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We study the near threshold behavior of cross sections of low-energy antiproton scattering off the ground

and excited states of positronium with zero total orbital momentum L = 0. In our computational experiment,

the existence of singularities called the Gailitis-Damburg oscillations above the thresholds of excited states

of positronium and antihydrogen atoms is confirmed. In the future the obtained results can be useful for

developing proposals for improving the conditions of experiments with antimatter.

Several experiments on antimatter based on the

use of the Antiproton Decelerator Facility are being

planned and performed at CERN. Two of them aimed at

the antimatter gravitational behavior — AEgIS [1] and

GBAR [2] — use, inter alia, the three-body reaction

p̄+ Ps → H+ e− (1)

of antihydrogen H formation via antiproton p̄ scattering

off the gas of Rydberg positronium (Ps). In this

regard, a number of theoretical works which study the

reaction (1) have recently appeared. Of natural interest

here is to find a mechanism for increasing the reaction

rate of antihydrogen formation process used for the

production of antimatter atoms.

The researchers are interested in various singularities

of the cross sections of scattering processes in the e−e+p̄
system. Among them are resonances, the near threshold

enhancement of cross sections, as well as the less

known above threshold singularities called the Gailitis-

Damburg (GD) oscillations, predicted for the first time

in [3, 4]. The latter arise due to long-range dipole

interaction between an excited atom (either H or Ps)

and a charged particle (e− or p̄). The GD theory [3–5]

predicts two types of singularities: a series of narrow

resonances in energy regions below the thresholds of

excited states of atoms and cross-section oscillations

above these thresholds. The existence of the first of

them, also called Feshbach resonances, in the e−e−p
and e−e+p̄ systems has been reliably confirmed both

experimentally and theoretically, by using very accurate

special methods for calculating the energies and widths

of resonances [6–14]. The situation is more complicated

with singularities of another type—oscillations of cross

sections. Their existence in the e−e+p̄ system has been

discussed in the works [15–17], but only in the last of
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them the cross sections that are consistent with the

predictions of the GD theory have been obtained.

The goal of this work is to study the above threshold

behavior of scattering cross sections in the e−e+p̄
system in the case of zero total orbital momentum

of the system L = 0. Our ab initio approach to

solving the multichannel quantum scattering problem

in a system of three particles is based on the solution

of the Faddeev-Merkuriev (FM) equations, which are

strictly equivalent to the Schrödinger equation [18],

in the configuration space. These equations in the

total orbital momentum representation [19] are reduced

to a finite set of three-dimensional partial differential

equations. To solve boundary value problems for these

equations, we proposed and implemented an efficient

computational algorithm [20], which was tested, in

particular, in calculations of low-energy scattering in

the e−e+p̄ system [21]. To calculate the obtained in

this work cross sections above the thresholds of excited

states of atoms, it is critically important to use the

asymptote of solutions to the FM equations, which

explicitly takes into account the long-range nature of

effective interaction between a neutral atom and an

incident (outgoing) particle. By this reason one needs

to modify the “standard” formulae for the asymptotic

behavior of wave functions [14,22]. This modification is a

generalization to the three-particle case of the results of

our work [23]. Here we briefly discuss the corresponding

theory and apply it in a series of calculations of low-

energy cross sections above the thresholds of the first

few excited states of atoms in the e−e+p̄ system.

A system of three spinless nonrelativistic charged

particles with masses mα and charges Zα, α = 1, 2, 3

is considered. In what follows, the set of indices αβγ

denotes one of the cyclic permutations of the set {1, 2, 3}
that enumerates the particles. Since in the triad αβγ

the pair of particles βγ is completely determined by the

number α of the third particle, we will systematically
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use this fact to identify pairs of particles. In the center

of mass frame, the position of particles is described by

a set of Jacobi coordinates. For the partition α(βγ),

they are defined as the relative position vectors between

βγ particles xα and between their center of mass and

the particle α yα. We use reduced Jacobi coordinates

{xα,yα}, which are Jacobi vectors scaled by factors√
2µα and

√
2µα(βγ) respectively. Reduced masses of

the pair α (µα) and the system “particle α — pair α”

(µα(βγ)) are expressed in terms of particle masses mα

by standard formulae. For different values of α, the

reduced Jacobi vectors are related by an orthogonal

transform xβ = cβαxα + sβαyα, yβ = −sβαxα +

cβαyα [18]. In what follows, the vector lengths are

denoted by the corresponding non-bold letters, for

example, xα = |xα|. The states of a system with total

orbital momentum L = 0 are symmetric with respect

to the rotation of the system as a whole and for this

reason depend only on the three coordinates Xα =

{xα, yα, zα = cos θα ≡ (xα,yα)/(xαyα)} that determine

the position of particles in the plane containing them.

