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Abstract: The gravitational form factors of the transition from the proton to the ∆+

resonance are calculated to leading one-loop order using a manifestly Lorentz-invariant

formulation of chiral perturbation theory. We take into account the leading electromagnetic

and strong isospin-violating effects. The loop contributions to the transition form factors

are found to be free of power-counting violating pieces, which is consistent with the absence

of tree-level diagrams at the considered order. In this sense, our results can be regarded

as predictions of chiral perturbation theory.
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1 Introduction

The linear response of the effective action to the change of the space-time metric speci-

fies mechanical properties of particles. In particular, static characteristics, like the mass,

spin and the D-term correspond to the hadron gravitational form factors (GFFs) at zero

momentum transfer [1, 2]. In recent years, GFFs have attracted increasing attention for

characterizing properties of hadrons with different spins due to their connection to gen-

eralized parton distributions (GPDs). Parameterizations of the energy-momentum tensor

(EMT) matrix elements in terms of the GFFs have been considered for spin-0 [2], spin-1 [3–

5], and for arbitrary-spin hadrons [6]. Mechanical properties, energy and spin densities as

well as spatial distributions of the pressure and shear forces have been introduced for spin-0

and spin-1/2 hadrons in Ref. [7], and generalized to higher-spin systems in Refs. [5, 8, 9].

The nucleon GFFs can be extracted from experimental measurements of exclusive

processes like deeply virtual Compton scattering (DVCS) [10, 11] and hard exclusive meson

production [12]. The connection to GFFs can be seen in the QCD description of these

processes, where the symmetric EMT appears naturally in the operator product expansion

[10]. The first results of measurements of the D-term in hard QCD processes for the

nucleon and the pion can be found in Refs. [13–16]. Recently, the mechanical radius of the

proton has been determined from experimental data on DVCS cross sections and polarized

electron beam spin asymmetries [17]. The GFFs have also been studied in lattice QCD,

see, e.g., Refs. [18–23] and references therein.
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While the electromagnetic p → ∆+ transition has been extensively studied over the

past two decades on both the theoretical and experimental sides, see, e.g., Refs. [24–28],

the gravitational p → ∆+ transition form factors (GTFFs) gained attention only since a

few years [29]. The GTFFs can be accessed experimentally through their connection to

the transition GPDs [30, 31], obtained by expanding the non-local QCD operators with

various quantum numbers. Non-perturbative properties of the nucleon-∆ transition GPDs

have been studied, e.g., by applying the approach of large Nc limit of QCD, as discussed

in Sec. 2.7 of Ref. [32]. In Ref. [33], the transition GPDs have been connected with the

DVCS amplitude within the process e−N → e−γπN, while in Ref. [34] these quantities

have been studied using exclusive electroproduction of π−∆++.

In Ref. [29], the matrix element of the symmetric EMT corresponding to the p→ ∆+

transition has been studied for the first time, where a parametrization for the transitions
1
2

± → 3
2

±
and 1

2

± → 3
2

∓
has been suggested in terms of five conserved and four non-

conserved GTFFs. The first calculations of the GTFFs of the N → ∆ transition were done

in Ref. [35] using the QCD light-cone sum rules. The interpretation and understanding

of the GTFFs have generated much interest recently. In particular, the concept of QCD

angular momentum (AM) [36–38] has been extended to N → ∆ transitions in Ref. [39].

These quantities were calculated in the 1/Nc expansion, and their connection to the tran-

sition GPDs of the hard exclusive electroproduction processes was discussed. Properties of

the AM of various transitions were further explored in Ref. [40], where their decomposition

into the orbital AM and the intrinsic spin components was studied.

For systematic studies of low-energy hadronic processes involving the ∆ resonances

and induced by gravity one may rely on the effective chiral Lagrangian for the nucleons,

pions, photons and delta resonances in curved spacetime. Effective Lagrangian of pions in

curved spacetime has been derived in Ref. [41], and the GFFs of the pion are considered

in Ref. [42]. The leading and subleading effective chiral Lagrangians for nucleons, delta

resonances and pions in curved spacetime, along with the calculation of the leading one-

loop contributions to the GFFs of the nucleons and the ∆ resonances can be found in

Refs. [43, 44].

In this work we calculate the GTFFs of the p → ∆+ transition in the framework of

manifestly Lorentz-invariant chiral perturbation theory (ChPT) up-to-and-including the

third order in the small-scale expansion [45]. As gravity conserves isospin, such kind of

processes are possible only if the isospin symmetry is broken, i.e. if mu 6= md and/or

if the electromagnetic interaction is taken into account. We include both effects at the

corresponding leading orders to calculate the one-loop contributions to the GTFFs.

