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Abstract—Amid the increasing interest in the deployment of
Distributed Energy Resources (DERs), the Virtual Power Plant
(VPP) has emerged as a pivotal tool for aggregating diverse
DERs and facilitating their participation in wholesale energy
markets. These VPP deployments have been fueled by the Federal
Energy Regulatory Commission’s Order 2222, which makes
DERs and VPPs competitive across market segments. However,
the diversity and decentralized nature of DERs present significant
challenges to the scalable coordination of VPP assets. To address
efficiency and speed bottlenecks, this paper presents a novel
machine learning-assisted distributed optimization to coordinate
VPP assets. Our method, named as LOOP −MAC (Learning
to Optimize the Optimization Process for Multi-agent Coordi-
nation), adopts a multi-agent coordination perspective where
each VPP agent manages multiple DERs and utilizes neural
network approximators to expedite the solution search. The
LOOP −MAC method employs a gauge map to guarantee strict
compliance with local constraints, effectively reducing the need
for additional post-processing steps. Our results highlight the
advantages of LOOP −MAC, showcasing accelerated solution
times per iteration and significantly reduced convergence times.
The LOOP −MAC method outperforms conventional central-
ized and distributed optimization methods in optimization tasks
that require repetitive and sequential execution.

Index Terms—Virtual Power Plants (VPPs), Alternating Direc-
tion Method of Multipliers (ADMM), Distributed Optimization,
Distributed Energy Resources (DERs), Learning to Optimize the
Optimization Process (LOOP), Collaborative Problem-solving

I. INTRODUCTION

A. Motivation

As global energy sectors transition towards sustainability,
the role of Distributed Energy Resources (DERs) has become
increasingly significant. However, the participation of DERs
in competitive electricity markets remains a challenge [1].
While many DERs are capable of providing wholesale market
services, they often individually fall short of the minimum
size thresholds established by Independent System Operators
(ISOs) and may not meet performance requirements [2]. As
a solution to these challenges, Virtual Power Plants (VPPs)
have emerged to aggregate diverse DERs, creating a unified
operating profile for participation in wholesale markets and
providing services to system operators [3]. Further promoting
the aggregation of DERs, the Federal Energy Regulatory Com-
mission’s (FERC’s) Order 2222, issued in September 2020,
allowed DERs to compete on equal terms with other resources
in ISO energy, capacity, and ancillary service markets [2].
The FERC regulatory advancement strengthens the position
of DERs and VPPs in the market.

Despite their promising potential, the massive, decentral-
ized, diverse, heterogeneous, and small-scale nature of DERs

poses significant challenges to traditional centralized ap-
proaches, especially in terms of computational efficiency and
speed. Centralized controls for VPPs require global informa-
tion from all DERs, making them susceptible to catastrophic
failures if centralized nodes fail and potentially compromising
the privacy of DER owners’ information. To address these
issues, there is a growing demand for efficient, scalable, dis-
tributed and decentralized optimization techniques. Our study
aims to tackle these challenges and develop a solution that can
efficiently harness the benefits of DERs, thereby unlocking the
full potential of VPPs.

B. Related Work

1) VPP Functionalities and Objectives: VPPs act as aggre-
gators for a variety of DERs, playing a pivotal role in mitigat-
ing integration barriers between DERs and grid operations [4].
In what folows, we will highlight recent insights gained from
extensive research conducted on strategies for coordinating
DERs within VPPs. For instance, optimization schemes for
coordinating DERs within VPPs can be customized to achieve
various objectives including:

• VPP’s self financial and operational objectives:
– Maximizing revenue from energy trading across dif-

ferent markets [5].
– Decreasing operational and maintenance costs of

operating VPPs [5]–[9].
– Optimizing load curtailment [10] or energy exporta-

tion [11].
– Reducing end-user discomfort from joining demand

response efforts [12].
– Narrowing the discrepancy between actual power

consumption and predetermined set points and
schedules [13], [14].

– Mitigating financial burden of operational risks [15]–
[18].

• Contributing to system-level initiatives:
– Curtailing greenhouse gas emissions [19].
– Advancing the reliability and resilience of the overall

energy system [17], [18], [20].
2) Shortcomings of Centralized Coordination Methods:

Today’s centralized optimization methods are not designed to
cope with decentralized, diverse, heterogeneous, and small-
scale nature of DERs. Recent studies have shown that in-
tegrating DERs at scale may adversely impact today’s tools
operation’s efficiency and performance speed [21].

Major challenges of centralized management strategies in-
clude:
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• Scalability issues become more pronounced with the
addition of more DERs to the network, resulting in
increased computational demands due to the management
of a growing set of variables

• Security and privacy risks as centralized decision-making
models requires comprehensive data from all DERs [22].

• Severe system disruptions resulting from dependence on
a single centralized node, as a failure in that node may
pose a significant operational risk.

• Significant delays in the decision-making process due to
the strain on the communication infrastructure, a situation
worsened by continuous data communication and the
intermittent nature of DERs.

• Adaptability challenges as the centralized systems strug-
gle to provide timely responses to network changes. This
limitation stems from their requirement for a comprehen-
sive understanding of the entire system to make informed
decisions [23].

• Logistical and political challenges given the diverse and
intricate nature of DERs within a comprehensive cen-
tralized optimization strategy that spans across various
regions and utilities [24].

In response to these challenges, there is a growing demand
and interest in the development and implementation of effi-
cient, scalable, and decentralized optimization approaches.