In what follows, where it is due, it is assumed that the

coordinates Xβ are expressed in terms of Xα.

The FM equations for three charged particles [18,24]

in the case of L = 0 have the form [21,25]:


Tα + Vα(xα) +

∑

β 6=α

V
(l)
β (xβ , yβ)− E


ψα(Xα) =

− V (s)
α (xα, yα)

∑

β 6=α

xαyα
xβyβ

ψβ(Xβ). (2)

Here the kinetic energy operators are given by

Tα = − ∂2

∂y2α
− ∂2

∂x2α
−
(

1

y2α
+

1

x2α

)
∂

∂zα
(1−z2α)

∂

∂zα
. (3)

The potentials Vα represent the pair Coulomb

interaction Vα(xα) =
√
2µαZβZγ/xα. They are

split into short-range V
(s)
α and long-range parts V

(l)
α

Vα(xα) = V (s)
α (xα, yα) + V (l)

α (xα, yα) (4)

using a function called the Merkuriev cut-off [18, 21].

The equations (2) can be summed up, which leads

to the Schrödinger equation for the wave function

Ψ =
∑

α ψα(Xα)/(xαyα), where ψα are the components

of the wave function given by the solution of the

equations (2).

At energy values E below the threshold of breakup

(ionization) of the system, the FM components ψα(Xα)

at yα → ∞ are substantially different from zero only

in the asymptotic region Ωα = {xα, yα : xα ≪ yα

for yα → ∞}. In Ωα the FM components can be

represented in the form

ψ(α0νλ)
α (Xα) ∼

∼

∑

nℓ

φnℓ(xα)Yℓ0(θα, 0)

(
ψ−
(nℓ)(νλ)(yα, pν)δαα0−

−
∑

n′ℓ′

ψ+
(nℓ)(n′ℓ′)(yα, pn′)

√
pν
pn′

S(αn′ℓ′)(α0νλ)

)
. (5)

In this formula the indices αnℓ enumerate the binary

scattering channels, i.e., the Coulomb bound states of

two particles in pair α with radial wave function φnℓ(x)

and energy εn. The set of indices α0νλ defines the

initial scattering channel. Yℓm denotes the standard

spherical harmonic. In formula (5) and below in the

text it is assumed that the indices nℓ take integer

values n > ℓ ≥ 0 corresponding to channels which are

open at a given energy E. The momentum pn of an

incident (scattered) particle is determined by the energy

conservation condition E = p2n + εn. Accordingly, the

channel is considered open if E− εn ≥ 0. The functions

ψ−
(nℓ)(νλ) and ψ+

(nℓ)(νλ) define the incident and scattered

waves. It is standard to choose these functions in the

form

ψ̂±
(nℓ)(n′ℓ′)(yα, pn′) = u±ℓ (ηn, pnyα)δ(nℓ)(n′ℓ′), (6)

where u±ℓ (η, z) are the Coulomb incoming and outgoing

waves [26], and the Sommerfeld parameter is defined

as ηn ≡ Zα(Zβ + Zγ)
√

2µα(βγ)/(2pn). Indeed, the use

of functions (6) in (5) leads to the solution of the FM

equations with asymptotic behavior of the form:

ψ̂(α0νλ)
α (Xα) ∼

∼ φνλ(xα)Yλ0(θα, 0)u
−
λ (ην , pνyα)δαα0−

−
∑

nℓ

φnℓ(xα)Yℓ0(θα, 0)u
+
ℓ (ηn, pnyα)

√
pν
pn

Ŝ(αnℓ)(α0νλ).

(7)

The cross section of the scattering process with initial

α0νλ and final αnℓ channels is expressed in a standard

way through the S-matrix element Ŝ(αnℓ),(α0νλ) [25].

In a system of three charged particles, the presence

of an effective dipole potential between the excited

bound state of pair α (atom) and particle α leads to the

fact that the representation (6) becomes insufficiently

accurate, since after substituting it into the FM

equations the dipole potential is not compensated.

