
ar
X

iv
:2

30
8.

12
71

5v
1 

 [
he

p-
ph

] 
 2

4 
A

ug
 2

02
3

Analysis of the strong decays of SU(3) partners of the Ω(2012) baryon
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Abstract

We estimate the coupling constants and decay widths of the SU(3) partners of the Ω(2012) hyperon,

as discovered by the BELLE Collaboration, using the light cone sum rules method. Our study includes

a comparison of the obtained results for relevant decay widths with those derived within the framework

of the flavor SU(3) analysis. We observe a good agreement between the predictions of both approaches.

The results we obtain for the branching ratio can provide helpful insights for determining the nature of the

SU(3) partners of the Ω(2012) baryon.
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I. INTRODUCTION

In 2018, the BELLE Collaboration made an exciting announcement regarding the discovery of

the Ω(2012) hyperon. This discovery was based on the Ω∗− → Ξ0K− and Ω∗− → Ξ−K0
s decay

channels, with a measured mass of m = 2012.4 ± 0.7 (stat) ± 0.6 (sys)MeV, and decay width of

Γtot = 6.4+2.5
−2.0 (stat)±1.6 (sys)MeV [1]. However, knowing only the mass of the state is not sufficient

enough to determine the quantum numbers of a state. For instance, within the QCD sum rule

method, the mass of the Ω(2012) baryon is estimated, assuming it to be either 1P or 2S excitation

state [2]. Both assumptions yield the same mass value, although the estimated residues differ.

Thus, additional physical quantities, such as the decay width, are necessary to identify the quantum

numbers of newly discovered particles.

In a previous study [3], the Ω(2012) → Ξ0K− transition was investigated, and its corresponding

decay width was estimated by considering two possible scenarios for Ω(2012): either a 1P or 2S

state. A comparison of the total decay widths obtained in this work led to the conclusion that

the Ω(2012) is itself a JP = 3
2

−
state. Moreover, predictions from various theoretical models also

converge on the likely quantum numbers JP = 3
2

−
for the observed state [4–15].

In this study, considering Ω(2012) as JP = 3
2

−
state, strong couplings of SU(3) partners of this

state are investigated within the framework of light cone sum rules (LCSR). It should be noted that

this problem was also studied in [16] using the flavor SU(3) symmetry approach.

The structure of this paper is as follows: Section II introduces the LCSR for the strong couplings

of the transitions 3
2

− → 1
2

+
+ pseudoscalar mesons. Section III provides a numerical analysis of the

LCSR, focusing on the relevant strong couplings. Within this section, we also present the computed

values of the decay widths based on the obtained coupling constants. Additionally, we compare our

results with those obtained from the flavor SU(3) symmetry method. Finally, our conclusions are

summarized in the last section.

II. LCSR FOR THE STRONG COUPLINGS OF SU(3) PARTNERS OF Ω(2012)

To calculate the strong couplings of SU(3) partners, denoted as 3
2

−
states in the following discus-

sions, we introduce the vacuum-to-octet baryon correlation function:

Πµν(p, q) = i

∫

d4xeiqx
〈

0
∣

∣

∣
T
{

ηµ(0)Jν(x)
}
∣

∣

∣
O(p)

〉

, (1)

where ηµ represents the interpolating current of the decuplet baryons, Jν = q̄1γνγ5q2 is the interpo-

lating current of the pseudoscalar mesons, and |O(p)〉 represents the octet baryon state.
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The interpolating current of the decuplet baryons can be written as:

ηµ=εabcA
{

(

qaT1 Cγµq
b
2

)

qc3 +
(

qaT2 Cγµq
b
3

)

qc1 +
(

qaT3 Cγµq
b
1

)

qc2

}

, (2)

where a, b, c are the color indices, C is the charge conjugation operator, and A is the normalization

factor. The quark content of the decuplet baryons and the normalization factor A are presented in

Table I.

