
ar
X

iv
:2

40
4.

04
39

6v
2

 [
m

at
h.

D
S]

 2
0

N
ov

 2
02

4

Chemical mass-action systems as analog computers:

implementing arithmetic computations at specified speed

David F. Anderson∗ and Badal Joshi†

November 21, 2024

Abstract

Recent technological advances allow us to view chemical mass-action systems as analog
computers. In this context, the inputs to a computation are encoded as initial values of certain
chemical species while the outputs are the limiting values of other chemical species. In this
paper, we design chemical systems that carry out the elementary arithmetic computations of:
identification, inversion, mth roots (for m ≥ 2), addition, multiplication, absolute difference,
rectified subtraction over non-negative real numbers, and partial real inversion over real numbers.
We prove that these “elementary modules” have a speed of computation that is independent
of the inputs to the computation. Moreover, we prove that finite sequences of such elementary
modules, running in parallel, can carry out composite arithmetic over real numbers, also at
a rate that is independent of inputs. Furthermore, we show that the speed of a composite
computation is precisely the speed of the slowest elementary step. Specifically, the scale of
the composite computation, i.e. the number of elementary steps involved in the composite,
does not affect the overall asymptotic speed – a feature of the parallel computing nature of
our algorithm. Our proofs require the careful mathematical analysis of certain non-autonomous
systems, and we believe this analysis will be useful in different areas of applied mathematics,
dynamical systems, and the theory of computation. We close with a discussion on future research
directions, including numerous important open theoretical questions pertaining to the field of
computation with reaction networks.

Keywords: analog computation, computing with chemistry, polynomial dynamical systems,
input-independent speed of computation

MSC: 37N25, 68N01, 92B05

1 Introduction

An increasingly active area of scientific research is the study of chemical reaction systems as com-
putational machines [1, 2, 3, 4, 5, 6, 7, 8, 9]. The broad goal of this nascent field is to develop
systems that can operate in the niche of a (wet) cellular environment, rather than to directly com-
pete with modern digital computers. Methods for the physical implementation of these systems
include DNA-strand displacement, which was developed largely by Lulu Qian, David Soloveichik,
and Erik Winfree [7, 9]. While this research area is still in its relative infancy, it is critical that the
theoretical (mathematical) foundation of these methods and systems keeps pace with the physical

∗Department of Mathematics, University of Wisconsin-Madison, anderson@math.wisc.edu
†Department of Mathematics, California State University San Marcos, bjoshi@csusm.edu.

1

http://arxiv.org/abs/2404.04396v2

implementations so as to (i) keep the algorithmic aspects of this field on a firm mathematical foot-
ing from the beginning, and (ii) provide a reliable (proof based) method for the development of the
appropriate reaction network-based software design.

Under the assumptions that the chemical system is well-stirred and at a constant temperature,
deterministic mass-action chemical systems are mathematically modeled as autonomous systems
of ordinary differential equations [10]. To utilize such a system as a computational machine, we
associate the inputs and outputs of the desired computation with certain state variables of the
dynamical system. Most often, the desired output is encoded as a limiting value of a subset of the
state variables that converge asymptotically to this limiting value. Since by necessity any recording
of the system is at a finite time it is important to bound the error, which in this case is the deviation
from the asymptotic value. The rate of this convergence, or alternatively the rate at which the
error decays, determines the speed of the computation. The time chosen for the recording will in
general be determined by the required level of accuracy, but should not be so large as to render the
method impractical.

Because mass-action systems are modeled via systems of differential equations, they can nat-
urally be viewed as analog computers. While digital computers now dominate the computational
landscape in our society, it is interesting to note that analog computers have certain advantages
over digital computers. For example, consider the problem of numerically solving the initial value
problem

ẋ(t) = 1− x(t), x(0) = x0 ∈ R>0, (1)

If you were using a digital computer, you would naturally utilize some sort of discretization method
(such as Euler’s method or a Runge-Kutta method) to approximate the solution to some desired
accuracy. No matter the method, however, the key point is that one must discretize, as digital
computers can only handle discrete computations. An incredible amount of scientific effort has
gone into discretization methods for the numerical solution of ODEs, PDEs, and SDEs via dig-
ital computers over the past many decades, with such work still dominating portions of applied
mathematics.

On the other hand, the system (1) above is quite naturally “solved” by simply considering the
chemical reaction network modeled via

∅ ⇄ X,

with an initial concentration of x0, so long as the rate constants are chosen to be equal to one (see
section 2.1 for the details of mass-action models). In short: many problems that are difficult to
solve for digital computers are quite simple to solve for a chemical system.

However, there is a natural converse to the above observation. While chemical systems will
naturally be able to solve systems that are described via differential equations (see section 2.1 for
the exact class of differential equations they solve), it is more difficult to use them to compute
things that are naturally discrete, such as basic arithmetic (addition, multiplication, finding roots,
division, etc.). Hence, while it took much thought by many people to develop algorithmic methods
for the solution of continuous problems with digital computers, it is natural that we will require
a fair amount of work to develop efficient methods for the use of chemical systems to solve these
discrete problems.

We therefore focus here on algorithmic aspects of chemistry-based analog computing of arith-
metic operations, as these operations are a cornerstone of discrete computation. Specifically, we
focus on the development of elementary “chemical modules” that carry out basic arithmetic op-
erations (such as inversion, roots, addition, multiplication, etc.) and we prove that the developed

2

modules have a speed of computation that is independent of the inputs.1 Moreover, we prove
that these elementary modules can be run in parallel so as to carry out any desired arithmetic
computation, also at speed that is independent of input.

There is existing work on algorithmic aspects of analog computation of arithmetic operations,
even from the specific vantage point of reaction network implementation. Our work is closest
in approach to the one taken by [2]. However, while the authors of [2] considered algorithms for
arithmetic computations using reaction networks, they did not include speed of computation in their
consideration. Our stated purpose is to remedy this. We frame a general arithmetic computation
as a finite sequence of elementary computations that are running in parallel. Since every element
of the sequence is being computed in parallel, we need to consider time-evolving inputs to the
elementary modules, where the output of a previous step is providing input into the next step
even without having converged to its asymptotic value. We show input-independence of speed of
any overall computation that is composed from multiple, but finitely many, elementary arithmetic
operations.

Throughout this work, we assume that the rate constants of our models (which are the key
system parameters, see section 2.1) are all exactly equal to 1. Our main results of this paper,
Theorem 5.1 and Corollary 5.2, then concludes that any arithmetic computation carried out in the
manner specified herein, even those consisting of a finite number of composite calculations being
carried out in parallel, has a rate of convergence of at least 1 (loosely, this means the deviation
of the model from the desired output decreases like e−t). While it is important to our work that
all the rate constants be equal, the choice of setting them equal to 1 is arbitrary. We discuss in
Remark 5.4 how setting them all to σ > 0 is simply a time-change of our model and leads to a rate
of convergence of σ. We discuss the possibility of generalizing to the situation of non-equal rate
constants in section 7.

There are several bodies of research, outside the world of chemical reactions, on designing
efficient hardware and software for analog as well as analog-digital hybrid computing [11, 12, 13, 14].
While we develop our results for a chemistry-based computer, the results apply equally well to any
computational system that computes via nonlinear polynomial differential equations. We therefore
hope that our theoretical results will find use in the broader sphere of computation.

The remainder of the paper is organized as follows. In the next subsection, section 1.1, we
point out that there are two natural ways to use chemical systems as computational machines
and compare/contrast their strengths and weaknesses. In section 2, we (i) formally introduce
the mathematical models that will serve as our algorithms for analog computation, which are
deterministic chemical reaction networks with mass-action kinetics, (ii) discuss issues related to
these models, and (iii) demonstrate, via example, the central purpose of this paper: the development
of reaction network modules that can carry out arithmetic at speeds that are independent of inputs.
In section 3, we provide the main mathematical analysis of this paper. In particular, we provide
a rather detailed analysis of certain non-autonomous dynamical systems. The work of section
3 is general enough that we hope and expect it to have applications in other areas of applied
mathematics. In section 4, we provide the chemical reaction network modules that carry out
the basic elementary operations discussed above (identification, addition, multiplication, inversion,
etc.) and use the mathematical results of section 3 to prove that they have computational speeds
that are independent of inputs. In section 5, we demonstrate how any calculation carried out via a
combination of elementary operations using our constructions also has a computational speed that
is independent of inputs. In section 6, we demonstrate how to expand the constructions to handle

1More specifically, we prove that the speed of computation for the elementary modules have a lower bound that

is independent of inputs.

3

calculations involving all real numbers (as opposed to non-negative numbers). Finally, in section 7
we provide a discussion, including many directions for future research.

1.1 Arithmetic with reaction networks: comparing existing schemata

There are at least two schemata that have been used for carrying out arithmetic with reaction
networks. We refer to the first schema as conservation law-based, with examples found in [4, 15].
See also [16], which uses a fractional representation to represent real numbers in the interval [0, 1].
General functions can then be implemented via the methods in [16] by first approximating the
desired function by a Taylor series and then implementing the resulting polynomial function with
the relevant reaction network. The second schema, which we refer to as positive steady state-based

is the focus of the current paper (see also [2]).
To understand one way that addition could be performed in the conservation law schema, we

consider a simple analogy. Suppose we have two ‘input’ buckets and one ‘output’ bucket. The
contents of the buckets may be discrete (e.g., marbles) or continuous (e.g., water). Pouring the
contents of the two input buckets into an initially empty output bucket will result in the sum of the
two inputs as the eventual volume of the output bucket. A reaction network based on this simple
idea is

A→ X, B → X. (2)

Here A and B are input species while X is the output species. Clearly, if the initial population of
X, represented by x, is 0, we will have that, asymptotically, x converges to the sum of the initial
populations of the input species:

lim
t→∞

x(t) = a(0) + b(0). (3)

This is true regardless of the specific choice of rate constants for the chemical reactions (see section
2.1). In fact, it is true independent of whether the underlying model is discrete (integer counts) or
continuous (concentrations), deterministic or stochastic. Consequently, the conservation law based
schema has the potential to be used in both digital as well as analog computing.

