 = ∪k∈N
(

θk +W+
Λθk

)

. Then,

W+
Λθk

Λθk
= {Λη : η ∈ θk +W+

θk
}.

Thus, for almost every θ ∈ K̃d−1, AΛθ is dense in Ld. �

3.3. Computations of µ for Several Lattices. Since we were not able to find lattices Λ ∈ Ld

with µ(Λ) < q−d for d ≥ 3, we used computer experiments to attempt to find such lattices. We
focused on lattices of the form

Λθ,φ =





1 0 θ
0 1 φ
0 0 1



R3,

where θ, φ ∈ K, since µ(Λθ,φ) can be computed in finitely many steps. We note that for such a
lattice

µ(Λθ,φ) = sup
α,β,γ∈K̃

min
{

|αβγ|, inf
06=N∈R

|N | · |〈Nθ − α〉| · |〈Nφ− β〉|
}

, (3.10)
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where
〈

∑N
n=−∞ anx

n
〉

=
∑−1

n=−∞ anx
n. Firstly, if indeed µ(Λθ,φ) ≤ q−4, then, for every

|α| = |β| = |γ| = 1
q
,

inf
06=N∈R

|N | · |〈Nθ − α〉| · |〈Nφ− β〉| ≤ q−4 < |αβγ| = q−3. (3.11)

Hence, it suffices to consider grids Λθ,φ +





α
β
γ



 where |α| = |β| = |γ| = 1
q
.

Definition 3.15. Let α ∈ K. We say that denom(α) = h if there exist αj ∈ Fq such that

〈α〉 =
∑h

j=1 αjx
−j and αh 6= 0. Notice that if denom(α) ≤ h, then |α| ≥ q−h.

Moreover, if θ, φ ∈ K satisfy denom(θ) ≤ h and denom(φ) ≤ h, then to compute (3.11), it
suffices to consider N ∈ R with |N | ≤ qh−1. Notice that under these conditions, denom(〈Nθ〉) ≤
h and denom(〈Nφ〉) ≤ h. Hence, it suffices to consider α, β with denom(α),denom(β) ≤ h.

We shall now reinterpret (3.11) in a different form. Assume that θ, φ, α, β all have denominator
which is at most h and that |N | = qm < qh. Then,

|N | · |〈Nθ − α〉| · |〈Nφ− β〉| ≤ q−4,

if and only if

|〈Nθ − α〉| · |〈Nφ− β〉| ≤ q−(m+4).

This happens if and only if there exists some 1 ≤ l ≤ m + 4 such that both of the following
conditions hold:

{

|〈Nθ − α〉| ≤ q−l

|〈Nφ− β〉| ≤ q−(m−l+4)
. (3.12)

Let N =
∑m

j=0Njx
j, θ =

∑h
j=1 θjx

−j, φ =
∑h

j=1 φjx
−j , α =

∑h
j=1 αjx

−j , and β =
∑h

j=1 βjx
−j .

Then, if we write out 〈Nθ〉 =
∑h

i=1(Nθ)ix
−i, then,

(Nθ)i =

m
∑

j=0

Njθi+j. (3.13)

Hence, (3.12) holds if and only if the following conditions hold:
{

∑m
i′=0Ni′θi+i′ = αi ∀i = 1, . . . , l

∑m
j′=0Nj′φj+j′ = βj ∀j = 1, . . . ,m+ 3− l

. (3.14)

Thus, we can reinterpret (3.12) in the following manner


























θ1 θ2 . . . θm+1

θ2 θ3 . . . θm+2
... . . .

. . . . . .
θl θl+1 . . . θm+l

φ1 φ2 . . . φm+1

φ2 φ3 . . . φm+2
... . . .

. . . . . .
φm+3−l φm+4−l . . . φ2m+4−l





































N0

N1
...
Nm











=



















α1
...
αl

β1
...

βm+3−l



















. (3.15)

Notice that the system of equations (3.15) is a system of equations over Fq and due to the
bound on the denominators of θ, φ, α, β, there are finitely many such systems of equations. This
enables us to use a computer program to check if µ(Λθ,φ) ≤ q−4 for rational θ, φ. In particular,
our computations show that in contrast to the real case, in which it is believed that the upper
bound of µ is the unique value to AZd, there are many lattices Λ /∈ AR3 satisfying µ(Λ) = q−3.