Our paper is organized as follows: In section 2, we specify the relevant terms of the

effective Lagrangian of the nucleons, pions, photons and delta resonances in curved space-

time. We calculate the GTFFs of the p → ∆+ transition in section 3. The results of our

calculations are summarized in section 4. In the appendices, we list the isospin symme-

try breaking terms in the action and the expression for the parts of the EMT, which are

relevant for our study.
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2 Effective Lagrangian in curved spacetime and the energy-momentum

tensor

The action corresponding to the leading-order effective Lagrangian for nucleons, pions,

photons and delta resonances, interacting with an external gravitational field, can be easily

obtained from the corresponding expressions in flat spacetime [41, 46–49]. It has the

following form:

S(2)
γ =

∫

d4x
√−g

{

−1

4
FµνF

µν +
m2

γ

2
AµA

µ

}

, (2.1)

S(2)
π =

∫

d4x
√−g

{

F 2

4
Tr(DµU(DµU)†) +

F 2

4
Tr(χU † + Uχ†)

}

, (2.2)

S
(1)
Nπ =

∫

d4x
√
−g
{

Ψ̄ iγµ
↔
∇µΨ−mΨ̄Ψ +

gA
2

Ψ̄γµγ5uµΨ

}

, (2.3)

S
(1)
∆π = −

∫

d4x
√−g

{

Ψ̄iµ iγα
↔
∇αΨ

i
µ −m∆ Ψ̄i

µΨ
iµ − gλσ

(

Ψ̄i
µiγ

µ
↔
∇λΨ

i
σ + Ψ̄i

λiγ
µ
↔
∇σΨ

i
µ

)

+iΨ̄i
µγ

µγαγν
↔
∇αΨ

i
ν +m∆Ψ̄

i
µγ

µγνΨi
ν +

g1
2
gµνΨ̄i

µuαγ
αγ5Ψ

i
ν

+
g2
2
Ψ̄i

µ (u
µγν + uνγµ) γ5Ψ

i
ν +

g3
2
Ψ̄i

µuαγ
µγαγ5γ

νΨi
ν

}

, (2.4)

S
(1,2)
∆Nπ =

∫

d4x
√−g

{

−gπN∆Ψ̄ (gµν − γµγν)uµ,iΨν,i

+d
(2)
3 iΨ̄f iµν+ γ5γµ

(

gνλ −
[

zn +
1

2

]

γνγλ

)

Ψiλ +H.c.

}

. (2.5)

The ∆ resonances are represented by the Rarita-Schwinger fields Ψµ
i , which contain the

isospin-3/2 projectors ξ
3

2

ij = δij−τiτj/3, i.e. they satisfy the condition Ψµ
i = ξ

3

2

ijΨ
µ
j . Further,

gµν is the metric tensor field and γµ ≡ eaµγa, where e
a
µ denote the vielbein gravitational

fields. In the photon Lagrangian we included the mass term m2
γ AµA

µ/2 to regularize

infrared divergences, and the limit mγ → 0 should be performed at the end. However, as it

turns out after the calculation, there are actually no IR divergences and this term is thus

of no relevance here. In Eqs. (2.4) and (2.5), zn is an off-shell parameter, which we choose

equal to zero in our calculations, and we have set the point-transformation parameter

A = −1 [50]. The building blocks of the effective Lagrangian are given as follows:

↔
∇µ =

1

2
(
→
∇µ −

←
∇µ) ,

→
∇µΨ

i
ν = ∇ij

µΨ
j
ν =

[

δij∂µ + δijΓµ − iδijv(s)µ − iǫijkTr
(

τkΓµ

)

+
i

2
δijωab

µ σab

]

Ψj
ν − Γα

µνΨ
i
α,

Ψ̄i
ν

←
∇µ = ∇ij

µΨ
j
ν = Ψ̄j

ν

[

δij∂µ − δijΓµ + iδijv(s)µ + iǫijkTr
(

τkΓµ

)

− i

2
δijωab

µ σab

]

− Ψ̄i
αΓ

α
µν ,

→
∇µΨ = ∂µΨ+

i

2
ωab
µ σabΨ+

(

Γµ − iv(s)µ

)

Ψ ,

Ψ̄
←
∇µ = ∂µΨ̄− i

2
Ψ̄σab ω

ab
µ − Ψ̄

(

Γµ − iv(s)µ

)

,
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ωab
µ = −1

2
gνλeaλ

(

∂µe
b
ν − ebσΓ

σ
µν

)