Formally, the dipole potential can be obtained by

substituting into the FM equations (2) the asymptotic

Письма в ЖЭТФ



Gailitis-Damburg oscillations in the three-body e−e+p̄ system 3

expansion in Ωα of the sum of the long-range parts of

the potentials

∑

β 6=α

V
(l)
β (xβ , yβ) =

∞∑

ℓ=0

d(ℓ+1)
α

xℓαPℓ(zα)

yℓ+1
α

, (8)

where Pℓ are Legendre polynomials. Indeed, from the

properties of the Merkuriev cut-off it follows that in Ωα

the quantity V
(l)
β , up to a term exponentially decreasing

in the variable yα, coincides with the potential Vβ . Then

the coefficients of the multipole expansion (8) can be

obtained by using the formula

1

xβ
=

1

|cβαxα + sβαyα|

∣∣∣∣
|sβα|yα≥|cβα|xα

=
1

|sβα|yα

∞∑

ℓ=0

( |cβα|xα
sβαyα

)ℓ

Pℓ(zα). (9)

In particular, the first two coefficients have the form

Cα ≡ d(1)α = Zα(Zβ + Zγ)
√
2µα(βγ), (10)

Dα ≡ d(2)α = Zα(−1)α
√
2µα(βγ)

√
mα

mα +mβ +mγ

×
[
Zγ sign(β − α)(−1)β

√
mβ

mγ

+ Zβ sign(γ − α)(−1)γ
√
mγ

mβ

]
. (11)

As is known from the theory of the FM equations, the

right-hand sides of the equations decrease exponentially

in Ωα. Substituting the first two terms of the

expansion (8) into the FM equations (2), we obtain

that in the asymptotic region Ωα the equations take

the form

[
Tα + Vα(xα) +

Cα

yα
+
Dαxαzα
y2α

− E

]
ψ(α0νλ)
α (Xα)

= O

(
1

y3α

)
. (12)

Let us now substitute the asymptotic representation (5)

into the equations (12) and project them onto the bound

states wave functions φnℓYℓ0. We use the following well-

known relations [26, 27]:

∂

∂ cos θ
(1− cos2 θ)

∂

∂ cos θ
Yℓ0(θ, 0) = −ℓ(ℓ+ 1)Yℓ0(θ, 0),

(13)[
− d2

dx2α
+
ℓ(ℓ+ 1)

x2α
+ Vα(xα)− εn

]
φnℓ(xα) = 0, (14)

2π

∫ +∞

0

dxα

∫ 1

−1

d cos θ φn′ℓ′(xα)Yℓ′0(θ, 0)φnℓ(xα)Yℓ0(θ, 0)

= δℓℓ′δnn′ , (15)

2π

∫ 1

−1

d cos θ Yℓ′0(θ, 0) cos θYℓ0(θ, 0)

= δℓ,ℓ′+1
ℓ√

4ℓ2 − 1
+ δℓ,ℓ′−1

ℓ+ 1√
4(ℓ+ 1)2 − 1

. (16)

As a result, we obtain that the functions ψ±
(nℓ)(νλ) are

the linearly independent solutions to the close coupling

equations:

[
− d2

dy2α
+
ℓ(ℓ+ 1)

y2α
+
Cα

yα
− p2n

]
ψ±
(nℓ)(νλ)(yα, pν)

+
∑

n′ℓ′

Aα
nℓ,n′ℓ′

y2α
ψ±
(n′ℓ′)(νλ)(yα, pν) = O

(
1

y3α

)
. (17)

The elements of the matrix Aα, which specifies the

effective dipole potential, are given by the expressions

Aα
nℓ,n′ℓ′ = DαM

α
nℓ,n′ℓ′ ×

×
(
δℓ′,ℓ+1

ℓ+1√
4(ℓ+1)2−1

+ δℓ′,ℓ−1
ℓ√

4ℓ2−1

)
, (18)

where

Mα
nℓ,n′ℓ′ ≡

∫ +∞

0

dxαφn′ℓ′(xα)xαφnℓ(xα). (19)

As is mentioned above, the incoming and outgoing

waves ψ̂±
(nℓ)(n′ℓ′) defined in (6) do not accurately enough

describe the asymptotic behavior of the solution to the

FM equations in Ωα, since they do not take into account

the presence of an effective dipole potential. Indeed,

when substituting these functions into equations (17),

the last dipole term of order O(y−2
α ) remains uncanceled

on the left side. The dipole term in the asymptotic

solutions of the equations (17) was partially accounted

for in the works [3, 4, 14, 22] by diagonalizing the block

of the channel coupling matrix

δnn′ [ℓ(ℓ+ 1)δℓℓ′ +Aα
(nℓ)(n′ℓ′)],

ℓ = 0.1, . . . , n− 1, ℓ′ = 0.1, . . . , n′ − 1.