A q1 q2 q3

∆+
√

1
3

u u d

Σ∗+
√

1
3

u u s

Σ∗0
√

2
3

u d s

Σ∗−

√

1
3

d d s

Ξ∗0
√

1
3

s s u

Ξ∗−

√

1
3

s s d

TABLE I: The quark content of the decuplet baryons and the normalization factor A.

To derive the Light Cone Sum Rules (LCSR) for the strong coupling constants, the approach

involves computing the correlation function in two ways: in terms of hadrons and in terms of quark-

gluon fields within the deep Euclidean domain. By applying the quark-hadron duality ansatz, the

relevant sum rules can be derived.

The calculation of the strong coupling constants in the framework of the LCSR is based on the

fact that they appear in double dispersion relation for the same correlation function given in Eq.

(1). In other words, calculating the strong coupling constant requires the use of double dispersion

relation for the correlation function by making use of the axial vector current.

Before delving into the details of the calculations, it is important to highlight the following aspect:

the interpolating current for the decuplet baryons interacts not only with the ground positive parity

states JP = 3
2

+
but also with the negative parity states JP = 3

2

−
and even with states of JP = 1

2

−
.

To eliminate the contributions from unwanted states JP = 3
2

+
and JP = 1

2

−
, a technique involving

linear contributions of different Lorentz structures is employed (for more details about this approach

refer to [17]).

Following the standard procedure, we insert the total set of set of baryons with JP = 3
2

+
into the
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correlation function as well as the corresponding pseudoscalar mesons. Then, we get,

Πµν(p, q)=
∑

i=±

〈

0 |ηµ| 3
2

i
(p′)
〉

m2
i − p′2

〈

3
2

i
(p′)P(q)|O(p)

〉

m2
P − q2

〈0 |Jν(x)| P(q)〉 , (3)

where summation is over positive and negative states, and mP is the mass of the corresponding

pseudoscalar meson. The matrix elements in the above equation are defined as,

〈

0
∣

∣

∣
ηµ

∣

∣

∣

3

2

+

(p′)

〉

=λ+uµ(p
′) ,

〈

0
∣

∣

∣
ηµ

∣

∣

∣

3

2

−

(p′)

〉

=λ−γ5uµ(p
′) ,

〈

3

2

+

(p′)P(q)
∣

∣

∣
O(p)

〉

=g+ūα(p
′)γ5u(p)q

α ,

〈

3

2

−

(p′)P(q)
∣

∣

∣
O(p)

〉

=g−ūα(p
′)u(p)qα ,

〈0 |Jν | P(q)〉=ifPqν , (4)

where λ± are the residues of the related 3
2

±
baryons, g± stands for the coupling constants of the

JP = 3
2

±
baryons with the octet baryons and the pseudoscalar mesons, fP is the decay constant of

the pseudoscalar meson and q denotes its 4-momentum, and uµ(p
′) and u(p) are the Rarita-Schwinger

and Dirac spinors respectively. Performing summation over the spins of the Rarita-Schwinger spinors

with the help of the following formula,

∑

s′

uµ(p
′, s′)ūα(p

′, s′) = −(/p
′ +m)

[

gµα − 1

3
γµγν −

2p′µp
′
α

3m2
+

p′µγα − p′αγµ

3m

]

, (5)

and using Eqs. (3) and (4) one can obtain the expression of the correlation function from the

hadronic part. It should be reminded here that the interpolating current interacts not only with

spin 3
2
states, but also with spin 1

2
states.

Using the condition γµηµ = 0, it can easily be shown that

〈

0
∣

∣

∣
ηµ

∣

∣

∣

1

2
(p′)

〉

∼
[

αγµ − βp′µ
]

u(p′) . (6)

It follows from this equation that any structure containing γµ or p′µ is “contaminated” by the

contributions of spin 1
2
-states. Hence, to remove the contributions of spin 1

2
-states, these structures

are all discarded. Another problem is all Dirac structures not being independent of each other. To
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overcome this issue, Dirac structures need to be arranged in a specific order. In the present work we

choose the ordering γµ/p
′
/qγνγ5.