,

Γλ
αβ =

1

2
gλσ (∂αgβσ + ∂βgασ − ∂σgαβ) ,

fµν+ = uFµν
L u† + u†Fµν

R u ,

Fµν
R = ∂µrν − ∂νrµ − i[rµ, rν ] ,

Fµν
L = ∂µlν − ∂ν lµ − i[lµ, lν ] ,

f iµν+ =
1

2
Tr
(

fµν+ τ i
)

,

χ+ = u†χu† + uχ†u,

χ̂+ = χ+ − 1

2
〈χ+〉,

χ = 2B0(s + ip),

uµ,i =
1

2
Tr
(

uµτ
i
)

. (2.6)

Notice that since the gravitational interaction respects the isospin symmetry, the ampli-

tude of the p → ∆+ transition receives non-vanishing contributions only via the isospin-

symmetry breaking effects. In Appendix A, the above action is re-written in particle basis

and the corresponding EMT is also specified.

3 Gravitational transition form factors to one loop

Below, we calculate the leading one-loop contributions to the matrix elements of the EMT

for the one-particle states of the delta resonance and the nucleon. These matrix elements are

extracted from the residues of Green’s functions, which have complex poles corresponding

to the unstable ∆ states [51]. To organize different contributions according to a systematic

expansion we employ the so-called ǫ-counting scheme (also referred to as the small scale

expansion) [45] 1, i.e. the pion lines count as of chiral order Q−2, where Q denotes the soft

scale of the order of the pion mass. Further, the nucleon and delta lines count as Q−1,
interaction vertices originating from the effective Lagrangian of order N count also as of

chiral order QN , while the vertices generated by the EMT, which are listed in Appendix B,

have the orders corresponding to the number of the quark mass insertions and derivatives

acting on the pion fields. Derivatives acting on the nucleon and delta fields count as of

chiral order Q0. The momentum transfer between the initial and final states counts as of

chiral order Q, therefore in those terms of the EMT which involve full derivatives, these

derivatives also count as chiral order Q. Integration over loop momenta is counted as chiral

order Q4. Furthermore, the delta-nucleon mass difference also counts as order Q within the

ǫ-counting scheme. In diagrams involving electromagnetic radiative corrections, we assign

the chiral order Q−2 to the photon line and count the electric charge e as chiral order Q. It

is understood that the above described power counting for loop diagrams is realized in the

results of manifestly Lorentz-invariant calculations only after performing an appropriate

renormalization. We apply the EOMS scheme of Refs. [53, 54].

1For an alternative power counting in ChPT with delta resonances see Ref. [52].
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The matrix element of the total EMT for the transition p→ ∆+ can be parameterized

in terms of five form factors as follows [29]:

〈∆, pf , sf |T µν |N, pi, si〉

= ūα(pf , sf )

{

F1(t)

(

gα{µP ν} +
m2

∆+ −m2
p

∆2
gµν∆α −

m2
∆+ −m2

p

2∆2
gα{µ∆ν} − 1

∆2
P {µ∆ν}∆α

)

+ F2(t)

(

PµP ν∆α +
(m2

∆+ −m2
p)

2

4∆2
gµν∆α −

m2
∆+ −m2

p

2∆2
P {µ∆ν}∆α

)

+ F3(t)
(

∆µ∆ν −∆2gµν
)

∆α

+ F4(t)

(

gα{µγν} +
2(mp +m∆+)

∆2
gµν∆α − mp +m∆+

∆2
gα{µ∆ν} − 1

∆2
γ{µ∆ν}∆α

)

+ F5(t)

(

P {µγν}∆α +
(m2

∆+ −m2
p)(mp +m∆+)

∆2
gµν∆α − mp +m∆+

∆2
P {µ∆ν}∆α

−
m2

∆+ −m2
p

2∆2
γ{µ∆ν}∆α

)}

γ5u(pi, si) , (3.1)

where mp and m∆+ are the proton and the ∆+ masses, respectively, P = (pf + pi) /2,

∆ = pf − pi and t = ∆2. The curly brackets in the superscripts stand for symmetrization

of the involved indices, e.g., P {µγν} = Pµγν + P νγµ. As mentioned in the introduction, if

the isospin symmetry is not broken, the above amplitude is zero.

3.1 One-loop contributions of the strong interaction to the gravitational tran-

sition form factors

To obtain the one-loop contributions to the GTFFs due to strong isospin-breaking inter-

actions one has to compute 25 diagrams, where there are only 10 topologically differing

diagrams and the rest can be obtained by just changing the masses and overall factors.

These 10 diagrams are depicted in Fig. 1. The isospin symmetry breaking terms of the

effective Lagrangian, which contribute to these one-loop diagrams, are specified in Ap-

pendix A. We performed the calculations in the particle basis. In the limit of the exact

isospin symmetry, the contributions of the different diagrams exactly cancel each other.

