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Abstract: We generalise the Missing Partner Mechanism to split the electron-like states
from the coloured ones of vectorlike SU(5) 10-plets without fine-tuning. Together with
the extra light weak doublets from the Double Missing Partner Mechanism (DMPM), this
realises gauge coupling unification in the presence of a light weak triplet and colour octet,
the characteristic light relics from the adjoint in SU(5) GUT Inflation models. Additionally,
we show how the vectorlike 10-plets may generate realistic fermion masses while the DMPM
ensures that dimension five nucleon decay is suppressed. A discovery of the light relic states
at future colliders would provide a “smoking gun” signal of the scenario.
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1 Introduction

Grand Unified Theories (GUTs) [1–5] are among the most attractive candidates for physics
beyond the SM (BSM). On the other hand, cosmic inflation [6–9] – the accelerated expan-
sion of the universe at early times – can explain why the universe appears to be flat and
homogeneous on large scales. Interestingly, the three fundamental forces of the SM tend to
unify at a high scale, which is similar to the energy scale where cosmic inflation may take
place. This remarkable coincidence indicates that inflation could be linked to GUTs. Fur-
thermore, inflation provides a natural mechanism to dilute away the unwanted monopoles
created abundantly during GUT symmetry breaking [7, 8].

In this work, we focus on supersymmetric (SUSY) SU(5) GUTs. To embed inflation,
one may distinguish three characteristic approaches where different types of GUT repre-
sentations mainly play the role of the inflaton. One of them is supersymmetric “Hybrid
Inflation” [10–14], where the inflaton is a gauge singlet superfield. It turns out that in the
minimal version, commonly termed as “Standard SUSY Hybrid Inflation”, the monopole
problem within SU(5) GUTs is not resolved. Two variations of it, namely, “Shifted Hybrid
Inflation” [15] and “Smooth Hybrid Inflation” [16, 17] overcome this shortcoming. In a
second class of models – “Tribrid Inflation” [18–24] – a D-flat combination of matter fields
– typically gauge non-singlets – plays the role of the inflaton. A slight modification of the
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original proposal is needed to build realistic models that do not suffer from the monopole
problem, which is known as “Pseudosmooth Tribrid Inflation” [25]. A third class of mod-
els, known as “New Inflation” [26], utilises the GUT breaking field as the inflaton. Here,
inflation takes place while the GUT breaking field is rolling slowly in the flat region of a
hilltop-shaped potential where the GUT symmetry is already broken, diluting away the
monopoles.

In all these classes of models, the required form of the superpotential for successful in-
flation to take place is typically guaranteed by a global R-symmetry, U(1)R, and depending
on the scenario by an additional ZN symmetry. An immediate consequence of this R-
symmetric SU(5) GUTs is that weak-triplet and colour-octet fields from the adjoint Higgs
remain light [27, 28]. This spoils the successful gauge coupling unification (GCU) of the
minimal supersymmetric Standard Model (MSSM). One known solution to this problem is
that if some components, namely, weak-doublet and singly-charged fields, of additional vec-
torlike families, reside close to the SUSY breaking scale, gauge coupling unification can be
restored [29]. However, their presence may seem ad-hoc and, moreover, without explanation
this splitting of GUT multiplets would lead to undesirable fine-turning.

Another challenge of SUSY GUTs is that, on top of the usual (dimension 6) gauge-
mediated nucleon decay, one gets potentially much more dangerous (dimension 5) nucleon
decay modes by exchanging the heavy colour-triplet Higgs [30, 31]. Therefore, these colour-
triplets need to be superheavy, whereas their partners, the weak-doublets, must reside at
the electroweak scale. This so-called “Doublet-Triplet Splitting” (DTS) problem [32, 33]
can introduce another potential source of severe fine-tuning in the theory.

In this work we propose a way to embed inflation into SU(5) GUTs while resolving the
above mentioned (and further) challenges of GUT Inflation scenarios without excessive fine-
tuning. To this end, we extend the “Missing Partner Mechanism” (MPM) [34, 35], or more
specifically its improved version, the “Double Missing Partner Mechanism” (DMPM) [36–
38], which are attractive ways of resolving the DTS problem and suppressing dimension
5 nucleon decay, to a “Generalised Missing Partner Mechanism” (GMPM). In addition to
naturally splitting the Higgs doublets from the triplets, it also provides light weak-doublet
and singly-charged fields from vectorlike states that reinstate gauge coupling unification.
Intriguingly, these vectorlike chiral supermultiplets, along with the fields employed to realise
the GMPM, simultaneously correct the wrong mass relations between the down-type quark
and charged-lepton sectors. The light relic states provide a characteristic feature of the
scenario, which allows to potentially test it at future colliders.

This paper is organised in the following way. In Sec. 2, we briefly review inflation in
SU(5) GUTs, in Sec. 3 the origin of massless relics is discussed. In Sec. 4 we present our
solution to gauge coupling unification and we show how realistic fermion masses can arise
in Sec. 5. Phenomenological aspects of the light relics along with relevant collider bounds
are summarised in Sec. 6, and finally we conclude in Sec. 7.
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2 Inflation in SU(5) GUTs

This section briefly summarises three classes of realistic inflationary models that are con-
sistent within SUSY SU(5) GUTs. In all these models, the superpotential relevant for the
inflationary dynamics takes a simple form,

Winflation = κS
(
f1(Φ)−M2

)
+ f2(Φ)f3(Ni), (2.1)

where S is a GUT singlet superfield, Φ is an adjoint superfield that breaks the GUT
symmetry, Ni are matter superfields that are potentially also GUT non-singlets. κ is a
dimensionless coupling constant and M is a parameter with mass dimension one. For
consistency, the holomorphic functions fk must be such that the resulting field combinations
are GUT singlets. This form of the superpotential, Eq. (2.1), is guaranteed by R-symmetry,
under which we demand that

W → ei2θW, S → ei2θS, f1,2(Φ) → f1,2(Φ), f3(Ni) → ei2θf3(Ni). (2.2)

The explicit expressions of fi depends on the model class and the specific realisation of
inflation, to be discussed below.

1. GUT-Singlet Field as the Inflaton:– In this class of models, the gauge singlet
field, S, mainly plays the role of the inflaton. In the minimal/standard version of Hybrid
Inflation, the functions fi are taken to be f1 = Φ2 and f2,3 = 0, leading to Whybrid =

κS(Φ2 −M2) [39–41].1 In the very early universe, with a large vacuum expectation value
(vev) of the S field beyond a critical value, Φ is stabilised at zero. Consequently, the
GUT symmetry remains unbroken, and within global SUSY the potential is flat at the
tree level along the S direction. The energy density is then dominated by the false vacuum
energy density, V ∼ κ2M4, leading to an exponentially expanding universe. After including
radiative corrections, corrections from SUSY breaking and Kähler potential terms, a small
tilt is generated such that the S field rolls slowly towards the above-mentioned critical
value, giving rise to a successful inflationary scenario [42–47].2 When S reaches the critical
value, it destabilises Φ, which then quickly rolls to its minimum with non-zero vev, breaking
the GUT symmetry and ending inflation. Since the SU(5) GUT symmetry breaking takes
place at the end of inflation, monopoles are produced. While this rules out the standard
version of Hybrid Inflation in SU(5), variants of it can be viable, as we now discuss:

• Shifted Hybrid Inflation: In Shifted Hybrid Inflation [15, 29], non-renormalizable
terms are added to the superpotential, introducing a non-trivial flat direction vi-
able for inflation, along which the GUT symmetry is already spontaneously broken.
Monopoles may have been produced before inflation, but are “inflated away”, resolving

1Here and in the following we use Φn as a shorthand notation for the all possible terms that contract
the indices of the adjoint to form a singlet, here Φ2 ≡ Tr(Φ2).