3) State-of-the-art in Distributed Coordination: Distributed
coordination methods organize DERs into clusters, with each
one treated as an independent agent with capabilities for
communication, computation, data storage, and operation, as
demonstrated in previous work [25]. A distributed configura-
tion enables DERs to function efficiently without dependence
on a central controller. Distributed coordination paradigms,
which leverage the autonomy of individual agents, have played
a crucial role in the decentralized dispatch of DERs, as
highlighted in recent surveys [22].

Among the numerous distributed optimization methods pro-
posed in power systems, the Alternating Direction Method of
Multipliers (ADMM) has gained popularity for its versatil-
ity across different optimization scenarios. Recent examples
include a distributed model to minimize the dispatch cost
of DERs in VPPs, while accounting for network constraints
[18]. Another noteworthy contribution is a fully distributed
methodology that, combines ADMM and consensus optimiza-
tion protocols to address transmission line limits in VPPs
[21]. Li et al. [26] introduced a decentralized algorithm to
enable demand response optimization for electric vehicles
within a VPP. Contributing to the robustness of VPPs, another
decentralized algorithm based on message queuing has been
proposed to enhance system resilience, particularly in cases of
coordinator disruptions [27].

4) Challenges of Existing Distributed Coordination Meth-
ods: Despite their many advantages, most distributed opti-
mization techniques, even those with convergence guarantees,
require significant parameter tuning to ensure numerical sta-
bility and practical convergence. Real-time energy markets
impose operational constraints that require frequent updates,
sometimes as frequently as every five minutes throughout the
day, as indicated by [28]. The frequent update demands that

the optimization of DERs dispatch within VPPs is resolved
frequently and in a timely manner. Nevertheless, the itera-
tive nature of these optimization techniques can significantly
increase computation time, restricting their utility in time-
sensitive scenarios. Moreover, the optimization performance
may not necessarily improve, even when encountering identi-
cal or analogous dispatching problems frequently, leading to
computational inefficiency.

To address these limitations, Machine Learning (ML) has
been deployed to enhance the efficiency of optimization proce-
dures, as discussed in [29]. The utilization of neural networks
can expedite the search process and reduce the number of itera-
tions needed to identify optimal solutions. Furthermore, neural
approximators can continually enhance their performance as
they encounter increasingly complex optimization challenges,
as demonstrated in [30].

ML-assisted distributed optimizers can be broadly catego-
rized into three distinct models: supervised learning, unsu-
pervised learning, and reinforcement learning. In the realm
of supervised learning, a data-driven method to expedite the
convergence of ADMM in solving distributed DC optimal
power flow (DC-OPF) is presented in [31], where authors
employ penalty-based techniques to achieve local feasibility.
Also, we have proposed an ML-based ADMM method to
solve the DC-OPF problem which provides a rapid solution for
primal and dual sub-problems in each iteration [32]. Additional
applications of supervised learning are demonstrated in [33]
and [34], where ML algorithms are used to provide warm-start
points for ADMM. On the other hand, unsupervised learning
is exemplified in [35], where a learning-assisted asynchronous
ADMM method is proposed, leveraging k-means for anomaly
detection. Reinforcement learning has been applied to train
neural network controllers for achieving DER voltage control
[36], frequency control [37], and optimal transactions [38].

Although these studies showcase the potential of ML for
adaptive, real-time DER optimization in decentralized VPP
models, they do not fully develop ML-infused distributed
optimization methods to improve computation speed while
ensuring solution feasibility.

C. Contributions

In this paper, we propose an ML-assisted method to re-
place the building blocks of the ADMM-based distributed
optimization technique with neural approximators. Our method
is referred to as LOOP −MAC (Learning to Optimize
the Optimization Process for Multi-agent Coordination). We
will employ our LOOP −MAC method to find a multi-
agent solution for the power dispatch problem in DER co-
ordination within a VPP. In the muti-agent VPP configura-
tion, each agent may control multiple DERs. The proposed
LOOP −MAC method enables each agent to predict local
power profiles by communicating with its neighbors. All
agents collaborate to achieve a near-optimal solution for
power dispatch while adhering to both local and system-level
constraints.

The utilization of neural networks expedites the search
process and reduces the number of iterations required to
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identify optimal solutions. Additionally, unlike restoration-
based methods, the LOOP −MAC approach doesn’t ne-
cessitate post-processing steps to enhance feasibility because
local constraints are inherently enforced through a gauge
mapping method [39], and coupled constraints are penalized
through ADMM iterations. This paper advances our recent
work in [32] that is focused on speeding up the ADMM-
based DC-OPF calculations through efficient approximation
of primal and dual sub-problems. While [32] tackled the
DC-OPF problem, the present paper extends our previous
model to incorporate individual VPP assets, addressing the
DER coordination problem. In terms of methodology, [32]
employs ML to facilitate both primal and dual updates of the
ADMM method. This requires neighboring agents to share
updated global variables, local copies of global variables, and
Lagrangian multipliers. This work, however, replaces the two
ADMM update procedures with a single data infusion step
that reduces agents’ communication and computation burden.

II. PROBLEM FORMULATION

A. Compact Formulation

1) The compact formulation for original optimization prob-
lem: The centralized optimization function is:

min
u
f(u,x) s.t. u ∈ S(x) (1)

where u =
⊕

i u
i represents the collection of optimization

variables across all agents. Note,
⊕

denotes vector con-
catenation, and ui indicates the optimization variable vector
of agent i. Similarly, x =

⊕
i x

i encompasses all input
parameters across agents, with xi indicating agent i’s input
parameter vector. The overall objective function is captured
by f =

∑
i f

i(xi,ui) where f i stands for agent i’s objective.
Lastly, S is the collection of all agent’s constraint sets.

