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Dynamical Chiral Symmetry Breaking
in Quantum Chromo Dynamics:
Delicate and Intricate
Reinhard Alkofer

Institute of Physics, University of Graz, NAWI Graz, Universitätsplatz 5, 8010 Graz, Austria

Abstract: Dynamical Chiral Symmetry Breaking (DχSB) in Quantum Chromo Dynamics (QCD) for
the light quarks is an indispensable concept for understanding hadron physics, i.e., the spectrum
and the structure of hadrons. In Functional Approaches to QCD the respective role of the quark
propagator has been evident since the seminal work of Nambu and Jona-Lasinio has been recast
in QCD’s terms. It not only highlights one of the most important aspects of DχSB, the dynamical
generation of constituent quark masses, but also makes plausible that DχSB is a robustly occurring
phenomenon in QCD. The latter impression, however, changes when higher n-point functions are
taken into account. In particular, the quark-gluon vertex, i.e., the most elementary n-point function
describing the full, non-perturbative quark-gluon interaction, plays a dichotomous role: It is subject
to DχSB as signalled by its scalar and tensor components but it is also a driver of DχSB due to the
infrared enhancement of most of its components. Herein, the relevant self-consistent mechanism is
elucidated. It is pointed out that recently obtained results imply that, at least in the covariant gauge,
DχSB in QCD is located close to the critical point and is thus a delicate effect. And, requiring a precise
determination of QCD’s three-point functions, DχSB is established, in particular in view of earlier
studies, by an intricate interplay of the self-consistently determined magnitude and momentum
dependence of various tensorial components of the gluon-gluon and the quark-gluon interactions.

1. Introduction

Investigations of QCD with the aim of gaining an understanding of hadron physics
have been undertaken since QCD has been formulated almost 50 years ago [1]. The recent
review [2] summarises on more than 700 pages quite a number of highlights arising from
these studies. With its almost 5000 references it makes clear how much this area of research
has matured. Nevertheless, it is agreed upon by the community that the understanding
of several essential features of QCD and their implications for hadron physics is far from
being satisfactory.

In the following short notes I focus on a very specific property of QCD, namely
the approximate chiral symmetry of the light quarks and how it is dynamically broken.
Despite the importance of DχSB for the phenomenological consequences with respect
to the spectrum and structure of hadrons I am concentrating herein on the underlying
mechanisms for DχSB, or more precisely, on a detailed analysis within the picture that
a super-critically strong attraction in between massless fermions triggers DχSB, see, e.g.,
[3–5]. To this end one may note that more than 60 years ago Nambu and Jona-Lasinio
realised that in four spacetime dimensions a certain coupling strength has to be exceeded
for DχSB to occur [6,7].

At this point a disclaimer is in order: Herein, I will summarise and briefly review some
investigations of DχSB, the choice of which is based on my own attempts within this field
of research. By no means it is intended to disregard different approaches to the topic which
are based on complementary techniques and/or pictures (as, e.g., an explanation of Chiral
Symmetry Breaking by considering ensembles of QCD vacua containing lumps of gluon
fields with non-vanishing topological winding number densities). And given the wealth of
literature on DχSB, even if one restricts oneself (i) to the picture of a super-critically strong
attraction as underlying mechanism and (ii) to functional methods, it is impossible within
such a short synopsis as the one presented here to discuss or even mention all relevant
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research on this topic. Such omissions are also in accord with the intention of the presented
discussion: To provide evidence that DχSB in QCD is quite delicate, its manifestations in
the properties of quarks and quark-gluon interactions exhibit many facets, and the interplay
in between those features makes DχSB an intricate idiosyncrasy of QCD.