2Also for the other scenarios to be discussed below, we will always assume that corrections from SUSY
breaking and Kähler potential terms can be adjusted such that the inflationary predictions are consistent
with CMB observations.
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the monopole problem. The superpotential in Shifted Hybrid Inflation takes e.g. the
form

Wshifted−hybrid = κ1 S(Φ
2 −M2)− κ2

SΦ2+n

Λn︸ ︷︷ ︸
≡δW

, (2.3)

where, compared to standard Hybrid Inflation, the only new term added is δW . The
leading order non-renormalizable term corresponds to n = 1. As before, this specific
form of the superpotential is guaranteed by the R-symmetry. Λ denotes the cutoff
scale for the respective effective operator. The presence of the non-renormalizable
term(s) in Eq. (2.3) ensures that for constant |S|, in addition to the Φ = 0 minimum,
a local minimum with Φ ̸= 0 is also possible. Also for this non-trivial minimum,
the potential is tree-level flat (apart from Kähler corrections and corrections from the
SUSY breaking sector) in the S direction, providing a suitable trajectory for inflation.
Since the GUT symmetry is already spontaneously broken during inflation, monopoles
that may have formed earlier are efficiently “inflated away”, i.e. diluted by inflation,
thus resolving the monopole problem.

• Smooth Hybrid Inflation: The strategy to avoid the monopole problem for Smooth
Hybrid Inflation [16, 17] is similar to the shifted case, but the realisation is somewhat
different. In both scenarios, inflation occurs along a shifted track where the GUT
symmetry is already broken during inflation, resolving the monopole problem. The
difference is that in the smooth superpotential, the renormalizable trilinear coupling,
SΦ2, is forbidden by the imposition of a Zm symmetry. Under this discrete symmetry,
Φ2 transforms non-trivially, whereas Φm is invariant (we define, m = 2 + n, with
n > 0). Therefore, the superpotential takes the form

Wsmooth−hybrid = κ S
(
Φ2+n

Λn
−M2

)
. (2.4)

For any fixed value of S, the potential (in the Φ direction) has a local maximum
at Φ = 0, and an absolute minimum for Φ ̸= 0. This implies that inflation ends
smoothly without any “waterfall” where the Φ direction would become tachyonic.
Another difference compared to the shifted case is that the inflationary trajectory
already has a slope at tree-level.

2. Matter Field as the Inflaton:– In this class of models, known as the Tribrid
Inflation [18–20, 22, 48], a D-flat direction of matter fields that are potentially gauge non-
singlets plays the role of the inflaton. In the first model of Sneutrino Tribrid Inflation,
proposed in Ref. [18], the symmetry gets broken at the end of inflation. Hence, when
applied to an SU(5) GUT, the monopole problem is not solved. In this framework, the S
field stays at zero during inflation. It can be neglected for the inflationary dynamics, but it
contributes to the large vacuum energy by its F-term. Stabilising S at zero is guaranteed
by generating a large mass of order Hubble scale via non-minimal terms in the Kähler
potential. When the matter field N has a vev above a critical value, it stabilises Φ at zero.
The N field direction is tree-level flat, and suitable for realising inflation. When Φ reaches
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the critical value, a “waterfall” takes place that ends inflation and the GUT symmetry gets
broken. For SU(5) GUT Inflation, one needs to choose a variant that solves the monopole
problem:

• Pseudosmooth Tribrid Inflation: In Pseudosmooth Tribrid inflation [25, 49], the
superpotential has the following form:

Wpseudosmooth−tribrid = κ1 S

(
Φ2+n

Λn
−M2

)
− κ2

Φ1+p

Λp+q
N2+q. (2.5)

In addition to the U(1)R symmetry, the form of this superpotential is ensured by
introducing a Zm symmetry such that both Φ and N carry charge 1 under it, with
n = m − 2, p + q = m − 3. In this mechanism, for inflation to happen, a “shifted
smooth” track is employed with the GUT symmetry already broken during inflation,
hence monopoles produced earlier are inflated away. Though inflation occurs along
an initially smooth trajectory, unlike in Smooth Hybrid Inflation there is a “waterfall”
transition to a unique minimum where N = 0. Because of this the mechanism is
named pseudosmooth.

3. GUT-breaking Field as the Inflaton:– In this class of models, also known as
“New Inflation”, the scalar component of the GUT Higgs superfield breaking SU(5) by its
vev plays the role of the inflaton. In this setup [26, 50], the superpotential takes the same
form as the Smooth Hybrid Inflation model, i.e.,

Wnew−inflation = κ S
(
Φ2+n

Λn
−M2

)
, (2.6)

with n ≥ 2. However, the primary difference is that in Smooth Hybrid Inflation, the
singlet field S mainly plays the role of the inflaton, whereas in New Inflation scenario,
the GUT breaking adjoint field itself is the inflaton. The structure of Eq. (2.6) is again
guaranteed by U(1)R × Zm symmetry (where m = n + 2). S is again stabilised at zero
via non-minimal terms in the Kähler potential. The scalar potential obtained from the
superpotential Eq. (2.6) features a flat hilltop as in the New Inflation models [26, 51]. The
monopole problem is resolved since the GUT symmetry is already broken by the vev of Φ
while inflation is ongoing.

We like to emphasise that in all the SU(5) GUT Inflation scenarios outlined above, an
R-symmetry plays a crucial role in guaranteeing the form of the inflaton potential, with
a large vacuum energy and simultaneously a sufficiently flat trajectory for inflation. This
R-symmetry, usually realised as a U(1)R or potentially by a discrete subgroup of it, leads
to light components of the adjoint Φ, as we now discuss.

3 Masses of the light triplets and octets

As emphasised above, within the supersymmetric framework, the R-symmetry plays an
essential role in realizing inflation. However, a consequence of this symmetry is that it
leads, in the limit of unbroken global SUSY, to massless states originating from the adjoint
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superfield, which breaks the GUT symmetry. Recall that under the SM, the adjoint of
SU(5) decomposes in the following way:

Φ(24) = O(8, 1)0 ⊕ T (1, 3)0 ⊕X(3, 2)−5/6 ⊕X(3, 2)5/6 ⊕ ϕ(1, 1)0. (3.1)

Once SU(5) is broken, the X +X supermultiplets get eaten up. The requirement that the
scalar potential is minimised guarantees a GUT scale mass for the SM singlet, and due to
SUSY, also for its fermionic partner. However, both the scalar and the fermionic partners
of the colour octet, O, and the weak triplet, T , remain massless. This can be easily seen
from the inflationary superpotential given in Eq. (2.1). Let us consider the corresponding
fermionic part of the Lagrangian for the octet and the triplet,

L ⊃ S
[
f̃1,O(⟨Φ⟩)ÕÕ + f̃1,T (⟨Φ⟩)T̃ T̃

]
+ f3(Ni)

[
f̃2,O(⟨Φ⟩)ÕÕ + f̃2,T (⟨Φ⟩)T̃ T̃

]
+H.c. . (3.2)

In the above, Õ and T̃ stand for the fermionic components of the octet and triplet while
−2f̃i,𭟋 ≡ ∂2𭟋fi. In the global SUSY minimum, we have ⟨S⟩ = ⟨Ni⟩ = 0, resulting (for cases
where f3 goes to zero for Ni = 0) in massless fermionic as well as scalar states. Note that
this is a quite general feature of U(1)R symmetric GUTs, as shown in Refs. [27, 28].

