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Abstract 
Summary: GeneFEAST, implemented in Python, is a gene-centric functional enrichment analysis sum-
marisation and visualisation tool that can be applied to large functional enrichment analysis (FEA) re-
sults arising from upstream FEA pipelines. It produces a systematic, navigable HTML report, making it 
easy to identify sets of genes putatively driving multiple enrichments and to explore gene-level quanti-
tative data first used to identify input genes. Further, GeneFEAST can juxtapose FEA results from 
multiple studies, making it possible to highlight patterns of gene expression amongst genes that are 
differentially expressed in at least one of multiple conditions, and which give rise to shared enrichments 
under those conditions. Thus, GeneFEAST offers a novel, effective way to address the complexities of 
linking up many overlapping FEA results to their underlying genes and data, advancing gene-centric 
hypotheses, and providing pivotal information for downstream validation experiments. 
 
Availability and Implementation: GeneFEAST GitHub repository: https://github.com/avigailtay-
lor/GeneFEAST; Zenodo record: 10.5281/zenodo.14753734; Python Package Index: 
https://pypi.org/project/genefeast; Docker container: ghcr.io/avigailtaylor/genefeast. 
Contact: avigail.taylor@well.ox.ac.uk 
Supplementary Information: Supplementary information is available at Bioinformatics online. 

 
 

1 Introduction 
In the era of high-throughput ’omics experiments, functional enrichment 
analysis (FEA) plays a critical role in our ability to interpret the ‘Big’ bi-
ological data arising from these studies. In a typical workflow, an experi-
ment yields a large set of genes for further analysis (herein, referred to as 
‘genes of interest’, GoI). For example, an RNA-Seq experiment might be 
used to identify the set of genes differentially expressed between an ex-
perimental condition and a control condition. Then, biologically relevant 
labels are assigned to genes based on some database of terms, pathways 

or signatures (herein, all referred to as ‘terms’), for example, the Gene 
Ontology (GO) (Ashburner, et al., 2000), or the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) (Kanehisa and Goto, 2000). Next, FEA is 
employed to determine which of the biological terms assigned to the GoI 
are over-represented amongst those genes: 
 
• In an over-representation analysis (ORA) FEA, a hypergeometric 

test is used to compare the number of GoI annotated by a term to the 
number of genes annotated by that term amongst the background set 
of genes assayed in the underlying experiment. 
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• In a gene set enrichment analysis (GSEA) FEA (Subramanian, et al., 
2005, Mootha, et al., 2003), the process is slightly different because 
the FEA itself helps identify GoI. In particular, all assayed genes are 
initially considered putative GoI and are ranked by experimental re-
sult. For example, in an RNA-Seq experiment genes could be ranked 
from most over- to most under-expressed in cases versus controls. 
Then, an enrichment score (ES) is calculated for each term reflecting 
how often that term’s gene set are at the top or bottom of the ranked 
list. Finally, a p-value for the ES is obtained by permutation testing 
and the ‘leading edge’ subset of core genes contributing to the term’s 
ES is reported; the superset of all leading edge genes for terms with 
a significant ES are then the final GoI. 

 
Whichever FEA method is used, in the final step of the FEA workflow, 
results for all terms are summarised and reports generated (see Supple-
mentary Section 1, Supplementary Figure 1 and Supplementary Table 1 
for an overview of the workflow and examples of available tools). This 
last step is pivotal for researchers to draw biological insights from FEAs, 
but it is often complicated by the sheer volume of information, which can 
be multi-dimensional and also contain redundancy.  

