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We develop a general theory for multiphoton qubit-resonator interactions enhanced by a qubit
drive. The interactions generate qubit-conditional operations in the resonator when the driving is
near n-photon cross-resonance, i.e., when the qubit drive is n-times the resonator frequency. We
pay special attention to the strong driving regime, where the resulting effective interactions are
conditioned on the qubit dressed states. Next, we investigate the use of a two-tone drive to engineer
an effective n-photon Rabi Hamiltonian with widely tunable effective system parameters, which
could enable the realization of new regimes that have so far been inaccessible. Then, we discuss
applications for the specific case where n = 2, which results in qubit-conditional squeezing (QCS).
We show that the QCS protocol can be used to generate a superposition of orthogonally squeezed
states following a properly chosen qubit measurement. We outline quantum information processing
applications for these states, including encoding a qubit in a resonator via the superposition of
orthogonally squeezed states. We show how the QCS operation can be used to realize a controlled-
squeeze gate and its use in bosonic phase estimation. The QCS protocol can also be utilized to
achieve faster unitary operator synthesis on the joint qubit-resonator Hilbert space. Finally, we pro-
pose a multiphoton circuit QED implementation based on a transmon qubit coupled to a resonator
via an asymmetric SQUID. We provide realistic parameter estimates for the two-photon operation
regime that can host the aforementioned two-photon protocols. We use numerical simulations to
show that even in the presence of spurious terms and decoherence, our analytical predictions are
robust.

I. INTRODUCTION

In the last century, mastering the manipulation of
quantum-mechanical light-matter interactions emerged
as a groundbreaking achievement. Today, the focus has
evolved towards the precise engineering of versatile inter-
actions, resilient to decoherence and practical imperfec-
tions, essential for advancing quantum technologies. This
pursuit has the potential to advance information process-
ing and error correction, and ultimately, it could lead
to the realization of fault-tolerant quantum computing.
Moreover, the precise control of light-matter interactions
extends far beyond computing, finding diverse applica-
tions in quantum metrology, communication, and simu-
lations, highlighting its profound impact across various
domains.

The elementary model of quantum light-matter inter-
actions is captured by the Rabi model where a qubit is
linearly coupled to a single quantized field mode or a
resonator [1–4]. This model describes the basic physics
underlying most quantum computing implementations.
This includes circuit quantum electrodynamics (QED)
[5], trapped ions [6], and cavity QED [7].

Different variants of the Rabi model exhibit a variety of
higher order perturbative multiphoton effects stemming
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from a linear interaction (see for example Refs. [8–14]).
These multiphoton perturbative effects have proven their
utility in various applications, e.g. improved readout due
to qubit-induced nonlinearity [15]. Thus, to further con-
trol and leverage multiphoton effects, the Rabi model can
be generalized to include nonlinear interactions, namely,
a qubit nonlinearly coupled to a resonator through an n-
photon interaction. These nonlinear models are nonper-
turbative, as the nonlinear interaction is inherent to the
Hamiltonian rather than higher-order effects of a linear
interaction term. Some of the spectral and dynamical
properties of multiphoton Rabi models describing such
nonlinear interactions, e.g. two-photon interactions, have
been previously studied [16–26]. Other studies of these
models were focused on multiphoton blockades [27–29],
‘Fock state filters’ that effectively confine the dynam-
ics to a finite-dimensional subspace [28], enhancement
of collective multiqubit phenomena [30] and stabilization
of nonclassical states for quantum error correction [31].
Towards the goal of experimental realization, a series of
nonperturbative implementations of the two-photon Rabi
model have been recently proposed in superconducting
circuits [27, 29, 32] and trapped ions [33, 34].

Much remains to be discovered about the various
regimes of nonperturbative multiphoton qubit-resonator
interactions, particularly when the qubit or resonator is
driven, since the driving alters these interactions. In
this paper, we develop a general theory for driving-
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enhanced nonperturbative multiphoton interactions in a
qubit-resonator system. In particular, we study a qubit
nonlinearly coupled to a resonator through an n-photon
Rabi interaction in the presence of a qubit drive.