2. How robust is DχSB in QCD?
2.1. The Nambu–Jona-Lasinio picture

The seminal papers by Nambu and Jona-Lasinio [6,7] introduced the notion of DχSB
in analogy to the shortly before formulated BCS model of superconductivity [8,9]. The
generic idea of Nambu and Jona-Lasinio has been that massless (light) nucleons interact via
a four-fermion interaction which in turn leads to massive nucleons and (almost) massless
pions as (pseudo-) Goldstone bosons. As their starting point was to describe nucleons as
massless Dirac fermions interacting via a SUL(2) × SUR(2) chirally invariant interaction
the dynamics of their model respects chiral symmetry but the ground state symmetry was
broken down to a vector SUL+R(2) symmetry. Therefore, given the three-dimensional coset
space, three pseudo-scalar massless, resp., light excitations arise as (would-be) Goldstone
bosons, the pions.

From this one can take away three important lessons:

• In contradistinction to spontaneous symmetry breaking the mechanism of dynamical
symmetry breaking introduces a dichotomous nature for the (would-be) Goldstone
bosons, they are not only Goldstone bosons but at the same time bound states of a
highly collective nature. This is true for the original picture based on nucleons but,
of course, also if one starts with light quarks interacting at the tree-level in a chirally
symmetric way, see, e.g., the discussion in [10].

• DχSB implies the generation of dynamical masses for originally massless and/or light
fermions. This solves the puzzle why in the quark model for the light quarks the
so-called constituent quark masses at the order of ≳ 350 MeV are required instead of
the much smaller current quark masses.

• In contradistinction to non-relativistic superconductivity where Cooper pairs are
formed at arbitrary small couplings1 [9] DχSB in four spacetime dimensions only
takes place if the coupling exceeds a critical value.

Although these three statements are correct, they alone provide an incomplete picture.
Before explicating in which sense the second statement has to be augmented it is instructive
to have a closer look at the third one. In the chiral limit any order parameter will show as
a function of the coupling a non-analyticity at the critical value of the coupling. For light
quarks, i.e., in the case of approximate chiral symmetry, one has a cross-over characterised
by a rapid change of the would-be order parameter. This is illustrated in Fig. 1 in which for
a calculation within a Nambu–Jona-Lasinio model the constituent quark mass is shown as
a function of the four-fermion coupling, for the details see Ref. [10]. This calculation seems
to imply that the physical point is such that the corresponding coupling is much larger than
the physical one, and correspondingly all order parameters would depend only mildly on
the precise value of the coupling. In the following I will argue that this behaviour seen in a
Nambu–Jona-Lasinio model (and certain truncations to QCD) is not correct for QCD. The
most important effect of this is the resulting sensitivity of all chiral order parameters on the
precise value of the quark-quark interaction strength.

2.2. On the Dyson-Schwinger / Bethe-Salpeter approach in Rainbow-Ladder truncation

As DχSB is a non-perturbative phenomenon methods beyond perturbation theory
are needed to investigate it. If it comes to the study of dynamical symmetry breaking
an approach based on Dyson-Schwinger and Bethe-Salpeter equations has been widely
employed, see, e.g., the textbook [5] for an introduction. In particular, this approach has

1 As a matter of fact, this statement is only true in the mean-field approximation. When taking into account
fluctuations also a certain minimal coupling is required to form Cooper pairs.
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Figure 1. An example for the generated constituent quark mass as a function of the coupling within
a Nambu–Jona-Lasinio model calculation. (Adapted from Ref. [10].)

been used widely in the context of QCD and hadron physics as documented by a number
of reviews [11–17].

An essential element in this approach is the choice of a symmetry-preserving trunca-
tion of the infinite set of equations for the n-point correlation functions. Within a Poincaré-
covariant setting (implying, at least implicitly, the choice of a covariant gauge, cf. the
discussion below in sect. 2.4) the simplest non-trivial of such approximations is the rainbow-
ladder truncation. It owes its name because the infinitely many re-summed diagrams look
like rainbows for the quark propagator’s Dyson-Schwinger equation and like ladders for
the mesons’ bound state equations, the Bethe-Salpeter equations.