Some examples that we found for q = 3 and denom(θ),denom(φ) ≤ 10 include the following:

µ
(

Λ 1
x
+ 1

x2
+ 1

x4
,
∑10

i=1
1
xi

)

= 3−3,
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µ
(

Λ 2
x3

+ 2
x6

+ 1
x7

+ 2
x8

+ 1
x9

+ 2
x10

, 1
x
+ 1

x2
+ 1

x3
+ 1

x5
+ 2

x6
+ 1

x9
+ 2

x10

)

= 3−3.

Some examples that we found for q = 2 and denom(θ),denom(φ) ≤ 10 include the following:

µ
(

Λ∑10
i=2

1
xi

− 1
x7

)

= µ
(

Λ 1
x
+ 1

x4
+ 1

x5

)

= µ
(

Λ 1
x9

, 1
x
+ 1

x3
+ 1

x7
+ 1

x8
+ 1

x10

)

= 2−3.

These computations are evidence that S3 may be trivial, and we hope to find mathematical tools
to prove or disprove Conjecture 1.36.

4. The Mordell Constant

In this section, we shall prove Theorem 1.37. Due to Theorem 1.35, Lemma 3.1, and A
invariance of κ, for every Λ ∈ Ld, the box B = B(0, q−1)d is admissible for every Λ. Thus,
κ(Λ) ≥ q−d. Hence it suffices to prove that for generic Λ, κ(Λ) ≤ q−d. This follows from
Theorem 1.13, but we shall provide an alternative proof that κ(Λ) ≤ q−d by using dynamics and
improving Dirichlet’s theorem.

We shall use an improved version of Dirichlet’s theorem to show that κ(Λ) ≤ q−d for every
Λ ∈ Ld. Notice that A invariance and lower semi-continuity of κ imply that if Λ has a dense A
orbit, then, κ(Λ) must obtain the generic value which is also maxMGd.

For d ≥ 2, denote n = d− 1. For θ = (θ1, . . . , θn) ∈ (x−1O)n, let Λθ = gθR
d where

gθ =











1 θ1 . . . θn
0 1 . . . 0
... . . .

. . . . . .
0 . . . . . . 1











.

Then, due to a slight variation of Lemma 3.14, for almost every θ ∈ (x−1O)n, Λθ has a dense A
orbit, and hence, it suffices to calculate κ(Λθ) for such θ.

We shall follow the proof of [GG17, Theorem 2.2] to obtain a better bound on Dirichlet’s
Theorem. This proof is identical to the proof of [GG17, Theorem 2.2], and we include it to
show how the tighter bound on Dirichlet’s Theorem is obtained. This, along with dynamical
considerations, will enable us to calculate κ(Λθ).

Theorem 4.1 (Improved Dirichlet’s Theorem). Let θ1, . . . , θn ∈ (x−1O)n and let t1, . . . , tn ≥ 0
be integers. Then, there exist a, b1, . . . bn ∈ R, where (b1, . . . bn) 6= (0, . . . , 0), such that

|b1θ1 + · · ·+ bnθn − a| ≤ q−(
∑n

i=1 ti+n), (4.1)

|bi| ≤ qti . (4.2)

Proof. We shall use the observations in [GG17]. Let α =
∑∞

i=1 αix
−i, β =

∑∞
i=1 βix

−i, and

a =
∑k

i=0 aix
i, b =

∑l
j=0 bjx

j ∈ R. Then, the coefficient of x−s in aα+ bβ is

k
∑

i=0

aiαs+i +

l
∑

j=0

bjβs+j.

Hence, |〈aα+ bβ〉| ≤ q−(m+1) if and only if for each s = 1, . . . ,m,

k
∑

i=0

aiαs+i +

l
∑

j=0

bjβs+j = 0.

Denote

a =











a0
a1
...
ak











∈ Rn+1,b =











b0
b1
...
bl











.
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Then, |〈aα+bβ〉| < q−m if and only if

(

a

b

)

is a solution to the linear equation
(

A B
)

(

x

y

)

= 0,

where

A =











α1 . . . . . . αk+1

α2 . . . . . . αk+2
... . . .

. . . . . .
αm . . . . . . αm+k











, B =











β1 . . . . . . βl+1

β2
. . . . . . βl+2

... . . .
. . . . . .

βm . . . . . . βm+l











.

