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We present the complete results up to twist-3 for hadron production in the target fragmentation
region of semi-inclusive deep inelastic scattering with a polarized lepton beam and polarized nucleon
target. The nonperturbative effects are factorized into fracture functions. The calculation up to
twist-3 is nontrivial since one has to keep gauge invariance. By applying collinear expansion, we
show that the hadronic tensor can be expressed by gauge-invariant fracture functions. We also
present the results for the structure functions and azimuthal asymmetries.

I. INTRODUCTION

Semi-inclusive deep inelastic scattering (SIDIS) is an important process for hadronic physics. It provides a cleaner
environment for detecting the inner structure of the initial hadron than inclusive processes in hadron-hadron collisions.
The kinematic region of SIDIS can roughly be divided into two parts (see e.g., [1–5] for more discussions). One is called
the current fragmentation region (CFR) where the observed hadron in the final state moves into the forward region of
the virtual photon. Another one is the target fragmentation region (TFR), where the measured hadron predominantly
travels in the forward direction of the incoming target. Events in both regions can be used to comprehend the internal
structure of hadrons and the properties of strong interactions.

So far, the bulk of research on SIDIS has focused on the CFR, where hadron production can be understood as the
fragmentation of a parton emitted from the target and struck by the virtual photon. This allows us to investigate
various parton distributions functions (PDFs) [6–9] and fragmentation functions (FFs) [6, 10, 11] within the transverse-
momentum-dependent (TMD) [12–18] or collinear factorization formalisms [19–23] at small or large hadron transverse
momentum. While there have been significant developments in recent years for physics in the CFR [18, 24, 25], as
well as elaborated and recent extractions of quark TMDs [26–28], the physics in the TFR has received less attention.

The early analysis of the experimental data at HERA [29, 30] indicates a surprisingly high number of events in the
TFR and has stimulated the introduction of fracture functions [31–33]. Physically, fracture functions describe the
distributions of the struck parton inside the target when the remnant spectators fragment inclusively into the detected
hadron. They encompass intricate initial final-state correlations and provide a unique perspective into the partonic
dynamics and hadronization, complementing PDFs and FFs. Most of our current knowledge about fracture functions
comes from the analysis of proton diffraction (see e.g., [34] for a recent review), where the final hadron coincides with
the target proton, and the fracture function is conventionally called as diffractive PDF [32]. Phenomenological fittings
of diffractive PDFs from HERA data [30, 35–41] have been conducted in [42–47]. Fracture functions for other leading
baryon production, such as neutron and Λ-hyperon, are also constrained with parametrization assumptions in [48–52]
and [53, 54], respectively. Fracture functions are also utilized in hadron collisions in [55–57].

From a theoretical point of view, most of the aforementioned investigations about TFR hadron production are based
on the factorization at twist-2 in terms of collinear fracture functions. This factorization has been proven to hold to all
orders of αs [58] and has been confirmed through the explicit calculations up to O(α2

s) [59–62]. Initially, the fracture
functions in the factorization included an integration over the final-hadron transverse momentum Ph⊥ [31], however,
without this integration the momentum transfer [32, 33] and azimuthal-angle distribution [63, 64] can be studied. To
further probe the spin [60, 63] and parton-transverse-momentum [63, 65, 66] dependence of fracture functions, several
observables and factorization assumptions are proposed in [67–69]. The CLAS Collaboration at JLab has recently
reported the first measurement of these dependences [70]. More detailed discussions on the factorization with TMD
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fracture functions and relevant evolution is presented in [57]. Furthermore, recent investigations have also addressed
the factorization properties of fracture functions in different kinematic regions [57, 64, 71]. The small-x behavior of
fracture functions is studied in [71]. In [64] the large-Ph⊥ behavior is explored in detail, aiming to understand the
transition of production mechanisms between the TFR and CFR in SIDIS.

Despite these progresses, the contributions of SIDIS in the TFR beyond the leading twist are still less investigated.
The theoretical framework for a systematic study of the TFR beyond the leading twist needs to be established. The
importance of higher-twist effects in improving the description of the experimental data has already been emphasized
by recent phenomenological studies of fracture functions [45, 46, 72].