Since Ref. [18] several hundred solutions of the quark propagator’s Dyson-Schwinger
equation in rainbow approximation have been published, and since Ref. [19,20] a similar
number of solutions for the pion Bethe-Salpeter equation in ladder approximation have
been described in the literature. For many but not all hadrons such an approximation
works astonishingly well, see, e.g., Ref. [16] for a detailed discussion and Refs. [21–25] for
some examples of beyond-rainbow-ladder calculations.2

For the purpose of these notes the use of the rainbow-ladder truncation will not
allow to resolve the issues raised in the preceding section. The reason is quite simple: In
this truncation the quark-gluon vertex is given by a model, and for technical reasons the
employed models are incomplete. Important aspects of the effect of DχSB on the quark-
gluon interaction are thereby excluded by assumption. Phrased otherwise, one cannot find
what one excludes by approximation.

A further “twist“ of the rainbow-ladder truncation lies in the reduction to the tree-level
tensor component in the quark-gluon vertex followed by a fitting of the overall interaction
strength to phenomenological data. This then leads, as argued in the next section, to an
overestimate of the coupling strength between quarks and gluons.

2 For a study of the functional renormalisation group taking a dynamical quark-gluon vertex into account, see,
e.g., [26].
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2.3. On the onset of the Conformal Window

It is evident from hadron phenomenology that DχSB takes place in QCD. For a
Gedankenexperiment let us consider a gauge theory with N f massless (or light) fermions in
the fundamental representation of the gauge group. If N f is small the anti-screening caused
by the gauge bosons dominates, and consequently the running coupling will increase when
tuning the scale from larger to smaller scales. Eventually, it will exceed the critical coupling,
and DχSB will take place. At very large N f the screening caused by the fermions will
dominate, and asymptotic freedom will be lost.

However, in between this two extremes there will exist an interval for N f where the
balance in between the anti-screening due to the gauge bosons and the screening due to the
fermions is such that the anti-screening effect wins only so slightly against the screening.
Correspondingly, the coupling will increase when lowering the scale but only so weakly
that the critical coupling is never exceeded. Thus, DχSB will not take place. In the chiral
limit, such a theory possesses an infrared fixed point, it will be effectively scale-invariant in
the deep infrared. For that reason the corresponding interval for N f is called the conformal
window.

Although the above described generic picture has been verified by studies based on
coupled Dyson-Schwinger equations [27,28], however, the critical value for the numbers
of flavours at which the conformal window sets in, Ncrit

f , is severely underestimated
when compared to studies employing other methods, see, e.g., [29–32]. The decisive
hint why Dyson-Schwinger studies in rainbow-ladder truncation show such a deficiency
comes from the sensitivity of Ncrit

f on the quark-gluon vertex if one goes (slightly) beyond
the rainbow-ladder truncation. This behaviour makes plain that the distribution of the
overall quark-gluon interaction strength in the sub-GeV region over several of the quark-
gluon vertex tensor structures, as it happens without any doubt in QCD, is essential in an
understanding how the increased screening by an increasing number of massless, resp.,
light, quark flavours drives the system into a chirally symmetric phase with an IR fixed
point.

2.4. A note on gauge dependence

Since the seminal work by Curtis and Pennington [33] it has become evident how
important the fermion–gauge-boson vertex is in achieving gauge independence in the
Dyson-Schwinger approach. Although for QED substantial progress has been achieved,
see, e.g., [34–36] and references therein, in the studies of the role of the fermion-photon
vertex for gauge independence the corresponding question in QCD , namely on the impact
of the quark-gluon vertex on the gauge (in-)dependence of hadron observables, has proven
to be an extremely hard question. Even the much more humble question how the different
tensors of the quark-gluon vertex may depend on the gauge parameter within the class of
linear covariant gauges and how this will effect the underlying mechanism for DχSB in
this class of gauges seems beyond reach given the status of Dyson-Schwinger studies of the
Yang-Mills sector in the linear covariant gauge, see, e.g., [37–39].

