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Abstract

The general classical equation of spin motion is rigorously derived for a particle with electric

and magnetic charges and dipole moments in electromagnetic fields. The equation describing the

spin motion relative to the momentum direction in storage rings is also obtained. The importance

of the derivation follows from a possible appearance of magnetic charges and EDMs due to the

pseudoscalar CP -violating electromagnetic interaction caused by dark matter axions.

Keywords: equation of spin motion; magnetic charge; axion

∗Electronic address: alsilenko@mail.ru

1

http://arxiv.org/abs/2309.04985v1
mailto:alsilenko@mail.ru


A study of spin motion is one of the most important methods of a search for new physics.

Witten [1] has shown that a pseudoscalar CP -violating electromagnetic interaction leads

to a transformation of electrically charged particles to dyons having nonzero electric and

magnetic charges. A similar statement has been made in Ref. [2] in relation to axion-

induced electromagnetic effects. In Refs. [3–5] and, with some reservations, in Ref. [6], an

existence of oscillating electric dipole moments (EDMs) caused by axion-photon coupling has

been stated. Certainly, the presence of real [1] or effective [2] magnetic charges changes spin

dynamics as compared with the known equation (see Refs. [7, 8] and references therein)

for particles with EDMs. The problem of a spin motion of a particle with electric and

magnetic charges and dipole moments is still unsolved and is rather important because

experiments on a search for dark matter axions in spin interactions are now performed by

several collaborations [9–11]. In such experiments, a possible presence of magnetic charges

should be taken into account. In the present paper, we rigorously derive a general equation of

spin motion for a particle with electric and magnetic charges and dipole moments. Certainly,

effective magnetic charges [2] do not need to be quantized. For them, the problem of

coexistence of electric and magnetic charges does not appear.

We use standard denotations of Dirac matrices (see, e.g., Ref. [12]) and the system of

units ~ = 1, c = 1. We include ~ and c explicitly when this inclusion clarifies the problem.

The equation of spin motion in electromagnetic fields for a charged (or uncharged) particle

with electric and magnetic dipole moments generalizing the well-known Thomas-Bargmann-

Michel-Telegdi equation has the form (see Refs. [7, 8] and references therein)

Ω = −

e

mc

[(
G +

1

γ

)
B −

γG

γ + 1
(β ·B)β −

(
G +

1

γ + 1

)
β ×E

+
η

2

(
E −

γ

γ + 1
(β ·E)β + β ×B

)]
.

(1)

Here G = (g − 2)/2, g = 2mcµ/(es), η = 2mcd/(es), s is the spin number, β = v/c, and γ

is the Lorentz factor.

In the relativistic spin theory, one introduces the spin four-pseudovector and the momen-

tum four-vector, aµ and pµ, whose definition in the particle rest frame is given by [12]

aµ = (0, ζ), pµ = (m, 0). (2)

So, in any frame

aµpµ = 0, aµa
µ = −ζ2. (3)
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In a frame moving with the velocity v = p/ǫ (ǫ is the total kinetic energy), the four-

pseudovector aµ = (a0, a) is defined by

aµ = (a0, a), a = ζ +
p(ζ · p)

m(ǫ+m)
, a0 =

a · p

ǫ
=

p · ζ

m
, a2 = ζ2 +

(p · ζ)2

m2
. (4)

The Lorentz force F acting on the electric charge e and the Lorentz-like force F ∗ acting

on the magnetic charge e∗ are given by [13]

dp

dt
= F + F ∗ = e(E + β ×B) + e∗(B − β ×E). (5)

The equation of motion depends on the electric and magnetic charges and reads

m
duµ

dτ
= eF µνuν + e∗F̃ µνuν , (6)

where the dual tensor of electromagnetic field is defined by F̃ µν = ǫµνρσFρσ/2 and aµu
µ = 0.

With the denotations of Ref. [14], F µν = (−E,B) and F̃ µν = (−B,−E).

The relativistic equation of spin motion has the general form

daµ

dτ
= A1F

µνaν + A2u
µF νλuνaλ + A3F̃

µνaν + A4u
µF̃ νλuνaλ. (7)

The coefficients Ai (i = 1, 2, 3, 4) are determined as follows (cf. Ref. [7]). In the instanta-

neously accompanying frame (particle rest frame), Eq. (7) reduces to

dai

dt
=

dζ i

dt
= A1F

ijζj + A3F̃
ijζj = A1(ζ ×B)i −A3(ζ ×E)i. (8)

In this frame, the equation of spin motion for the spin s = 1/2 is given by

dζ

dt
= 2µζ ×B+ 2dζ × E. (9)

For an arbitrary spin
dζ

dt
=

µ

s
ζ ×B+

d

s
ζ × E. (10)

Comparing this equation with Eq. (8), we obtain

A1 =
µ

s
, A3 = −

d

s
. (11)

Values of A2, A4 result from the equation of motion.