The paper is structured as follows: Sec. II lays out
the formalism for the theory. Then, the driving regimes
on- and off-resonance from the qubit and resonator
are explored. The driving is found to generate qubit-
conditional operations on the resonator. Next, we use
two-tone driving to engineer an effective n-photon Rabi
model that is tunable to arbitrary coupling strengths,
thereby performing a quantum simulation of the model.
In Sec. III, we apply the developed theory to the case of
n = 2, where we discover a qubit-conditional squeezing
(QCS) process. The QCS protocol allows for the encod-
ing of a qubit state in the superposition of orthogonally
squeezed states in the resonator. Then, we show the po-
tential use of the QCS protocol in the phase estimation
algorithm with bosonic systems. We describe how the
generators of the QCS operation can be used to real-
ize faster unitary synthesis on the joint qubit-resonator
Hilbert space. We discuss how these applications can be
generalized for higher-order interactions. Section IV pro-
poses an implementation scheme based on the transmon
qubit which can host the required two-photon interaction
for implementing the QCS protocols. Lastly, we summa-
rize our findings and present an outlook in Sec. V.

II. ENHANCING MULTIPHOTON
INTERACTIONS WITH CROSS-RESONANT

DRIVING

In this section, we develop the theory of driving-
enhanced interactions that enables qubit-conditional res-
onator operations. We proceed by stating the system
and drive Hamiltonians and applying the necessary trans-
formations to simplify its time dependence. Once we
arrive at a simplified effective Hamiltonian, using the
dressed basis, we explore the dynamics and its impli-
cations. Then, we add a second drive to the qubit, with
properly chosen values of the amplitude and frequency, to
engineer an effective n-photon Rabi Hamiltoninian with
tunable parameters allowing the access to arbitrary cou-
pling regimes.

A. System Hamiltonian

We start by considering the driven n-photon Rabi
model whose Hamiltonian reads

Ĥ = Ĥn−R + Ĥd (1a)

where

Ĥn−R =
ℏωq

2
σ̂z + ℏωrâ

†â+ ℏgn(σ̂+ + σ̂−)(â
†n + ân),

(1b)

and

Ĥd = ℏΩcos(ωdt)(σ̂+ + σ̂−). (1c)

Here, σ̂z = |e⟩⟨e| − |g⟩⟨g| describes the population differ-
ence between the excited energy state |e⟩ and the ground

state |g⟩ of the qubit, σ̂+ = |e⟩⟨g| and σ̂− = σ̂†
+ are rais-

ing and lowering operators of the qubit, â and â† are the
annihilation and creation operators of the resonator, ωq

is the transition frequency of the qubit, ωr is the res-
onance frequency of the resonator, gn is the n-photon
coupling strength between the resonator and qubit, Ω is
the strength of the driving field and ωd is the driving
frequency.
We rewrite the Hamiltonian of Eq. (1) in a particular

rotating frame, accounting for the n-photon nature of
the qubit-resonator interaction, by means of the unitary
transformation Ûr,n = exp

[
−iωdt(σ̂z/2 + â†â/n)

]
,

Ĥr =Ûr,n†ĤÛr,n + iℏ ˙̂
Ur,n†Ûr,n

=
ℏ∆
2
σ̂z + ℏδnâ†â

+ ℏgn
(
σ̂+â

n + σ̂−â
†n

+ ei2ωdtσ̂+â
†n + e−i2ωdtσ̂−â

)
+

ℏΩ
2

(σ̂+ + σ̂− + ei2ωdtσ̂+ + e−i2ωdtσ̂−), (2)

where ∆ = ωq − ωd and δn = ωr − ωd/n. We may now
simplify this Hamiltonian by imposing the rotating-wave
approximation (RWA) condition,

gn, Ω, ∆, δn ≪ ωd. (3)

This condition is neccesary to eliminate the fast-
oscillating counter-rotating interaction terms,
gn(e

+i2ωdtσ̂+â
†n + e−i2ωdtσ̂−ân), and counter-rotating

driving terms, Ω(e+i2ωdtσ̂+ + e−i2ωdtσ̂−)/2. Imposing
these RWA conditions, the simplified Hamiltonian reads

Ĥr
RWA =

ℏ∆
2
σ̂z +

ℏΩ
2
σ̂x + ℏδnâ†â

+ ℏgn(σ̂+ân + σ̂−â
†n), (4)

where σ̂x = σ̂++ σ̂−. This last Hamiltonian will serve as
the basis for our study.