However, in this case, the non-diagonal with respect to

n part of the dipole interaction remains uncanceled.

We have taken the full account of the dipole part

of the interactions in the equations (17) using direct

asymptotic methods, which have led us to the following

form of solutions

ψ±
(nℓ)(νλ)(yα, pν) =[

W
α(0)
(nℓ)(νλ) +

1

y2α
W

α(1)
(nℓ)(νλ)

]
u±
L

(νλ)
α

(ην , pνyα). (20)
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Here the matrices Wα(0) and Wα(1) are given by the

formulae

W
α(0)
(nℓ)(νλ) = δnνV

α(νλ)
ℓ ,

W
α(1)
(nℓ)(νλ) = (1− δnν)

∑ν−1
ℓ′=0 A

α
(nℓ)(νℓ′)V

α(νλ)
ℓ′

(p2n − p2ν)
, (21)

and new values of orbital momentum L
(νλ)
α are the

solutions to the quadratic equation

L(νλ)
α (L(νλ)

α + 1) = q(νλ)α . (22)

Finally, q
(νλ)
α , V α(νλ) are the eigenvalues and

eigenvectors of the matrix

ℓ(ℓ+ 1)δℓℓ′ +Aα
(νℓ)(νℓ′), ℓ, ℓ′ = 0.1, . . . , ν − 1. (23)

A detailed derivation of the above asymptotic solutions

is beyond the scope of this work and will be made in a

separate publication.

The solutions (20) allow us to reformulate the

asymptotic boundary conditions (7) for the FM

equations

ψ̃(α0νλ)
α (Xα) ∼

∼

∑

nℓ

φnℓ(xα)Yℓ0(θα, 0)×
[
ψ̃−
(nℓ)(νλ)(yα, pν)δαα0−

−
∑

n′ℓ′

ψ+
(nℓ)(n′ℓ′)(yα, pn′)

√
pν
pn′

S̃(αn′ℓ′)(α0νλ)

]
, (24)

with an incident wave of the form

[
ψ̃−

]
(nℓ)(νλ)

(yα, pν)

=
∑

λ′

e
i
(

λ−L(νλ′)
α

)

π/2
[
V

α(νλ′)
λ

]∗
ψ−
(nℓ)(νλ′)(yα, pν).

(25)

An important fact is that the right-hand sides (7) and

(24) coincide in the limit yα → ∞. Then it follows

that the connection between the components of the

“physical” S-matrix Ŝ and the matrix S̃ defined by the

solution (24) is given by the equality

Ŝ(αnℓ)(α0νλ)

=
∑

ℓ′

e
i
(

ℓ−L(nℓ′)
α

)

π/2
V

α(nℓ′)
ℓ S̃(αnℓ′)(α0νλ). (26)

To solve the FM equations with asymptotic boundary

conditions (24), we use a numerical scheme, described

in detail in [20, 28]. The use of more accurate

asymptote (24) in calculations leads to a significant

reduction in the requirements for computer resources.

This is due to the fact that this asymptote is reached by

the FM components at distances significantly smaller

than the asymptote (7), the latter enforcing to use

the size of the computational domain for the variable

yα in hundreds of atomic units [29]. When turning to

sufficiently small above threshold energies p2n, which

we are interested in, this size grows unlimitedly, which

makes the calculation of scattering cross sections at

such energies almost impossible. In our work [23] we

have demonstrated this on the example of a model

problem of single-channel scattering off a dipole central

potential.

To obtain the presented in the article results, we

have calculated the scattering cross sections with an

accuracy of no worse than 1% and a high energy

resolution: 6 · 10−6 a.u. when calculating cross sections

directly above the thresholds of excited states of atoms

and 6 · 10−5 a.u. in other cases. All presented values

are given in atomic units, cross sections are given in

units of πa20. Binary scattering processes are specified

by the initial and final atomic states. For example,

Ps(1) → H(2) denotes an excited n = 2 (both s and p

states) antihydrogen formation process when antiproton

is scattering off the ground (n = 1) state of positronium.