Keeping these notes in mind, and using Eqs. (3), (4) and (5), we obtain the correlation function

from the phenomenological part as follows:

Πµν=
λ+g+(−/q +m+ −mO)γ5qµqνfP

(m2
+ − p′2)(m2

P − q2)
u(p) +

λ−g−(/q +m− +mO)γ5qµqνfP

(m2
− − p′2)(m2

P − q2)
u(p) , (7)

where mO is the mass of the relevant octet baryon, m+(m−) is the mass of the spin-3
2
positive

(negative) parity baryon, respectively.

As a last step, we need to eliminate the contributions of JP = 3
2

+
states. For this purpose, we

use the linear combinations of the invariant functions corresponding to different Lorentz structures.

We now turn our attention to the calculation of the correlation function by using the operator

product expansion (OPE) in the deep Euclidean region for the variables p′2 = (p− q)2, and q2 ≪ 0.

The new element of the calculation is the appearance of the double spectral density of the invariant

functions. For the calculation of the double spectral densities it is enough to find the double spectral

representations of the master integrals of the form,

In,k =

∫

du
uk

[m2 − (pu− q)2]n
; n = 1, 2, 3.

We now present the details of the calculations for the spectral density for n = 1 case. The cases

n = 2 and n = 3 are calculated in the similar manner. First of all we will show how the doubly

spectral density can be obtained from the invariant amplitudes. The invariant amplitudes can be

written in terms of the double spectral representation as follows

Π[(p− q)2, q2] =

∫

ds1

∫

ds2
ρ(s1, s2)

[s1 − (p− q)2](s2 − q2)
+ · · · (8)

The spectral density can be obtained from Π[(p− q)2, q2] by applying two subsequent double Borel

transformations. After first double Borel transformation over the variables −(p − q)2 and −q2 we

get,

ΠB1(M2
1 ,M

2
2 ) =

∫

ds1

∫

ds2e
−s1/M2

1−s2/M2
2 ρ(s1, s2) . (9)

Before implementing second double Borel transformation, we introduce new variables σ1 =
1

M2
i

. The

second double Borel transformation can be performed over the new Borel parameter τi by using the
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relation,

Bτe
−sσ = δ

(

1

τ
− s

)

. (10)

As a result we get

Bτ1Bτ2Π
B1(M2

1 ,M
2
2 ) = ρ

(

1

τ1
,
1

τ2

)

. (11)

Hence, double spectral density can be obtained as follows,

ρ(s1, s2) = B 1

s1

(σ1)B 1

s2

(σ2)Π
B

(

1

σ1

,
1

σ2

)

.

Let us now pay our attention to the double spectral density for the n = 1 case. Using

−(pu− q)2 = −u(p− q)2 − ūq2 + uūm2
O ,

where ū = 1− u. I1,k can be written as,

I1,k=

∫

du
uk

[m2 − u(p− q)2 − ūq2 + ūum2
O]

=

∫

du
uk

D ,

where m is the corresponding quark mass. Using the Schwinger representation for the denominator

and carrying out the first double Borel transformation over the variables −(p− q)2 and −q2, we get

I1,k=
σk
2

(σ1 + σ2)k+1
exp

[

−m2
O

σ1σ2

σ1 + σ2
−m2(σ1 + σ2)

]

,

=
σk
2

(σ1 + σ2)k+1
exp

[

m2
O

σ2
1 + σ2

2

2(σ1 + σ2)
−
(

m2 +
m2

O

2

)

(σ1 + σ2)

]

,

where σi =
1

M2
i

. In order to perform the second double Borel transformation we use the relation,

√

σ1 + σ2

2π

∫ +∞

−∞

dxi exp

[

−σ1 + σ2

2
x2
i − σimOxi

]

= exp

[

m2
Oσ

2
i

2(σ1 + σ2)

]

.