Despite the simplicity and potential use in both digital- and analog-computing, the conserva-
tion law based schema does have significant drawbacks which we now discuss. Perhaps the most
significant one is the ‘loss of memory’ suffered by the input species. At the end of the addition
computation, all memory of what the inputs contained is lost forever. In fact, if addition is one of
several elementary steps in a longer sequence of computations, then all inputs and all intermediate
steps are forgotten. Only the final output is retained. This may become an issue if the same input
is required multiple times. There are methods for remedying this. One idea is to introduce back-up
species which re-record the lost input. For instance, the reaction network for addition (2) may be
replaced by the following reaction network

A→ Ã+X, B → B̃ +X. (4)

Here the species Ã and B̃ back up the input species A and B, because in the long run

lim
t→∞

ã(t) = a(0), lim
t→∞

b̃(t) = b(0), and lim
t→∞

x(t) = a(0) + b(0), (5)

so long as we began with ã(0) = b̃(0) = 0.
The positive steady state based schema utilized in the present paper does not suffer from loss

of inputs, and so separate back up species are not required at every step. For every elementary

4

operation, we explicitly require that all inputs are preserved while the output is computed and
stored as the concentration of a dedicated new species.

To illustrate the ‘positive steady state based’ schema utilized in this paper let us once again
consider the operation of addition, now accomplished with the reaction network

A→ A+X, B → B +X, X → 0. (6)

Assuming rate constants that are equal to one, the mass action differential equation for these
reactions is (see section 2.1)

ẋ(t) = a(t) + b(t)− x(t).

We first consider the case where the reactions in (6) stand in isolation. Note that the concentrations
of A and B are not changed by any of the reactions in (6). In particular, this means that the input
species A and B retain their initial values, a(t) = a(0) and b(t) = b(0) for all time t ≥ 0. Meanwhile,
the concentration of the output species X asymptotically converges to a(0) + b(0). Now imagine
that the reactions in (6) are only some reactions in a much larger network. The inputs A and B
may be outputs of some other subnetwork and may as yet be in the process of converging to their
asymptotic values. Then, assuming the limits on the right exist, we have

lim
t→∞

x(t) = lim
t→∞

(a(t) + b(t)) .

This example illustrates how an output from one computation may be fed into another computation
as well as how inputs may be simultaneously used in several different computations since they are
not degraded.

2 Introducing the basic problem

In this paper, we consider the task of carrying out the following common arithmetic functions
via deterministic mass-action chemical systems: addition, multiplication, inversion, division, mth
root (for integers m ≥ 2), absolute difference of two numbers, the maximum of two numbers, and
subtraction. Our particular goal, which we will describe more fully below, is to provide mass-
action chemical reaction network modules for each such operation whose “speed of computation” is
independent of the inputs (and hence outputs) to the problem and which can be combined to run
in parallel so that any sequence of arithmetic computations (e.g., the square root of the inverse of
the sum of two numbers:

√
1/(a+ b)) will have a speed of computation that is also independent

of inputs.
There are a number of questions/issues we wish to highlight from the start and are the focus

of the present section.

1. What is the class of differential equation models we use in this paper? Said differently,
what class of differential equations arise from deterministically modeled mass-action chemical
systems?

2. Chemical concentrations are naturally non-negative. Hence, it is natural to consider problems
such as the addition or division of two positive reals since the inputs and outputs are positive
reals. However, how should one handle the situation in which one or more of the inputs are
negative? Similarly, how should one handle the operation of minus, whose output can be
negative even when the inputs are both positive?

5

3. Is it possible to ensure that the speed of the computation does not depend on the inputs
and/or outputs to the problem? It is the recognition of this problem and its resolution in the
affirmative that we consider to be the main contribution of this paper.

We handle each of the above questions in turn before moving to our general theory and construc-
tions. Before proceeding, however, we first note that efficiency, accuracy, and speed are essential,
pragmatic considerations when implementing computers. We need some assumptions, however,
regarding the interface with a chemistry-based “CPU.” Specifically, we assume that we have (i) the
ability to initiate chemical species with arbitrary precision, and (ii) the ability to measure chemical
species with arbitrary precision.

2.1 Mass-action chemical systems and their associated ODEs

Consider an ordinary differential equation of the form

ẋ(t) = f(x(t)),

with x(t) ∈ R
d and f : Rd → R

d. When does such an equation arise from a mass-action model of
a chemical system?

Before answering, we first introduce mass-action models. Consider a finite number of chemical
“species,” which we will denote by {X1, . . . ,Xd}, undergoing transformations via a finite number of
possible reaction types. Reactions can be understood intuitively: they require certain numbers of
the different species as inputs, and they output a different number of the various species. They are
most naturally visualized in graphical format. For example, consider a system with three species,
{X1,X2,X3}, and the following three reaction types

X1 +X2 → X3

X3 → X1 +X2

2X3 → 0.

(7)

In the first reaction, one molecule of X1 and one molecule of X2 are converted to one molecule of
X3. The second reaction reverses the first. The third reaction consists of the destruction of two
X3 molecules (perhaps they merge to become a fourth type of species that we are not modeling).
In general, a chemical system will have a finite number of such reactions of the form

ν ·X → ν ′ ·X, (8)

where ν, ν ′ ∈ Z
d
≥0 and by ν ·X we mean the dot product: ν ·X = ν1X1 + · · · + νdXd. Note that

if we were explicitly counting the numbers of molecules of each species, then one instance of the
reaction (8) would change the system by addition of the vector ν ′ − ν ∈ Z

d.
A differential equation model for the chemical concentrations arises by associating to each

reaction a rate function. For example, if we denote the above reaction (8) by ν → ν ′ and denote
the rate of that reaction when the system is in state x ∈ R

d
≥0 by λν→ν′(x), then the differential

equation governing the dynamics is

ẋ(t) =
∑

ν→ν′

λν→ν′(x(t))(ν
′ − ν), (9)

where the sum is over all reaction types (enumerated by ν → ν ′). The system is said to be governed
by mass-action kinetics when the functions {λν→ν′} have the following form,

λν→ν′(x) = cν→ν′

d∏

i=1

xνii ,

6

where each cν→ν′ is a positive constant and where we interpret 00 to be 1. Hence, for mass-action
kinetics the rate of a reaction is a monomial in which the exponent for the ith species is the
coefficient of Xi in ν · X. For example, assuming mass-action kinetics the differential equations
governing the system (7) are

ẋ(t) = c1x1x2

−1
−1
1

+ c2x3

1
1

−1

+ c3x

2
3

0
0

−2

 ,

where c1, c2, and c3 are some positive constants, and where we enumerated the constants sequentially
(as opposed to the reaction ν → ν ′)). It is common to incorporate the rate constants into the
network graph, such as (7), by placing them next to the associated arrow.

We can now answer the first question posed above. If f : Rd → R satisfies the two properties
below, then there is a mass-action chemical system whose associated ODE (9) is given by ẋ(t) =
f(x(t)).

1. The function f is a polynomial. That is, for each i ∈ {1, . . . , d},

fi(x) =
N∑

a1=0

· · ·
N∑

ad=0

ci,a1,...,adx
a1
1 · · · xadd , (10)

where N < ∞ is a maximum exponent in the model, and the ci,a1,...,ad are constants (which
can be negative or zero).

2. If ci,a1,...,ad < 0 in (10), then ai ≥ 1 for the associated monomial. In plain English, xi must
appear in any monomial of fi(x) that has a negative coefficient.

Note that the final condition guarantees that the non-negative orthant R
d
≥0 is forward invariant

under the dynamics. That is, so long as x(0) ∈ R
d
≥0, then x(t) ∈ R

d
≥0 for all t ≥ 0.

It should be clear that any mass-action system satisfies the two conditions above. To see the
converse, that is to see that for any dynamical system ẋ(t) = f(x(t)) satisfying the conditions above
there is a mass-action chemical system with f as the governing dynamics, see [17] or, for a more
modern treatment, [10].

2.2 The issue of negativity and the dual rail representation

Chemical concentrations are non-negative, but we wish to be able to represent negative values
within our framework. To do so, we represent real numbers as the difference between two given
chemical species. This is sometimes referred to as the dual rail representation of real numbers.
The introduction we give to this topic in this section will be brief. See, for example, [4] for a more
thorough discussion.

One of the early works to utilize the dual rail representation is [5], where, for example, they la-
beled Y P and Y C the amounts that a particular species, Y , had been “P”roduced and “C”onsumed,
respectively. Then, the total amount of Y was Y P −Y C . In this example, if, for example, Y P = 10
and Y C = 8, then the total amount of Y is clearly 2. However, we could also represent the value 2
by having Y P = 2+ c and Y C = c for any c ≥ 0. Thus, how we represent a given real number is a
bit ambiguous, a priori.

7

For our purposes, we wish to do away with such ambiguity. Hence, we will split a number into
its positive and negative parts. That is, we define the dual rail map ϕ : R → R

2
≥0 via

a 7→ (ap, an) =

{
(a, 0), if a > 0,

(0,−a), if a ≤ 0.

Here ap and an are referred to as the positive and negative parts, respectively, of a. The map ϕ is
injective and

Im(ϕ) = {(ap, an) ∈ R
2
≥0 | apan = 0} = {(ap, an) ∈ R

2
≥0 | ap = 0 or an = 0}.