2) The compact formulation at the multi-agent-level: Here,
we introduce the agent-based method to distribute computation
responsibilities among agents. Let the variable vector of each
agent, ui, consist of both local and global variables, which can
be partitioned as ui = [ui

l,u
i
g]. Here, ui

l captures the local
variables of agent i, while ui

g encapsulates the global variables
shared among neighboring agents. To enable distributed com-
putations, each agent i maintains a local copy vector of other
agents’ variables, ui

g,Copy, from which this vector mimics the
global variables owned by neighboring agents.

a) Agent-level computations: Solving (1) in a distributed
fashion requires agent i to solve (2) before communication.

min
ui,ui

g,Copy

f i([ui
l,u

i
g],u

i
g,Copy,x

i) (2a)

s.t. local constraints:
[

ui

ui
g,Copy

]
∈ Si

Local(x
i) (2b)

consensus constraints: ui
g,Copy = Iic[

⊕
j ̸=i

uj
g] (2c)

where Si
Local denotes the agent i’s local constraint set. Here,

Iic[
⊕

j ̸=i u
j
g] denotes the global variables owned by neigh-

boring agents, and Iic is an element selector matrix. The

distributed optimization process and intra-agent information
exchange will ensure agreement among local copies of shared
global variables.

b) Intra-agent Information Exchange:

dual update:λi[k]

= λi[k−1]

+ ρ(ui[k−1]

g,Copy − Iic[
⊕
j ̸=i

uj[k−1]

g ]) (3)

primal optimization:

[
ui[k]

ui[k]

g,Copy

]
= hi(λi[k]

) (4)

The dual update procedure (3) adjusts the Lagrangian mul-
tipliers λi, which enforces consensus between agent i and its
neighbors. Here, λi represents the differences between agent
i’s local copies and the global variables from neighboring
agents, and ρ > 0 is a penalty parameter.

In (4), hi captures the compact form of an optimization
problem that reduces the gap between local copies of global
variables while respecting the constraints of individual agents.

B. VPP Model

The considered VPP consists of a number of NA agents,
each denoted by index i, i ∈ NA. Every agent is responsible
for aggregating a diverse set of DERs, which encompasses
flexible loads (FLs), energy storage systems (ESSs), heating,
ventilation, and air conditioning (HVAC) systems, plug-in
electric vehicles (PEVs), and photovoltaic (PV) arrays, as
shown in Fig.1. These agents might be connected to networks
of different utilities. The primary objective of the VPP is to
optimize the aggregate behavior of all agents while accounting
for agents’ utility functions.

Fig. 1. Examples of agents controlled by a VPP.

In this paper, we propose that the VPP operates within a
two-settlement energy market, composed of a day-ahead and a
real-time market. Upon the clearing of the day-ahead market,
the VPP decides on hourly production schedules. The real-
time market, also known as the imbalance market, is designed
to settle potential day-ahead commitment violations. The real-
time market productions are set in 5-minute increments. The
production schedules every 5 minutes are denoted as PSch.

The LOOP −MAC method is designed for the real-time
market, where a VPP solves a dispatch optimization across
its assets (agents) to honor its commitment over a given time
scale, [ts, te], where ts and te represent the starting and ending
times, respectively. Put differently, the VPP needs to fulfill
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the production schedule PSch = [P t
Sch | t = ts, . . . , te] while

minimizing the overall cost of agents. Generally, the VPP
implements 5-minute binding intervals (∆t = 5/60 h) for the
real-time market, and adopts look-ahead horizon (te − ts),
ranging from 5 minutes up to 2 hours [40], for the real-
time dispatch optimization. The detailed dispatch optimization
problem is presented next.

C. Centralized Formulation of the VPP Coordination Problem

This subsection presents the centralized form of the power
dispatch problem solved by a VPP over various assets for every
time step t ∈ [ts, te]. The asset constraints are:

1) Constraints Pertaining to Flexible Loads: The power of
a flexible load should be within a pre-defined operation range
[P i,t

FLmin, P
i,t
FLmax], ∀t ∈ [ts, te], ∀i ∈ NA:

P i,t
FLmin ≤ P i,t

FL ≤ P i,t
FLmax (5)

2) Constraints Pertaining to Energy Storage Systems: ∀i
and ∀t ∈ [ts, te], the charging P i,t

ESSC (or discharging P i,t
ESSD)

power of the energy storage system must not exceed P i
ESSmax,

as indicated in (6). Also, (7) and (8) define Ri,t
SoC as the state

of charge (SoC) and bound its limits. Here ηiESSC and ηiESSD
denote the charging and discharging efficiency. Finally Ei

ESSN

refers to the capacity.

0 ≤ P i,t
ESSC ≤ P i

ESSmax, 0 ≤ P i,t
ESSD ≤ P i

ESSmax (6)

Ri,t+1
SoC =Ri,t

SoC +
(P i,t

ESSCη
i
ESSC −

P i,t
ESSD

ηi
ESSD

)∆t

Ei
ESSN

(7)

Ri
SoCmin≤ Ri,t+1

SoC ≤Ri
SoCmax (8)

3) Constraints Pertaining to Heating, Ventilation, and Air
Conditioning Systems: The inverter-based heating, ventilation,
and air conditioning model [41] is presented below with
consumption power denoted as P i,t

HVAC.