Supersymmetry, however, must be broken in nature. Subsequently, the above-mentioned
massless states obtain masses of the order of the gravitino mass, i.e., mÕ,T̃ ∼ O(m3/2) (cf.
e.g. [52]). The computation of their masses requires the knowledge of the soft-breaking sec-
tor and the mediation to the visible sector. For the sake of the argument, we assume SUSY
breaking via gravity mediation by an unspecified hidden sector. Then, the superpotential
consists of the observable and the hidden sector parts,

W =WO +WH, (3.3)

and we may consider the following Kähler potential:

K = KH + S†S + ϕ†ϕ+
κ

m2
Pl

S†S ϕ†ϕ+
α

m2
Pl

(S†S)2 +
β

m2
Pl

(ϕ†ϕ)2

+
Ω†Ω

m2
Pl

(
ηSS

†S + ηϕϕ
†ϕ
)
+ ... . (3.4)

Here Ω stands for the SUSY breaking hidden sector field, and ϕ is the SM-singlet of the
adjoint as defined in Eq. (3.1). In this part of the calculation, we can ignore the contributions
from the matter fields since we assume that f3 = 0 for Ni = 0. We then compute the soft
breaking terms in the usual limit mPl → ∞ while keeping m3/2 fixed (cf. [53] eq. (2.209)-
(2.212)):

V =
∣∣∣f1(ϕ)− κM2

∣∣∣2 + S†S
∑
(a)

[ ∂f1
∂ϕ(a)

∂(f∗1 )

∂ϕ∗(a)

]
ϕ
+ λϕm

2
3/2ϕ

†ϕ+ λSm
2
3/2S

†S

+m3/2

[
λWW + λ∂f1Sϕ

∂f1
∂ϕ

+ λ3S(S
†S) + c.c.

]
. (3.5)

– 6 –



The coefficients λi’s are of order one and depend on ⟨Ω⟩/mPl and ⟨ϕ⟩/mPl .(a) is an
adjoint SU(5)-index. Once the complete hidden sector is specified, these coefficients become
explicitly calculable. One condition for the minimum of V is that its derivative ∂S†V with
respect to S† vanishes, which yields

∂S†V = S

(∑
(a)

[ ∂f1
∂ϕ(a)

∂(f∗1 )

∂ϕ∗(a)

]
ϕ
+ λSm

2
3/2

)
+m3/2

[
− λ∗WFS + λ∗∂f1ϕ

∂f∗1
∂ϕ∗

]
+m3/2

[
λ3S

2 + 2λ∗3SS
†
]

!
= 0. (3.6)

Since Eq. (3.6) is violated for FS = 0 and ⟨S⟩ = 0 (corresponding to Fϕ(a)
= 0), we conclude

that the soft breaking terms induce slight shifts to ⟨ϕ⟩ and ⟨S⟩. To estimate the masses
of the octet and the triplet, we need to determine the order of ⟨S⟩. To this end, we first
expand f1

f1(ϕ) = ϕ2
(∑

i≥0

ci

(ϕ
Λ

)i)
, (3.7)

which leads to
∂f1
∂ϕ

= ϕ

(∑
i≥0

ci(2 + i)
(ϕ
Λ

)i)
. (3.8)

For simplicity, we will replace ϕ with MGUT in the following and shall ignore the shift
induced on ⟨ϕ⟩. Defining εΛ ≡MGUT/Λ and using the fact that MGUT ≫ m3/2, the vev of
S turns out to be

⟨S⟩ ∼ m3/2ε
−n
Λ , n ≡ min{ i |ci ̸= 0}. (3.9)

Applying the expansion Eq. (3.7) and substituting the vev of S from Eq. (3.9) to Eq. (3.2),
we finally obtain the masses of the triplets and the octets of order the gravitino mass,

L ⊃ S
[
f̃1,O(⟨Φ⟩)ÕÕ + f̃1,T (⟨Φ⟩)T̃ T̃

]
+H.c. ∼ m3/2(ÕÕ + T̃ T̃ ) +H.c. . (3.10)

On the one hand these light relics represent interesting signatures of the underlying GUT
theory, potentially testable at colliders. On the other hand, they tend to disturb the
otherwise “automatic” gauge coupling unification in the MSSM.

4 Gauge Coupling Unification in the Presence of Light Triplets and
Octets

With only extra light triplets and octets in the spectrum, in addition to the MSSM, the
successful gauge coupling unification (GCU) is spoiled, as depicted in Fig. 1. In order
to restore GCU, we introduce additional conjugate pairs of chiral supermultiplets. It is
suggested in Refs. [29, 48, 51] that multiple copies of the following vectorlike pairs of chiral
supersymmetric states may be used for restoring gauge coupling unification:

5 + 5 =
{
D(1, 2)−1/2 ⊕ T (3, 1)1/3

}
+
{
D(1, 2)1/2 ⊕ T (3, 1)−1/3

}
, (4.1)

10 + 10 =
{
E

c
(1, 1)−1 ⊕Q(3, 2)−1/6 ⊕ U

c
(3, 1)2/3

}
+
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Figure 1. Running of the gauge couplings in the presence of SUSY scale triplets and octets. The
dashed lines represent the successful gauge coupling unification in the MSSM scenario at around
2× 1016 GeV. The SUSY scale is taken to be 3 TeV.

{
Ec(1, 1)1 ⊕Q(3, 2)1/6 ⊕ U c(3, 1)−2/3

}
. (4.2)

Since a complete GUT multiplet cannot affect the running of the gauge couplings, it is
necessary to split the submultiples such that some components reside much below the GUT
scale. However, this splitting, achieved in an ad hoc way by adjusting the coefficients of
some superpotential operators, introduces additional severe fine-tuning. For example, let
us focus on a pair of vectorlike chiral supermultiplets 5+5, and consider, e.g., the following
terms in the superpotential:

δW d=3 ⊃ m555 + λ5(5)
A(Φ)BA(5)B, (4.3)

with A,B = 1, ..., 5 being fundamental SU(5) indices. The above terms are sufficient to
split the lepton-like components from the down-quark type components due to the relative
Clebshes, when the parameters m5 and λ5 are finely adjusted. However, we would like to
avoid such tuning. Therefore, we will propose a mechanism to realise the needed splitting.