Define the map ψ : R2
≥0 → R via (ap, an) 7→ a = ap − an. The map resulting from restricting the

domain of ψ to Im(ϕ) is the inverse of ϕ. We will refer to (ap, an) as the canonical representation
of a when apan = 0, and write a = (ap, an), for brevity.

2.3 Input independent speed of computation

Suppose we want to compute the reciprocal of a positive real a ∈ R>0 as the long-term solution of
a mass-action differential equation. A natural attempt would be to consider the reaction network

0 → X, A+X → A (11)

whose mass-action differential equation, assuming all reaction rate constants are equal to 1 and
that the concentration of species A is a, is

ẋ = 1− ax. (12)

The differential equation has a unique solution for all time given by

x(t) =
1

a
+

(
x(0)− 1

a

)
e−at.

Clearly, x(t)
t→∞−−−→ 1/a. Moreover, since a is the coefficient of t in the exponential decay e−at, the

rate of convergence to the long term solution is a. The rate of convergence is directly related to
the speed of computing the reciprocal. Indeed, suppose that Tn is the smallest time required to
compute 1/a accurately up to n− 1 digits. Then we have that

|x(Tn)− 1/a| = |x(0) − 1/a|e−aTn = 10−n,

which after applying logarithms and rearranging gives us

Tn =
1

a
ln (|x(0)− 1/a|) + n ln(10)

a
.

In particular, we have that

lim
n→∞

Tn
n ln(10)

=
1

a
, (13)

so that the time required to compute n decimal digits of 1/a scales not only with n but with the
output 1/a. Alternatively, the reciprocal

lim
n→∞

n ln(10)

Tn
= a, (14)

8

gives the speed of computation. We will say that the variable x computes the reciprocal of a at

speed a.
We will now show that we can remove this dependence of speed of computation of the reciprocal

on the input (and output) to the system. Then, over the rest of the paper, we will show that this
input-independence can be achieved for an arbitrary computation.

Consider the following reaction network

X → 2X, A+ 2X → A+X (15)

whose mass-action differential equation, assuming rate constants are equal to 1 and that the con-
centration of species A is a, is

ẋ = x(1− ax). (16)

For x(0) = x0, the unique solution for all time t ≥ 0 is given by

x(t) =
x0/a

(1/a− x0)e−t + x0
,

and so the distance from the attracting steady state 1/a is

|x(t)− 1/a| =
∣∣∣∣

x0/a

(1/a− x0)e−t + x0
− 1

a

∣∣∣∣ =
1

a

(|x0 − 1/a|
x0et − (x0 − 1/a)

)
.

This converges to zero like e−t, and after a brief calculation, it is straightforward to see that

lim
n→∞

n ln(10)

Tn
= 1, (17)

where, again, Tn is the smallest time needed to compute 1/a to n − 1 decimal places. That is, x
computes the reciprocal of a at speed 1. A comparison of equations (13) and (17) highlights the
input independence of the reciprocal computation in the latter construction.

3 Rate of convergence for certain non-autonomous systems

In this section, which holds much of the mathematics, we provide a rather detailed analysis of
certain non-autonomous dynamical systems. These systems will have a structure like

ẋ(t) = f(g1(t), g2(t), x(t)),

where g1 and g2 are best viewed as forcing functions that are themselves the output from another
such system. We will prove that for the particular systems we consider the following holds: global
exponential convergence of the forcing functions, such as g1 and g2, imply that the system solution
also enjoys global exponential convergence. That is, that property is “fed forward” from the forcing
functions to the solution. We will also demonstrate that, in most cases, the rate of convergence for
the system solution is at least as large as the minimum rate of convergence of the forcing functions.

To make these notions precise we provide here a definition and a lemma. Roughly speaking,
“rate of convergence” of a function g to a value g∗ is ρ if g(t) − g∗ = f(t)e−ρt, with f(t) growing
at most sub-exponentially, as t → ∞. Below, the reader may notice some connection with the
commonly used “big O” notation. However, we avoid this notation since it is necessary to be
precise and make fine distinctions such as between “rate that is at least ρ” and “rate that is greater
than ρ”.

9

Definition 3.1. Let g : R≥0 → R be a real-valued function that converges to a real number g∗ ∈ R.
The rate of convergence of g to g∗ is defined to be

ρ = − lim sup
t→∞

ln |g(t)− g∗|
t

(18)

whenever ρ ∈ (0,∞]. Alternatively, in the context of computation, we say that g(t) computes g∗

at speed ρ.

Lemma 3.2. Let g : R≥0 → R be a real-valued function that converges to a real number g∗ ∈ R.

Suppose there exist c > 0, ρ > 0, and m ≥ 0 such that for all t ≥ 0

|g(t) − g∗| ≤ ctme−ρt,

then g converges to g∗ at a rate that is at least ρ.
Conversely, if g converges to g∗ at a rate greater than ρ then there exists a c > 0 such that for

all t ≥ 0
|g(t)− g∗| ≤ ce−ρt.

Proof. To see the first conclusion, take logarithms, divide by t, apply limit superiors to both sides
and apply Definition 3.1.

For the converse, suppose that g converges to g∗ at rate ρg > ρ, and let ε = ρg − ρ. Then there
is a T > 0 such that for any t ≥ T , we have

ln |g(t) − g∗|
t

< −ρg + ε = −ρ. (19)

Hence, for t ≥ T , we have |g(t) − g∗| < e−ρt. Defining

c =

(
1 + max

t∈[0,T]
{|g(t) − g∗|}

)
eρT ,

we have |g(t) − g∗| ≤ ce−ρt for all t ≥ 0.

3.1 Simple convergence results

We begin with three lemmas.

Lemma 3.3. For each of i ∈ {1, 2}, let gi : R≥0 → R be a real-valued function that converges to

g∗i ∈ R at a rate that is at least ρgi. Then the following hold.

1. For i ∈ {1, 2}, α ∈ R \{0}, the scalar product αgi converges to αg
∗
i at rate that is at least ρgi.

2. The sum g1(t) + g2(t) converges to g∗1 + g∗2 at rate that is at least

min{ρg1 , ρg2}. (20)

3. The product g1(t)g2(t) converges to g∗1g
∗
2 at rate that is at least

min{ρg1 , ρg2}, if g∗1 6= 0, g∗2 6= 0,

ρg1 , if g∗1 = 0, g∗2 6= 0,

ρg2 , if g∗1 6= 0, g∗2 = 0,

ρg1 + ρg2 , if g∗1 = 0, g∗2 = 0.

(21)

10

Proof. We first prove the conclusions assuming that the rate of convergence of the functions gi is
greater than ρgi . In that case, Lemma 3.2 implies that there exist positive constants c1 and c2 such
that

|gi(t)− g∗i | ≤ cie
−ρgi t, i ∈ {1, 2}.

For the scalar product, we get the desired result from

|αgi(t)− αg∗i | ≤ |α|cie−ρgi t, i ∈ {1, 2},

and then applying the first part of Lemma 3.2.
Applying the triangle inequality to the sum of g1 and g2, we have

|g1(t) + g2(t)− (g∗1 + g∗2)| ≤ |g1(t)− g∗1 |+ |g2(t)− g∗2 |
≤ c1e

−ρg1 t + c2e
−ρg2 t,

and so the result again follows from Lemma 3.2.
Turning to the product, we note first that for i ∈ {1, 2},

|gi(t)| − |g∗i | ≤ ||gi(t)| − |g∗i || ≤ |gi(t)− g∗i | ≤ cie
−ρgi t,

and so
|gi(t)| ≤ |g∗i |+ cie

−ρgi t.

Now for the product g1(t)g2(t) consider,

|g1(t)g2(t)− g∗1g
∗
2 | ≤ |g1(t)g2(t)− g∗1g2(t)|+ |g∗1g2(t)− g∗1g

∗
2 |

= |g2(t)||g1(t)− g∗1 |+ |g∗1 ||g2(t)− g∗2 |
≤

(
|g∗2 |+ c2e

−ρg2 t
)
c1e

−ρg1 t + |g∗1 |c2e−ρg2 t,

and therefore the result follows.
To complete the proof, we now assume that one or both of the functions gi converge to their

limiting values exactly at rates ρgi . Then for an arbitrary ε > 0, the functions gi converge to their
limiting value at rates greater than ρgi − ε. Then by what is proved earlier, the sum g1(t) + g2(t)
converges to g∗1 + g∗2 at rate that is at least min{ρg1 , ρg2} − ε. But since ε > 0 is arbitrary, the
rate of convergence is at least min{ρg1 , ρg2}. Similar considerations for the other two cases: scalar
product and product of functions, completes the proof of the desired result.

Lemma 3.4. Let g : R≥0 → R be a real-valued function that converges to a nonzero real constant

g∗ ∈ R \ {0} at a rate that is at least ρg. Then 1/g(t) converges to 1/g∗ at rate that is at least ρg.

Proof. As in the proof of Lemma 3.3, we first assume that the convergence rate of g is greater than
ρg. As in the previous lemma,

|g∗| − |g(t)| ≤ ||g(t)| − |g∗|| ≤ |g(t)− g∗| ≤ ce−ρgt,

for some positive constant c > 0, and so

|g(t)| ≥ |g∗| − ce−ρgt.

In particular, there is a finite time T0 ≥ 0 such that for all t > T0, |g(t)| ≥ |g∗|/2. It then follows
that for any t > T0,

∣∣∣∣
1

g(t)
− 1

g∗

∣∣∣∣ =
∣∣∣∣
g(t)− g∗

g(t)g∗

∣∣∣∣ ≤
2ce−ρg t

(g∗)2
.

11

But then, and as in the proof of Lemma 3.2, we can choose a c′ > 0 sufficiently large so that for all
t ≥ 0,

∣∣∣∣
1

g(t)
− 1

g∗

∣∣∣∣ ≤ c′e−ρgt.