B. Effective interaction

The qubit-resonator interaction changes depending on
the driving parameters. We now aim to investigate the
dynamics within two driving regimes, focusing on how
the drive affects the qubit-resonator interaction. To bet-
ter understand the driving regime’s effect on the inter-
action and further simplify the analytical calculations,
we transform to the interaction picture using the unitary
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Û (I) = exp
[
−iĤ0t/ℏ

]
, where Ĥ0 = ℏ∆σ̂z/2 + ℏΩσ̂x/2 +

ℏδnâ†â. The interaction picture Hamiltonian reads

Ĥ(I) =Û (I)†Ĥr
RWAÛ

(I) + iℏ ˙̂
U (I)†Û (I)

=ℏgn
[
sin(θ)

2
(|+⟩⟨+| − |−⟩⟨−|)

+ cos2
(
θ

2

)
eiεt |+⟩⟨−|

− sin2
(
θ

2

)
e−iεt |−⟩⟨+|

]
âne−inδnt +H.c., (5)

where we use the dressed states |+⟩ = sin (θ/2) |g⟩ +
cos (θ/2) |e⟩ and |−⟩ = cos (θ/2) |g⟩ − sin (θ/2) |e⟩, ε =√
Ω2 +∆2 and θ = arctan(Ω/∆).
The Hamiltonian of Eq. (5) reveals two distinct inter-

actions taking place at different timescales. One of these
interactions oscillates with e±iεt; as the driving strength,
Ω, increases, these terms oscillate rapidly. We can elimi-
nate these fast-oscillating terms by imposing the driving-
detuning RWA condition

|nδn|, gn ≪ ε. (6)

Imposing this condition allows us to obtain the effective
Hamiltonian

Ĥ
(I)
eff = ℏgn(|+⟩⟨+| − |−⟩⟨−|)(â†neniδnt + âne−niδnt),

(7)

where gn = gn sin(θ)/2. The dynamics associated with
this Hamiltonian result in a conditional n-photon res-
onator operation dependent on the qubit state. The
time-evolution operator generated by Eq. (7) is

Ûeff,n(t, 0) = |+⟩⟨+| Ŝn(λ(t)) + |−⟩⟨−| Ŝn(−λ(t)), (8)

where Ŝn(λ) = exp
(
(λ∗ân − λâ†n)/n!

)
is the generalized

n-photon squeezing operator [35]; for n = 1 it is the
usual displacement operator, for n = 2 it is the squeezing
operator, etc., and λ(t) = gnn!(e

inδnt − 1)/2nδn is the
generalized n-photon squeezing parameter.

The driving-detuning condition can be achieved by
changing Ω and ∆ such that Eq. (6) is satisfied. The
dressed basis states also depend on Ω and ∆, and depend-
ing on the parameter regime, they can be approximated
as the σ̂x or σ̂z bases. In what follows, we explore the
two extremes of strong driving and qubit-detuned weak
driving.

1. Strong driving regime

When the driving is strong, Ω ≫ ∆, |±⟩ ≃ |±⟩ =

(|g⟩ ± |e⟩)/
√
2, i.e., the dressed basis is the σ̂x basis. In

this case, the effective Hamiltonian is

Ĥ
(I)
eff ≃ ℏgnσ̂x(â†neniδnt + âne−niδnt). (9)

Note that this last equation becomes exact when ∆ = 0,
since in this case, ε = Ω and sin(θ/2) = cos(θ/2) = 1/

√
2.

In this strong driving regime, the multiphoton interaction
is conditioned on the basis {|+⟩ , |−⟩}.
The Hamiltonian of Eq. (9) admits another useful in-

terpretation, namely, the strong driving effectively places
the co-rotating (n-photon JC) terms, σ̂+â

n+ σ̂−â†n, and
the counter-rotating (n-photon anti-JC) terms, σ̂+â

†n +
σ̂−ân, being on the same timescale. In general, when the
co-rotating and counter-rotating interactions are on the
same timescale, we get effective interactions that gener-
ate qubit-conditional operations.

The case of n = 1 yields qubit-conditional displace-
ments of the resonator state [36, 37]. This is sim-
ilar to other dispersive techniques in which the res-
onator is strongly driven, leading to qubit-conditional
displacements [38, 39]. When n = 2, Eq. (8) per-
forms qubit-conditional squeezing, which will be the pri-
mary focus of Sec. III. For n = 3, the effective inter-
actions result in qubit-conditional ‘trisqueezing’. Un-
conditional trisqueezing has been recently achieved in
superconducting circuits [40, 41]. Additionally, uncon-
ditional triqsqueezing and quadsqueezing (n = 4) have
been realized in a trapped ions implementation [42].
Trisqueezed states can be used to generate resource states
for continuous-variable universal quantum computation
[43]. In general, resonator states generated by n-photon
interactions (for n > 2) acting on the vacuum are typi-
cally used as non-Gaussian resource states for quantum
computation.