Moreover, it is known that the absence of higher-twist effects results in the loss of predictions for fourteen SIDIS
structure functions in the TFR at the tree level. At the leading twist, only four structure functions are nonzero [63]
for the case of unpolarized hadron production and a spin-1/2 target [73, 74]. These higher-twist contributions are
responsible for various intriguing azimuthal and spin asymmetries. Especially, some of these asymmetries are already
within the reach of the ongoing experimental program by CLAS12 [75] at JLab due to the availability of a longitudinally
polarized target [76, 77]. For instance, a preliminary investigation utilizing CLAS12 data has revealed the significance
of the beam-spin asymmetry in the TFR, suggesting that its sign and magnitude could serve as a novel indicator for
tracking the transition between the TFR and the CFR (Sec. 5.3 in [77]). Furthermore, the potential JLab@22GeV
program [77] and the planned electron-ion colliders in the USA [78–82] and China [83] are poised to provide additional
exciting opportunities for exploring new frontiers in TFR physics. Given these experimental progresses, it is important
to undertake an evaluation of the higher-twist contributions of SIDIS in the TFR.

The objective of this paper is to present a first analysis of twist-3 contributions to SIDIS in the TFR within the
framework of collinear factorization at the tree level of quantum chromodynamics (QCD) perturbation theory. Our
focus is on the scenario where the target is spin-1/2 and the polarization of the final hadron is unobserved. The
framework can be easily extended to the case of a spin-1 target. By employing the collinear expansion technique [84–
92], we demonstrate that the hadronic tensor of SIDIS in the TFR can be expressed in terms of three distinct types
of twist-3 collinear fracture functions. We discuss the classification of these fracture functions and show that they are
not independent due to the constraints imposed by the QCD equation of motion (EOM). With the EOM, the twist-3
contributions can be expressed with two-parton fracture functions at the considered order. Our findings also have
significant phenomenological implications.

The rest of this paper is organized as follows. In Sec. II, we discuss the kinematics for the polarized SIDIS in TFR
and present the general form for the cross section in terms of the structure functions. In Sec. III, we present detailed
calculations of the hadronic tensor up to twist-3. In Sec. IV, we give the final results for the structure functions and
azimuthal or spin asymmetries expressed by fracture functions. A short summary is given in Sec. V.

II. KINEMATICS AND STRUCTURE FUNCTIONS OF SIDIS IN THE TFR

Through out this paper, we use the light-cone coordinate system, in which a vector aµ is expressed as aµ =
(a+, a−, a⃗⊥) =

(
(a0 + a3)/

√
2, (a0 − a3)/

√
2, a1, a2

)
. With the light cone vectors nµ = (0, 1, 0, 0) and n̄µ = (1, 0, 0, 0),

the transverse metric is defined as gµν⊥ = gµν − n̄µnν − n̄νnµ, and the transverse antisymmetric tensor is given as

εµν⊥ = εµναβn̄αnβ with ε12⊥ = 1. We also use the notation ãµ⊥ ≡ εµν⊥ a⊥ν .
We consider the SIDIS process with a polarized electron beam and nucleon target as follows:

e(l, λe) + hA(P, S) → e(l′) + h(Ph) +X, (1)

where l, l′, P , and Ph are the 4-momenta of the incident, the outgoing electron, the nucleon target and the detected
final-state hadron, respectively. At the leading order of quantum electrodynamics, there is an exchange of one virtual
photon between the electron and the nucleon. The momentum of the virtual photon is given by q = l− l′. The helicity
of the electron is denoted by λe, and S is the polarization vector of the nucleon. We consider the production of a
spin-0 or unpolarized final-state hadron h. The Lorentz invariant variables of SIDIS are conventionally defined by

Q2 = −q2, xB =
Q2

2P · q
, y =

P · q
P · ke

, zh =
P · Ph

P · q
. (2)

We are interested in the TFR, where Ph is almost collinear with P and zh ≪ 1. As discussed in [59, 63], zh is not
convenient for us to describe the hadron production in TFR, because one can not differentiate the scenario of TFR
considered here from the soft-hadron production. Instead, we will use [4, 63]

ξh =
Ph · q
P · q

. (3)
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FIG. 1. The kinematics for SIDIS in the TFR

We work in the reference frame shown in Fig. 1, where the nucleon hA moves along the +z-direction and the virtual
photon moves in the −z-direction. In this frame, the momenta of the particles are given by

Pµ ≈ (P+, 0, 0, 0), (4)

Pµ
h = (P+

h , P
−
h , P⃗h⊥), (5)

lµ =
(1− y

y
xBP

+,
Q2

2xByP+
,
Q
√
1− y

y
, 0

)
, (6)

qµ =
(
− xBP

+,
Q2

2xBP+
, 0, 0

)
. (7)