Finally, arguing similarly to the proof of Lemma 3.3, we get the conclusion for the case when the
convergence rate of g is exactly ρg.

Lemma 3.5. Let g : R≥0 → R be a real-valued function that converges to a non-negative constant

g∗ ∈ R≥0 at a rate that is at least ρg. Then for any m ∈ R>0, g(t)
1/m converges to (g∗)1/m at rate

that is at least
{
ρg, if g∗ > 0,

ρg/m, if g∗ = 0.
(22)

Proof. Similar to the proof of Lemma 3.3, it suffices to assume that the convergence rate of g is
greater than ρg. By Lemma 3.2 there exists a c > 0 such that

|g(t)− g∗| < ce−ρgt.

Suppose first that g∗ > 0. Then there exists a T0 ≥ 0 such that g(t) > g∗/2 for all t > T0. Then
for t > T0, we have

|g(t) − g∗| =
∣∣∣g(t)1/m − (g∗)1/m

∣∣∣
∣∣∣∣∣

m−1∑

i=0

g(t)i(g∗)m−i−1

∣∣∣∣∣.

≥
∣∣∣g(t)1/m − (g∗)1/m

∣∣∣
m−1∑

i=0

1

2i
(g∗)i(g∗)m−i−1

=
∣∣∣g(t)1/m − (g∗)1/m

∣∣∣ (2m − 1)

(
g∗

2

)m−1

.

So for t > T0

∣∣∣g(t)1/m − (g∗)1/m
∣∣∣ ≤

(
2

g∗

)m−1 1

2m − 1
ce−ρgt,

and, again by reasoning similar to the end of the proof of Lemma 3.2, g(t)1/m converges to (g∗)1/m >
0 at rate that is at least ρg.

When g∗ = 0, there is a c > 0 such that

|g(t)| < ce−ρgt,

and so taking the mth root on both sides gives the result immediately.

3.2 Analysis of certain non-autonomous systems

Here we present our main mathematical results. These will be applied to our chemical systems in
section 4.

12

Lemma 3.6. Let g1 : R≥0 → R be a real-valued function that converges to g∗1 ∈ R at a rate that is at

least ρg1 ; let g2 : R≥0 → R be a real-valued function that converges to a positive limit g∗2 ∈ R>0 at a

rate that is at least ρg2. We assume that the g1, g2 are smooth enough so that for any x(0) = x0 ≥ 0,
the following non-autonomous differential equation has a unique solution x : R≥0 → R for all time

ẋ(t) = g1(t)− g2(t)x(t). (23)

Then x(t) converges to g∗1/g
∗
2 at rate that is at least

min{ρg1 , ρg2 , g∗2}. (24)

Proof. As in the proof of Lemma 3.3, we will assume that the convergence rates of g1 and g2 are
greater than ρg1 and ρg2 respectively, and then just as in the proof of that lemma, the result will
follow immediately for the case of equality. We first show that x(t) is bounded above for all time
t ≥ 0. Since g2(t) → g∗2 > 0, there is a T0 > 0 such that g2(t) > g∗2/2 for all t > T0. Moreover, note
that there must be a positive constant c1 such that for all time t > 0, we have

g1(t) ≤ g∗1 + c1e
−ρg1 t ≤ g∗1 + c1.

Combining the two bounds gives an upper bound for x(t). Since for any t > T0,

ẋ(t) = g1(t)− g2(t)x(t) ≤ g∗1 + c1 −
1

2
g∗2 · x(t),

we have that for any t ≥ 0

x(t) ≤ max

{
x ([0, T0]) ,

2(g∗1 + c1)

g∗2

}
. (25)

Now we show that x(t) has the claimed rate of convergence to its limiting value g∗1/g
∗
2 . First

consider the differential equation obtained by replacing g2(t) with its limiting value g∗2

ż(t) = g1(t)− g∗2 · z(t), (26)

which has the unique solution

z(t) = e−g∗
2
t

(
z(0) +

∫ t

0
eg

∗

2
sg1(s)ds

)
.

Therefore,

z(t)− g∗1
g∗2

= e−g∗
2
t

(
z(0) +

∫ t

0
eg

∗

2
sg1(s)ds

)
− g∗1
g∗2

= e−g∗
2
t

(
z(0) − g∗1

g∗2
+

∫ t

0
eg

∗

2
s (g1(s)− g∗1) ds

)
,

and so
∣∣∣∣z(t)−

g∗1
g∗2

∣∣∣∣ ≤ e−g∗
2
t

(∣∣∣∣z(0)−
g∗1
g∗2

∣∣∣∣+
∫ t

0
eg

∗

2
s|g1(s)− g∗1 |ds

)

≤ e−g∗
2
t

(∣∣∣∣z(0)−
g∗1
g∗2

∣∣∣∣+ c

∫ t

0
e(g

∗

2
−ρg1)sds

)
, (27)

13

for some c > 0. The integral on the right hand side evaluates to

∫ t

0
e(g

∗

2
−ρg1)sds =

{(
e(g

∗

2
−ρg1)t − 1

)
/(g∗2 − ρg1), if g∗2 6= ρg1

t, if g∗2 = ρg1 ,
(28)

and so

∣∣∣∣z(t)−
g∗1
g∗2

∣∣∣∣ ≤

e−g∗
2
t

∣∣∣∣z(0) −
g∗1
g∗2

∣∣∣∣+
c

g∗2 − ρg1

(
e−ρg1 t − e−g∗

2
t
)
, if g∗2 6= ρg1 ,

e−g∗
2
t

∣∣∣∣z(0) −
g∗1
g∗2

∣∣∣∣+ cte−g∗
2
t, if g∗2 = ρg1 .

(29)

After taking logarithms, then limit superiors and applying Definition 3.1, in either case, we
have that z(t) converges to g∗1/g

∗
2 at least at rate min{g∗2 , ρg1}.

Now suppose that x(t) is the solution to (23) with x(0) = x0 and z(t) is the solution to (26)
with z(0) = x0. We have

d

dt
(z(t)− x(t)) = −g∗2z(t) + g2(t)x(t)

= −g∗2(z(t)− x(t)) + (g2(t)− g∗2)x(t).

Since x(t) is bounded above, see (25), we have that α(t) := (g2(t)− g∗2)x(t) converges to 0 at least
at rate ρg2 . Let h(t) := z(t)− x(t), and so h(0) = 0 and h(t) satisfies the differential equation

ḣ(t) = α(t) − g∗2h(t). (30)

Comparing (30) with (26), h(t) = z(t) − x(t) converges to 0 at least at rate min{g∗2 , ρg2}. Finally,
since x(t) = z(t) − h(t), a simple use of the triangle inequality gives us that x(t) → g∗1/g

∗
2 at rate

that is at least min{ρg1 , ρg2 , g∗2}.

Lemma 3.7. For i ∈ {1, 2}, let gi : R≥0 → R be a real-valued function that converges to a positive

limit g∗i ∈ R>0 at a rate that is at least ρgi. We assume that the g1, g2 are smooth enough so that

for any x(0) = x0 > 0, the following non-autonomous differential equation has a unique solution

x : R≥0 → R≥0 for all time

ẋ(t) = x(t)(g1(t)− g2(t)x(t)
m), (m ∈ Z>0). (31)

Then x(t) converges to (g∗1/g
∗
2)

1/m
at rate that is at least

min{ρg1 , ρg2 ,mg∗1}. (32)

Proof. Similar to Lemma 3.3 and Lemma 3.6, it suffices to assume that the convergence rate of gi
is greater than ρgi for i ∈ {1, 2}. Note that the positive x-axis, x > 0, is invariant, i.e. if x(0) > 0,
then x(t) > 0 for all t > 0. In fact, we argue that x(t) has a positive lower bound as well as a
positive upper bound for all time t ≥ 0. The reasoning is similar to the one used in the previous
lemma. Let i ∈ {1, 2}. Since gi(t) → g∗i > 0, there is a Ti > 0 such that gi(t) > g∗i /2 for all t > Ti.
Moreover, note that there must be a positive constant ci such that for all time t > 0, we have

gi(t) ≤ g∗i + cie
−ρgi t ≤ g∗i + ci.

For the upper bound of x(t), consider that

ẋ(t) = x(t) (g1(t)− g2(t)x(t)
m) ≤ x(t)

(
g∗1 + c1 −

1

2
g∗2 · x(t)m

)
,

14

for any t > T2. Then we have that for any t > 0

x(t) ≤ max

{
x ([0, T2]) ,

(
2(g∗1 + c1)

g∗2

)1/m
}
. (33)

For the positive lower bound of x(t), consider that

ẋ(t) = x(t) (g1(t)− g2(t)x(t)
m) ≥ x(t) (g∗1/2− (g∗2 + c2) · x(t)m) ,

for any t > T1. Then we have that for any t > 0

x(t) ≥ min

{
x ([0, T1]) ,

(
g∗1

2(g∗2 + c2)

)1/m
}
. (34)

To show that we have the desired rate of convergence, we let

y(t) :=
1

x(t)m
.

Differentiating yields

ẏ(t) = − m

x(t)m+1
· ẋ(t) = mg2(t)−mg1(t)y(t).

The functionsmg2 andmg1 satisfy the hypotheses of Lemma 3.6, and so we have that y(t) converges
to g∗2/g

∗
1 at rate that is at least min{ρg1 , ρg2 ,mg∗1}. Then applying Lemma 3.4 gives us that

the reciprocal of y(t), i.e. x(t)m converges to g∗1/g
∗
2 at rate that is at least min{ρg1 , ρg2 ,mg∗1}.