According to the GD theory [5], the near-threshold

oscillations in cross sections arise when some of the new

values of orbital momentum L
(nℓ)
α are non real. Above

the threshold of the excited bound state of an atom

with principal quantum number n, in the case of a single

(among values with different ℓ < n) non real value L
(nℓ)
α ,

the theory predicts the following dependence of the cross

sections on energies p2n:

σ = A+B cos(2ℑmL(nℓ)
α ln pn + φ). (27)

Here the constants A, B, φ, their own for each specific

system and section, can be considered to be independent

of the energy p2n for small pn. A simple calculation

shows that in the system e−e+p̄ for the first few

scattering channels of excited states Ps(2), H(3) and

H(4) the condition described above is realized. The

imaginary parts of the momentum ℑmL
(nℓ)
α are equal

to 4.76914, 2.19836 and 3.99364, respectively. Thus, in

cross sections above the thresholds of these states one

can expect the presence of GD oscillations.

Figure 1 shows the elastic and quasi-elastic cross

sections for antiproton scattering off positronium Ps

in the first excited state between the thresholds Ps(2)

and H(3). In cross sections above the Ps(2) threshold,

GD oscillations are clearly visible with the location of

maxima being in good agreement with the law (27).

Indeed, for clarity, Fig. 1 also shows a graph of the
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function (27) with empirically chosen values of constants

A, B and phase φ. The presented curves confirm the

previously obtained results [17], where the feasibility of

the law (27) was verified on the same cross sections. The

first wave of the oscillations presented in Fig. 1 has also

been obtained in the works [15, 16].

Let us now move on to a discussion of the

antihydrogen H formation cross sections above various

thresholds of excited states of atoms. Figures 2 and 3

show the cross sections of the formation of antihydrogen

H in the ground H(1) and excited H(2s), H(2p) states

between the H(2) and H(3) states thresholds. This is

a refinement of our previously published results [25],

which have been obtained using standard asymptotic

boundary conditions (7). This boundary conditions

have had to be imposed at very large intercluster

distances yα to achieve convergence of results of

calculations. The latter has required the involvement of

very serious computer resources, however, even this in

some cases has not allowed us to achieve the required

accuracy at low above-threshold energies. In addition,

in our previous work [21] in Fig. 4 the summed

cross section Ps(2)→ H(1,2) in the energy interval

between the thresholds Ps(2) and H(3) is shown. We

do not duplicate it here to save space. Among all

the mentioned cross sections, weak oscillations can

be seen only in Fig. 3 in the cross sections of the

formation of antihydrogen in excited states H(2) above

the corresponding threshold. Due to small amplitudes

of these oscillations and small number of waves, it is

difficult to definitely conclude whether they are related

to the threshold behavior predicted by GD theory.

However, the existing oscillations are consistent with

the law (27), which is illustrated in Fig. 3. All the cross

sections have a fairly smooth character everywhere,

except in the vicinity of the below threshold resonances

marked in the figures. In particular, we do not see in

our results the obtained in the works [15, 16] sharp

peaks in the cross sections Ps(1,2)→ H(1,2) just above

the threshold of the excited Ps(2) state.

Finally, in the cross sections of the formation of

antihydrogen in the second excited state H(3), shown

in Fig. 4, we have discovered oscillations, the positions

of maxima of which satisfy the dependence (27) in

general. Note that the GD theory predicts small relative

amplitudes of oscillations in the cross sections of

transition processes from old channels to new channels

that emerge above the corresponding threshold [5].

This statement, generally speaking, does not agree with

the form of cross section oscillations in Fig. 4, since

the latter have fairly large amplitudes. Perhaps this

circumstance is due to the fact that the GD theory,

as stated above, does not take into account the dipole

interaction between channels with different values of n.

One challenge for future research may be to further

identify the reasons for this inconsistency. We also

plan to generalize the theory of taking into account

dipole interaction in the case of L > 0 and carry out

corresponding high-precision calculations of scattering

cross sections in the e−e+p̄ system. We hope that this

will make it possible to more definitely answer the

question about the existence of GD oscillations in the

total cross sections of scattering processes which are

directly measured in experiment.
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