Returning to the notation of the theorem, take |bi| ≤ qti so that bi =
∑ti

j=0 bi,jx
j corresponds to

a vector bi =











bi,0
bi,1
...
bi,ti











∈ Fq. Write θi =
∑∞

j=1 θi,jx
−j. Then, the coefficient of x−s in

∑n
i=1 biθi

is equal to
n
∑

i=1

ti
∑

j=0

bi,jθi,s+j.

Denote Θi,s = (θi,s, . . . , θi,s+ti). Then, |〈b1θ1+· · ·+bnθn〉| ≤ q−(m+1) where |bi| ≤ qti corresponds
to the following system of equations

Θb =











Θ1,1 . . . . . . Θn,1

Θ1,2 . . . . . . Θn,2
... . . .

. . . . . .
Θ1,m . . . . . . Θn,m

















b1

...
bn






= 0. (4.3)

Notice that every Θi,s has ti + 1 columns and hence, Θ has
∑n

i=1 ti + n columns. Hence, if
m ≤

∑n
i=1 ti + n − 1, then, Θb = 0 has a nontrivial solution. In particular, there exists a

nontrivial solution for m =
∑n

i=1 ti + n− 1. Hence, there exist bi ∈ R which are not all 0 such
that

|〈b1θ1 + · · ·+ bnθn〉| ≤ q−(
∑n

i=1 ti+n), (4.4)

∀i = 1, . . . n, |bi| ≤ qti . (4.5)

�

We shall now show that for generic θ, κ(Λθ) = q−d by showing that the box

B0 = B(0, q−n)×B(0, 1) × · · · ×B(0, 1)

is not admissible for any unimodular lattice.

Theorem 4.2. For generic θ, κ(Λθ) ≤ q−d.

Proof of Theorem 1.37. By Theorem 4.2 and lower semicontinuity of κ, maxΛ∈Ld
κ(Λ) ≤ q−d.

On the other hand, due to Theorem 1.35 and Lemma 3.1, for every Λ ∈ Ld, there exists
some a ∈ A, such that the box B(0, q−1)d is admissible for aΛ. Hence, for every Λ ∈ Ld,
κ(Λ) ≥ Vol(B(0, q−1)d) = q−d, so that κ(Λθ) = q−d. Since Λθ has a dense A orbit, then lower
semicontinuity of κ implies that maxMGd = κ(Λθ) = q−d. On the other hand, minMGd ≥ q−d,
and thus MGd =

{

q−d
}

. �

Proof of Theorem 4.2. We shall first reinterpret Theorem 4.1 in a different language. Let

A− =

{

t = diag

(

n
∏

i=1

t−1
i , t1, . . . , tn

)

: ∀i, |ti| < 1

}

< A.
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Then, Theorem 4.1 is equivalent to the following: For every t ∈ A− and for every θ ∈ (x−1O)n,
tΛθ ∩ B0 6= {0}. For i = 1, . . . , n, let

A
(i)
− =

{

t = diag

(

n
∏

i=1

t−1
i , t1, . . . , tn

)

: ti = 1,∀i 6= j, |tj | ≤ 1

}

.

Let {gt}t∈K̃ ⊆ A− \ ∪d
i=1A

(i)
− be an ergodic one parameter flow contained in the interior of the

cone A−. Then we can assume that θ was chosen so the orbit {gtΛθ}t∈K̃ is dense. Then, for

every Λ ∈ Ld, there exists a sequence gtk ∈ A− with d(gtk , A
(i)
− ) → 0 for every i = 1, . . . , d, such

that gtkΛθ → Λ.

For compact C ⊆ K̃d and l ≥ 1 define the sets

Ld(C, l) = {Λ ∈ Ld : |Λ ∩ C| ≥ l}.

Then, by lower semicontinuity, Ld(C, l) are closed sets. Notice that Theorem 4.1 implies that
for every t ∈ A−, tΛθ ∈ Ld(B0, 2). Hence, if Λ = limk→∞ gtkΛθ, then, Λ ∈ Ld(B0, 2). Since
{gtkΛθ}tk∈K̃ is dense, then for every Λ ∈ Ld, Λ ∈ Ld(B0, 2). Therefore, the box B0 is not

admissible for any lattice. Assume that B is a box around the origin with Vol(B) = q−n, which
is admissible for Λθ. Then, there exists some a ∈ A such that aB = B0. Therefore, B0 is
admissible for the lattice aΛθ, which is a contradiction. Hence, there are no boxes of volume
q−n which are admissible for Λθ, and thus, κ(Λθ) ≤ q−d. �
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