Taking into account the dominant isospin breaking effect, we find that obtained form fac-

tors are proportional to the mass differences within iso-multiplets of nucleons, pions and

delta resonances. The leading contributions are given by terms proportional to the pion

mass differences. This is because these contributions involve integrals, whose integrands

are proportional to

∼ 1

p2 −M2
π+

− 1

p2 −M2
π0

≃ M2
π+ −M2

π0
(

p2 −M2
π+

) (

p2 −M2
π0

) , (3.2)

where each of the propagators originates from different diagrams that would cancel each

other in the isospin limit. As the mass difference M2
π+ −M2

π0 counts as of chiral order two,

the right-hand side of Eq. (3.2) has the same order as each of the terms in the left-hand
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side. That is, the total contribution of these diagrams, which is proportional to the pion

mass difference squared, has the same order as the individual diagrams. On the other

hand, the contributions proportional to the proton-neutron mass difference are given by

integrals, whose integrands are proportional to

∼ 1

/p−mp
− 1

/p−mn
≃ mp −mn
(

/p−mp

) (

/p−mn

) . (3.3)

As the mass difference mp −mn counts as chiral order two, and the nucleon propagators

as order minus one, the right-hand side of Eq. (3.3) has one order higher than each of

the terms on the left-hand side. That is, the total contribution of diagrams is suppressed

by Q relative to the contributions of the individual diagrams. Analogous power counting

holds also for the contributions proportional to the mass differences of the delta resonances.

Notice further that isospin breaking vertices other than the mass terms start contributing

at higher orders.

7) 8)

9) 10)

1)

5)

2)

6)

3) 4)

Figure 1. Strong contributions to the gravitational transition form factors. Solid and double lines

correspond to nucleons and ∆ resonances, respectively. Dashed lines represent the pions, while the

curly lines correspond to gravitons. Initial and final states refer to p and ∆+, respectively, while the

baryon lines inside loops refer to propagators of one of the following particles: {∆++,∆+,∆0, p, n}.
Notice that the total contribution of these diagrams vanishes in the limit of exact isospin symmetry.

Diagrams 1, 2, 4, 5, 6 and 8 in Fig. 1 start contributing at chiral order three while the

diagrams 3, 7, 9 and 10 start contributing at chiral order two. This is because the leading-

order contribution to the gravitational-source-baryon-baryon vertex has order zero.2 Thus

the diagrams in Fig. 1 give contributions of orders two and three. We have verified that

the one-loop order result of diagrams in Fig. 1 does not contain power counting violating

contributions and all ultraviolet divergences can be absorbed into redefinition of the low-

energy coupling constants of the effective Lagrangian. The obtained results for the form

2Actually the gravitational-source-baryon-baryon vertex originating from the leading-order Lagrangian

has two contributions, one of the order zero and the other of the order one. This means that diagrams 3, 7, 9

and 10 contribute to two different chiral orders (2 and 3). These two contributions cannot be considered

separately, because otherwise the current will not be conserved. This needs to be carefully taken into

account when specifying the (possible) power-counting violating terms.
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factors are too involved to be given as analytic expressions but are available from the

authors upon request in the form of a Mathematica notebook. The same applies also to

the results of the radiative corrections considered in the next subsection.

3.2 One-loop radiative corrections to the gravitational transition form factors

To obtain the one-loop electromagnetic corrections to the transition form factors one has

to compute the diagrams contributing up to order four, shown in Fig. 2. The chiral power

counting for Fig. 2 is similar to that for Fig. 1. In this calculation we do not distinguish

between the masses of the ∆ states and between the masses of the proton and the neutron,

i.e. we set m∆++ = m∆+ = m∆0 = m∆− and mp = mn.

7) 8)

9) 10)

1)

5)

2)

6)

3) 4)

Figure 2. Electromagnetic contributions to the transition form factors. Solid and double solid lines

correspond to nucleons and ∆ resonances, respectively. Wavy lines denote photons, while curly lines

represent gravitons.

Analogously to the strong-interaction contributions, we found that the one-loop order

result of diagrams shown in Fig. 2 does not involve power-counting violating terms, and

all ultraviolet divergences can be absorbed into redefinition of the low-energy coupling

constants of the most general effective Lagrangian.

3.3 Numerical results for the gravitational transition form factors

In Figs. 3 and 4, we present the numerical results of the obtained strong and electromagnetic

contributions to the real and imaginary parts of the transition form factors, respectively.