For the case that the produced hadron h has small transverse momentum and in the TFR, we have P+
h ≫ |P⃗h⊥| ≫ P−

h

and ξh ≈ P+
h /P

+, which specifies the longitudinal momentum fraction of the nucleon taken by the final-state hadron
h. The polarization vector of the nucleon with mass M can be decomposed by

Sµ = SL
P+

M
n̄µ + Sµ

⊥ − SL
M

2P+
nµ, (8)

where SL is the longitudinal polarization of the nucleon and Sµ
⊥ = (0, 0, S⃗⊥) the transverse polarization vector.

The incoming and outgoing electron span the lepton plane. We define the azimuthal angle ϕh for P⃗h⊥ with respect

to the lepton plane, and ϕS is that for S⃗⊥. The azimuthal angle of the outgoing lepton around the lepton beam with
respect to the spin vector is denoted by ψ. In the kinematic region of SIDIS with large Q2, one has ψ ≈ ϕS [73].
With these specifications, the differential cross section is given by

dσ

dxBdydξhdψd2Ph⊥
=

α2y

4ξhQ4
Lµν(l, λe, l

′)Wµν(q, P, S, Ph), (9)

where α is the fine structure constant. The leptonic tensor is

Lµν(l, λe, l
′) = 2(lµl′ν + lν l′µ − l · l′gµν) + 2iλeϵ

µνρσlρl
′
σ. (10)

The hadronic tensor is defined by

Wµν(q, P, S, Ph) =
∑
X

∫
d4x

(2π)4
eiq·x⟨S;hA|Jµ(x)|hX⟩⟨Xh|Jν(0)|hA;S⟩, (11)

where Jµ(x) = eqψ̄(x)γ
µψ(x) is the electromagnetic current. A summation over quark favors is implicit in Eq. (11).

In general, the hadronic tensor can be decomposed into a sum of basic Lorentz tensors constructed by the kinematic
variables of the process. After contracting with the leptonic tensor, one can get the differential cross section in terms
of the structure functions. It has been shown that the differential cross section of SIDIS at small transverse momentum
with the polarized lepton beam and nucleon target is described by eighteen structure functions [74]. We have the
same number of structure functions for SIDIS in the TFR, and the general form of the differential cross section can
be expressed as

dσ

dxBdydξhdψd2Ph⊥
=

α2

xByQ2

{
A(y)FUU,T + E(y)FUU,L +B(y)F cosϕh

UU cosϕh + E(y)F cos 2ϕh

UU cos 2ϕh

+ λeD(y)F sinϕh

LU sinϕh + SL

[
B(y)F sinϕh

UL sinϕh + E(y)F sin 2ϕh

UL sin 2ϕh

]
+ λeSL

[
C(y)FLL +D(y)F cosϕh

LL cosϕh

]
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+ |S⃗⊥|
[(
A(y)F

sin(ϕh−ϕS)
UT,T + E(y)F

sin(ϕh−ϕS)
UT,L

)
sin(ϕh − ϕS) + E(y)F

sin(ϕh+ϕS)
UT sin(ϕh + ϕS)

+B(y)F sinϕS

UT sinϕS +B(y)F
sin(2ϕh−ϕS)
UT sin(2ϕh − ϕS) + E(y)F

sin(3ϕh−ϕS)
UT sin(3ϕh − ϕS)

]
+ λe|S⃗⊥|

[
D(y)F cosϕS

LT cosϕS + C(y)F
cos(ϕh−ϕS)
LT cos(ϕh − ϕS) +D(y)F

cos(2ϕh−ϕS)
LT cos(2ϕh − ϕS)

]}
. (12)

Here we have defined several functions of y for convenience, i.e.,

A(y) = y2 − 2y + 2,

B(y) = 2(2− y)
√
1− y,

C(y) = y(2− y),

D(y) = 2y
√
1− y,

E(y) = 2(1− y). (13)

All the structure functions in Eq. (12) are scalar functions depending on xB , ξh, Q
2 and P⃗ 2

h⊥. The first and second
subscripts of the structure functions denote the polarization of the electron and the nucleon, respectively. The third
subscript, if any, specifies the polarization of the virtual photon. Note that the normalization of the structure functions
adopted here is different from that in [74] by a Jacobian since we have used ξh instead of zh.