We first discuss the restoration of gauge coupling unification within our scenario. For
this purpose, we consider the following set of states (with α = 1, 2) that live below the
GUT scale:

D
′
(1, 2)−1/2 +D′(1, 2)1/2 + Ec

α(1, 1)1 + E
c
α(1, 1)−1 ⊕ Tα(3, 1)1/3 + Tα(3, 1)−1/3

+Qα(3, 2)1/6 +Qα(3, 2)−1/6 + U
c
α(3, 1)2/3 + U c

α(3, 1)−2/3. (4.4)

The origin of these submulitplets will be discussed in the next subsections. We assume that
Qα+Qα+Uα+Uα and Tα+Tα have masses of similar order, which we denote by M10 and
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α1
-1

α2
-1
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Figure 2. Running of gauge couplings at two-loop. As discussed in the text, the effects of
the Yukawa couplings and threshold corrections are neglected. The SUSY scale is taken to be
3TeV, mPl is the reduced Planck mass, and the rest of the mass scales are set with respect to the
benchmark point of Table I.

MT , respectively. Furthermore, we take D′ +D
′ to have SUSY scale masses, which will be

justified in Sec. 4.1. The mass scaleME of the singly charged states Ec
α+E

c
α is taken as a free

parameter. Therefore, there are five parameters (M10,MT ,ME , g5,MGUT) to obtain gauge
coupling unification and fit the low-scale (MZ) measured values of (g1, g2, g3) for a given
SUSY-scale mS . In Table I, we present an example (benchmark point) where successful
gauge coupling unification. The corresponding β-functions are given in Appendix B, and
the restoration of the gauge coupling unification is depicted in Fig. 2.

Note that, for the benchmark point, ME is less than one order of magnitude above the
SUSY scale. This is partially due to the fact that the one-loop β-functions of the octet, the
triplets, the electron-like states, and the lepton-like doublets (see Appendix B) add up to

bTa + bOa + 2bD
′

a + 4bE
c
α

a =

3

3

3

 , (4.5)

thus approximately restoring automatic GCU of the MSSM. This was already pointed out
in Ref. [29] in a similar context and in Refs. [54–56] in the context of the little hierarchy
problem.

The presence of a “desert” between ME and MT,10 suggest that in a such a setup only
two scales are of importance, namely the SUSY scale mS and the GUT scale MGUT.

4.1 Double Missing Partner Mechanism

We first elude the origin of Tα + Tα and D′ +D
′, and how the splitting is achieved via the

MPM [34, 35] or rather its extended version, namely, the DMPM [36–38]. To that end, we
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Benchmark Point
mS g5 MGUT ME MT M10

3.00× 103 1.45 1.90× 1017 2.81× 104 1.30× 1016 1.33× 1016

Table I. A benchmark point for achieving gauge coupling unification at two-loop; see text for
details. All mass scales are given in GeV.

introduce, on top of the usual content of an SUSY-SU(5) GUT, two pairs of 50+ 50 Higgs
multiplets, namely, 50X + 50X + 50Y + 50Y , as well as one pair of 5′ + 5

′ Higgs multiplet,
and consider the following superpotential:

WDMPM =
α2

Λ
5′(Φ2)7550X +

α4

Λ
5
′
(Φ2)7550Y

+
α1

Λ
5H(Φ2)7550Y +

α3

Λ
5H(Φ2)7550X (4.6)

+MX50X50X +MY 50Y 50Y ,

+ δWeff ,

where
δWeff = µH5H5H + µ′5′5

′
, (4.7)

and
mS ∼ µH ≲ µ′ ≪ αiv

2
24/Λ ≪MX,Y ∼ mPl, (4.8)

where v24 is defined in the Appendix A (see Eq. (A.5)). The smallness of µH and µ′

could be explained similarly as the smallness of the MSSM µ-term, e.g. by introducing
higher dimensional operators à la Froggatt-Nielsen [57] or by realising a Giudice-Masiero-
like mechanism [58] and thus tying the doublet masses to the SUSY scale. Regarding the
latter option, one may e.g. consider the following additional terms in the Kähler potential,

δK =
Z†
H

Λ5
5H5H +

Z ′†

Λ5
5
′
5′ + c.c., (4.9)

where ZH and Z ′ obtain F -terms in the process of SUSY breaking. Plugging in these F-
terms and integrating over d2θ̄ superspace leads to the above listed effective superpotential
terms, with µH and µ′ of the order of the SUSY scale. However one should keep in mind
that SUSY is broken and there are additional terms in the Lagrangian.

Note that from a model-building perspective it can be favourable to generate MX,Y via
SU(5) singlets getting a Planck-scale vev. Defining

TH + TH ⊂ 5H + 5H , T ′ + T
′ ⊂ 5′ + 5

′
,

TX + TX ⊂ 50X + 50X , TY + T Y ⊂ 50Y + 50Y , (4.10)
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once Φ acquires a vevs, one is left with the following superpotential for the doublets and
triplets:

W eff
DMPM =

(
TH T ′ TX TY

)
µH 0 0 α1v

2
24/Λ

0 µ′ α2v
2
24/Λ 0

α3v
2
24/Λ 0 MX 0

0 α4v
2
24/Λ 0 MY


︸ ︷︷ ︸

≡MT


TH

T
′

TX

T Y



+
(
Hu D

′
)(µH 0

0 µ′

)
︸ ︷︷ ︸

≡MD

(
Hd

D
′

)
. (4.11)

The states from the 50s that are not present in Eq. (4.11), all get masses of order MX,Y .
Labelling the mass eigenstates of MT by Tm+Tm, m = 1, ..., 4, we expect T3,4+T 3,4 to be
heavy, i.e., of order MX,Y , while T1,2 + T 1,2, mainly originating from 5′ + 5

′ and 5H + 5H ,
intermediate-scale mass MT < MGUT. By neglecting µH and µ′, one obtains

(MT )1(MT )2(MT )3(MT )4 = det(MT ) = α4
(v224

Λ

)4
, (4.12)

where, we have defined α as the geometric mean of α1, . . . , α4 and (MT )m are the mass
eigenvalues of MT . Therefore, we expect MT of order

MT ∼ α2 M4
GUT

Λ2MX,Y
. (4.13)

Eq. (4.13) relates MGUT and MT to MX,Y and the messenger scale Λ. One thus has to
check whether it is possible to accommodate MX,Y and Λ below mPl, and inspect their
implications for perturbativity. However in the case of the values of Table I this possible.

Now, comparing Eq. (4.11), Eq. (4.8), and Eq. (4.13), we thus conclude that the dou-
blets remain light, whereas the triplets acquire superheavy masses somewhat below the
GUT scale. Additionally, this splitting suppresses dimension five nucleon decay. Since the
MSSM species only couple to TH+TH , the effective triplet mass, relevant for nucleon decay,
is M eff

T ≡
(
(M−1

T )11
)−1, which is given by [37]:

M eff
T ∼ v824α

4

µ′MXMY Λ4
≈

M2
T

MD′
. (4.14)

Then the decay width of the proton can be approximately written as (cf. [59] and references
therein),

Γp ≈ |A|2m5
p, AD=5 ≈

g25
(4π)2

yuyd

M eff
T mS

. (4.15)

A crude estimate for the values of Tab. I then yields a proton lifetime of

τp ∼ 1056 years, (4.16)

which is far out of reach of any current/planned future experiment thus rendering the
dimension 6 contributions dominant.
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4.2 Generalised Missing Partner Mechanism