T i,t+1
HVAC =ε

i
HVACT

i,t
HVAC+(1−εiHVAC)

(
T i,t
out−

ηiHVAC
Ai
HVAC

P i,t
HVAC

)
(9)

Where T i,t
HVAC is the indoor temperature at time t, T i,t

out is the
forecasted outdoor temperature, εiHVAC is the factor of inertia,
ηiHVAC is the coefficient of performance, Ai

HVAC is thermal
conductivity. Equation (10) introduces the concept of adaptive
comfort model [T i

min, T
i
max]. Equation (11) enforces the control

range within the size of air-conditioning P i
HVACmax.

T i
min ≤ T i,t+1

HVAC ≤ T i
max (10)

0 ≤ P i,t
HVAC ≤ P i

HVACmax (11)

4) Constraints Pertaining to Plug-in Electric Vehicles
(PEV): ∀i and ∀t ∈ [ts, te], the PEV charging power P i,t

PEV

must adhere to the range [P i
PEVmin, P

i
PEVmax] as described in

(12). Further, (13) mandates that agent i’s cumulative charging
power meet the necessary energy Ei

PEV for daily commute [42].

P i
PEVmin ≤ P i,t

PEV ≤ P i
PEVmax (12)

te∑
t=ts

P i,t
PEV ≥ Ei

PEV (13)

5) Constraints Pertaining to Photovoltaic Arrays: The pho-
tovoltaic power generation, given by (14) and is determined
by the solar irradiance-power conversion function. Here, Rt

PV,
represents the solar radiation intensity, APV denotes the surface
area, and ηPV is the transformation efficiency.

P i,t
PV = Rt

PVAPVηPV (14)

6) Constraints of Network Sharing: The net power of agent
i, P i,t

O , is given below. Note, P i,t
IL indicates the inflexible loads.

P i,t
O =P i,t

PV+P
i,t
ESSD−P

i,t
ESSC−P

i,t
IL−P

i,t
FL−P

i,t
HVAC−P

i,t
PEV (15)

Local distribution utility constraints are enforced by (16),
while (17) guarantees that VPP’s output honors the production
schedule of both energy markets.

P i
Omin ≤ P i,t

O ≤ P i
Omax (16)∑

i∈NA

P i,t
O = P t

Sch (17)

7) Objective Function: The objective function for the
power dispatch problem, i.e., (18), includes:

a) Minimizing maintenance & operation costs of energy
storage systems: αi

ESS represents the unit maintenance cost.
b) Balancing the differences between actual and preset

consumption profiles for flexible loads: αi,t
FL is the inconve-

nience coefficient. Here, P i,t
FLref specifies the preferred con-

sumption level [43].
c) Mitigating thermal discomfort costs for HVAC sys-

tems: αi,t
HVAC is the cost coefficient, T i,t

Ref indicates the optimal
comfort level, and binary variable βi,t

HVAC denotes occupancy
state, where 1 means occupied and 0 indicates vacancy.

f =

te∑
t=ts

∑
i∈NA

(
αi
ESS(P

i,t
ESSC + P i,t

ESSD) + αi
FL(P

i,t
FL

−P i,t
FLref)

2 + βi,t
HVACα

i
HVAC(T

i,t
HVAC − T i,t

Ref)
2
)

(18)

8) Centralized Optimization Problem: Combining the con-
straints (5)-(17) and the objective function (18), we formulate
the power dispatch problem. Note the formulated dispatch
problem requires frequent resolution at each time instance ts
in the real-time market. For a given agent i, the optimization
variables over the time interval [ts, te] are denoted by ui(t),
while its inputs over the same interval are represented as xi;

ui =
[
P i,t
FL , P

i,t
ESSC, P

i,t
ESSD, R

i,t+1
SoC , P i,t

HVAC, T
i,t+1
HVAC , P

i,t
PEV, P

i,t
PV ,

P i,t
O | t = ts, . . . , te

]
(19)

xi =
[
P i,t
FLmin, P

i,t
FLmax, R

i,ts
SoC, T

i,ts
HVAC, T

i,t
out, E

i
PEV, R

t
PV, P

i,t
IL ,

P t
Sch, P

i,t
FLref, β

i,t
HVAC, T

i,t
Ref | t = ts, . . . , te

]
(20)
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Let u =
⊕

i u
i and x =

⊕
i x

i. The DER coordination
problem can be formulated as (21) or as follows,

min f(u,x) (21a)
s.t. Aequ+Beqx+ beq = 0 (21b)

Ainequ+Bineqx+ bineq ≤ 0 (21c)

where Aeq, Beq and beq represent the compact form of
parameters in equations (7), (9), (14), (15), and (17) we
have formed before. And Aineq, Bineq and bineq captures
parameters in equations (5), (6), (8), (10)-(13), (16).

D. Agent-based Model for the VPP Coordination Problem

Agent-based problem-solving lends itself well to addressing
the computational needs of the VPP coordination problem. In
this subsection, we focus on finding a distributed solution for
(21) (or (1)). While each sub-problem optimizes the operation
of individual agents, communication enables individual agents
to collectively find the system-level optimal solution.

In the context of distributed problem-solving, it is important
to point out the unique challenges posed by coupling con-
straints such as (17). These constraints introduce intricate rela-
tionships among several agents where some variables of agent
i are tied with those of agent j. These coupled constraints
prevent separating (21) into disjointed sub-problems.