Therefore, although the question whether DχSB in QCD is delicate and intricate only in
the Landau gauge and might be a robust phenomenon in other gauges is highly interesting
it will likely remain to be unanswered in the next years. Nevertheless, in view of the
insights which may be gained in studying the role of the quark-gluon vertex and its impact
on DχSB in different gauges an extension of the approach based on Nielsen identities (as
performed in [39]) to the quark sector is certainly desirable. One might also apply the
technique of interpolating gauges [40–43] to relate the existing Landau and Coulomb gauge
results on DχSB. Until such studies will succeed the herein described analysis will only be
applicable to QCD in the Landau gauge.
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3. Correlation functions in the Yang-Mills sector

In order to investigate the interplay between the quark propagator and the quark-
gluon vertex within functional methods one needs to be able to determine the propagators
and the three-point functions in the Yang-Mills sector accurately. In the last two decades
there have been enormous progress in this direction, see, e.g., the reviews [44–46], and it
is fair to say that in the Landau gauge the gluon and the ghost propagators as well as the
three-gluon and the ghost-gluon vertex are well understood.

Hereby, two features are important.
First, the gluon propagator’s renormalisation function as function of the gluon vir-

tuality p2 displays on the space-like side a maximum slightly below one GeV, and then
decreases towards the infrared. This unusual behaviour not only signals a strongly reduced
spectral dimension [47] and relates the gluon long-range properties to non-vanishing p2

[47,48] but it also leads to the fact that the gluon propagator alone, i.e., without quark-gluon
vertex dressings, is much too small in the sub-GeV region to trigger DχSB, see, e.g., the
discussion in [49].

Second, the three-gluon vertex gets suppressed towards the infrared, and the corre-
sponding form factors display in the most accurate available calculations even a zero at
small values of p2. As in the Dyson-Schwinger equation for the quark-gluon vertex the
three-gluon vertex turns out to be decisive in determining the infrared enhancement of the
quark-gluon vertex form factors which in turn determines the size and the proximity to
criticality of DχSB these two observations together explain why in QCD in Landau gauge
DχSB is so delicate in distinction from models ignoring these two facts.

4. Quark propagator and quark-gluon vertex
4.1. Structure of the quark-gluon vertex

The arguments provided above elucidate the special role of the quark-gluon vertex in
the description of DχSB in the Landau gauge. Unfortunately, this vertex possesses a rich
structure, and it is exactly the interplay in between parts of this structure which turn out to
be relevant for the physics of DχSB.

There is one straightforward property of the fully dressed quark-gluon vertex: To the
best of our knowledge it possesses the same colour structure as its tree-level counter part.

When it comes to flavour, and in particular to the dependence on the current quark
mass, a careful assessment of the properties of the substructures is in order. To this end
one notes first that in the Landau gauge only that parts of the vertex are relevant which
are strictly transverse to the gluon momentum. As the quark-gluon vertex transforms
as four-vector under Lorentz and as a Dirac matrix under spin rotations this leaves one
with eight possible tensor structures, each tensor structure being multiplied with a form
factor depending on three Lorentz-invariant variables which in turn are built from the three
involved momenta.

Instead of choosing immediately a definite basis for this eight tensors it is worthwhile
to discuss some generic aspects first. The Feynman integrals for the form factor multiplying
the tree-level tensor are ultraviolet divergent, and thus this one form factor needs renormali-
sation. Choosing the other seven tensors orthogonal to the tree-level one the corresponding
form factors are determined from ultraviolet-finite expressions, and correspondingly they
decrease power-like for large momenta. This leads to the expectation, later on confirmed
by calculations, that these form factors are only sizeable if at least one of the involved
momenta is small, i.e., in the sub-GeV region.

The eight tensors of the transverse part of the quark-gluon vertex can grouped accord-
ing to their behaviour under chiral transformations: Four of them are chirally symmetric,
and thus they will be generically non-vanishing even in the chiral limit and the symmetric
Wigner-Weyl phase of chiral symmetry. In that latter case the form factors of the other
four chirally non-symmetric tensor structures vanish. In the Nambu-Goldstone phase they
will be dynamically generated, and phrased otherwise this exactly means that DχSB also
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includes the generation of chirality-violating scalar and tensor quark-gluon interaction. As
can be seen below they are quite sizeable.