In this subsection, by extending the concept of the Missing Partner Mechanism, we show
how to obtain light Eα + Eα states naturally. To realise this, we introduce two pairs of
conjugate chiral 40-plets 40I + 40I (with I = 1, 2) and two pairs of conjugate 10’s. Thus,
including the SM fermions, we now have five families of 10a, where a = 1, ...5 and two
generations of 10I with I = 1, 2. The superpotential we consider takes the following form:

WEMPM = (Y40)IJ40IΦ10J + (Y40)Ia40IΦ10a

+ (M40)IJ40I40J + δWeff , (4.17)

where
δWeff = (mE)Ia10I10a. (4.18)

As in equations (4.6) and (4.7), δWeff should be understood as in principle forbidden, only
to be reintroduced via some mechanism as to justify

m3/2 ≲ (mE)IJ ≪ v24(Y40,40)IJ ≪ (M40)IJ , (4.19)

where it may, from a model building perspective, be favourable to generate M40 via the
vev of a singlet superfield. Note that in the case of a Giudice-Masiero-like mechanism, the
slight difference between mE and µ′/µH can originate form various sources. Writing

δK ⊂ Z†
10

Λ10
10a(yZ,E)aI10I , (4.20)

and comparing it to (4.9), the order of magnitude difference between mS and ME in Fig. 2
can be explained e.g. from ⟨Z10⟩ > ⟨Z5⟩, ⟨FZ5⟩ > ⟨FZ10⟩, or due to Λ5 > Λ10 arising due
to a different origin of the different operators. The representation 40 of SU(5) decomposes
under GSM as

40 = Q
40
(3, 2)−1/6 ⊕ U

c,40
(3, 1)2/3 ⊕Π(3, 3)2/3

⊕ Σ(8, 1)−1 ⊕Ψ(6, 2)−1/6 ⊕∆(1, 2)3/2. (4.21)

From the above decomposition, it is interesting to note that the coloured submultiplets
residing in 10 have conjugated partners in 40, which however, is not true for the state Ec.
This offers the possibility of getting Ec+E

c states naturally light by generalising the MPM
scheme. Therefore, once Φ acquires a vev, the operator 10aΦ40I only generates masses for
the quark-like states of 40 and 10, i.e.

εABCDE(10a)
[AB](Φ)CF (40I)

[DE]F ⊃ 2
√
10v24
3︸ ︷︷ ︸

≡v′24

(Q
40
I Q

10
a + U

c,40
I U c,10

a ). (4.22)

The explicit decomposition of 40 and our conventions are presented in Appendix A. Once
Φ acquires a vev, we are left with the following mass terms in the superpotential for the
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submultiplets of 10a ⊕ 10I and 40I ⊕ 40I :

Wmass =
(
(Q

10
)T (Q

40
)T
)( mE v′24Y

T
40

v′24Y40 M40

)
︸ ︷︷ ︸

≡MQ

(
Q10

Q40

)

+
(
(U

c,10
)T (U

c,40
)T
)( mE v′24Y

T
40

v′24Y40 M40

)(
U c,10

U c,40

)
(4.23)

+ (E
c
)TmEE

c +ΠTM40Π+ΣTM40Σ+ΨTM40Ψ+∆TM40∆.

Note that MQ is in fact a 4× 7 matrix while mE is a 2× 5 one. Without loss of generality
we can take the following form for mE and Y40:

mE =

(
η11 η21 η31 η4 0

η12 η22 η32 0 η5

)
,

Y40 =

(
y4011 y

40
12 y

40
13 y

40
4 0

y4021 y
40
22 y

40
23 y

40
5 y406

)
, (4.24)

with η4, η5, y404 , y405 and y406 being real and positive. Performing re-phasings and rotations,
one can bring Y40 and mE into the following forms:

mEP (φ
E
11, φ

E
12, φ

E
13)R14(θ

E
14)R24(θ

E
24)R34(θ

E
34)×

×P (φE
21, φ

E
22, φ

E
23)R15(θ

E
15)R25(θ

E
25)R35(θ

E
35) =

(
0 0 0 ME,1 0

0 0 0 ME,2 ME,3

)
(4.25)

≡ mEUE ,

Y40P (φ
40
11, φ

40
12, φ

40
13)R14(θ

40
14)R24(θ

40
24)R34(θ

40
34)×

×P (φ40
21, φ

40
22, φ

40
23)R15(θ

40
15)R25(θ

40
25)R35(θ

40
35) =

(
0 0 0 y401 0

0 0 0 y402 y403

)
(4.26)

≡ Y40U40,

where,
p(α, β, δ) = diag(eiα, eiβ, eiδ, 1, 1, 1, 1), (4.27)

and

Rij(θ) =

(
cos θ sin θ

− sin θ cos θ

)
, (4.28)

stands for rotation in the i− j plane. Defining
ec1
ec2
ec3
Ec

1
′

Ec
2
′

 = U †
E


Ec

1

Ec
2

Ec
3

Ec
4

Ec
5

 ,


uc1
uc2
uc3
U c
1
′

U c
2
′

 = U †
40


U c,10
1

U c,10
2

U c,10
3

U c,10
4

U c,10
5

 , and


q1
q2
q3
Qc

1
′

Qc
2
′

 = U †
40


Q10

1

Q10
2

Q10
3

Q10
4

Q10
5

 , (4.29)
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we may rewrite (4.23) in terms of the new fields:

Wmass ⊃
(
(Q

10
)T (Q

40
)T
)
MQ

(
U40U

†
40
Q10

Q40

)

+
(
(U

c,10
)T (U

c,40
)T
)
MQ

(
U40U

†
40
U c,10

U c,40

)
(4.30)

+ (E
c
)TmEUEU

†
EE

c

=
(
(Q

10
)T (Q

40
)T
)( η Y T

40v
′
24

Ỹ40v
′
24 M40

)
︸ ︷︷ ︸

M′
Q

(
Q′

Q40

)

+
(
(U

c,10
)T (U

c,40
)T
)( η Y T

40v
′
24

Ỹ40v
′
24 M40

)(
U c′

U c,40

)
+ (E

c
)TMEE

c′ + (Q
10
)T η′q + (U

c,10
)T η′uc,

where

Ỹ40 ≡

(
y401 0

y402 y403

)
, ME ≡

(
ME,1 0

ME,2 ME,3

)
, and (η′|η) ≡ mEU40. (4.31)

Note that eci are completely massless while even though uci and qi are not exactly the massless
eigenstates the error is of order O(ME,i/MGUT) and thus negligible. Those states are to be
identified with the ones of the MSSM. We label the mass eigenstates of M′

Q by Qm ⊕Qm

and Um ⊕ Um (m = 1, ..., 4), respectively. Due to the strong diagonal hierarchy, we expect
Q3,4 ⊕Q3,4 and U3,4 ⊕ U3,4 to originate mainly from 40I ⊕ 40I with similar masses to the
other states coming from the same multiplets. On the other hand, Q1,2⊕Q1,2 and U1,2⊕U1,2

mainly originate from 10a ⊕ 10I and have somewhat smaller masses. Labelling the masses
of theses eigenstates by (M′

Q)m they can be estimated by considering the determinant of
M′

Q:

det(M′
Q) = (M′

Q)1(M′
Q)2(M′

Q)3(M′
Q)4

= det(M40) det(η − v′224Y
T
40M

−1
40 Ỹ40)

∼ v′424, (4.32)

where in the last step, we have neglected η, and assumed that det(Y40,40) ∼ O(1) 3. Utilising
(M)3,4 are of the same order as the entries of M40, say (M)3,4 ∼ m40, we deduce that

M10 ∼ (M)1,2 ∼MGUT

(
MGUT

m40

)
. (4.33)

Thus (4.33), together with (4.13) and the suppressed dimension-full parameters of δWeff

give rise to a “desert” as seen in Fig. 2 and Tab. I.
3Additionally one also has to assume that M40 is non-singular.
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Note that Eq. (4.33) relates M10 and MGUT to M40. Therefore, one has to check
whether values of M10 and MGUT are consistent with the eigenvalues of M40 being below
mPl, and determine the scale up to where the unified gauge coupling remains perturbative
(ideally up to mPl). For the benchmark point in Tab. I, this is satisfied.