As discussed in Section IIA, we define the variables present
among multiple agents’ constraints as global variables, ui

g,

ui
g =

[
P i,t
O | t = ts, . . . , te

]T
(22)

In contrast, the variables solely managed by non-
overlapping constraints are referred to as local variables. That
is, ui = [ui

l,u
i
g]. We refer to agents whose variables are

intertwined in a constraint as neighboring agents.
The ADMM method finds a decentralized solution for (21)

by creating local copies of neighboring agents’ global variables
and adjusting local copies iteratively to satisfy both local
and consensus constraints. The adjustment continues until
alignment with original global variables is achieved, at which
point the global minimum has been found in a decentralized
manner.

In the power dispatch problem, we introduce P i,j,t
OCopy, which

is owned by agent i, and represents a copy of P j,t
O . Then,

coupled constraint (17) become a local constraint (23) and a
consensus constraint (24):

P i,t
O +

∑
j ̸=i

P i,j,t
OCopy = P t

Sch (23)

P i,j,t
OCopy = P j,t

O ,∀j ̸= i (24)

Let ui
g,Copy = [P i,j,t

OCopy | t = ts, . . . , te] denote all local
copies owned by agent i imitating other neighboring agents’
global variables. Then, one could reformulate the problem (21)
in accordance to ui and ui

g,Copy as,

min
∑
i

f i(ui,ui
g,Copy,x

i) (25a)

s.t. Ai
eq

[
ui

ui
g,Copy

]
+Bi

eqx
i + bi

eq = 0,∀i (25b)

Ai
ineq

[
ui

ui
g,Copy

]
+Bi

ineqx
i + bi

ineq ≤ 0,∀i (25c)

ui
g,Copy = Iic[

⊕
j ̸=i

uj
g],∀i (25d)

where, Ai
eq, Bi

eq, bi
eq, Ai

ineq, Bi
ineq, and bi

ineq in (25b) and
(25c) capture the compact form of constraints (5)-(16), (23).
And (25d) is the compact form of constraints (24). Here Iic
is the element selector matrix that maps elements from vector⊕

j ̸=i u
j
g to vector ui

g,Copy based on a consensus constraint
(24). Each row of Iic contains a single 1 at a position that
corresponds to the desired element from

⊕
j ̸=i u

j
g and 0s

elsewhere. Therefore, Iic[
⊕

j ̸=i u
j
g] represents the vector of

global variables that are required to be imitated by agent i.
Let Si

Local be the set of local constraints associated with
agent i, i.e., (25b)-(25c). Therefore, the compact form of
decentralized formulation at the agent-level as defined in (2).

E. Updating Rules Within Agents

The standard form of ADMM solves problem (25) (or (2))
by dealing with the augmented Lagrangian function L:

minL=
∑
i

f i(ui,ui
g,Copy,x

i)+λiT(ui
g,Copy−Iic[

⊕
j ̸=i

uj
g])

+ρ

∥∥∥∥∥∥ui
g,Copy − Iic[

⊕
j ̸=i

uj ]

∥∥∥∥∥∥
2

2

 (26a)

[
ui

ui
g,Copy

]
∈ Si

Local(x
i),∀i (26b)

where ρ > 0 is a positive constant. λi denotes the vector
of all Lagrangian multipliers for the corresponding consensus
equality relationship between agent i’s copy and neighboring
agent j’s global variable.

The search for a solution to (26) is performed through an
iterative process (indexed by [k], k = 1, ..., NK). All NA agents
will execute this process simultaneously and independently
before communicating with neighboring agents. At the agent
level, these updates manifest themselves as follows,

λi[k]

= λi[k−1]

+ ρ(ui[k−1]

g,Copy − Iic[
⊕
j ̸=i

uj[k−1]

g ]) (27)

[
ui[k]

ui[k]

g,Copy

]
=argminL

λi[k]

,
⊕
j ̸=i

(
uj[k−1]

,uj[k−1]

g,Copy,λ
j[k]

),
s.t.

[
ui[k]

ui[k]

g,Copy

]
∈ Si

Local(x
i) (28)

The dual update equation, i.e., (27), modifies the Lagrangian
multipliers to estimate the discrepancies between an agent’s
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local copy of variables (designed to emulate the global vari-
ables of its neighbors) and the actual global variables held by
those neighbors. Subsequently, (28) provides an optimization
solution leveraging prior iteration data from other agents.

It’s essential to note that agent i doesn’t require all the
updated values from other agents to update equations (27) and
(28). Agent i primarily needs:

• Neighboring agents’ global variables: Iic[
⊕

j ̸=i u
j
g]. In the

context of the distributed DER problem, agent i requires
values of P j,t[k−1]

O from their neighboring agent j.
• Neighboring agents’ local copies mirroring agent i’s

global variables: Iig[
⊕

j ̸=i u
j[k−1]

g,Copy], where Iig functions
as a selector matrix. In the distributed DER context, agent
i requires P j,i,t[k]

OCopy from their neighboring agent j.

We use ui[k−1]

Other to represent the set of variables owned by
other agents but are needed by agent i to update (27) and (28).
Finally, the intra-agent updates are represented by (4) and (3).

The standard form of ADMM guarantees the feasibility of
local constraints by (4) and penalizes violations of consensus
constraints by iteratively updating Lagrangian multipliers as
(3). In what follows, we will propose a ML-based method to
accelerate ADMM for decentralized DER coordination. The
ADMM iterations will guide the consensus protocol, while the
gauge map [39] is adopted to enforce hard local constraints.