We should be rather careful. Interactions of the electric charge and dipole with the

electric field and the magnetic charge and dipole with the magnetic field are very similar.
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However, Eq. (5) shows that interactions of the electric charge with the magnetic field and

the magnetic charge with the electric field have different signs. Therefore, the normal (Dirac)

magnetic moment originated from the electric charge has the sign opposite to the sign of

the “normal” EDM caused by the magnetic charge. As a result, the connection between the

EDM and the magnetic charge should have the form G∗ = (g∗ − 2)/2, g∗ = −2mcd/(e∗s).

Multiplying Eq. (7) by uµ and taking into account that uµu
µ = 1 leads to

uµ

daµ

dτ
=

(µ
s
+ A2

)
F µνuµaν +

(
−

d

s
+ A4

)
F̃ µνuµaν . (12)

Since
d(aµu

µ)

dτ
= 0, uµ

daµ

dτ
= −aµ

duµ

dτ
=

1

m

(
eF µν + e∗F̃ µν

)
uµaν , (13)

we obtain

A2 =
e

m
−

µ

s
≡ −

µ′

s
, A4 =

e∗

m
+

d

s
≡

d′

s
. (14)

Here d, −e∗s/m, and d′ are the total, “normal” (Dirac-like), and “anomalous” EDMs. This

distribution repeates the distribution for the magnetic moments µ, es/m, and µ′.

As a result, the equation of spin motion takes the form

daµ

dτ
=

µ

s
F µνaν −

µ′

s
uµF νλuνaλ −

d

s
F̃ µνaν +

d′

s
uµF̃ νλuνaλ. (15)

Unlike the Thomas-Bargmann-Michel-Telegdi equation [15, 16], this generalized equation

takes into account the effective [2] or real [1] magnetic charge and the EDM.

In the above derivation, we followed Ref. [7]. Next calculations utilize the approach by

Jackson [17] and almost repeate Ref. [8].

With the use of Eq. (6), the obtained equation can be presented in the form

daµ

dτ
=

µ

s

(
F µνaν − uµF νλuνaλ

)
−

d

s

(
F̃ µνaν − uµF̃ νλuνaλ

)
− uµdu

λ

dτ
aλ. (16)

It is convenient to denote

Φµ =
µ

s

(
F µνaν − uµF νλuνaλ

)
−

d

s

(
F̃ µνaν − uµF̃ νλuνaλ

)
. (17)

Evidently, Φµ = (Φ0,Φ) is a four-vector. Since uµΦ
µ = γ(Φ0

−β ·Φ) = 0, it satisfies the

relation Φ0 = β ·Φ. The last term in Eq. (16) can be transformed as follows [17]:

uµdu
λ

dτ
aλ = −uµγa ·

dβ

dτ
. (18)
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Thus, Eq. (16) leads to

da0

dτ
= Φ0 + γ2a ·

dβ

dτ
,

da

dτ
= Φ+ γ2β

(
a ·

dβ

dτ

)
. (19)

The equation of motion for the rest-frame spin ζ can be calculated with the relations

ζ = a−

γ

γ + 1
β(β · a),

d

dτ

(
γ

γ + 1
β

)
=

γ

γ + 1

dβ

dτ
+

γ3

(γ + 1)2
β

(
β ·

dβ

dτ

)
.

Therefore, the equation of spin motion has the form (cf. Refs. [8, 17])

dζ

dτ
= Φ−

γβ

γ + 1
Φ0 +

γ2

γ + 1
ζ ×

(
β ×

dβ

dτ

)
. (20)

The transformation of the given four-vector Φµ to the instantaneously accompanying

frame results in
(
Φ(0)

)µ
=

(
0,Φ(0)

)
, where

Φ(0) = Φ−

γ

γ + 1
β(β ·Φ) = Φ−

γβ

γ + 1
Φ0.

We should differ Φ0 and Φ(0).