Importantly, FEAs are usually part of a wider process, contributing 
to gene-centred hypothesis generation and downstream validation experi-
ments. So, as well as summarising enriched terms, a comprehensive sum-
marisation tool must enable systematic exploration of the link between 
terms, their associated GoI, and, crucially, gene-level quantitative data 
first used to identify these genes. Common examples of such data are fold 
changes or copy number changes in RNA- and DNA-Seq experiments, 
respectively. Such a tool should highlight gene sets and patterns in quan-
titative data driving multiple enrichments. Further, it should enable sys-
tematic comparison of enrichments found in multiple studies, in terms of 
patterns in the underlying genes giving rise to these enrichments. Cur-
rently, no FEA summarisation tool provides all this functionality (Supple-
mentary Table 2). To fill this gap, we present GeneFEAST: a command-
line Python package for summarising and visualising FEA results arising 
from any standard ’omics database of terms and upstream FEA pipeline. 

2 Design and implementation 

2.1 Grouping terms using gene set overlap 
To highlight gene sets driving multiple enrichments, GeneFEAST groups 
terms into communities using a gene set overlap metric. By using this met-
ric, GeneFEAST remains agnostic to both the ’omics database and up-
stream FEA used to identify enriched terms.  

The grouping algorithm works as follows: First, each term’s gene 
list is reduced to the subset of genes that are GoI’s. Next, gene set overlap 
is calculated between each pair of terms, using either the overlap coeffi-
cient (OC) or the Jaccard index (JI), (for two sets X and Y, 𝑂𝐶 =
|𝑋 ∩ 𝑌|/min	(|𝑋|, |𝑌|), and 𝐽𝐼 = |𝑋 ∩ 𝑌|/|𝑋 ∪ 𝑌|), and a network of 
terms is built with an edge between any pair of terms exceeding a user-
defined overlap threshold (Merico, et al., 2010). Within this network, 
communities of related terms are identified using greedy modularity max-
imisation (Clauset, et al., 2004), attenuated by an adaptive algorithm that 
limits the maximum community size (see Supplementary Section 2, Sup-
plementary Figure 2 and Supplementary Boxes 1 to 4 for details). Finally, 
communities are grouped into larger meta communities when weaker, re-
sidual gene set overlap remains between terms from different communi-
ties, or when strong gene set overlap exists between terms from different 

databases, but multi-database agglomeration is off (see Supplementary 
Box 1 for details). To enable evaluation of community consistency, Gen-
eFEAST outputs a silhouette plot (Rousseeuw, 1987) of communities 
(Supplementary Figure 3). GeneFEAST also outputs a graphical grid 
search of community detection parameters to enable a comparison of com-
munities obtained over a range of gene set overlap thresholds and maxi-
mum community sizes (Supplementary Figure 4). 

Previous approaches have incorporated the idea of clustering terms 
based on their gene sets to identify broad functional themes in FEAs of 
one or more experiments (Merico, et al., 2010), or to use this same con-
struction to elucidate complex details of overlapping gene sets giving rise 
to multiple enrichments (Huang, et al., 2007). The novelty here is in giving 
the user control over the maximum community size, and in the use of meta 
communities to address the possibility of terms being placed in multiple 
communities. Thus, GeneFEAST finds communities of terms that reflect 

Fig. 1. Split heatmap. (A) A pair of heatmaps, sharing a common x-axis of genes, are 
drawn one on top of the other. In the top heatmap, GoI (G1 to G20) are coloured yellow 
when they are annotated by a term (T1 to T5), otherwise grey. In the lower heatmap, genes 
are coloured to depict gene-level quantitative data, in this case log2 fold change from two 
RNA-Seq experiments whose GoI, i.e., differentially expressed genes, were analysed using 
ORA-type FEA (E1 and E2). Grey genes were not identified as GoI in the underlying ex-
periment. The genes are ordered based on hierarchical clustering of their quantitative data. 
(B) As for (A), but genes are ordered first by their annotation count, then by annotation 
pattern, and lastly by their quantitative data. (C) A split heatmap with an extra annotation 
(EA1) added as a row on top of the existing term-GoI heatmap. GoI labelled with the extra 
annotation are coloured in pink, with the remaining GoI coloured in grey. 
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the complex gene set overlaps between terms, ensures that these commu-
nities are small enough to be interpretable by the user, and ameliorates loss 
of information when gene set overlaps span multiple communities.  