III. PROPOSED LOOP −MAC METHODOLOGY

A. Overview of the Method

This section provides a high-level overview of the
LOOP −MAC method to incorporate ML to accelerate the
ADMM algorithm. As shown in Fig. 2, instead of solving
agent-level local optimization problems (4) by an iterative
solver, we will train NA agent-level neural approximators
ξi, i ∈ NA to directly map inputs to optimized value of agent’s
optimization variables in a single feed-forward. The resulting
prediction of each agent i, denoted as ui[k]

, will be trained to
approximate the optimal solution of (2).

ui[k]

,ui[k]

g,Copy = ξi
(
xi,ui[k−1]

Other

)
(29)

Pseudo code of the proposed LOOP −MAC method is
given in Algorithm 1. LOOP −MAC method includes two
steps for each iteration. First, each agent receives variables of
prior iteration from neighboring agents. Second, each agent
uses a neural approximator to predict its optimal values.

B. Design of Neural Approximators Structures

Violations of consensus constraints could be penalized by
ADMM iterations. Further, we will design each neural ap-
proximator’s structure to guarantee that its output satisfies
the local constraints, i.e., ξi ∈ Si

Local(x
i). We adopt the

LOOP − LC (Learning to Optimize the Optimization Process
with Linear Constraints) model proposed in [39] to develop
each neural approximator ξi. The LOOP − LC model learns
to solve optimization problems with hard linear constraints. It
applies variable elimination and gauge mapping for equality

Fig. 2. Comparison between ADMM and the proposed
LOOP −MAC method. The ADMM approach is comprised of
two key components: the dual update and the primal optimization. The dual
update guides the consensus protocol, while the primal optimization leverages
this estimation to adjust the local decision-making process through iterative
solvers. In contrast, our LOOP −MAC method replaces these two
procedures with a single-step data infusion and mapping input parameters
and other agents’ values to agent-level optimized values, directly.

Algorithm 1 LOOP −MAC method
Input: DER coordination problem parameters, e.g., NA

neural approximators ξi,∀i, input parameters xi,∀i; Initial
value of ui and λi,∀i.
Output: Distributed solution ui[k+1]

to DER coordination
problem.
while Convergence criteria unmet do

for i in range(NA) do
• Send previous global variable ui[k−1]

g and local
copy ui[k−1]

g,Copy to neighboring agents, and receive ui[k−1]

Other

• Generate prediction ui[k]

,ui[k]

g,Copy=ξ
i(xi,ui[k−1]

Other)
k ++

end for
end while

and inequality completions, respectively. The LOOP − LC
model produces a feasible and near-optimal solution. In what
follows, we will present the main components of LOOP − LC
and how it applies to the VPP coordination problem.

Fig. 3. The structure and building blocks of Neural Approximator ξi.

1) Variable Elimination: Based on the equality constraints
given in (25b), the variables ui and ui

g,Copy can be categorized
into two sets: the dependent variables ui

Dep and the indepen-
dent variables ui

Ind. The dependent variables are inherently
determined by the independent variables. For instance in (9),
the variable T i,t+1

HVAC is dependent on P i,t
HVAC; hence, once P i,t

HVAC

is derived, T i,t+1
HVAC can be caculated.

The function Fi is introduced to establish the relationship
between ui

Dep and ui
Ind, such that ui

Dep = Fi(ui
Ind), shown in
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Fig. 3. A comprehensive derivation of Fi can be found in [39].
By integrating Fi into the definition of Si

Local and substituting
ui
Dep, the optimization problem of (4) can be restructured

as a reduced-dimensional problem with ui
Ind as the primary

variable. The corresponding constraint set for this reformulated
problem is denoted by Si

Local,Ref and presented as,

Si
Local,Ref =

{
Ai

ineq

[
ui
Ind

Fi(ui
Ind)

]
+Bi

ineqx
i + bi

ineq ≤ 0

}
(30)

Therefore, as long as the prediction of the reformulated
problem ensures ui

Ind ∈ Si
Local,Ref, Fi will produce the full-

size ui,ui
g,Copy vectors satisfying local constraints Si

Local(x
i)

by concatenating ui
Dep and ui

Dep,u
i
Ind.

2) Gauge Map: After variable elimination, our primary
objective is to predict ui

Ind such that it satisfies the constraint
set Si

Local,Ref. Instead of directly solving this problem, we
will utilize a neural network that finds a virtual prediction
ûi
Ind which lies within the ℓ∞-norm unit ball (denoted as B)

a set constrained by upper and lower bounds. The architecture
of the neural network is designed to ensure that the resulting
ûi
Ind remains confined within B. Subsequently, we introduce a

bijective gauge mapping, represented as Ti, to transform ûi
Ind

from B to Si
Local,Ref. As presented in [39], Ti is a predefined

function with an explicit closed-form representation as below,

ui
Ind = Ti(ûi

Ind) =
ψB(û

i
Ind)

ψSi
Local,Ref0

(ûi
Ind)

ûi
Ind + ui

Ind,0 (31)

The function ψB is the Minkowski gauge of the set B, while
ui
Ind,0 represents an interior point of Si

Local,Ref. Moreover,
the shifted set, Si

Local,Ref0, is defined as,

Si
Local,Ref0 =

{
ūi
Ind |

(
ui
Ind,0 + ūi

Ind

)
∈ Si

Local,Ref

}
(32)

with ψSi
Local,Ref0

representing the Minkowski gauge on this set.