If it comes to the dependence of the quark-gluon vertex on the current quark mass,
i.e., on the explicit breaking of chiral symmetry, this distinction in between the chirally
symmetric and non-symmetric parts lead to a quite astonishing behaviour of the latter
components. The Feynman diagrams for the quark-gluon vertex contain at least one quark
propagator within a loop. Of course, this quark propagator goes to zero as the quark mass
goes to infinity. Therefore, naively one might conclude that the fully dressed quark-gluon
vertex will approach the tree-level one for larger and larger current quark masses. However,
one has to take into account that the chirally non-symmetric form factors by the mere virtue
of their transformation properties also will have a factor of at least one current quark mass
and/or dynamically generated constituent quark mass in the numerator. Therefore the
suppression by the current quark mass in the denominator of the integrand introduced via
the quark propagator can and generically will be canceled.

As a matter of fact, this mechanism is already at work in QED w.r.t. the Pauli term
and the resulting anomalous magnetic moments (g-2): There is a cancelation of factors of
the fermion mass in the QED contributions to, e.g., the (g-2) of the electron and the muon.

4.2. Dynamical generation of scalar and tensorial quark-gluon interactions

In the following the above statements will be quantified on the basis of the results
obtained in [50], see also [51–53].3 I want to emphasise here that the corresponding results
of other groups would have been equally valid, the choice is only based on the availability
of the data. And to be concise within this short note only results in the chiral limit will be
discussed.

The following kinematics is chosen:
Gluon momentum: kµ = pµ − qµ with pµ outgoing and qµ incoming quark momentum.
Define furthermore:
(i) Normalised gluon momentum:

k̂µ := kµ/
√

k2.

(ii) Averaged quark momentum, 1
2 (pµ + qµ), project it transverse to gluon momentum

and normalise it
sµ := (δµν − k̂µ k̂ν)

1
2
(pν + qν) , ŝµ = sµ/

√
s2 .

As a three-point function the quark-gluon vertex, or more precisely the factors multi-
plying the tensors in a decomposition, depend on three Lorentz invariants, and we choose
them to be p2, q2 and p · q. The transverse part of the quark-gluon vertex is expanded then
in the form

Γµ
trans(p, q; k) =

8

∑
j=1

gi(p2, q2; p · q)ρµ
i , (1)

and in the following we will approximate the transverse part of the quark-gluon vertex.
First, as the angular dependence turns out to be weak we will neglect it. The functions
gi(p2, q2; p · q) are symmetric in p and q, therefore we will substitute them by functions
gi( p̄2) of only the averaged momentum-squared, i.e., p̄2 = 1

2 (p2 + q2). The model functions
gi( p̄2) are fitted to the numerical results at symmetric momenta, g(p2, p2; p · q = 0) obtained
from a coupled set of quark propagator and quark-gluon vertex Dyson-Schwinger equations
in the chiral limit with a model for the three-gluon vertex, see [50–53] for more details.

Hereby it turns out that g1, g2, g3 ∝ g2 and g4 = g7 are important whereas based on
the underlying results for g5 and g8 it is safe to neglect these two functions.

3 The interested reader will find figures of the quark-gluon vertex’ form factors in these references.
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Employing that to numerical accuracy g4 = g7, and that one observes g3 ∝ g2 in the
sense that 1.45 g2(p2, p2, 0) + g3(p2, p2; 0) is for all momenta smaller than 0.08, one is left
with effectively three tensor structures.

1. Tree-level tensor structure (with x = p̄2/ 1 GeV2):
ρ

µ
1 = γ

µ
T = (δµν − k̂µ k̂ν)γµ, with

g1( p̄2) = 1 + (1.6673 + 0.2042x)/(1 + 0.6831x + 0.0008509x2)
Of course, the tree-level tensor structure is allowed in the chirally symmetric phase.
2. The further sizeable chirally symmetric tensor structure is given by:
ρ

µ
4 + ρ

µ
7 = k̂/ ŝµ + ŝ/ k̂/ γ

µ
T , with

g4( p̄2) = g7( p̄2) = 2.589x/(0.8587 + 3.267x + x2)
3. The one important tensor structure due to (dynamical or explicit) chiral symmetry

breaking is a combination of ρ
µ
2 = iŝµ and ρ

µ
3 = ik̂/γ

µ
T .