2.2 Split heatmap 
GeneFEAST is underpinned by the split heatmap, a data visualisation that 
we developed (Figure 1). Using this visualisation, we can simultaneously 
depict term-GoI and experiment-GoI relationships, as well as gene-level 
quantitative data, for communities of terms and their associated GoI. Cru-
cially, the format can show GoI data from multiple experiments simulta-
neously, thus enabling a gene-centric comparison of FEA results arising 
from those multiple experiments. Hierarchical clustering of genes based 
on their quantitative data highlights global gene-data patterns contributing 
to enrichments (Figure 1A). Alternatively, ordering genes first by their 
annotation count, and then by their annotation pattern, highlights subsets 

of genes contributing to multiple enrichments. Within each of these sub-
sets, genes are then hierarchically clustered based on their quantitative 
data, thus highlighting local, subset-specific gene-data patterns contrib-
uting to enrichments (Figure 1B). Lastly, to enable easy searching of the 
split heatmap, users can also order genes alphabetically. 

2.2.1 A priori relevant gene sets 

Sometimes, users may wish to keep track of an a priori set of genes rele-
vant to their study throughout the GeneFEAST report, for example genes 
contributing to a particular biological signature may be usefully high-
lighted. In such cases, users can provide extra annotations to be added as 
rows to the term-GoI heatmap in all split heatmaps of the report (Figure 
1C). This is done post hoc once communities and meta communities, and 
their associated GoI, have been identified. 

Fig. 2. Structure and contents of the output HTML/CSS/JavaScript report. Reports summarising a single FEA have a 'Communities overview' front page (grey inset), which provides a list of 
meta communities, communities, and terms (green frame in grey inset), a silhouette plot of communities (i), and a graphical grid search of community detection parameters (ii). The Communities 
overview homepage has anchor links (black, solid arrows) into the ‘Full report’: there is a link for each meta community (red frames), a separate link to each member community therein (blue frames, 
bottom left), links to communities of enriched terms that did not form part of a larger meta community (isolated blue frame, right), and links to terms that did not form part of an enriched-term 
community (yellow frame). A top navigation bar with ‘Communities overview’ and ‘Full report’ dropdown menus is fixed at the top of the report and always visible, providing direct access to every 
part of the report at all times. Reports summarising multiple FEAs start with a front page showing an upset plot of the sets of terms identified as enriched in each of the input FEAs (top left green 
frame). We refer to each set of terms found in two or more FEAs as a "FEA term-set intersection". The navigation bar at the top of this front page provides a ‘Reports’ dropdown menu from which 
the user can navigate to separate reports summarising the terms in each FEA term-set intersection. Each of the separate reports has the structure of a report summarising a single FEA, as described 
above. Within a GeneFEAST report, every meta community, community and term has a frame of information, implemented in HTML and CSS, which can be scaled to fit the user’s monitor. Within 
each frame, JavaScript enables toggling of content. Meta community frames contain: circos and upset plots showing the gene set overlap of member communities (see User Guide for further details), 
split heatmaps, wherein term annotation is replaced by gene-community membership in the top heatmap, and a literature search for each gene (as described in the main text). Meta community frames 
have links to member communities (black, dashed arrow). The content of community frames is described in the main text. Where applicable, community frames have links back to their meta community 
and also to sibling communities in their meta community (black, dashed arrows); separately, they also have a list of links to terms sharing some gene set overlap, where that overlap was too weak for 
membership of the community (black, dotted arrow). Term frames have a subset of the content of community frames (see User Guide), and have links back to weakly connected communities (black, 
dotted arrow).  
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2.3 HTML, CSS and JavaScript output report 
We required the output report of GeneFEAST to provide intuitive, sys-
tematic navigation, visualisation, and review of clustered enriched terms, 
their associated GoI, and related gene-data and information. To this end, 
the report is auto-generated in HTML, CSS and JavaScript. Within the 
report, navigation bars and hyperlinks connect all related information in 
the document, as well as linking to external websites for further infor-
mation. Using JavaScript enables a good user experience, because infor-
mation pertaining to a community, such as figures and tables, can be tog-
gled and viewed in-place, rather than triggering new tabs.  