Finally applying Lemma 3.5 gives us that x(t) converges to (g∗1/g
∗
2)

1/m at rate that is at least
min{ρg1 , ρg2 ,mg∗1}.

Lemma 3.8. Let g1 : R≥0 → R be a real-valued function that converges to a negative limit g∗1 ∈ R<0

at a rate that is at least ρg1 ; let g2 : R≥0 → R be a real-valued function that converges to a positive

limit g∗2 ∈ R>0 at a rate that is at least ρg2. We assume that g1 and g2 are smooth enough so that

for any x(0) = x0 > 0, the following non-autonomous differential equation has a unique solution

x : R≥0 → R≥0 for all time

ẋ(t) = x(t)(g1(t)− g2(t)x(t)
m), (m ∈ Z>0). (35)

Then x(t) converges to 0 at rate that is at least

min{ρg1 ,−g∗1}. (36)

Proof. Similar to the previous results, it suffices to assume that the convergence rate of gi is greater
than ρgi for i ∈ {1, 2}. Since g2(t) → g∗2 > 0, there is a T0 > 0 such that g2(t) > g∗2/2 for all t ≥ T0.
So for any t ≥ T0, we have that

ẋ(t) ≤ g1(t)x(t),

which implies that 0 ≤ x(t) ≤ z(t) where z(t) satisfies z(T0) = x(T0) and for any t ≥ T0,

ż(t) = g1(t)z(t).

This last equation satisfies the hypotheses of Lemma 3.6 with g1(t) of the lemma taken to be
identically 0 and g2(t) of the lemma replaced with −g1(t). The conclusion is that z(t) and therefore
x(t) converges to 0 at rate that is at least min{ρg1 ,−g∗1}.

15

Lemma 3.9. Let g : R≥0 → R be a real-valued function that converges to 0 at a rate that is

at least ρg. We assume that g is smooth enough so that for any x(0) = x0 > 0, the following

non-autonomous differential equation has a unique solution x : R≥0 → R≥0 for all time

ẋ(t) = x(t)(1− g(t)x(t)m), (m ∈ Z>0).

Then for any ε > 0, there is a cε > 0 such that

x(t) ≥ cεe
(min{ρg/m,1}−ε)t, for all t ≥ 0.

Proof. Note that the positive x-axis is invariant. We may therefore define

y(t) :=
1

x(t)m
,

which satisfies the differential equation

ẏ(t) = mg(t)−my(t).

Since y(t) satisfies the hypotheses of Lemma 3.6 with g1(t) := mg(t) and g2(t) ≡ m, we have that
y(t) converges to 0 at rate that is at least min{ρg,m}. Hence, for every ε > 0 there is a positive
constant cε such that

y(t) ≤ cεe
−(min{ρg ,m}−m·ε)t.

In terms of the original variable x(t) we have that

1

x(t)m
≤ cεe

−(min{ρg ,m}−m·ε)t.

Taking the reciprocal and then the mth root gives the desired inequality.

4 Elementary operations

We construct reaction network modules that can carry out the elementary arithmetic operations of:
identification, inversion,mth root (form ≥ 2), addition, multiplication, absolute difference, rectified
subtraction, and partial real inversion (for reals represented via the dual rail representation). These
operations form the core of basic arithmetic. Compositions of them will be taken up in the next
section. Each of the elementary operations that we consider has one or two non-negative real inputs,
hence referred to as a unary or binary operation, and one non-negative real output. In this section,
we will show that the performance of each elementary operation retains from the input function
the desired features of global exponential convergence, and convergence speed that is bounded
from below independent of the inputs and output of computation. We will apply results from the
previous section to prove these properties.

Throughout this section all rate constants are assumed to be equal to 1. Moreover, we assume
throughout that the input functions (typically denoted as a(t) or b(t)) are assumed to be smooth
enough so that the associated differential equations have unique solutions for all relevant initial
conditions and all time.

16

4.1 Identification

Lemma 4.1 (Identification). Consider the reaction network and mass-action system

{A −→ A+X, X −→ 0}, ẋ(t) = a(t)− x(t), (37)

where a(t) is a non-negative-valued function of time that converges to a non-negative constant a∗

at a rate that is at least ρa. Then the concentration of species X, i.e. the variable x, computes

identification a∗ 7→ x∗ = a∗ at speed that is at least min{ρa, 1}.

Proof. The result follows immediately by applying Lemma 3.6 with g1(t) := a(t) and g2(t) ≡ 1.

Before proceeding further, we present an example of a composition of two identifications, which
is arguably the simplest possible composition. We do so to point out how to utilize our results in
that context. This topic will be extensively revisited in section 5.

Example 4.2. Consider a sequence of two identification operations. We will use A to denote the

input species, whose concentration is unchanged over time. Let Y denote a species whose long-term

concentration is identified with that of A and X the species whose long-term value is identified with

the long-term value of Y . The reaction network and system of ODEs for this computation are:

A→ A+ Y, Y → 0, Y → Y +X, X → 0.

ẏ(t) = a− y(t)

ẋ(t) = y(t)− x(t).

We can solve this system explicitly and thereby obtain exact rates of convergence. The solution to

the initial value problem with x(0) = x0 and y(0) = y0 is

y(t) = a
(
1− e−t

)
+ y0e

−t

x(t) = a
(
1− (1 + t)e−t

)
+ (x0 + ty0)e

−t

Thus both y(t) and x(t) converge to a at speed equal to 1. This is, of course, consistent with the

conclusion from Lemma 4.1. Since the input species A is not changing, its rate of convergence is

ρa = +∞. By Lemma 4.1, y(t) converges at speed ρy that is at least min{ρa, 1} = min{∞, 1} = 1.
Again, by application of Lemma 4.1, x(t) converges at speed that is at least min{ρy, 1} = min{1, 1} =
1. △

4.2 Inversion

Lemma 4.3 (Inversion). Consider the reaction network and mass-action system

{X → 2X, A+ 2X → A+X}, ẋ(t) = x(t)(1− a(t)x(t)), (38)

where a(t) is a non-negative-valued function of time that converges to a non-negative constant a∗

at a rate that is at least ρa. Then the concentration of species X, i.e. the variable x, computes

inversion a∗ 7→ x∗ = 1/a∗ at speed that is at least min{ρa, 1}.

Proof. The result follows immediately Lemma 3.7 with m = 1, g1(t) ≡ 1, and g2(t) := a(t).

17

4.3 mth root

Lemma 4.4 (mth root). Consider the reaction network and mass-action system

{Y → 2Y, A+ (m+ 1)Y → A+mY, X → 2X, Y + 2X → Y +X}
ẏ(t) = y(t) (1− a(t)y(t)m) ,

ẋ(t) = x(t) (1− y(t)x(t)) ,

(39)

where m ∈ Z≥2 and a(t) is a non-negative-valued function of time that converges to a non-negative

constant a∗ at a rate that is at least ρa. Then the concentration of species X, i.e. the variable x,
computes the mth root a∗ 7→ x∗ = m

√
a∗ at speed that is at least

{
min{ρa, 1}, if a∗ 6= 0,

min
{ρa

m , 1
}
, if a∗ = 0.

(40)

Proof. We first consider the case a∗ > 0. The first differential equation satisfies the hypotheses of
Lemma 3.7 with m ≥ 2, g1(t) ≡ 1 and g2(t) := a(t), and therefore y(t) converges to (a∗)−1/m at
rate that is at least min{ρa,m}. Application of the same lemma again to the second differential
equation with m = 1, g1(t) ≡ 1 and g2(t) := y(t) gives us that x(t) converges to m

√
a∗ at rate that

is at least min{ρa, 1}.
Now we consider the case when a∗ = 0. We apply Lemma 3.9 to the first differential equation

with m ≥ 2 and g(t) := a(t). Fix ε > 0. Then by Lemma 3.9, there exists a constant cε > 0 such
that

y(t) ≥ cεe
αt,

where α := min{ρa/m, 1} − ε. Therefore,

ẋ(t) ≤ x(t)
(
1− cεe

αtx(t)
)
. (41)

Define a change of variables
z(t) = eαtx(t).

Clearly z(0) = x(0) and ż(t) = αz(t) + eαtẋ(t). Multiplying both sides of (41) with eαt, we get

eαtẋ(t) ≤ eαtx(t)
(
1− cεe

αtx(t)
)
,

which we may rewrite as

ż(t) ≤ z(t) (1 + α− cεz(t)) .

The solution z(t) is bounded above by the solution of the autonomous system

ẇ(t) = w(t) (1 + α− cεw(t)) , w(0) = z(0).

The explicit solution gives an upper bound for x(t)

x(t) = e−αtz(t) ≤ e−αtw(t) =
1 + α

cε(eαt − e−t) + 1+α
x0
e−t

.

The right hand side converges to 0 at a rate that is at least α = min{ρa/m, 1} − ε. But since the
ε > 0 is arbitrary, the convergence is at rate min{ρa/m, 1}.

18

4.4 Addition

Lemma 4.5 (Addition). Consider the reaction network and mass-action system

{A→ A+X, B → B +X, X → 0}, ẋ(t) = a(t) + b(t)− x(t), (42)

where a(t) and b(t) are non-negative functions of time that converge to non-negative constants a∗

and b∗ at rates that are at least ρa and ρb, respectively. Then the concentration of species X, i.e.

the variable x, computes addition (a∗, b∗) 7→ x∗ = a∗ + b∗ at speed that is at least min{ρa, ρb, 1}.
Proof. By Lemma 3.3, the sum a(t)+ b(t) converges to a∗+ b∗ at speed that is at least min{ρa, ρb}.
The result then follows from Lemma 3.6 with g1(t) := a(t) + b(t) and g2(t) ≡ 1.