C. Training the Neural Approximators

We use the historical trajectories of ADMM (i.e. applied
on historical power demands) for training purposes. Note that
predicting the converged ADMM values is a time-series pre-
diction challenge. Specifically, outputs from a given iteration
are requisites for the subsequent iterations. This relationship
implies that ui[k]

,ui[k]

g,Copy,∀i are contingent upon ui[k−1]

Other, de-

rived from other agents’ outputs uj[k−1]

,uj[k−1]

g,Copy,∀j ̸= i from
the prior iteration. To encapsulate this temporal dependency,
our training approach adopts a look-ahead format, facilitating
the joint training of all neural approximators in a recurrent
manner, which ensures that prior outputs from different agents
are seamlessly integrated as current inputs (see Fig. 4).

Suppose there are ND training data points, indexed and
associated with their respective output by the superscript (d).
As an initial step, ADMM is employed to generate all values of
optimization variables required for training. Concurrently, the
optimal solution ui∗(d) pertaining to (2) is calculated. Subse-
quently, for NR recurrent steps, the loss function fL is defined

as the cumulative distance d between the prediction ui[k+r](d)

and the optimal solution ui∗(d). This summation spans all
agents, every recurrent step, every iteration (k = 1, ..NK), and
all data points, as delineated in (33).

fL =

ND∑
d=1

NK∑
k=1

NR∑
r=1

∑
i∈NA

d(ui[k+r](d)

,ui∗(d)) (33)

Fig. 4. ADMM convergence values present a time-series prediction challenge,
with outputs from one iteration feeding into the next. Our training approach
uses a look-ahead format, enabling recurrent joint training of neural approx-
imators, integrating prior outputs as current inputs.

IV. EXPERIMENTAL RESULTS

A. Experiment Setup
1) Test Systems: We examine a VPP consisting of three

distinct agents, as illustrated in Fig. 5.
• Agent 1 manages inflexible loads, flexible loads, and

energy storage systems.
• Agent 2 is responsible for inflexible loads and the oper-

ations of plug-in electric vehicles.
• Agent 3 oversees inflexible loads, heating, ventilation,

and air conditioning systems, in addition to photovoltaics.
We derive the load profile from data recorded in central

New York on July 24th, 2023 [44]. Both preferred flexible
and inflexible loads typically range between 10 to 25 kW.
The production schedule range is set between 45 to 115 kW.

For plug-in electric vehicles, our reference is the average
hourly public L2 charging station utilization on weekdays in
March 2022 as presented by Borlaug et al. [45]. In [45] the
profile range for Ei,τ

PEV, τ ∈ [0, 24h] between 10 and 22 kW.
With regards to the heating, ventilation, and air conditioning

systems, the target indoor temperature T i,t
Ref is maintained at

77◦F . Guided by the ASHRAE(American Society of Heat-
ing, Refrigerating, and Air-Conditioning Engineers) standards
[46], the acceptable summer comfort range is determined
as T i

min = 75◦F and T i
max = 79◦F . External temperature

readings for New York City’s Central Park on July 24th, 2023
were obtained from the National Weather Service [47].

Also, the Global CMP22 dataset from July 24th, 2023 [48]
is used to calculate the regional solar radiation intensity Rt

PV.
Supplementary parameters are presented in Table I.
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2) Training Data: A total of 20 ADMM iterations are con-
sidered, i.e., NK = 20. This results in a dataset of 24×12×20
data points. For model validation, data from odd time steps is
designated for training, whereas even time steps are reserved
for testing. The DER coordination problem includes 192
optimization variables alongside 111 input variables.

3) ADMM Configuration: The ADMM initialization values
are set to zero. In our ADMM implementation, the parameter
ρ is set to 0.0005. Optimization computations are carried out
using the widely-accepted commercial solver, Gurobi [49].

4) Neural Network Configuration: Our neural network
models consist of a single hidden layer, incorporating 500
hidden units. The Rectified Linear Unit (ReLU) activation
function is employed for introducing non-linearity. To ensure
that ûi

Ind resides within B (the ℓ∞ unit ball), the output layer
utilizes the Hyperbolic Tangent (TanH) activation. Further-
more, 3 recurrent steps are considered, represented by NR = 3.

Fig. 5. Our proposed LOOP −MAC method to coordinate DERs.

TABLE I
PARAMETERS OF DERS THAT ARE CONTROLLED BY AGENTS.
parameter value parameter value

αi,t
FL 0.1 [43] P i

ESSmax 80kW [43]
αi
ESS 0.01 [50] ηiESSC 0.94 [43]

ηiESSD 1.06 [43] Ei
ESSN 300kW [43]

Ri
SoCmin 0.15 [43] Ri

SoCmax 0.85 [43]
Ri
SoC(τ = 0) 0.2 [43] αi

ESS 0.01 [50]
ηiHVAC 2.5 [41] Ai

HVAC 0.25 [41]
εiHVAC 0.93 [41] P i

HVACmax 11.5kW [41]
βi,t
HVAC 1 αi,t

HVAC 1
APV 1000 m2 [51] ηPV 0.2 [51]

B. Runtime Results

Fig. 6 illustrates the cumulative computation time across
all agents and test data points over iterations. The per-
formance comparison is conducted among the decen-
tralized setup employing ADMM solvers, our proposed
LOOP −MAC method, and traditional centralized solvers.

From the case study, it is observed that the computational
time required by the classical ADMM solver exceeds the
centralized solvers solution time after approximately five it-
erations. Remarkably, our proposed LOOP −MAC method
significantly outperforms the classical ADMM, achieving 500x
speed up. Also, LOOP −MAC even surpasses the efficiency
of the centralized solver in terms of computation speed.