For each community of enriched terms, GeneFEAST reports: (1), 
member terms; (2), a circos plot (Krzywinski, et al., 2009) and an upset 
plot (Lex, et al., 2014) showing the overlap between sets of genes an-
notated by the member terms; (3), split heatmaps of the term- and ex-
periment-GoI relationships, gene-level quantitative data and extra an-
notations, if supplied; (4), a dot plot summary of member term’s FEA 
results, if supplied; (5), further information about terms, such as auto-
matically generated GO hierarchies and KEGG pathway diagrams, if 
supplied; (6), external hyperlinks to literature searches for each GoI, 
via the National Center for Biotechnology Information’s Gene and 
PubMed services (Sayers, et al., 2021) incorporating additional search 
terms if the user has supplied them, and (7), internal hyperlinks to re-
lated communities and terms. (See Figure 2 for further details.)  

2.4 CSV file output 
Term-community membership, term- and experiment-GoI relationships 
are also output in comma-separated value file format, for input into down-
stream programs. 

3 Performance 
Table 1 shows typical GeneFEAST runtimes on a bioinformatics-capable 
laptop, in both single FEA and multiple FEA summarisation modes, when 
applied to FEA results obtained on publicly available gene expression data 
(Pinto, et al., 2023).  
 

GeneFEAST mode From pip installation In Docker container 

Single FEA 3 min 43.95 sec 3 min 59.23 sec 
Multiple FEA 3 min 53.48 sec 4 min 4.47 sec 

Table 1. Typical GeneFEAST runtimes. We timed GeneFEAST (v1.0.0) in single 
and multiple FEA summarisation modes on a Linux Mint 22 (64-bit) OS laptop, with 
an 11th Gen Intel i5-1135G7 CPU and 24GB RAM. For the Single FEA time we ran 
GeneFEAST on 83 GO terms identified as highly significantly enriched (HSE, p.ad-
just < 0.0001) in an ORA of 1780 significantly differentially expressed (DE) genes 
(p.adjust < 0.05) in Calu-3 cells infected with SARS-CoV2 and measured at 3-hours 
post-infection (hpi) (Pinto, et al., 2023). For the Multiple FEA time we used Gene-
FEAST to summarise terms common to this first set of 83 GO terms and to a second 
set of 150 GO terms identified as HSE (p.adjust < 0.0001) in an ORA of 2230 sig-
nificantly DE genes (p.adjust < 0.05) in Calu-3 cells also infected with SARS-CoV2, 
and measured at 24-hpi in the same study. GO ORAs were conducted using the en-
richGO function from the clusterProfiler R package (Wu, et al., 2021), with the Ben-
jamini-Hochberg procedure (Benjamini and Hochberg, 1995) applied to control the 
false discovery rate and adjust p-values for multiple testing. For input files and in-
structions on how to run these performance tests please see Zenodo snapshot 
10.5281/zenodo.14773127, directory PERFORMANCE_TEST_INPUT. Note that 
performance may vary based on hardware and software configuration. 

4 Running GeneFEAST 
GeneFEAST requires Python 3.12 to run and can be pip installed from the 
Python Package Index at https://pypi.org/project/genefeast. GeneFEAST 
is also available as a ready-to-use container at ghcr.io/avigailtaylor/gene-
feast. Viewing the HTML output report requires a web browser with 
HTML5 and JavaScript 1.6 support. GeneFEAST is OpenSource and 
available for free; visit http://avigailtaylor.github.io/GeneFEAST for full 
installation instructions and the User Guide. 
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