4.5 Multiplication

Lemma 4.6 (Multiplication). Consider the reaction network and mass-action system

{A+B → A+B +X, X → 0}, ẋ(t) = a(t)b(t)− x(t), (43)

where a(t) and b(t) are non-negative functions of time that converge to non-negative constants a∗

and b∗ at rates that are at least ρa and ρb, respectively. Then the concentration of species X, i.e.

the variable x, computes multiplication (a∗, b∗) 7→ x∗ = a∗ · b∗ at speed that is at least

min{ρa, ρb, 1}, if a∗ 6= 0, b∗ 6= 0,

min{ρa, 1}, if a∗ = 0, b∗ 6= 0,

min{ρb, 1}, if a∗ 6= 0, b∗ = 0,

min{ρa + ρb, 1}, if a∗ = 0, b∗ = 0.

(44)

Proof. Applying Lemma 3.3 to the product a(t)b(t) gives the lower bound on its rate of convergence.
The result then follows by applying Lemma 3.6 with g1(t) := a(t)b(t) and g2(t) ≡ 1.

4.6 Absolute difference

Lemma 4.7 (Absolute difference). Consider the reaction network and mass-action system

{Y → 2Y, 2A+ 3Y → 2A+ 2Y, 2B + 3Y → 2B + 2Y, A+B + 3Y → A+B + 5Y,

X → 2X, Y + 2X → Y +X},
ẏ(t) = y(t)

(
1− (a(t) − b(t))2y(t)2

)
,

ẋ(t) = x(t) (1− y(t)x(t)) ,

(45)

where a(t) and b(t) are non-negative functions of time that converge to non-negative constants a∗

and b∗ at rates that are at least ρa and ρb, respectively. Then the concentration of species X, i.e.

the variable x, computes absolute difference (a∗, b∗) 7→ x∗ = |a∗ − b∗| at speed that is at least

min{ρa, ρb, 1}. (46)

Proof. By Lemma 3.3, the difference a(t) − b(t) converges to a∗ − b∗ at speed that is at least
min{ρa, ρb}. An application of the product part of the same Lemma 3.3 gives that (a(t) − b(t))2

converges to (a∗ − b∗)2 at rate that is at least
{
min{ρa, ρb}, if a∗ 6= b∗

2min{ρa, ρb}, if a∗ = b∗.

Finally, we apply Lemma 4.4 to the system (45) with m = 2 and the function a(t) replaced with
(a(t)− b(t))2.

19

4.7 Rectified subtraction

Lemma 4.8 (Rectified subtraction). Consider the reaction network and mass-action system

{Y → 2Y, 2A+ 3Y → 2A+ 2Y, 2B + 3Y → 2B + 2Y, A+B + 3Y → A+B + 5Y,

A+ Y +X → A+ Y + 2X, B + Y +X → B + Y, Y + 2X → Y +X},
ẏ(t) = y(t)

(
1− (a(t) − b(t))2y(t)2

)
,

ẋ(t) = y(t)x(t) (a(t)− b(t)− x(t)) ,

(47)

where a(t) and b(t) are non-negative functions of time that converge to non-negative constants a∗

and b∗ at rates that are at least ρa and ρb, respectively. Then the concentration of species X, i.e.

the variable x, computes rectified subtraction

(a∗, b∗) 7→
{
a∗ − b∗ if a∗ > b∗

0 if a∗ ≤ b∗

at speed that is at least

min{ρa, ρb, 1}. (48)

Proof. By Lemma 3.3, the difference a(t) − b(t) converges to a∗ − b∗ at rate that is at least ρ :=
min{ρa, ρb}.

First suppose that a∗ 6= b∗. Similar to the proof of Lemma 4.7, (a(t) − b(t))2 converges to
(a∗ − b∗)2 at rate that is at least min{ρa, ρb}. The differential equation for y(t) satisfies the
hypotheses of Lemma 3.7 with m = 2, g1(t) ≡ 1 and g2(t) := (a(t) − b(t))2, and therefore y(t)
converges to |a∗ − b∗|−1 > 0 at rate that is at least min{ρa, ρb, 2}. Now rewrite the differential
equation for x(t) as

ẋ(t) = x(t) (y(t)(a(t)− b(t))− y(t)x(t)) , (49)

and note that by Lemma 3.3, y(t)(a(t)− b(t)) converges to either +1 or −1, depending on whether
a∗ > b∗ or a∗ < b∗, at rate that is at least min{ρa, ρb, 2}. When a∗ > b∗, we apply Lemma 3.7 with
m = 1, g1(t) := y(t)(a(t) − b(t)), and g2(t) = y(t) to (49), and we conclude that x(t) converges to
a∗ − b∗ at rate that is at least min{ρa, ρb, 1}. When a∗ < b∗, we apply Lemma 3.8 with m = 1,
g1(t) := y(t)(a(t)− b(t)), and g2(t) = y(t) to (49), and we conclude that x(t) converges to 0 at rate
that is at least min{ρa, ρb, 1}. In either case, we get the desired result when a∗ 6= b∗.

Now consider the case that a∗ = b∗. We have that a(t) − b(t) converges to 0 at rate that is at
least ρ = min{ρa, ρb}. We fix an ε > 0. Then, there is a constant cε > 0 such that for all t ≥ 0,

|a(t)− b(t)| < cεe
−(ρ−ε)t. (50)

Similar to the proof of Lemma 4.7, (a(t)−b(t))2 converges to 0 at rate that is at least 2min{ρa, ρb}.
The differential equation for y(t) satisfies the hypotheses of Lemma 3.9 with m = 2, and g(t) :=
(a(t)− b(t))2, and therefore there is a c′ε > 0 such that for all t ≥ 0, we have

y(t) ≥ c′εe
(min{ρa,ρb,1}−ε)t = c′εe

νt, (51)

where ν := min{ρa, ρb, 1} − ε.
We will now show that x(t) converges to 0 at rate that is at least ν. As in our previous results,

this will be enough to prove the result as ε > 0 is arbitrary. Note that the positive x-axis is
invariant, i.e. for any x(0) > 0, x(t) > 0 for all time t ≥ 0. Define

u(t) :=
1

K
x(t)eνt, where K := cε + (ν + 1)/c′ε,

20

and so u(t) > 0 for all t ≥ 0 whenever x(0) > 0. It suffices to show that if u(t) ≥ 1, then u̇(t) ≤ −1.
Indeed assuming this is true, we first show that x(t) converges at the desired rate. Consider two
cases: (i) u(0) < 1, since the region u < 1 is invariant we have that

x(t) = Ku(t)e−νt ≤ Ke−νt,

and (ii) u(0) ≥ 1, in which case we have that u(t) ≤ u(0) for all t ≥ 0, and so

x(t) = Ku(t)e−νt ≤ Ku(0)e−νt = x(0)e−νt.

Combining the two cases, we have that for all t ≥ 0,

x(t) ≤ max{x(0),K}e−νt,

i.e. x converges to 0 at rate that is at least ν. Since ε > 0 is arbitrary, x converges to 0 at rate
that is at least min{ρa, ρb, 1}.

Now we prove the claim that if u(t) ≥ 1 then u̇(t) ≤ −1. Note that we have

u̇ =
eνt

K
(ẋ+ νx) = νu+ u

ẋ

x

= νu+ uy(a− b−Kue−νt) ≤ νu+ uy
(
cεe

(−ρ+ε)t −Kue−νt
)
≤ νu+ uy(cε −Ku)e−νt,

where we used (50), ν = min{ρ, 1}− ε ≤ ρ− ε, and also that u(t) and y(t) are positive for all t ≥ 0.
Since we are assuming that u ≥ 1, we then have

u̇ ≤ νu+ uy(cε −K)e−νt = νu− uy

(
ν + 1

c′ε

)
e−νt

≤ νu− u (ν + 1) = −u ≤ −1,

where we used (51) and the assumption u ≥ 1. This concludes the proof.

4.8 Partial real inversion

The input to the elementary operation of partial real inversion is a nonzero real number and can
be positive or negative. Thus, the dual rail representation is used for the input, see section 2.2.

Lemma 4.9 (Partial real inversion). Consider the reaction network and mass-action system

{Y → 2Y, Ap + 2Y → Ap + Y, An + 2Y → An + Y,

Ap + Y +X → Ap + Y + 2X, An + Y +X → An + Y, 2Ap + Y + 2X → 2Ap + Y +X},
ẏ(t) = y(t) (1− (ap(t) + an(t))y(t))

ẋ(t) = y(t)x(t) (ap(t)(1 − ap(t)x(t))− an(t))

(52)

where ap(t) and an(t) are non-negative functions of time that converge to non-negative constants

a∗p and a∗n at rates that are at least ρap and ρan , respectively. We assume that one and only one of

a∗p or a∗n is positive, while the other is zero. Then the concentration of species X, i.e. the variable

x, computes partial real inversion

(a∗p, a
∗
n) 7→

{
1/a∗p, if a∗p > 0,

0, if a∗p = 0,

at speed that is at least

min{ρap , ρan , 1}. (53)

21

Proof. By Lemma 3.3, the sum ap(t) + an(t) converges to a∗p + a∗n > 0 at rate that is at least
min{ρap , ρan}. The first differential equation in (52) satisfies the hypotheses of Lemma 3.7 with
m = 1, g1(t) ≡ 1 and g2(t) := ap(t)+an(t), and therefore y(t) converges to (a∗p+a

∗
n)

−1 at rate that
is at least min{ρap , ρan , 1}.

The differential equation for x(t) can be written as

ẋ(t) = x(t)
(
y(t)(ap(t)− an(t))− y(t)ap(t)

2x(t)
)

By Lemma 3.3, the difference ap(t) − an(t) converges to its limit a∗p − a∗n at rate that is at least
min{ρap , ρan}. By the product part of the same lemma, the product y(t)(ap(t)− an(t)) converges
to +1 or −1, depending on whether a∗p > 0 or a∗p = 0, at rate that is at least min{ρap , ρan , 1}.