Since dt = γ dτ , the derivation of Φ(0) from Eq. (17) leads to the following equation of

spin motion:
dζ

dt
= −

(
dE(0)

sγ
+

µB(0)

sγ

)
× ζ −

γ2

γ + 1

(
β ×

dβ

dt

)
× ζ. (21)

The angular velocity of spin precession is given by [8, 17]

Ω = −

(
dE(0)

sγ
+

µB(0)

sγ

)
−

γ2

γ + 1

(
β ×

dβ

dt

)
= Ω(0) + ωT , (22)

where

Ω(0) = −

dE(0)

sγ
−

µB(0)

sγ
(23)

and ωT is the angular velocity of the Thomas precession:

ωT = −

γ2

γ + 1

(
β ×

dβ

dt

)
. (24)

Therefore, the total angular velocity of spin precession is the sum of two parts. The

first part is given by the Lorentz transformation between the instantaneously accompanying

frame and the lab frame. The fields in the instantaneously accompanying frame are equal

to [17]

E(0) = γ

[
E −

γ

γ + 1
β(β ·E) + β ×B

]
,

B(0) = γ

[
B −

γ

γ + 1
β(β ·B)− β ×E

]
.

(25)
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The second part is the contribution from the Thomas precession. This part defines the

additional spin precession caused by a purely kinematical effect of a rotation of the particle

rest frame (see, e.g., Refs. [17, 18]). Only the second part depends on the magnetic charge.

The particle acceleration expressed in terms of the lab frame fields is defined by Eq. (5).

The total acceleration reads

dβ

dt
=

e

mcγ
[E + β ×B − β(β ·E)] +

e∗

mcγ
[B − β ×E − β(β ·B)] .

(26)

With the use of Eqs. (25) and (26), one can bring Eqs. (23) and (24) to the form

Ω(0) = −

µ

s

[
B −

γ

γ + 1
β(β ·B)− β ×E

]

−

d

s

[
E −

γ

γ + 1
β(β ·E) + β ×B

]
,

ωT =
e

m

[
γ − 1

γ
B −

γ

γ + 1
β(β ·B)−

γ

γ + 1
β ×E

]

−

e∗

m

[
γ − 1

γ
E −

γ

γ + 1
β(β ·E) +

γ

γ + 1
β ×B

]
.

(27)

The resulting angular velocity of spin motion reads

Ω = −

e

m

[(
G+

1

γ

)
B −

Gγ

γ + 1
(β ·B)β −

(
G+

1

γ + 1

)
β ×E

]

+
e∗

m

[(
G∗ +

1

γ

)
E −

G∗γ

γ + 1
(β ·E)β +

(
G∗ +

1

γ + 1

)
β ×B

]
.

(28)

When e∗ = 0, Eq. (28) takes the form (1). Equation (28) is useful for experiments with

atoms.

While the magnetic charge and the EDM caused by dark matter axions are oscillating,

the angular velocity of their oscillations, ωa = mac
2/~, is very small as compared with Ω

and ω. As a result, it is convenient to determine the spin motion of particles in storage rings

relative to the velocity and momentum direction. Such a transformation presents Eq. (28)

in terms of the unit vector in this direction, N = β/β = p/p:

dN

dt
=

β̇

β
−

β

β3

(
β · β̇

)
= ω ×N , ω =

e

mγ

(
β ×E

β2
−B

)
+

e∗

mγ

(
β ×B

β2
+E

)
,

where ω is the angular velocity of rotation of the velocity and momentum direction. Thus,

the angular velocity of the spin rotation relative to this direction (i.e., in the Frenet-Serret
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coordinate system) is given by

ΩFS = Ω− ω = −

e

m

[
GB −

Gγ

γ + 1
(β ·B)β −

(
G−

1

γ2
− 1

)
β ×E

]

+
e∗

m

[
G∗E −

G∗γ

γ + 1
(β ·E)β +

(
G∗

−

1

γ2
− 1

)
β ×B

]
.

(29)

The quantities e∗ and d (but not G∗) oscillate with the frequency ωa.

For more detailed derivations, especially for calculations of systematical errors, it is help-

ful to use the cylindrical coordinates [19].

In summary, the general classical equation of spin motion has been rigorously derived for

particles with electric and magnetic charges and dipole moments in electromagnetic fields.

While we do not use any dual transformation, this equation possesses the dual symmetry

e → e∗, G → G∗, E → B, B → −E. The equation is also presented in the form convenient

for the description of spin motion in storage rings. The necessity for our derivation follows

from Refs. [1, 2] substantiating an appearance of magnetic charges and EDMs due to the

pseudoscalar CP -violating electromagnetic interaction.

The author is grateful to N.N. Nikolaev for helpful discussions and comments.
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