Then we get,

IB1,k=
1

2π

∫ +∞

−∞

dx1

∫ +∞

−∞

dx2
σk
2

(σ1 + σ2)k
exp

[

− σ1

(

m2 +
(mO + x1)

2 + x2
2

2

)
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−σ2

(

m2 +
(mO + x2)

2 + x2
1

2

)]

,

=
1

2π

1

Γ(k)

∫ +∞

−∞

dx1

∫ +∞

−∞

dx2

∫ ∞

0

dt tk−1σk
2 exp

[

− σ1

(

m2 +
(mO + x1)

2 + x2
2

2
+ t

)

−σ2

(

m2 +
(mO + x2)

2 + x2
1

2
+ t

)]

,

=
1

2π

1

Γ(k)

∫ +∞

−∞

dx1

∫ +∞

−∞

dx2

∫ ∞

0

dt tk−1 exp

[

− σ1

(

m2 +
(mO + x1)

2 + x2
2

2
+ t

)]

×
(

− ∂

∂t

)k

exp

[

− σ2

(

m2 +
(mO + x2)

2 + x2
1

2
+ t

)]

.

After performing the second Borel transformation, we obtain the the spectral density corresponding

to I1,k as is given below,

ρ1,k(s1, s2)=
1

2π

1

Γ(k)

(

− ∂

∂s2

)k
∫ +∞

−∞

dx1

∫ +∞

−∞

dx2

∫ ∞

0

dt tk−1δ

[

s1 −
(

m2 +
(mO + x1)

2 + x2
2

2
+ t

)]

×δ

[

s2 −
(

m2 +
(mO + x2)

2 + x2
1

2
+ t

)]

=
1

2π

1

Γ(k)

(

− ∂

∂s2

)k
∫ +∞

−∞

dx1

∫ +∞

−∞

dx2

∫ ∞

0

dt tk−1δ

[

s1 −
(

m2 +
(mO + x1)

2 + x2
2

2
+ t

)]

×δ

[

s2 −
(

m2 +
(mO + x2)

2 + x2
1

2
+ t

)]

.

Using two Dirac delta functions, one can easily perform integrals over t and x2 whose result is given

below,

ρ1,k(s1, s2)=
1

2πΓ(k)mO

(

− ∂

∂s2

)k
∫ +∞

−∞

dx1

[

s1 −
(

m2 +
(mO + x1)

2 + x2
2

2

)]k−1

×Θ

[

s1 −
(

m2 +
(mO + x1)

2 + x2
2

2

)]

,

where

x2 =
s2 − s1
mO

+ x1 ,

and Θ(x) is the Heaviside step function which restricts the integral over x1 between the limits
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y±(s1, s2) where

y±(s1, s2) =
−m2

O + s1 − s2 ±
√
∆

2mO

,

and

∆ = −m4
O − (s1 − s2)

2 + 2m2
O(−2m2 + s1 + s2) .

Thus as a result of above summarized calculations, the spectral density can takes the following form,

ρ1,k(s1, s2)=
1

2π

1

Γ(k)

1

mO

(

− ∂

∂s2

)k
∫ y+

y−

dx
[

(y+ − x)(x− y−)
]k

Θ(∆) .

In order to evaluate the x integral, we introduce a new variable through the relation,

x = (y+ − y−)y + y− ,

so that the spectral density can be written as,

ρ1,k(s1, s2)=
1

2π

Γ(k)

Γ(2k)

1

m2k
O

(

− ∂

∂s2

)k
[

∆k− 1

2Θ(∆)
]

. (12)

Double spectral densities for I2,k and I3,k can be calculated with the help of the following relations,

I2,k=

(

− ∂

∂m2

)

I1,k , and,

I3,k=
1

2

(

− ∂

∂m2

)2

I1,k ,

(see also [17] for the calculation of the spectral densities I2,k and I3,k).