III. THE HADRONIC TENSOR RESULTS UP TO TWIST-3

A. Collinear expansion for the hadronic tensor

(b) (c)

hA

(a)

h

FIG. 2. Diagrams for the hadronic tensor in TFR at tree level.

Now we perform the collinear expansion for the hadronic tensor in Eq. (11) up to twist-3. At the tree level of QCD
perturbation theory, the hadronic tensor in the TFR can be represented by the diagrams in Fig. 2. The gray boxes
represent the parton correlation matrices with a hadron h identified in the final state, which we call fracture matrices
in the following. The contributions for each diagram in Fig. 2 are

Wµν
∣∣∣
2a

=

∫
d3k

(2π)3

[(
γµ(/k + /q)γ

ν
)
ij
2πδ

(
(k + q)2

)]∑
X

∫
d3η

(2π)4
e−ik·η⟨hA|ψ̄i(η)|hX⟩⟨Xh|ψj(0)|hA⟩, (14)

Wµν
∣∣∣
2b

=

∫
d3k1d

3k2
(2π)6

[(
γµ(/k1 + /q)γα

i(/k2 + /q)

(k2 + q)2 + iϵ
γν

)
ij

2πδ
(
(k1 + q)2

)]

× (−igs)
∑
X

∫
d3ηd3η1
(2π)4

e−ik1·ηei(k1−k2)·η1⟨hA|ψ̄i(η)|hX⟩⟨Xh|Gα(η1)ψj(0)|hA⟩, (15)

Wµν
∣∣∣
2c

=

∫
d3k1d

3k2
(2π)6

[(
γµ

i(/k1 + /q)

(k1 + q)2 − iϵ
γα(/k2 + /q)γ

ν

)
ij

2πδ
(
(k2 + q)2

)]

× (−igs)
∑
X

∫
d3ηd3η1
(2π)4

e−ik1·ηei(k1−k2)·η1⟨hA|ψ̄i(η)G
α(η1)|hX⟩⟨Xh|ψj(0)|hA⟩, (16)
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where ij are the Dirac and color indices. The summation over quark flavors
∑

q e
2
q is implied in the expressions. The

integration variables take the following forms:

kµ = (k+, 0, k⃗⊥), kµ1 = (k+1 , 0, k⃗1⊥), kµ2 = (k+2 , 0, k⃗2⊥), (17)

ηµ = (0, η−, η⃗⊥), ηµ1 = (0, η−1 , η⃗1⊥), ηµ2 = (0, η−2 , η⃗2⊥). (18)

k is the momentum carried by the quark line leaving the box of Fig. 2(a). k1, k2 are the momenta carried by the
quark lines flowing into and out of the boxes of Figs. 2(b) or 2(c). These momenta follow the collinear scaling, e.g.,
kµ ∼ Q(1, λ2, λ) with λ = ΛQCD/Q. To obtain the contributions up to twist-3, one has to expand the contributions
in Figs. 2(a)-2(c) in powers of λ up to O(λ). Here we have already neglected the minus components of k, k1 and k2
in [· · · ] of Eqs. (14)-(16), since these components only yield the corrections beyond twist-3.

ForWµν |2a, if we further neglect the quark transverse momentum and take kµ ≈ (k+, 0, 0⃗⊥) in [· · · ] of Eq. (14), one
can obtain the contribution with the collinear fracture matrix involving a nonlocal operator of quark and antiquark
fields. To obtain a gauge-invariant form, we should sum over the contributions from the G+-gluon exchange in
Fig. 2(b) and Fig. 2(c) as well as those with the exchange of any number of G+-gluons. Here the gluon field Gµ scales
like (1, λ2, λ), and hence the G+-gluon does not induce any power suppression. After this summation, we can obtain
the following gauge-invariant contribution

Wµν
∣∣∣
q
=(γµγ+γν)ij

∑
X

∫
dη−

2(2π)4
e−ixBP+η−

⟨hA|ψ̄i(η
−)L†

n(η
−)|hX⟩⟨Xh|Ln(0)ψj(0)|hA⟩, (19)

where the gauge link is defined as

Ln(x) = P exp

{
− igs

∫ ∞

0

dλ G+(λn+ x)

}
. (20)

The above contribution yields the gauge-invariant collinear quark fracture matrix. As we will present later in Sec. III B,
by parametrization of this matrix up to O(λ), one can obtain the hadronic tensor in terms of twist-2 and twist-3
quark collinear fracture functions.