Fig. 6. Comparison of cumulative computational time across all agents and
test data points. The classical ADMM approach closely matches the compu-
tational efficiency of centralized solvers after approximately five iterations. In
contrast, the LOOP −MAC solves the problem 500 times faster than the
classical ADMM, even surpassing the centralized solvers in performance.

Table II provides the average computational time for a single
iteration on a single data point. An insightful observation from
the results suggests that the LOOP −MAC method would
require around 3300 iterations to match the computational time
of centralized solvers. However, based on the convergence
analysis that will be provided later, LOOP −MAC method
demonstrates convergence in a mere 10 iterations.

TABLE II
AVERAGE RUNNING TIME FOR A SINGLE ADMM ITERATION OVER THE

DECISION-MAKING TIME HORIZON .
Method Time(Millisecond)

LOOP −MAC method 0.0060
ADMM using Gurobi [49] 3.2966

Centralized formulation using Gurobi [49] 19.4496/NK

C. Optimality and Feasibility Results

Fig. 7 presents the optimality deviation rate for both the
traditional ADMM algorithm and LOOP −MAC method.
The deviation rate metric quantifies the degree to which the
operational profiles of the DERs deviate from the optimal
(derived from solving the centralized problem). It is evident
that LOOP −MAC method achieves faster convergence.
Moreover, LOOP −MAC showcases faster reduction of the
deviation rate compared to the standard ADMM approach.

Similarly, Fig. 8 depicts the deviation rate of the
VPP schedule for both the ADMM approach and
LOOP −MAC method. This rate sheds light on the
difference between the actual VPP production schedule
and its planned output. In the context of our optimization
problem, the deviation rate is equivalent to the feasibility gap
rate of the coupled constraints, as shown in (17). Notably,
LOOP −MAC excels in convergence speed and stability.
The VPP schedule deviation rate declines more rapidly and
remains stable using LOOP −MAC method, whereas the
traditional ADMM method results in more oscillations and
converges at a slower pace.

Table III summarizes post-convergence metrics for both
algorithms across all agents, iterations, and test data points.
While the minimum optimality deviation rate achieved by
LOOP −MAC is slightly higher than that of the classical
ADMM, our approach showcases a much lower variance
and a significantly reduced maximum deviation. These re-
sults highlight LOOP −MAC method’s efficacy, especially
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Fig. 7. Comparison of the optimality deviation (error) rate for the classical ADMM versus LOOP −MAC. The rate quantifies deviation (error) from the

optimal DER operation profile using
∥∥∥ui[k](d) − ui∗(d)

∥∥∥2
2
/
∥∥ui∗(d)∥∥2

2
. LOOP −MAC method distinctly reduces the iterations needed for convergence

and demonstrates decreased post-convergence variance and peak deviation, demonstrating its superior capabilities in handling repetitive optimization scenarios.

Fig. 8. VPP output deviation rate represents the variance between the VPP’s
output and planned production schedules, measured by the feasibility gap of
coupled constraints (17) as

∑τ+τw
t=τ

(∑
i P

i,t
O − P t

Sch

)
/P t

Sch. Compared to
the ADMM, LOOP −MAC exhibits a faster and more stable convergence.

when tasked with recurrently solving similar optimization
problems. The observed improvements in variance and max-
imum deviation highlight the versatility and robustness of
LOOP −MAC in varied problem scenarios. To sum up,
the proposed LOOP −MAC solution speeds up the solu-
tion time of each ADMM iteration by up to 500X. Also,
LOOP −MAC needs fewer iterations to converge, hence,
the overall run time will be significantly shorter.

TABLE III
POST-CONVERGENCE STATISTICS.

ADMM LOOP −MAC

Optimality
deviation

rate

Average 0.0527 0.0492
Variance 0.0012 0.0003

Maximum 0.1396 0.1278
Minimum 0.0023 0.0099

VPP
schedule
deviation

rate

Average 0.0611 0.0512
Variance 0.0026 0.0008

Maximum 0.2471 0.1363
Minimum 0.0097 0.0142

V. CONCLUSION

In this work, we introduced a novel ML-based method,
LOOP −MAC, to significantly enhance the performance
of the distributed optimization techniques and discussed its
performance in addressing challenges of the DER coordination
problem (solved by VPP). Our multi-agent framework for
VPP decision-making allows each agent to manage multiple
DERs. Key to our proposed LOOP −MAC approach is the
capability of each agent to predict their local power profiles
and strategically communication with neighboring agents. The
collective problem-solving efforts of these agents result in a
near-optimal solution for power dispatching, ensuring compli-
ance with both local and system-level constraints.

A key contribution of our work is developing and in-
corporating neural network approximators in the process of
distributed decision-making. This novelty significantly ac-
celerates the solution search and reduces the iterations re-
quired for convergence. Uniquely, in contrast to restoration-
centric methodologies, LOOP −MAC bypasses the need
for auxiliary post-processing steps to achieve feasibility using
a two-pronged solution approach, where local constraints are
inherently satisfied through the gauge mapping technique, and
coupled constraints are penalized over ADMM iterations.

The LOOP −MAC method reduces the solution time
per iteration by up to 500%. Coupled with requiring fewer
iterations for convergence, the net result is a drastic reduction
of overall convergence time while respecting the problem con-
straints and maintaining the quality of the resulting solution.
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