5 Fermion Masses

In the previous section, to restore the gauge coupling unification, we have introduced vector-
like fermionic states (and of course their scalar partners) with quantum numbers identical
to the SM fermions, i.e., ec, q, uc. It is interesting to note that these same states can be
utilised to correct the wrong mass relations between the charged leptons and the down-type
quarks due to mixing effects. For previous works on correcting fermion mass relation by
employing vectorlike states, see, e.g., Refs. [60–72].

In addition to the superpotential terms given in Eq. (4.17), the following Yukawa in-
teractions contribute to the fermion masses,

WY =
1

8
(Yu)ab10a10b5H + (Yd)ia5i10a5H +Wν , (5.1)

where Yu is a 5 × 5 matrix, and Yd is a 3 × 5 matrix. Moreover, the part Wν provides
neutrino masses, which we do not specify in this work. On top of the textures of (4.24) we
may assume without loss of generality

Yd =

y1 0 0 0 0

0 y2 0 0 0

0 0 y3 0 0

 , (5.2)

with real positive entries only. The MSSM Yukawas are now easily determined by deriving
how the light states couple to Hd and Hu. We use R-L convention in the following, i.e.

WMSSM = (YMSSM
d )ijd

c
i Hd · qj − (YMSSM

u )iju
c
i Hu · qj

+ (YMSSM
e )ije

c
i Hd · ℓj + µMSSMHu ·Hd . (5.3)

The SU(2) contractions are defined by ψ·ξ ≡ εabψ
aξb with ε the two dimensional Levi-Civita

tensor4. The MSSM couplings are given by (see Appendix A for our SU(5) conventions)

(YMSSM
d |∗) ≡ YdU40, (YMSSM T

e |∗) ≡ YdUE , µMSSM = −µH , (5.4)

and (
YMSSM
u ∗
∗ ∗

)
≡ UT

40
YuU40 . (5.5)

Thus YMSSM
u is a generic 3× 3 matrix. Explicit computation for YMSSM

d yields

YMSSM
d =

y1e
i(φ40

11+φ40
21)c4014c

40
15 O(y1) O(y1)

0 y2e
i(φ40

12+φ40
22)c4024c

40
25 O(y2)

0 0 y3e
i(φ40

13+φ40
23)c4034c

40
35

 , (5.6)

4We take ε12 = 1.
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and analogously for the charged leptons

YMSSM
e =

y1ei(φ
η
11+φη

21)cη14c
η
15 0 0

O(y1) y2e
i(φη

12+φη
22)cη24c

η
25 0

O(y1) O(y2) y3e
i(φη

13+φη
23)cη34c

η
35

 . (5.7)

These above matrices contain enough free parameters to correct the mismatch between
down-type quark and charged lepton masses as required by the experimental data.

6 Phenomenology of Light Relics

Light relic states, with masses around the SUSY scale, are a characteristic feature of the
proposed scenario. In the following, we discuss present constraints on them and some of
the observational signatures.

We note that within our scenario, the global U(1)R symmetry is broken by the SUSY
breaking sector, which may leave a discrete Z2 symmetry unbroken that can serve as R-
parity. This leftover symmetry can stabilize the lightest supersymmetric particle (LSP),
which is then a suitable DM candidate. If the LSP does not provide the whole DM abun-
dance, within our considered scenario there could be additional stable neutral states that
may contribute to the DM relic density, as will be discussed below.

We now discuss the phenomenology of the light relics of our scenario:

1. Colour Octet:– At the LHC, colour octets can be efficiently pair-produced via
QCD interactions. They hadronize prior to decay, forming so-called R-hadrons [73] that
are bound states composed of the octet and light quarks, antiquarks, and gluons. In our
scenario, they are expected to be very long-lived (with details depending on the specific
model).5 The collider signature of such coloured long-lived particles (CLLPs) are missing
ET and a track in the calorimeter due to the small energy deposit. Non-observation at the
LHC so far leads to a 95%CL bound of about 2 TeV [80] for stable gluino R-hadrons. We
can assume constraints on the (fermionic and scalar) colour octet relics from the adjoint of
similar order.

Regarding cosmological constraints, the CLLPs confine into R-hadrons below the con-
finement temperature (Tc ∼ 200 MeV). Subsequently, bound states of them are formed due
to an unsuppressed rate of the capture process. These bound states with initially large an-
gular momentum, L, lose energy and angular momentum by emitting pions and/or photons
and finally decay. To avoid conflict with observations, this decay should happen before big
bang nucleosynthesis (BBN). For the case of R-hadrons associated with gluinos, assumed to
dominantly lose energy via loop-suppressed photon processes, the lifetime can be estimated

5An exception would be if there is a term which leads to a mixing between the octets and the gluinos.
In this case they could decay rather fast into two gluinos (or into a gluon and a gluino in the case of
the fermionic superpartner). Such terms could be achieved by introducing a gauged U(1) in the hidden
sector with non-vanishing D-term and an operator of the form

∫
d2θWα

U(1)Tr(WSU(5),αΦ). See [74–79] for
literature on such soft-terms.
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as [81]

τ ∼ 4πm6

α2Λ7
had

(
TB
Λhad

)7/3

. (6.1)

Using Λhad ∼ GeV, TB ∼ Tc, and standard cosmology, the decay occurs before BBN for
m ≲ 2.5 TeV. Hence, colour octet masses ≳ 2.5 TeV are ruled out by (standard) cosmology.
However, this bound might be relaxed when the loss of energy of the bound states via pions
is included/allowed (which has not been considered in Ref. [81]).

In summary, there is currently an interesting window of octet masses between about 2
TeV and 2.5 TeV which is untested. A discovery of a CLLP signal at future collider searches
within this mass window could provide a smoking gun signal of the scenario.6

2. Weak Triplet and Doublets:– In the minimal version of our model, the weak
doublets and triplets do not interact with SM fermions/scalars, they have only electroweak
gauge interactions. In such a scenario, we refer to them as “inert” and they mimic the mini-
mal dark matter candidates, as considered in Ref. [82–84]. However, additional interactions
with the SM sector can be induced by allowing higher dimensional terms (e.g. by additional
Giudice-Masiero Kähler potential terms generating a mixing with the other doublets).

Due to only gauge interactions, as for the minimal DMs, at the tree-level, the neutral
as well as the charged components remain degenerate in mass. However, loop corrections
involving gauge bosons typically make the charged components slightly heavier than the
neutral one [82]. For the case of weak doublet (triplet), this mass splitting is of order
∆m ∼ 350 (166) MeV.