Notice here that the imaginary parts of the calculated form factors are generated solely by

the loop contributions with internal nucleon lines. For the numerical results, we used the

following values of the involved parameters:

gA = 1.289, g = 1.35, mπ0 = 0.135, mp = 0.938, mn = 0.940,

m∆ = 1.232, F = 0.092, mπ+ = 0.140, m∆++ = 1.231, m∆+ = m∆,

m∆0 = 1.233, g1 = 9gA/5, e = 0.303 , d
(2)
3 = 2.72GeV−1 , (3.4)

where the various masses and the pion decay constant F are given in GeV. We used the

SU(6) symmetry estimation for the coupling constants g1, gA and g taken from Ref. [55],

– 7 –



for the masses of delta resonances we used estimations of Refs. [56, 57], d
(2)
3 corresponds

to b1/2 of Ref. [58], while the remaining values have been taken from the PDG [59].

The plots demonstrate that the diagrams with radiative corrections give smaller contri-

butions than the ones with pion loops in line with the power counting estimations. On the

other hand the groups of diagrams with internal nucleon and delta lines give comparable

contributions.

0.00 0.05 0.10 0.15 0.20 0.25
-2

-1

0
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0.00 0.05 0.10 0.15 0.20 0.25
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-4
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0
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0.00 0.05 0.10 0.15 0.20 0.25
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2
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8
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0.00 0.05 0.10 0.15 0.20 0.25
-10

-8

-6

-4

-2

0

0.00 0.05 0.10 0.15 0.20 0.25
-12

-10

-8

-6

-4

-2

Figure 3. The real parts of the p → ∆+ transition form factors. Dash-dotted (black), dashed

(blue) and solid (red) lines correspond to the form factors containing contributions of loop diagrams

with inner pion and nucleon lines only, diagrams with inner pion and nucleon lines plus radiative

corrections, and all loop contributions, respectively.

4 Conclusions and outlook

In the framework of manifestly Lorentz-invariant ChPT for pions, nucleons, photons and

the delta resonances interacting with an external gravitational field, we calculated the
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Figure 4. Imaginary parts of the p → ∆+ transition form factors. Dash-dotted (black), and solid

(red) lines correspond to the form factors containing contributions of loop diagrams with inner pion

and nucleon lines only, and diagrams with inner pion and nucleon lines plus radiative corrections,

respectively.

leading one-loop contributions to the matrix element of the EMT corresponding to the

p → ∆+ transition and extracted the resulting gravitational transition form factors. As

the gravitational interaction respects the isospin symmetry, the amplitude of the p → ∆+

transition receives non-vanishing contributions due to isospin symmetry breaking. The

results of the current work take into account the leading-order electromagnetic and strong

isospin-breaking effects. Ultraviolet divergences and power counting violating pieces gen-

erated by loop diagrams in the manifestly Lorentz-invariant formulation of ChPT can be

treated using the EOMS renormalization scheme of Refs. [53, 54]. However, at the order

of our calculations, the one-loop contributions to the form factors are found to be free of

contributions that violate the chiral power counting. This is consistent with the absence
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of tree-level contributions at the considered order. For this reason, our results involve no

free parameters and can be regarded as predictions of ChPT. Notice, however, that the

empirical information on the mass splittings between the ∆ resonance states, which enters

as an input in our calculations, is presently rather poor. Numerical results for the obtained

transition form factors demonstrate that the electromagnetic and strong isospin violating

effects give contributions of comparable sizes. This holds true for contributions with both

internal nucleon and delta lines.
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A Isospin-symmetry breaking terms

To obtain the leading isospin breaking effects due to the strong interaction we distinguish

between the masses of the delta resonances, and also between the masses of the proton and

the neutron, and the charged and neutral pions. We rewrite the action using the physical

basis, instead of the isospin basis, by writing the fields explicitly as follows:

Ψ =

(

Ψp

Ψn

)

,

Ψµ,1 =
1√
2

(

1√
3
∆0

µ −∆++
µ

∆−µ − 1√
3
∆+

µ

)

, Ψµ,2 = − i√
2

(

1√
3
∆0

µ +∆++
µ

∆−µ + 1√
3
∆+

µ

)

, Ψµ,3 =

√

2

3

(

∆+
µ

∆0
µ

)

,

π1 =
1√
2

(

π+ + π−
)

, π2 =
i√
2

(

π+ − π−
)

, π3 = π0. (A.1)

We substitute the above definition of the fields into Eqs. (2.2), (2.3), (2.4) and (2.5). The

terms relevant for the leading one-loop order contributions to the p → ∆+ transition are

given by

S(2)
π =

∫

d4x
√−g

{

1

2
∂µπ

0∂µπ0 − 1

2
M2

0π
0π0 + ∂µπ

+∂µπ− −M2
π+π

+π−
}

, (A.2)