To derive the other twist-3 contributions from Wµν |2a, we need to take into account the k⊥-dependence in [· · · ]
of Eq. (14) by the collinear expansion to O(λ). We notice that there is no contribution from the partial derivatives

acting on the delta function in the expansion since ∂δ
(
(k̂ + q)2

)
/∂kα⊥ ∝ q⊥α = 0. After this expansion, we get the

contribution from the fracture matrix with the transverse partial derivative acting on the (anti)quark fields. Again,
after the combination with the relevant gauge-link contributions from Wµν |2b+2c, we obtain, up to O(gs),

Wµν
∣∣∣
∂
=

−i
2q−

(γµγ+γ⊥αγ
−γν)ij

∑
X

∫
dη−

2(2π)4
e−ixBP+η−

⟨hA|ψ̄i(η
−)L†

n(η
−)|hX⟩

× ⟨Xh|∂α⊥(Lnψj)(0)|hA⟩+ (µ↔ ν)∗ , (21)

where (µ↔ ν)∗ stands for exchanging µν indices and taking complex conjugate of the first term. Due to the presence
of the transverse derivative, the leading contribution of the fracture matrix in Eq. (21) is at twist-3.

In addition, after subtracting the gauge-link contributions to Eqs. (19) and (21) from the collinear expansion of
Wµν |2b+2c, we find the remaining part can be expressed by the fracture matrix with the gluon field-strength tensor
gsF

+α = gs[∂
+Gα

⊥−∂α⊥G+] +O(g2s). This gives another contribution that starts from twist-3, which up to O(gs) can
be summarized as

Wµν
∣∣∣
F
=

−i
2q−

(γµγ+γ⊥αγ
−γν)ij

∫
dx2

[
P

1

x2 − xB
− iπδ(x2 − xB)

]
×
∑
X

∫
dη−dη−1
4π(2π)4

e−ixBP+η−−i(x2−xB)P+η−
1 ⟨hA|ψ̄i(η

−)|hX⟩⟨Xh|gsF+α(η−1 )ψj(0)|hA⟩+ (µ↔ ν)∗ . (22)

Here P in [· · · ] of Eq. (22) stands for the principle-value prescription. The δ-function term in Eq. (22) comes from
the absorptive part of the quark propagator that connects the electromagnetic current to the quark-gluon vertex
in Figs. 2(b) and 2(c). In this term, the gluon has zero momentum and generates the so-called soft-gluon-pole
contributions, see e.g., [93] and references therein.

The total contribution of the hadronic tensor is given by the sum of the results in Eqs. (19), (21) and (22). The
following gauge-invariant collinear fracture matrices are relevant:

Mij(x) =

∫
dη−

2ξh(2π)4
e−ixP+η− ∑

X

⟨hA|ψ̄j(η
−)L†

n(η
−)|hX⟩⟨Xh|Ln(0)ψi(0)|hA⟩, (23)
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Mα
∂,ij(x) =

∫
dη−

2ξh(2π)4
e−ixP+η− ∑

X

⟨hA|ψ̄j(η
−)L†

n(η
−)|hX⟩⟨Xh|∂α⊥(Lnψi)(0)|hA⟩, (24)

Mα
F,ij(x1, x2) =

∫
dη−dη−1
4πξh(2π)4

e−ix1P
+η−−i(x2−x1)P

+η−
1

∑
X

⟨hA|ψ̄j(η
−)|hX⟩⟨Xh|gsF+α(η−1 )ψi(0)|hA⟩. (25)

Here we have suppressed the gauge links for brevity in Eq. (25). Besides the partonic momentum fractions, the
fracture matrices also depend on the momentum of the observed hadron (ξh, Ph⊥) and the spin vector of the target,
which are not shown explicitly in the arguments. With the above notations, the hadronic tensor can be written as

Wµν = ξh(γ
µγ+γν)ijMji(xB) +

[
−iξh
2q−

(γµγ+γ⊥αγ
−γν)ijMα

∂,ji(xB) + (µ↔ ν)∗
]

+

{
−iξh
2q−

(γµγ+γ⊥αγ
−γν)ij

∫
dx2

[
P

1

x2 − xB
− iπδ(x2 − xB)

]
Mα

F,ji(xB , x2) + (µ↔ ν)∗
}
. (26)

It is obvious that only the chirality-even parts of the fracture matrices will contribute to the hadronic tensor. We
discuss the parametrization of these fracture matrices in the next subsection.