To achieve the correct DM relic abundance, the mass of the neutral component of the
doublet needs to be mDM ∼ 1100 (540) GeV for the case of fermionic (scalar) DM [82].
Since these doublets have non-zero hypercharge, they have vectorlike interactions with
the Z-boson, leading to a tree-level spin-independent elastic cross-section, a few orders of
magnitude above the current direct detection bounds. This stringent constraint from dark
matter direct detection can be avoided if additional interactions are introduced. We assume
such terms in the following.

On the other hand, a weak triplet with zero hypercharge is a viable candidate even
with minimal interactions. Reproducing DM relic density demands the DM mass to be
∼ 2000 (2400) GeV for a scalar (fermion) triplet DM [82]. Since non-perturbative effects,
such as Sommerfeld enhancement and bound-state effects, increase the annihilation cross-
section, a slightly higher DM mass is required to satisfy the relic abundance, e.g., a fermionic
DM mass of ∼ 2700 GeV does the job [85]. Note, however, that since we may have multiple
candidates for dark matter, each of these states must have masses below the numbers quoted
above not to overproduce the total dark matter relic abundance.

Of course, as commented above, these cosmological constraints could also be avoided
in case of a non-standard cosmology scenario, e.g. if there is late-time entropy production

6Of course, the situation would change in case of a non-standard cosmological history, e.g. if there is
late-time entropy production to sufficiently dilute the R-hadrons. Then the cosmological bounds could be
much weaker, and also heavier colour octets are possible.
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that sufficiently dilutes the relic densities. Moreover, all cosmological bounds can be re-
moved/relaxed by including higher dimensional terms to allow these states to mix with the
visible sector.

Note that both the charged and the neutral components of the weak triplet and the weak
doublets can get efficiently produced at colliders via Drell-Yan processes due to their elec-
troweak interactions. The small mass splitting between the DM components, as aforemen-
tioned, makes charged components long-lived, allowing them to leave charged tracks in the
detector. For both scalar and fermionic scenarios, the produced charged components domi-
nantly decay to DM (giving rise to missing energy) and charged pions, DM± → DM0π± [83].
This signal has been searched at the LHC that can exclude chargino masses as high as 1070
GeV [86] with lifetimes τ ∼ 10− 100 ns. However, as estimated in Ref. [82, 83], the typical
lifetime of such charged particles that we are interested in is of order τ ∼ 0.001 − 0.1 ns,
for which the above-mentioned LHC search is not applicable.

3. Vectorlike Weak-singlet Charged Leptons:– Current collider constraints on
vectorlike lepton iso-singlets are in the mass range between 125−150 GeV at 95% C.L. [87],
coming from direct searches with multiple leptons and/or b-tagged jets as final states. In
addition, a characteristic signature of the vectorlike weak-singlet charged leptons is charged
lepton flavour violation and non-universality induced by a modification of the Z- and W -
couplings to leptons, which are however estimated to be outside the sensitivities of current
experiments. The modification of the Z- and W -couplings comes from the mixing between
the vectorlike states and the SM leptons. The same mixing also leads to quick decays of
them, meaning that there are no obvious cosmological constraints on their properties.

7 Conclusions

Embedding inflation into GUTs is motivated by the potential proximity of the involved
energy scales as well as by the necessity to dilute the monopoles produced from GUT
symmetry breaking. Such an embedding usually employs an R-symmetry that enables a
sufficiently flat field direction for slow-roll inflation. Examples include models of shifted or
smooth versions of SUSY Hybrid Inflation, where the inflaton is a gauge singlet “driving”
field, pseudosmooth realisations of Tribrid Inflation, where the inflaton resides in the (po-
tentially gauge non-singlet) matter sector of the theory, and realisations of SUGRA New
Inflation, hilltop inflation where the singlet component of adjoint 24-plet of SU(5) plays
the role of the inflaton while breaking the GUT symmetry. All such models can successfully
realise inflation and do not produce monopoles or other topological defects when inflation
ends (and efficiently dilute previously produced defects).

It is known that when the R-symmetry is only broken by SUSY breaking effects in the
inflation sector, there are comparatively light states in the particle spectrum. In the case of
SU(5) GUTs, these are a weak triplet and a colour octet from the adjoint representation,
which acquire masses of the order of the SUSY scale (e.g. of some TeV). Although these light
relics represent interesting signatures of the underlying GUT theory, potentially testable
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at colliders, they are often viewed as problematic, since they tend to disturb the otherwise
“automatic” gauge coupling unification in minimal SUSY extensions of the SM.

We have presented a novel “Generalized Missing Partner Mechanism” (GMPM), leading
to a new scenario where this and other challenges of GUTs are resolved without excessive
fine-tuning of parameters. The GMPM splits the components of two extra vectorlike 10-
plets, by generating their masses via “missing partner” couplings to a vectorlike 40-plet,
resulting into light singly charged vectorlike component fields whereas the other 10-plet
components are heavy. Together with light doublets from the “Double Missing Partner
Mechanism” (DMPM), which realises doublet-triplet splitting of the 5-plets containing the
MSSM Higgs representations, and the light colour octet and weak triplet states from the
24-plet, the β functions of the gauge couplings change in a way that the “automatic” gauge
coupling unification of the MSSM is maintained.

Furthermore, the vectorlike 10-plets simultaneously enable realistic fermion mass rela-
tions, and the DMPM ensures that dimension five nucleon decay is suppressed. We also
discussed present constraints on the scenario from particle physics experiments and cos-
mology. A discovery of signatures of the light relic states at future colliders or precision
experiments could provide “smoking gun” signals of the scenario.

A Explicit Decomposition of 40 into SU(5) Tensors

The representations 40 has three fundamental indices,

40
[AB]C with A,B,C = 1, ..., 5 , (A.1)

where the tensor is anti-symmetric under A ↔ B. We denote the individual fields as in
(4.21) and identify

λ3 = diag(1/2,−1/2, 0, 0, 0),

λ8 = diag(1/(2
√
3), 1/(2

√
3),−1/

√
3, 0, 0),

I3 = diag(0, 0, 0, 1/2,−1/2), (A.2)

Y = diag(−1/3,−1/3,−1/3, 1/2, 1/2).