S
(1)
Nπ =

∫

d4x
√−g

{

Ψ̄p iγ
µ
↔
∇µΨp −mpΨ̄pΨp + Ψ̄n iγ

µ
↔
∇µΨn −mnΨ̄nΨn

– 10 –



+
gA
2F

(

∂µπ
0
[

Ψ̄nγ
µγ5Ψn − Ψ̄pγ

µγ5Ψp

]

−
√
2
[

∂µπ
−Ψ̄nγ

µγ5Ψp + ∂µπ
+Ψ̄pγ

µγ5Ψn

]

)}

,

(A.3)

S
(1)
∆π = −

∫

d4x
√−g

{[

∑

i∈{++,+,0,−}
∆̄iµ iγα

↔
∇α∆

i
µ −m∆i ∆̄i

µ∆
iµ

−gλσ
(

∆̄i
µiγ

µ
↔
∇λ∆

i
σ + ∆̄i

λiγ
µ
↔
∇σ∆

i
µ

)

+ i∆̄i
µγ

µγαγν
↔
∇α∆

i
ν +m∆i∆̄i

µγ
µγν∆i

ν

]

+
1

6F

[

∆̄0
µO

µνα
1 ∆0

ν∂απ
0 −

√
6∆̄−µO

µνα
1 ∆0

ν∂απ
− − 2

√
2∆̄+

µO
µνα
1 ∆0

ν∂απ
+

−
√
6∆̄0

µO
µνα
1 ∆−ν ∂απ

+ − 2
√
2∆̄0

µO
µνα
1 ∆+

ν ∂απ
− + 3∆̄−µO

µνα
1 ∆−ν ∂απ

0

−∆̄+
µO

µνα
1 ∆+

ν ∂απ
0 −

√
6∆̄+

µO
µνα
1 ∆++

ν ∂απ
− −

√
6∆̄++

µ Oµνα
1 ∆+

ν ∂απ
+

−3∆̄++
µ Oµνα

1 ∆++
ν ∂απ

0
]

}

, (A.4)

S
(1)
∆Nπ =

∫

d4x
√−g gπn∆

F

{

Ψ̄n∂µπ
+Oµν

2 ∆−ν − Ψ̄p∂µπ
−Oµν

2 ∆++
ν +

1√
3

(√
2 Ψ̄n∂µπ

0Oµν
2 ∆0

ν

−Ψ̄n∂µπ
−Oµν

2 ∆+
ν + Ψ̄p∂µπ

+Oµν
2 ∆0

ν +
√
2 Ψ̄p∂µπ

0Oµν
2 ∆+

ν

)

}

, (A.5)

where Oµνα
1 = g1γ

αγ5gµν + g2(g
µαγνγ5 + gναγµγ5) + g3γ

µγαγ5γν and Oµν
2 = gµν − γµγν .

To arrive at these results, we expanded the matrix u of pion fields and kept only the first

nontrivial term, i.e. u = 1 + i/(2F )τ iπi +O(1/F 2).

The mass splittings within iso-multiplets are not just due to strong isospin breaking

but also receive important contributions from the electromagnetic interaction. However,

there is no point at separating these contributions here, and such a separation is anyway

afflicted with some uncertainties, see e.g. the pedagogical discussion in Ref. [60].

To obtain the leading isospin breaking effects due to the diagrams with radiative cor-

rections (i.e. with photon propagators) we do not distinguish between the masses of the

isospin partners, i.e. we take m∆++ = m∆+ = m∆0 = m∆− , and mp = mn. For the

external sources, we take the following expressions:

rµ = lµ = −e Aµ
τ3
2
, (A.6)

vsµ = −e
2
Aµ, (A.7)

where e is the electric charge of the proton.

B The energy-momentum tensor

Using the definition of the EMT for bosonic matter fields interacting with the gravitational

metric field,

Tµν(g, ψ) =
2√−g

δSm
δgµν

, (B.1)

– 11 –



we obtain in flat spacetime from the action terms of Eqs. (2.1) and (2.2):

T (2)
γ,µν = Fα

µ Fαν +m2
γAµAν + ηµν

(

1

4
FαβF

αβ −
m2

γ

2
AαA

α

)

, (B.2)

T (2)
π,µν =

F 2

4
Tr(DµU(DνU)†)− ηµν

2

{

F 2

4
Tr(DαU(DαU)†) +

F 2

4
Tr(χU † + Uχ†)

}

+(µ↔ ν) , (B.3)

where ηµν is the Minkowski metric tensor with the signature (+,−,−,−). For the fermionic

fields interacting with the gravitational vielbein fields we use the definition [61]