B. Parametrization of the fracture matrices and the hadronic tensor in terms of fracture functions

The collinear fracture matrices in Eqs. (23)-(25) can be decomposed using Dirac Γ-matrices. From the constraints
of parity invariance, the fracture matrices can be generally parametrized as follows:

Mij(x) =
(γρ)ij
2Nc

[
n̄ρ

(
u1 −

Ph⊥ · S̃⊥

M
uh1T

)
+

1

P+

(
P ρ
h⊥u

h −MS̃ρ
⊥uT − SLP̃

ρ
h⊥u

h
L −

P
⟨ρ
h⊥P

β⟩
h⊥

M
S̃⊥βu

h
T

)]
− (γργ5)ij

2Nc

[
n̄ρ

(
SLl1L − Ph⊥ · S⊥

M
lh1T

)
+

1

P+

(
P̃ ρ
h⊥l

h +MSρ
⊥lT + SLP

ρ
h⊥l

h
L −

P
⟨ρ
h⊥P

β⟩
h⊥

M
S⊥βl

h
T

)]
+ · · · ,

(27)

Mα
∂,ij(x) =

(γ−)ij
2Nc

i
(
−Pα

h⊥u
h
∂ +MS̃α

⊥u∂T + SLP̃
α
h⊥u

h
∂L +

P
⟨α
h⊥P

β⟩
h⊥

M
S̃⊥βu

h
∂T

)
+

(γ−γ5)ij
2Nc

i
(
P̃α
h⊥l

h
∂ +MSα

⊥l∂T + SLP
α
h⊥l

h
∂L −

P
⟨α
h⊥P

β⟩
h⊥

M
S⊥βl

h
∂T

)
+ · · · , (28)

Mα
F,ij(x1, x2) =

(γ−)ij
2Nc

(
Pα
h⊥w

h −MS̃α
⊥wT − SLP̃

α
h⊥w

h
L −

P
⟨α
h⊥P

β⟩
h⊥

M
S̃⊥βw

h
T

)
− (γ−γ5)ij

2Nc
i
(
P̃α
h⊥v

h +MSα
⊥vT + SLP

α
h⊥v

h
L −

P
⟨α
h⊥P

β⟩
h⊥

M
S⊥βv

h
T

)
+ · · · , (29)

where · · · denote the contributions beyond twist-3 or the chirality-odd parts. In the above, we have used the shorthand

notations P
⟨α
h⊥P

β⟩
h⊥ ≡ Pα

h⊥P
β
h⊥+gαβ⊥ P⃗ 2

h⊥/2 for simplicity. As pointed out in [63], the fracture matrix is not constrained
by time reversal invariance, as it identifies a hadron in the out state. Additionally, we note that the collinear fracture
matrices formally share similar parametrization forms with those of the conventional TMD PDFs (see e.g., [94]).

The functions u’s and l’s in Eqs. (27) and (28) are quark collinear fracture functions, they are functions of x, ξh
and P⃗ 2

h⊥. w’s and v’s in Eq. (29) are quark-gluon collinear fracture functions, they depend on x1 and x2 besides of

ξh and P⃗ 2
h⊥. We have suppressed all these arguments for simplicity. From hermiticity, the fracture functions defined

in Eqs. (27) and (28) are real, while those in Eq. (29) are complex in general.
The naming rules for these fracture functions we have used are as follows: Four fracture functions in Eq. (27) with

“1” in the subscript are of twist-2. The remaining is of twist-3. The “∂” in the subscript denote that the fracture
functions are defined via the fracture matrix with the partial derivative operator. The “L” or “T” in the subscript
denotes the dependence on the longitudinal or transverse polarization of the nucleon. The superscript “h” denotes
the explicit dependence on the transverse momentum of the final-state hadron h in the decomposition of the matrix
elements. We note that the TMD quark fracture functions at twist-2 have been classified for a polarized nucleon
target in [63, 67]. After integrating over the transverse momentum of the parton, they are equivalent to the twist-2
collinear quark fracture functions defined in Eq. (27).
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We further note that the twist-3 fracture functions defined above are not independent of each other. From the QCD
equation of motion iγ ·Dψ = 0, one can show that their relations can be written in a unified form as follows:

x[uKS (x) + ilKS (x)] = uK∂S(x) + ilK∂S(x) + i

∫
dy

[
P

1

y − x
− iπδ(y − x)