Choosing a normalisation such that

40
[AB]C

(40
†
)[AB]C = Q

i
Q

†
i + U

ci
U

c†
i +ΠiΠ†

i +ΣiΣ†
i +ΨiΨ†

i +∆i∆†
i , (A.3)

40
[AB]C is explicitly given by

40
[AB]1

=



0 Σ1√
2

Σ3√
2

Ψ1√
2

Ψ2√
2

0 Σ7

2
√
3
+ Σ8

2
Q1

2
√
3
+ Ψ7

2 − Q3

2
√
3
+ Ψ9

2

0 − Q2

2
√
3
+ Ψ8

2
Q5

2
√
3
+ Ψ11

2

0 −U
c
1√
3

0


,
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40
[AB]2

=



0 Σ2√
2

Σ7√
3
− Q1

2
√
3
+ Ψ7

2
Q3

2
√
3
+ Ψ9

2

0 Σ4√
2

Ψ3√
2

Ψ4√
2

0 Q4

2
√
3
+ Ψ10

2 − Q6

2
√
3
+ Ψ12

2

0 −U
c
2√
3

0


,

40
[AB]3

=



0 Σ7

2
√
3
− Σ8

2
Σ5√
2

Q2

2
√
3
+ Ψ8

2 − Q5

2
√
3
+ Ψ11

2

0 Σ6√
2
− Q4

2
√
3
+ Ψ10

2
Q6

2
√
3
+ Ψ12

2

0 Ψ5√
2

Ψ6√
2

0 −U
c
3√
3

0


, (A.4)

40
[AB]4

=



0 −Q1√
3

Q2√
3

Π1√
2
− U

c
1

2
√
3
+ Π7

2

0 −Q4√
3

Π2√
2
− U

c
2

2
√
3
+ Π8

2

0 Π4√
2
− U

c
3

2
√
3
+ Π9

2

0 ∆1√
3

0


,

40
[AB]5

=



0 Q3√
3
−Q5√

3

U
c
1

2
√
3
+ Π7

2
Π3√
2

0 Q6√
3

U
c
2

2
√
3
+ Π8

2
Π5√
2

0 U
c
3

2
√
3
+ Π9

2
Π6√
2

0 ∆2√
2

0


.

The individual quantum numbers under λ3, λ8, I3 and Y are given in Table II.

Table II: Charges of the individual components of 40 as given
by eq. (A.4). Our convention for the SM Casimirs are given
in (A.2).

Begin of Table II
Fields λ3 λ8 I3 Y

Q(3, 2)−1/6

Q1 0 1√
3

1
2 −1

6

Q2
1
2 − 1

2
√
3

1
2 −1

6

Q3 0 1√
3

−1
2 −1

6

Q4 −1
2 − 1

2
√
3

1
2 −1

6

Q5
1
2 − 1

2
√
3

−1
2 −1

6

Q6 −1
2 − 1

2
√
3

−1
2 −1

6

U
c
(3, 1)2/3
U

c
1

1
2

1
2
√
3

0 2
3
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Continuation of Table II
Fields λ3 λ8 I3 Y

U
c
2 −1

2
1

2
√
3

0 2
3

U
c
3 0 − 1√

3
0 2

3

Π(3, 3)2/3
Π1

1
2

1
2
√
3

1 2
3

Π2 −1
2

1
2
√
3

1 2
3

Π3
1
2

1
2
√
3

−1 2
3

Π4 0 − 1√
3

1 2
3

Π5 −1
2

1
2
√
3

−1 2
3

Π6 0 − 1√
3

−1 2
3

Π7
1
2

1
2
√
3

0 2
3

Π8 −1
2

1
2
√
3

0 2
3

Π9 0 − 1√
3

0 2
3

Σ(8, 1)−1

Σ1
1
2

√
3
2 0 −1

Σ2 −1
2

√
3
2 0 −1

Σ3 1 0 0 −1

Σ4 −1 0 0 −1

Σ5
1
2 −

√
3
2 0 −1

Σ6 −1
2 −

√
3
2 0 −1

Σ7 0 0 0 −1

Σ8 0 0 0 −1

Ψ(6, 2)−1/6

Ψ1 1 1√
3

1
2 −1

6

Ψ2 1 1√
3

−1
2 −1

6

Ψ3 −1 1√
3

1
2 −1

6

Ψ4 −1 1√
3

−1
2 −1

6

Ψ5 0 − 2√
3

1
2 −1

6

Ψ6 0 − 2√
3

−1
2 −1

6

Ψ7 0 1√
3

1
2 −1

6

Ψ8
1
2 − 1

2
√
3

1
2 −1

6

Ψ9 0 1√
3

−1
2 −1

6

Ψ10 −1
2 − 1

2
√
3

1
2 −1

6

Ψ11
1
2 − 1

2
√
3

−1
2 −1

6

Ψ12 −1
2 − 1

2
√
3

−1
2 −1

6

∆(1, 2)3/2
∆1 0 0 1

2
3
2

∆2 0 0 −1
2

3
2
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Continuation of Table II
Fields λ3 λ8 I3 Y

End of Table II

We take the vev of Φ to be aligned along

⟨Φ⟩ = v24diag(−2,−2,−2, 3, 3)/
√
30. (A.5)

Further we take the following decomposition for the Georgi-Glashow Model fields:

10[AB] =


0 uc3 −uc2 u1 d1

0 uc1 u2 d2
0 u3 d3

0 ec

0

 , (A.6)

5A =
(
dc1 d

c
2 d

c
3 e −ν

)T
, (A.7)

(5H)A =
(
T1 T2 T3 H

+
u H0

u

)T
, (A.8)

(5H)A =
(
T 1 T 2 T 3 −H−

d H0
d

)T
. (A.9)

B Two-Loop β-Functions for Gauge Couplings

The two-loop RGE are given in Ref. [88] (cf. also [89] for an overview). For a direct product
gauge group at two-loop we have

µ
dga
dµ

=
1

(4π)2
β(1)ga +

1

(4π)4
β(2)ga , (B.1)

with
β(1)ga = g3a

(∑
Ra

S(Ra)− 3C(Ga)
)
, (B.2)

and

β(2)ga = g3a

{
− 6g2a

(
C(Ga)

)2
+ 2g2aC(Ga)

∑
Ra

S(Ra) + 4
∑
Ra,Rb

g2bS(Ra)C(Rb)
}
+O(g3aY

2).

(B.3)
Here, S(Ra) denotes the Dynkin index summed over all chiral multiplets, whereas C(Ra)

(C(Ga)) is the quadratic Casimir invariant summed over all chiral (vector) multiplets. Thus
the two-loop gauge coupling RGEs for the SM gauge group can be written in terms of a
three dimensional vector and a three by three matrix:

µ
dga
dµ

=
1

(4π)2
bag

2
a +

g3a
(4π)4

3∑
b=1

Babg
2
b . (B.4)
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The MSSM has the following values for ba and Bab:

bMSSM
a =

33/5

1

−3

 and BMSSM
ab =

199
25

27
5

88
5

9
5 25 24
11
5 9 14

 . (B.5)

The additional fields contribute in the following way:

bTa =

0

2

0

 and BT
ab =

0 0 0

0 24 0

0 0 0

 . (B.6)

bOa =

0

0

3

 and BO
ab =

0 0 0

0 0 0

0 0 54

 . (B.7)

bD
′

a =

3/10

1/2

0

 and BD′
ab =

 9
50

9
10 0

3
10

7
2 0

0 0 0

 . (B.8)

bE
c
α

a =

3/5

0

0

 and B
Ec

α
ab =

36/25 0 0

0 0 0

0 0 0

 . (B.9)

bTα
a =

1/5

0

1/2

 and BTα
ab =

 4
75 0 16

15

0 0 0
2
15 0 17

3

 . (B.10)

bU
c
α⊕Qα

a =

9/10

3/2

3/2

 and B
Uc
α⊕Qα

ab =

43
50

3
10

24
5

1
10

21
2 8

3
5 3 17

 . (B.11)

Once the gauge couplings are run down to the SUSY scale they have to be converted from
the DR to the MS normalisation scheme, which can be done using [90]

gMS = gDR

(
1−

g2
DR

96π2
C(G)

)
. (B.12)
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