First consider the case a∗p > 0 and a∗n = 0. By Lemma 3.3, the product y(t)ap(t)
2 converges to

a∗p at rate that is at least min{ρap , ρan , 1}. The differential equation for x(t) satisfies the hypotheses
of Lemma 3.7 with m = 1, g1(t) := y(t)(ap(t) − an(t)) and g2(t) := y(t)ap(t)

2, and therefore x(t)
converges to 1/a∗p at rate that is at least min{ρap , ρan , 1}.

Now consider the case a∗p = 0 and a∗n > 0. Suppose that z(t) satisfies the differential equation
ż(t) = z(t)y(t)(ap(t)−an(t)), then by applying Lemma 3.6 with g1(t) ≡ 0, and g2(t) := −y(t)(ap(t)−
an(t)), we get that z(t) converges to 0 at rate that is at least min{ρap , ρan , 1}. Since we have

ẋ(t) = x(t)
(
y(t)(ap(t)− an(t))− y(t)ap(t)

2x(t)
)

≤ x(t)y(t)(ap(t)− an(t)),

for any x(0) = z(0), we must have x(t) ≤ z(t) for all t ≥ 0, and so x(t) converges to 0 at rate that
is at least min{ρap , ρan , 1}.

5 Composite operations

5.1 Main theory

The elementary operations in section 4 can be combined to produce composite operations. Some
operations, such as division, maximum, subtraction, which may be considered “elementary” from
the point of view of arithmetic are in fact composite in our construction as they are produced by
combining the operations in the previous section.

We start with a theorem about the speed of a general arithmetic operation, one that involves
finitely many compositions of elementary operations. The result presented below is the most
consequential theorem of this paper.

Theorem 5.1 (Composite computations). Consider a computation that is composed from a finite

number of elementary computations from section 4. Then the speed of this composite computation

is at least that of the slowest elementary computation.

Proof. The proof only requires combining the results in Lemmas 4.1-4.9.

Example 4.2 is helpful here. When doing a sequence of two identifications, the intermediate
variable converges like e−t, while the output of the second identification converges like te−t. For
both variables, intermediate and output, the speed of convergence is 1.

For all elementary operations, we used the assumption that the mass action reaction rate con-
stants are all equal. In fact, we set the rate constants to be equal to 1. If instead, all rate constants
are taken to be σ > 0, a time change argument can be used to make them all equal to 1 in the
modified system (see Remark 5.4 below). We now state two corollaries which assume that the rate
constants are all equal to 1.

22

Corollary 5.2. Consider a computation that is composed from a finite number of elementary

computations from section 4. If none of the elementary computations are a root of zero, then the

speed of the composite computation is at least 1.

Corollary 5.3. Consider a computation that is composed from a finite number of elementary

computations from section 4. Suppose that of all the elementary steps in the composite computation,

there are p elementary steps which require taking the mj-th root of zero, 1 ≤ j ≤ p. Then the speed

of the composite computation is at least
p∏

j=1

1

mj
.

Remark 5.4. Throughout this work, we have always chosen the rate constants of the reactions to

be equal to 1. However, the choice of the value 1 was arbitrary. For example, suppose that the

differential equation for our system, with a rate constant of 1, is

ẋ(t) = f(x(t)).

Now suppose that we instead choose rate constants of σ > 0, and denote the system by

ż(t) = σf(z(t)).

We then see that x and z are related by a simple time-change: z(t) = x(σt). You can see this by

simply utilizing the chain rule:

d

dt
x(σt) = f(x(σt)) · σ.

Thus, we immediately conclude from Corollary 5.2 that if none of the elementary computations are

the root of zero, the speed of the composite computation via z is σ, whereas from Corollary 5.3, we

conclude the speed via z is
∏p

j=1 σ/mj , when the conditions of that corollary are met. We discuss

the possibility of having non-equal rate constants in section 7. △

We now show how to compose operations from section 4 to carry out the operations division,
maximum, and subtraction.

Division

Division, a∗/b∗, for a∗, b∗ > 0, is a composite operation of our elementary operations. First we
compute the reciprocal b∗ 7→ 1/b∗, and then the product (a∗, 1/b∗) 7→ a∗/b∗, see Figure 2. The
reaction network for computing division can be built simply by taking the union of reaction network
modules, each of which computes an elementary operation, as follows

{Z → 2Z, B + 2Z → B + Z}, ż(t) = z(t)(1 − b(t)z(t)) (inversion),

{A+ Z → A+ Z +X, X → 0}, ẋ(t) = a(t)z(t)− x(t) (multiplication).
(54)

Suppose a(t) and b(t) are real-valued functions that converge to a∗ ≥ 0 and b∗ > 0, respectively.
Then concentration of species X, i.e. the variable x(t) computes a∗/b∗. The minimum speed of
convergence can be determined as follows. By combining results from Lemmas 4.3, and 4.6, we
have that

ρx ≥ min{ρa, ρz, 1}
≥ min{ρa,min{ρb, 1}, 1} = min{ρa, ρb, 1}.

23

In the previous short calculation, we have shown that specifically for a composition involving
reciprocation and multiplication, the minimum speed of the composite computation is at least the
minimum speed of the slowest elementary computation. This is, of course, an instance of the general
result, Theorem 5.1.

Maximum

The maximum max{a, b} of two positive reals a and b can be found using the following formula

max{a, b} =
1

2
(a+ b+ |a− b|) ,

which is a composition of the absolute difference, two binary additions and a multiplication by 1/2.
By Theorem 5.1, the speed of computation is bounded below.

Subtraction

The output a− b of subtraction for two non-negative reals a, b ≥ 0 is an arbitrary real number, and
therefore requires the dual rail representation, i.e. two chemical species, the concentration of one
is the positive part of a− b and the concentration of the other is the negative part. We may write
a− b in dual rail representation as

a− b = (a −̇ b, b −̇ a).

In other words, a subtraction is simply two rectified subtractions, and therefore by Theorem 5.1,
has the same lower bound on the speed as either of the two rectified subtractions.

5.2 Graphical representation for composite operations

Combining elementary arithmetic computations into a composite computation has similarities with
how logic gates are combined in a Boolean logic operation. Following this analogy, we can set up
a visual aid where the elementary operations of section 4 are thought of “elementary gates” which
can be combined in various different ways. We first give a catalogue of the elementary gates, shown
in Figure 1.

ida a

(a) Identification.

−1a 1/a

(b) Inversion.

ma m
√
a

(c) mth root.

×a

b
a× b

(d) Multiplication.

+
a

b
a+ b

(e) Addition.

|−|a

b
|a− b|

(f) Absolute difference.

−̇
a

b
a −̇ b

(g) Rectified subtraction.

+

−

-1a

ap

an

{
1
ap
, if ap > 0, an = 0,

0, if ap = 0, an > 0.

(h) Partial real inversion.

Figure 1: Elementary gates.

24

We can now put the gates together in different ways to generate the composite computations
discussed in section 5.1. We start with division, shown in Figure 2 which only requires the elemen-
tary operations of identification, reciprocal, and multiplication. Figure 3 depicts a diagram of how
the operation of taking the maximum of two non-negative reals can be constructed. Figure 4 shows
a pictorial way of doing subtraction by combining two rectified subtractions.

We continue to use the diagrammatic representations of arithmetic computations in section
6. We show that each operation over reals can be decomposed into operations whose inputs and
outputs are only non-negative reals. We give the diagrammatic decomposition into elementary
arithmetic gates along with each description.

a

b −1

× a

b

Figure 2: A graphical representation of division.

|−| + + ×

a

b

1
2

max{a, b}

Figure 3: Maximum of two non-negative reals.

−̇

−̇

a

b

a −̇ b

b −̇ a

Figure 4: Subtraction.

6 Arithmetic operations on arbitrary real numbers

The previous section discussed arithmetic operations with non-negative inputs. In the final con-
struction on subtraction, the output is any real number–positive, negative, or zero–even though
the inputs are positive. We needed ‘dual rail’ to represent an arbitrary real number as a vector

25

with two non-negative components. In this section, we continue to use the dual rail construction
to represent an arbitrary real number which can be both an input and an output.

Addition and normalization

We define addition in the usual way, for any a, b ∈ R,

a+ b = (ap, an) + (bp, bn) = (ap + bp, an + bn).

The operation can be performed with ODEs/reaction networks by using two successive regular
additions. Since the output of addition is not necessarily canonical, we define a normalization
operation which brings the output into this form.

(ap, an) =

{
(ap − an, 0) if ap > an

(0, an − ap) if ap ≤ an.

The operation is performed using one dual rail subtraction.

+
ap

bp

+
an

bn

−̇

−̇

a

b

ap + bp −̇(an + bn)

an + bn −̇(ap + bp)

Figure 5: Real addition.

Additive inverse and subtraction

The negative of the real number a is defined via

x = −a = −(ap, an) = (an, ap) = (xp, xn).

This can be performed using two assignments. The system of ODEs is the following:

ẋp = an − xp,

ẋn = ap − xn.

Subtraction is defined as follows:

a− b = (ap, an)− (bp, bn) = (ap, an) + (−(bp, bn)) = (ap, an) + (bn, bp) = (ap + bn, an + bp).

Thus subtraction can be performed using two regular additions followed by a normalization to
bring the output into canonical form.

26

id

id

a

ap

an

an

ap

Figure 6: Real additive inverse.

Multiplication

Multiplication of arbitrary real numbers involves four multiplications and two additions of non-
negative real numbers as shown by the following calculation:

a · b = (ap, an) · (bp, bn) = (ap − an) · (bp − bn)

= apbp + anbn − apbn − anbp = (apbp + anbn, apbn + anbp).