]
[wK

S (x, y)− vKS (x, y)], (30)

where (S, K) = (null, h), (L, h), (T, null), or (T, h). I.e., we have four sets of relations in the unified form of
Eq. (30). With these relations, we find that the hadronic tensor in Eq. (26) can be expressed only with the fracture
functions defined via Mij in Eq. (27). We obtain

Wµν = −2gµν⊥

(
u1 −

Ph⊥ · S̃⊥

M
uh1T

)
+ 2iεµν⊥

(
SLl1L − Ph⊥ · S⊥

M
lh1T

)
+

2

P · q
P

{µ
h⊥q̄

ν}
(
uh − Ph⊥ · S̃⊥

M
uhT

)
+

2i

P · q
P

[µ
h⊥q̄

ν]
(
lh − Ph⊥ · S̃⊥

M
lhT

)
− 2M

P · q
S̃
{µ
⊥ q̄ν}

(
uT − P⃗ 2

h⊥
2M2

uhT

)
− 2iM

P · q
S̃
[µ
⊥ q̄

ν]
(
lT − P⃗ 2

h⊥
2M2

lhT

)
− 2SL

P · q
P̃

{µ
h⊥q̄

ν}uhL − 2iSL

P · q
P̃

[µ
h⊥q̄

ν]lhL, (31)

where A{µBν} ≡ AµBν + AνBµ and A[µBν] ≡ AµBν − AνBµ. We have also used the shorthand notation q̄µ ≡
qµ + 2xBP

+n̄µ. The first line in Eq. (31) is of twist-2 contributions, and the remains are of twist-3 contributions.
Because qµ has only longitudinal components and also q · q̄ = 0, we see explicitly that the hadronic tensor of Eq. (31)
satisfies the U(1)-gauge invariance or the current conservation, i.e., qµW

µν = qνW
µν = 0.

IV. THE RESULTS OF STRUCTURE FUNCTIONS AND AZIMUTHAL OR SPIN ASYMMETRIES

A. The results of structure functions

Substituting the hadronic tensor result of Eq. (31) into Eq. (9), we obtain the differential cross section. Comparing
with the cross section expressed by structure functions in Eq. (12), we obtain the results of structure functions in
terms of the collinear fracture functions. Four structure functions are at twist-2, which are expressed in terms of the
four twist-2 fracture functions, i.e.,

FUU,T = xBu1, F
sin(ϕh−ϕS)
UT,T =

|P⃗h⊥|
M

xBu
h
1T , (32)

FLL = xBl1L, F
cos(ϕh−ϕS)
LT =

|P⃗h⊥|
M

xBl
h
1T . (33)

The summation over quark flavors, i.e.,
∑

q e
2
q · · · , is implicit on the right-hand side of the equations. This twist-2

result has been obtained in [67]. There are eight structure functions that have contributions starting from twist-3.
They are expressed with eight different twist-3 fracture functions, i.e.,

F cosϕh

UU = −2|P⃗h⊥|
Q

x2Bu
h, F sinϕh

LU =
2|P⃗h⊥|
Q

x2Bl
h, (34)

F sinϕh

UL = −2|P⃗h⊥|
Q

x2Bu
h
L, F cosϕh

LL = −2|P⃗h⊥|
Q

x2Bl
h
L, (35)

F sinϕS

UT = −2M

Q
x2BuT , F cosϕS

LT = −2M

Q
x2BlT , (36)

F
sin(2ϕh−ϕS)
UT = − P⃗ 2

h⊥
QM

x2Bu
h
T , F

cos(2ϕh−ϕS)
LT = − P⃗ 2

h⊥
QM

x2Bl
h
T . (37)

The remaining six structure functions are all zero up to twist-3. We see that half of the eight twist-3 structure
functions are related to the transverse polarization-dependent fracture functions.