Tµν(g, ψ) =
1

2e

[

δS

δeaµ
eaν +

δS

δeaν
eaµ

]

. (B.4)

The action of Eq. (2.3) leads to the following expression for the EMT in flat spacetime:

T
(1)
N,µν =

i

2
Ψ̄ γµ

↔
DνΨ− ηµν

2

(

Ψ̄ iγα
↔
DαΨ−mΨ̄Ψ

)

+ (µ↔ ν) , (B.5)

while Eqs. (2.4) and (2.5) lead to the following expressions:

T
(1)
∆π,µν = −Ψ̄i

µ iγ
α
↔
DαΨ

i
ν + Ψ̄i

α iγ
α
↔
DµΨ

i
ν + Ψ̄i

µ iγ
α
↔
DνΨ

i
α +m∆Ψ̄

i
µΨ

i
ν −

i

2
Ψ̄i

α γµ
↔
DνΨ

iα

+
i

2

(

Ψ̄i
µ γν

↔
DαΨ

iα + Ψ̄iα γν
↔
DαΨ

i
µ − Ψ̄i

µ γνγ
αγβ

↔
DαΨ

i,β − Ψ̄i
αγ

αγνγ
β
↔
DµΨ

i
β

−Ψ̄i
αγ

αγβγν
↔
DβΨ

i
µ

)

+
i

4
∂λ
[

Ψ̄i,α

(

γµηλ[αηβ]µ + ηλµην[αγβ] + ηµνηλ[βγα]

)

Ψi,β

]

−m∆

2

(

Ψ̄i
µ γνγ

αΨi
α + Ψ̄i

α γ
αγνΨ

i
µ

)

− g1
4

[

2Ψ̄i
µuαγ

αγ5Ψ
i
ν + Ψ̄i,αuµγνγ5Ψ

i
α

]

−g2
4

[

2Ψ̄i
µuνγ

αγ5Ψ
i
α + 2Ψ̄i

αuνγ
αγ5Ψ

i
µ + Ψ̄i,αuαγνγ5Ψ

i
µ + Ψ̄i

µuαγνγ5Ψ
iα
]

−g3
4

[

Ψ̄i
µuαγνγ

αγ5γ
βΨi

β + Ψ̄i
βuαγ

βγαγ5γνΨ
i
µ + Ψ̄i

αuµγ
αγνγ5γ

βΨi
β

]

+
ηµν
2

[

Ψ̄i
α iγ

β
↔
DβΨ

iα −m∆ Ψ̄i
αΨ

iα − Ψ̄i
αiγ

α
↔
DβΨ

iβ − Ψ̄iαiγβ
↔
DαΨ

i
β

+iΨ̄i
ργ

ργαγλ
↔
DαΨ

i
λ +m∆Ψ̄

i
αγ

αγβΨi
β +

g1
2
Ψ̄i

βuαγ
αγ5Ψ

iβ

+
g2
2
Ψ̄iα (uαγβ + uβγα) γ5Ψ

iβ +
g3
2
Ψ̄i

αuβγ
αγβγ5γ

λΨi
λ

]

+ (µ↔ ν) , (B.6)

T
(1,2)
πN∆,µν = gπN∆

{

1

2
ηµν

[

Ψ̄i
αu

α
i Ψ+ Ψ̄uαi Ψ

i
α − Ψ̄i

αγ
αγβuiβΨ− Ψ̄γβγαuiβΨ

i
α

]

− Ψ̄i
µu

i
νΨ

−Ψ̄uiνΨ
i
µ +

1

2

[

Ψ̄i
µγνγ

αuiαΨ+ Ψ̄i
αγ

αγµu
i
νΨ+ Ψ̄γαγνu

i
αΨ

i
µ + Ψ̄γµγ

αuiνΨ
i
α

]

}

+
i

2
d
(2)
3

{

Ψ̄f i+,µβγ5γνΨ̃
iβ + 2Ψ̄f i+,αµγ5γ

αΨi
ν − ηµνΨ̄f

i
+,αβγ5γ

αΨ̃iβ

−
[

zn +
1

2

]

(

Ψ̄f i+,αµγ5γ
αγνγ

βΨi
β + Ψ̄f i+,αβγ5γ

αγβγµΨ
i
ν

)

}

+(µ↔ ν) , (B.7)
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where the covariant derivatives D acting on spin-1/2 and spin-3/2 fields coincide with ∇
of Eq. (2.6) with Γβ

µν = ωab
µ = 0. The superscripts in the expressions of EMT indicate the

orders which are assigned to the corresponding terms of the action (effective Lagrangian).
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[38] C. Lorcé, L. Mantovani and B. Pasquini, Phys. Lett. B 776, 38-47 (2018), [arXiv:1704.08557

[hep-ph]].