Matching the OPE results with the double dispersion relations for the relevant Lorentz structures

for the hadrons, applying the quark-hadron duality ansatz, and performing double Borel transforma-

tion with respect to the variables −(p− q)2 and −q2, we obtain the LCSR for the relevant coupling

constants whose explicit form can be written as,

g−=
em

2
−
/M2

1 em
2
P
/M2

2

fPλ−(m+ +m−)

1

π2

∫ s0

0

ds1

8



×
∫ t2(s1)

t1(s1)

ds2 e
−s1/M2

1 e−s2/M2
2 Ims1Ims2

{

Π1(m+ −mO) + Π2

}

, (13)

where Π1 and Π2 are the invariant functions of the Lorentz structures /qγ5qµqν and γ5qµqν , respec-

tively, and

t1,2 = s1 +m2
O ∓ 2mO

√

s1 −m2 .

III. NUMERICAL ANALYSIS

The present section is devoted to the numerical analysis of the coupling constants derived in

the previous section within LCSR. The main nonperturbative input of the considered LCSR is the

distribution amplitudes (DAs) of the octet baryons, namely N , Σ and Ξ. The explicit expressions

of the relevant DAs as well as the values of the parameters (f , λ1, and λ2) determined from the

analysis of mass sum rules [18–21] are presented in Table II for completeness. The masses of the

f (GeV2) λ1 (GeV2) λ2 (GeV2)

N (5.3± 0.5)× 10−3 −(2.7± 0.9)× 10−2 (5.1± 1.9)× 10−2

Σ (9.4± 0.4)× 10−3 −(2.5± 0.1)× 10−2 (4.4± 0.1)× 10−2

Ξ (9.9± 0.4)× 10−3 −(2.8± 0.1)× 10−2 (5.2± 0.2)× 10−2

TABLE II: Numerical values of the coupling constants used in the calculations are presented for
completeness (see [18–21] for more details).

SU(3) partners of Ω(2012) are obtained in [16] and presented below.

m− =























1700± 90 MeV for ∆,

1805± 100 MeV for Σ,

1910± 110 MeV for Ξ.

These mass values are used in our numerical analysis. Moreover, for the masses of the ground state

baryons, we adapted values from PDG [22]. In addition, the value of the quark condensate is taken

as 〈q̄q〉 = −(246+28
−19 MeV)3 [17].

The residues of the negative parity JP = 3
2

−
baryons are related with the residues of the radial

excitations of the decuplet baryons as follows,

λ− = λrad

√

m− −m+

m− +m+
.

9



The residues of radial excitations of the decuplet baryons are calculated in [2]. Using these results

one can easily determine the residues of the JP = 3
2

−
baryons.

The working regions of the Borel mass parameters used in the numerical analysis are presented

in Table III. Determination of these regions is based on the criteria that both power corrections

and continuum contributions should be suppressed. The continuum threshold s0 is obtained from

the condition that the mass of the considered states reproduce the experimental values about 10%

accuracy..

Borel mass parameters Continuum threshold

M2
1 (GeV2) M2

2 (GeV2) s0 (GeV2)

∆ → Nπ 3÷ 4 0.775± 0.025 5.1± 0.1

Σ → NK 3÷ 4 0.750± 0.025 5.1± 0.1

Σ → Λπ 3÷ 4 0.750± 0.025 5.1± 0.1

Σ → Σπ 3÷ 4 0.750± 0.025 5.1± 0.1

Ξ → ΛK 3÷ 4 0.750± 0.050 6.1± 0.1

Ξ → ΣK 3÷ 4 0.750± 0.050 6.1± 0.1

Ξ → Ξπ 3÷ 4 0.750± 0.025 6.1± 0.1

TABLE III: Working regions of the Borel mass parameters and continuum threshold s0.

Having the values of all input parameters at hand, we can proceed to perform the numerical

analysis of the relevant coupling constants. As an example, in Fig. 1, we present the dependency

of the coupling constant on M2
2 at the fixed values of the continuum threshold s0 and M2

1 for the

∆+ → Nπ+ transition. From this figure we observe that there exists good stability of the coupling

constant when M2 varies in its working region (see Table III). The obtained coupling constants are

presented in Table IV. The errors in the results for the coupling constants can be attributed to

the uncertainties in the input parameters as well as to the Borel mass parameters M2
1 , M

2
2 , and

continuum threshold s0.