B. Azimuthal or spin asymmetries

In addition to structure functions, one can also construct various azimuthal or spin asymmetries by

⟨F⟩PePN
≡

∫
dσ

dxdydξhdψd2Ph⊥
Fdϕhdψ

/∫
dσ

dxdydξhdψd2Ph⊥
dϕhdψ, (38)
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where the subscripts Pe = U or L and PN = U , L or T denote the polarization states of the electron and the nucleon
target. From our results of the structure functions, we see clearly that there are two spin-dependent azimuthal
asymmetries at twist-2. They both depend on the nucleon transverse polarization and are given by

⟨sin(ϕh − ϕS)⟩UT =
|P⃗h⊥|
2M

uh1T (xB , ξh, Ph⊥)

u1(xB , ξh, Ph⊥)
, (39)

⟨cos(ϕh − ϕS)⟩LT =
|P⃗h⊥|C(y)
2MA(y)

lh1T (xB , ξh, Ph⊥)

u1(xB , ξh, Ph⊥)
. (40)

Here and in the below, a summation over quark flavors, i.e.,
∑

q e
2
q · · · , is implicit both in the numerators and the

denominators. We note that the asymmetry ⟨sin(ϕh − ϕS)⟩UT is of Sivers-type [95] and it does not depend on y

because of the cancellation of the common A(y) factors associated with F
sin(ϕh−ϕS)
UT,T and FUU,T in the cross section.

We have in particular eight azimuthal or spin asymmetries at twist-3 associated with the eight twist-3 structure
functions in Eqs. (34)-(37), i.e.,

⟨cosϕh⟩UU = −|P⃗h⊥|
Q

B(y)

A(y)

xBu
h(xB , ξh, Ph⊥)

u1(xB , ξh, Ph⊥)
, (41)

⟨sinϕh⟩LU =
|P⃗h⊥|
Q

D(y)

A(y)

xBl
h(xB , ξh, Ph⊥)

u1(xB , ξh, Ph⊥)
, (42)

⟨sinϕh⟩UL = −|P⃗h⊥|
Q

B(y)

A(y)

xBu
h
L(xB , ξh, Ph⊥)

u1(xB , ξh, Ph⊥)
, (43)

⟨cosϕh⟩LL = −|P⃗h⊥|
Q

D(y)

A(y)

xBl
h
L(xB , ξh, Ph⊥)

u1(xB , ξh, Ph⊥)
, (44)

⟨sinϕS⟩UT = −M
Q

B(y)

A(y)

xBuT (xB , ξh, Ph⊥)

u1(xB , ξh, Ph⊥)
, (45)

⟨cosϕS⟩LT = −M
Q

D(y)

A(y)

xBlT (xB , ξh, Ph⊥)

u1(xB , ξh, Ph⊥)
, (46)

⟨sin(2ϕh − ϕS)⟩UT = − P⃗ 2
h⊥

2MQ

B(y)

A(y)

xBu
h
T (xB , ξh, Ph⊥)

u1(xB , ξh, Ph⊥)
, (47)

⟨cos(2ϕh − ϕS)⟩LT = − P⃗ 2
h⊥

2MQ

D(y)

A(y)

xBl
h
T (xB , ξh, Ph⊥)

u1(xB , ξh, Ph⊥)
. (48)

One can see that at the order we are considering, each azimuthal or spin asymmetry in the TFR is only generated
by a specific fracture function. This suggests that interpretations of these functions from experimental data may
be simpler and more straightforward compared to the CFR at small Ph⊥, where multiple TMD PDFs and FFs are
typically involved and intertwined in the asymmetry [74]. Some of the twist-3 asymmetries, such as ⟨sinϕh⟩UL and
⟨sinϕh⟩LU , have already been measured in the TFR by CLAS12 at JLab [96]. Of particular interest is the beam-spin
asymmetry ⟨sinϕh⟩LU in Eq. (42), which is related to a twist-3 longitudinal quark fracture function lh. A preliminary
analysis shows that it undergoes a clear sign flip from the TFR to the CFR and could serve as an efficient tool to
understand the transition between the production mechanisms (Sec. 5.3 in [77]). Further experimental measurements
will provide us with more information about the relevant fracture functions, especially the twist-3 ones.

V. SUMMARY

In summary, we have derived the hadronic tensor up to twist-3 level for SIDIS with hadron production in the target
fragmentation region. The hadronic tensor at the considered order is shown to be expressed by gauge-invariant fracture
functions defined with two-parton correlations. Based on the obtained hadronic tensor, the results for structure
functions are derived for both polarized lepton beam and polarized nucleon target. At the tree level, there are four
structure functions at twist-2 and eight structure functions at twist-3. Azimuthal or spin asymmetries are given based
on the results of the structure functions. These observables are all expressed using twist-2 or twist-3 collinear fracture
functions. Possible connections to experimental measurements are discussed. Future SIDIS experiments measuring
these azimuthal or spin asymmetries will provide opportunities to extract the corresponding fracture functions.
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