[39] J. Y. Kim, H. Y. Won, J. L. Goity and C. Weiss, [arXiv:2304.08575 [hep-ph]].

[40] J. Y. Kim, Phys. Rev. D 108 (2023) no.3, 034024 [arXiv:2305.12714 [hep-ph]].

[41] J. F. Donoghue and H. Leutwyler, Z. Phys. C 52, 343 (1991).

[42] B. Kubis and U.-G. Meißner, Nucl. Phys. A 671 (2000), 332-356, [arXiv:hep-ph/9908261

[hep-ph]].

[43] H. Alharazin, D. Djukanovic, J. Gegelia and M. V. Polyakov, Phys. Rev. D 102, no.7,

076023 (2020), [arXiv:2006.05890 [hep-ph]].

[44] H. Alharazin, E. Epelbaum, J. Gegelia, U.-G. Meißner and B. D. Sun, Eur. Phys. J. C 82

(2022) no.10, 907, [arXiv:2209.01233 [hep-ph]].

[45] T. R. Hemmert, B. R. Holstein and J. Kambor, Phys. Lett. B 395, 89-95 (1997),

[arXiv:hep-ph/9606456 [hep-ph]].

[46] J. Gasser, M. E. Sainio and A. Svarc, Nucl. Phys. B 307, 779-853 (1988).

[47] N. Fettes, U.-G. Meißner, M. Mojzis and S. Steininger, Annals Phys. 283, 273-302 (2000)

[erratum: Annals Phys. 288, 249-250 (2001)]. [arXiv:hep-ph/0001308 [hep-ph]].

– 14 –



[48] T. R. Hemmert, B. R. Holstein and J. Kambor, J. Phys. G 24, 1831-1859 (1998),

[arXiv:hep-ph/9712496 [hep-ph]].

[49] C. Hacker, N. Wies, J. Gegelia and S. Scherer, Phys. Rev. C 72 (2005), 055203,

[arXiv:hep-ph/0505043 [hep-ph]].

[50] H. B. Tang and P. J. Ellis, Phys. Lett. B 387 (1996), 9-13, [arXiv:hep-ph/9606432 [hep-ph]].

[51] J. Gegelia and S. Scherer, Eur. Phys. J. A 44, 425-430 (2010), [arXiv:0910.4280 [hep-ph]].

[52] V. Pascalutsa and D. R. Phillips, Phys. Rev. C 67, 055202 (2003), [arXiv:nucl-th/0212024

[nucl-th]].

[53] J. Gegelia and G. Japaridze, Phys. Rev. D 60, 114038 (1999), [arXiv:hep-ph/9908377

[hep-ph]].

[54] T. Fuchs, J. Gegelia, G. Japaridze and S. Scherer, Phys. Rev. D 68, 056005 (2003).

[55] D. Siemens, V. Bernard, E. Epelbaum, A. Gasparyan, H. Krebs and U. G. Meißner, Phys.

Rev. C 94, no.1, 014620 (2016), [arXiv:1602.02640 [nucl-th]].

[56] E. Epelbaum, H. Krebs and U.-G. Meißner, Nucl. Phys. A 806, 65-78 (2008),

[arXiv:0712.1969 [nucl-th]].

[57] E. Epelbaum, H. Krebs and U.-G. Meißner, Phys. Rev. C 77, 034006 (2008),

[arXiv:0801.1299 [nucl-th]].

[58] V. Bernard, E. Epelbaum, H. Krebs and U.-G. Meißner, Phys. Rev. D 87, no.5, 054032

(2013), [arXiv:1209.2523 [hep-ph]].

[59] P. A. Zyla et al. [Particle Data Group], PTEP 2020, no.8, 083C01 (2020).

[60] U.-G. Meißner and A. Rusetsky, “Effective Field Theories,” Cambridge University Press,

2022, ISBN 978-1-108-68903-8.

[61] N. D. Birrell and P. C. W. Davies, “Quantum Fields in Curved Space,” Cambridge Univ.

Press, Cambridge, UK, 1984.

– 15 –


	Introduction
	Effective Lagrangian in curved spacetime and the energy-momentum tensor
	Gravitational transition form factors to one loop
	One-loop contributions of the strong interaction to the gravitational transition form factors
	One-loop radiative corrections to the gravitational transition form factors
	Numerical results for the gravitational transition form factors

	Conclusions and outlook
	Isospin-symmetry breaking terms 
	The energy-momentum tensor