After the determination of coupling constants, we can calculate the corresponding decay channels.

Using the matrix elements for the considered 3
2

− → 1
2

+
+ pseudoscalar meson transitions, the decay

width can be written as,

Γ =
g2−

24πm2
−

[

(m− −mO)
2 −m2

P

]

|~p|3 , (14)

10



where

|~p| = 1

2m−

√

m4
− +m4

O +m4
P − 2m2

−m
2
O − 2m2

−m
2
P − 2m2

Om
2
P ,

is the momentum of octet baryon, mO andmP are the mass of the octet baryon and pseudoscalar me-

son, respectively, Using the values of the coupling constants obtained within this work, we estimated

the decay widths of the relevant transitions that are summarized in Table IV. For comparison we

also present the results of the decay widths obtained within frame of the Flavor SU(3) analysis [16].

We would like to make the following remark at this point. From the expression of the decay width,

we see that it is quite sensitive to the mass splitting among the SU(3) partners of the Ω(2012) and

ground state baryons. Thus, to calculate the coupling constants and decay widths of the transitions

under consideration, we used the same masses as in [16].

Decay channels g− (GeV−1) Γ (MeV) (This work) Γ (MeV) [16]

∆ → Nπ −11.0± 1.0 48.8× (1.0± 0.2) 39 - 58

Σ → NK −5.6± 0.7 9.7× (1.0± 0.3) 7 - 12

Σ → Λπ −7.0± 0.8 14.0× (1.0± 0.3) 11 - 18

Σ → Σπ 5.5± 0.7 5.6× (1.0± 0.3) 4 - 7

Ξ → ΛK −6.9± 1.4 8.0× (1.0± 0.3) 5 - 10

Ξ → ΣK 6.8± 1.5 4.0× (1.0± 0.4) 2 - 5

Ξ → Ξπ 7.0± 1.1 7.4× (1.0± 0.3) 5 - 9

TABLE IV: Decay widths of the JP = 3
2

−
baryons.

As a final remark, we compare our results with the values obtained within the framework of the

flavor SU(3) method [16]. In this analysis, the coupling constant for Ω → ΞK is taken as the input

parameter, and all the remaining couplings are expressed in terms of this coupling with the help

of SU(3) symmetry relations. Using the experimental value of the decay width Ω → ΞK, one can

determine the coupling constant of this transition with the help of Eq. (14), and hence all the other

coupling constants can be determined. When we compare our results for the coupling constants and

decay widths of the considered decays with those obtained within flavor SU(3) analysis, we see they

are compatible. Small deviations in the results can be attributed to the SU(3) violation effects.
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M2
2 = 0.480 (GeV )2

M2
2 = 0.460 (GeV )2

M2
2 = 0.440 (GeV )2

g −
(∆

+
→

N
π
+
)

M 2
1 (GeV 2)

s0 = 5.0 GeV 2

4.03.53.02.52.0

-8.0

-10.0

-12.0

-14.0

-16.0

FIG. 1: The dependency of the coupling constant of the ∆+ → Nπ+ transition on the Borel mass
parameter M2

1 , at several fixed values of the Borel parameter M2
2 , and the continuum threshold

s0 = 5.0 GeV 2.

IV. CONCLUSION

In conclusion, we employed the LCSR method to compute the strong coupling constants and

decay widths for the SU(3) partners of the Ω(2012) baryon in 3
2

− → 1
2

+
+ pseudoscalar meson

transitions. The “contamination” caused by the JP = 3
2

+
baryons are eliminated by considering

the linear combinations of the sum rules obtained from different Lorentz structures. By comparing

our decay width results with the findings of [16], we ascertain the compatibility of our decay width

predictions with the outcomes of the flavor SU(3) symmetry analysis. Small discrepancy between

the two methods’ predictions may be attributed to the SU(3) violation effects. Our results on the

branching ratios can give useful hints about the nature of the SU(3) partners of Ω(2012) baryon.
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