The corresponding form factors are g3( p̄2) = 0.3645x/(0.01867 + 0.3530x + x2),
g2( p̄2) = −g3( p̄2)/1.45, and the latter relation also fixes the relative weight of the 2nd and
the 3rd component in the expansion (1).

Hereby, ρ
µ
2 is a Dirac scalar (i.e., proportional to the unit matrix), and ρ

µ
3 a rank-2

tensor.
Therefore, the one main conclusion of this section is that in QCD in Landau gauge

a scalar and a tensorial quark-gluon interaction is dynamically generated. Phrased
otherwise, non-perturbatively fully dressed gluons interact with quarks as if they had a
spin-0 and spin-2 component.

4.3. The coupled system and its lessons for DχSB

Putting all the above pieces together one realises that a description of DχSB in QCD in
Landau gauge and based on the fully dressed quark, gluon and ghost propagators as well
the fully dressed three-point functions displays quite an elaborate web of self-consistent
interdependencies. Contrary to what has been assumed in the early days of QCD, namely
that the gluon propagator is the main driver of a robust version of DχSB, it turns out that
the intricate interplay between all the involved functions puts the whole system close
to criticality. Although amongst these functions the quark-gluon vertex is the richest in
structure it is the one quantity which allows to improve on our understanding of the
complicated way the fully dressed gluon interacts with fully dressed quarks in the strongly
interacting domain.

From a bird’s eye perspective this should not come as a surprise. It is obvious from
the experimental results in hadron physics that thresholds which are apparent in scattering
cross sections stem from intermediate hadron resonances. Despite its rich structure the
quark-gluon vertex is still the simplest among all the QCD correlation functions which
could seed such dependencies. Together with an understanding how the kinetic terms for
hadrons might emerge from the QCD degrees of freedom (for a corresponding discussion,
see, e.g., [54]) this opens up the possibility to map out the wealth of hadron physics with
less than a dozen functions derived from QCD. Therefore, the richness of these functions
and of the equations determining them should not come as a surprise.

5. Conclusions and Outlook

In this short note I argued that the view on DχSB in QCD needs to take into account the
results obtained over the last two decades for the correlation functions of gluons and quarks.
Having been seduced by some older results to believe that DχSB in Strong Interactions
is a robust phenomenon (due to the reason that interactions are strong) the more recent
results urge us to re-think this point of view: It looks much more that DχSB is delicate and
intricate.

At this point one might argue that this distinction between robust & straightforward
vs. delicate & intricate might only be an interpretational one. To my opinion there are
at least three reasons to pay attention to the view advocated here. The first one is within
hadron physics itself. Being aware about the sensitivity in the description of DχSB provides
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some guidance in understanding which hadron observables will inherit this sensitivity
on the details of the underlying quark and glue dynamics. In this respect the question of
the formation of a hadron provides quite likely one of the main examples of an intricate
process. Second, quite a number of models beyond the Standard Model as, e.g., technicolor,
exploit a potential proximity to the lower end of the conformal window to generate a
“walking” coupling and correspondingly a vast separation of scales. Needless to say that an
understanding of the transition to the conformal window and the physics therein (as well as
close to it) will build on the details of the fate of chiral symmetry in this parameter domain.
Third (but not least), I’d like to remind the reader that the Standard Model possesses
another chiral transition triggered by the Higgs-Yukawa couplings and happening at the
electroweak scale. (Some insight into how intricate these two chiral transitions intertwine
can be inferred from the recent investigation reported in ref. [55]). Therefore, a deepened
insight into the chiral properties of the Standard Model fermions will always need to
include the very nature of DχSB within QCD.
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