The normalization step is unnecessary since the output of multiplication is in canonical form when-
ever the inputs are in canonical form. Indeed, we have that

(apbp + anbn)(apbn + anbp) = (a2p + a2n)bpbn + apan(b
2
p + b2n) = 0,

where the last equality follows from apan = 0 and bpbn = 0.

×

×

×

×

+

+

a

b

ap

an

bp

bn

apbp + anbn

apbn + anbp

Figure 7: Real multiplication.

Inversion and Division

Consider the nonzero input 0 6= a = (ap, an) in canonical form, i.e. exactly one of ap or an is
positive, so that ap + an > 0 and apan = 0. The multiplicative inverse in canonical form is

a−1 =

(
1
ap
, 0
)

if ap > 0,(
0, 1

an

)
if an > 0.

27

+

−

-1

+

−

-1

a

ap

an

{
1
ap
, if ap > 0, an = 0,

0, if ap = 0, an > 0.

{
0, if ap > 0, an = 0,
1
an
, if ap = 0, an > 0.

Figure 8: Real inversion.

Finally, division b/a is simply inversion of a followed by multiplication of b and 1/a.

7 Discussion

In this paper, we gave novel, explicit constructions for computing elementary operations at input-
independent speed and showed how the elementary operations can be combined into composite
computations also computed at input-independent speed. In particular, in the novel constructions
that we give, such as (15) used for computing the reciprocal, we achieved a decoupling of concen-
trations and the speed of computing. This is in contrast to the naive constructions, such as (11) for
the reciprocal. There, even the number of steps of the overall computation can affect the speed at
which the individual steps are computed and therefore affect the speed of the overall computation.
This is because there could be complicated interactions between the number of steps in a given
computation, the well-mixed property required for mass-action kinetics, the natural discreteness
of the molecules, the volume of the vessel in which the reactions are taking place, and, therefore,
the range of concentrations of the various species. Such issues that arise from thinking about the
physical implementation of chemical computation will be studied carefully in future work.

We assumed that underlying our algorithmic considerations is an idealized analog computer
that is built from a perfectly well-behaved mass action system. We anticipate introducing realistic
constraints in future research that will strengthen and build on the idealized setup developed here.
We now discuss some future research directions that are natural offshoots of the present paper.

Chemical reactions involving at most two molecules as reactants, sometimes referred to as
bimolecular reactions, are considered the simplest to design and found most commonly in nature.
The constructions given in this paper did not have this constraint and, in fact, did require multiple
different reactant types with high molecularities. Is it possible to find constructions that compute
arithmetic at input-independent speeds using only bimolecular reactants?

In some of our constructions, an intermediate variable was allowed to increase to indefinitely
high values. For instance when computing rectified subtraction 47, the concentration of the species
Y goes to infinity when a∗ = b∗. This possibility of a variable increasing in an unbounded man-
ner may be deemed unrealistic to implement using synthetic biochemistry, or at the very least
is an energy-hungry construction. Is it possible to give an alternative construction for subtrac-
tion/rectified subtraction which works equally well algorithmically, has all the desired features,
particularly including input-independent speed of computation, but also does not require any vari-
able to increase in an unbounded manner?

We assumed throughout that all reactions have the same rate constant. This poses significant,

28

perhaps unrealistic, design challenges. In the next improved iteration of construction, we may
want to assume that the reactions occur at known, but not necessarily equal or controllable, rates.
Given this significant constraint, how should the reaction networks for elementary operations and
composite computations be modified to give an accurate output at input-independent speed?

A bottleneck in the speed of computation for our constructions is a root of zero. Can this
bottleneck be removed? Are there constructions for which the speed of computation is not lowered
even when an elementary step requires computing a root of zero. Or is the jump in speed when
computing a root of zero as opposed to a root of a positive number, not merely a bug but a positive
feature? Perhaps we may be able to put to good use the discrete jump in speed when the input
to an m-th root is either a zero or a positive number. To be concrete, consider the elementary
operation of computing a square root. When the input is ε > 0, the speed of computation is at
least 1 while when the input is 0, the speed is halved. Can this phenomenon be a basis for designing
a “zero detector” or an “equality detector”?

Arithmetic only requires composing finitely many elementary operations. Computation of gen-
eral functions may need the use of power series and other techniques that involve limits and con-
vergence. Approximating the value of a general function, using a power series for example, may
require computing an arbitrarily large, even if finite, number of elementary operations. To compute
a power series, we need to consider the initial rate of convergence of each elementary operation, not
merely its asymptotic rate. The ‘overhead’ time required in each elementary operation may add
up to a significant amount when considering a large, possibly infinite number of operations. Can
our analysis be extended and what additional features or constraints are required when computing
general functions?

An alternative approach, that does not require using power series, may be to develop specific
algorithms for computing commonly used functions such as exponentials and logarithms, based on
mass-action kinetics and whose speeds are input-independent. A fruitful research direction may be
to explore the computational reach of reaction network-based hardware by developing versatile al-
gorithms that broaden the suite of possible computations at input-independent speeds. Conversely,
hardware may impose additional constraints on the software thereby limiting computational ac-
curacy or speed. Are there specific design aspects from the vantage of synthetic biochemistry or
other practical engineering constraints that speed up or slow down computation? Multidisciplinary
teams of researchers, representing synthetic biology, computer science as well as mathematics may
be most poised to answer related questions and make rapid progress.

A research program could be founded on a broader territory of inquiry. As an instance, consider
Boolean algebra, which is foundational to logical computations used in modern digital computers.
One might ask: do there exist good, i.e. accurate and efficient, algorithms for performing Boolean
algebra using reaction networks?

Acknowledgement

We would like to thank Josef Hofbauer (University of Vienna) for suggesting the change of variables
used in the proof of Lemma 3.7, which simplified the analysis. This work was supported by a grant
from the Simons Foundation (905083, Anderson). We also gratefully acknowledge NSF grant DMS-
2051498.

29

References

[1] David F Anderson, Badal Joshi, and Abhishek Deshpande. On reaction network implementa-
tions of neural networks. Journal of the Royal Society Interface, 18(177):20210031, 2021.

[2] H. Buisman, Huub M.M. ten Eikelder, Peter Hilbers, and Anthony Liekens. Computing alge-
braic functions with biochemical reaction networks. Artif. Life, 15(1):5–19, 2009.

[3] Daniele Cappelletti, Andres Ortiz-Muñoz, David F. Anderson, and Erik Winfree. Stochas-
tic chemical reaction networks for robustly approximating arbitrary probability distributions.
Theoretical Computer Science, 801:64–95, 2020.

[4] Ho-Lin Chen, David Doty, Wyatt Reeves, and David Soloveichik. Rate-independent compu-
tation in continuous chemical reaction networks. Journal of the ACM, 70(3):1–61, 2023.

[5] Ho-Lin Chen, David Doty, and David Soloveichik. Deterministic function computation with
chemical reaction networks. Natural computing, 13:517–534, 2014.

[6] Lulu Qian, Erik Winfree, and Jehoshua Bruck. Neural network computation with DNA strand
displacement cascades. Nature, 475(7356):368–372, 2011.

[7] Lulu Qian, David Soloveichik, and Erik Winfree. Efficient Turing-universal computation with
DNA polymers. In DNA Computing and Molecular Programming 16, pages 123–140, 2011.

[8] Lulu Qian and Erik Winfree. A simple DNA gate motif for synthesizing large-scale circuits.
J. R. Soc. Interface, 8(62):1281–1297, 2011.

[9] David Soloveichik, Georg Seelig, and Erik Winfree. DNA as a universal substrate for chemical
kinetics. PNAS, 107(12):5393–5398, 2010.

[10] Martin Feinberg. Foundations of chemical reaction network theory. Springer, 2019.

[11] Yannis Tsividis. Not your father’s analog computer. IEEE Spectrum, 55(2):38–43, 2018.

[12] Bruce J. MacLennan. The promise of analog computation. International Journal of General

Systems, 43(7):682–696, 2014.

[13] Sara Achour, Rahul Sarpeshkar, and Martin C. Rinard. Configuration synthesis for pro-
grammable analog devices with Arco. ACM SIGPLAN Notices, 51(6):177–193, 2016.

[14] Ramiz Daniel, Jacob R. Rubens, Rahul Sarpeshkar, and Timothy K. Lu. Synthetic analog
computation in living cells. Nature, 497(7451):619–623, 2013.

[15] Tianqi Song, Sudhanshu Garg, Reem Mokhtar, Hieu Bui, and John Reif. Analog computation
by DNA strand displacement circuits. ACS synthetic biology, 5(8):898–912, 2016.

[16] Sayed Ahmad Salehi, Xingyi Liu, Marc D Riedel, and Keshab K Parhi. Computing mathe-
matical functions using dna via fractional coding. Scientific reports, 8(1):8312, 2018.

[17] Vera Hárs and János Tóth. On the inverse problem of reaction kinetics. Qualitative theory of

differential equations, 30:363–379, 1981.

30

	Introduction
	Arithmetic with reaction networks: comparing existing schemata

	Introducing the basic problem
	Mass-action chemical systems and their associated ODEs
	The issue of negativity and the dual rail representation
	Input independent speed of computation

	Rate of convergence for certain non-autonomous systems
	Simple convergence results
	Analysis of certain non-autonomous systems

	Elementary operations
	Identification
	Inversion
	mth root
	Addition
	Multiplication
	Absolute difference
	Rectified subtraction
	Partial real inversion

	Composite operations
	Main theory
	Graphical representation for composite operations

	Arithmetic operations on arbitrary real numbers
	Discussion