2. Qubit-detuned weak driving regime

The driving-detuning RWA performed on Eq. (5) to

obtain Eq. (7) relies on the condition ε =
√
Ω2 +∆2 ≫

|nδn|, gn, which can be satisfied even for weak driving
with a large qubit detuning that keeps ε large. When
|∆| ≫ Ω, |+⟩ ≃ |e⟩ and |−⟩ ≃ |g⟩, and the Hamiltonian
of Eq. (7) becomes

Ĥ
(I)
eff ≃ ℏgn(|e⟩⟨e| − |g⟩⟨g|)(â†neniδnt + âne−niδnt)

= ℏgnσ̂z(â†neniδnt + âne−niδnt), (10)

where the n-photon interaction is now conditioned on the
qubit state in the bare basis {|g⟩ , |e⟩}. In this weak but
largely detuned driving regime, the case of n = 1 where
the drive is cross-resonant with the resonator, δ1 = 0, cor-
responds to the well-known cross-resonance readout [44].
Generally, the rate of photon generation in the resonator
depends on gn, which is greater in the strong driving
regime when compared to weak detuned driving.



4

C. Engineering effective n-photon Rabi
Hamiltonian with arbitrary coupling strength

The n-photon Jaynes-Cummings Hamiltonian intro-
duced in Eq. (1) is often an excellent approximation,
for weak coupling, of the more general n-photon Rabi
model. The main difference is the presence or absence of
the counter-rotating interaction terms, ∝ σ̂+â

†n + σ̂−ân.
We now use an additional qubit drive on the system to ar-
rive at an effective n-photon Rabi model with arbitrary
coupling strengths, allowing the access to regimes that
are currently unachievable in experimental settings [45].

We relabel the drive parameters to distinguish the
two drives considered; each drive is characterized by a
strength Ωk and a driving frequency ωdk with k = 1, 2.
We start by considering the Hamiltonian of Eq. (4) in
the presence of the two drives, which reads

ˆ̃
H

r

RWA =
ℏ∆
2
σ̂z +

ℏΩ1

2
σ̂x + ℏδnâ†â

+ ℏgn(σ̂+ân + σ̂−â
†n)

+
ℏΩ2

2
(eiδdtσ̂+ + e−iδdtσ̂−), (11)

where ∆ = ωq−ωd1, δn = ωr−ωd1/n and δd = ωd1−ωd2.
Here, we note that the Hamiltonian is in the rotating
frame with respect to ωd1. Both drives are operated
within the RWA regime, where

Ωk ≪ ωdk.

In this setup, we seek to obtain three tunable terms
in the effective Hamiltonian; qubit, resonator and in-
teraction terms. The importance of the second drive
is that it introduces a qubit term in the final effective
Hamiltonian. To elucidate how the second drive plays
this role, we make another transformation to the inter-
action picture with respect to the σ̂x term in Eq. (11)

via Û (I) = exp
[
−iĤ0t/ℏ

]
, where Ĥ0 = ℏΩ1σ̂x/2. This

frame is chosen on the basis that we operate in the strong
driving regime of the first drive, where Ω1 is the largest
energy scale in Eq. (11). In this interaction picture, the
system Hamiltonian reads

Ĥ(I) =− ℏ∆
2

(eiΩ1t |+⟩⟨−|+ e−iΩ1t |−⟩⟨+|) + ℏδnâ†â

+
ℏ
2

[(
|+⟩⟨+| − |−⟩⟨−|+ eiΩ1t |+⟩⟨−|

− e−iΩ1t |−⟩⟨+|
)(

gnâ
n +

Ω2

2
eiδdt

)
+H.c.

]
.

(12)

As discussed in Sec. II B 1, with Ω1 as the dominant
energy scale, we explicitly impose Ω1 ≫ |∆|, gn. This as-
sumption enables us to disregard the rapidly oscillating
terms with factors of e±iΩ1t. Next, we set δd = Ω1, which
cancels the time dependence in the terms responsible for
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FIG. 1. Quantum simulation of the two-photon Rabi model
in the ultrastrong coupling regime. The time-evolution of the
ground state probability and the resonator photon number are
shown for a system initialized in |g⟩ |0⟩. The blue solid line
is generated by Eq. (13) and the red circles are generated by
Eq. (12). The parameters used are Ω1 = δd = 2π × 1.4GHz,
∆ = 2π×20MHz, g2,eff = 2π×10MHz, ωr,eff = 2π×10MHz.
For (a),(b) ωq,eff = 0 and for (c),(d) ωq,eff = 2π × 10MHz.

the effective qubit term, −(|−⟩⟨+| ei(δd−Ω1)t+H.c.). Note
that the term (|+⟩⟨−| ei(δd+Ω1)t + H.c.) oscillates with
e±i(δd+Ω1)t and can therefore be ignored. This allows
us to obtain an effective n-photon Rabi Hamiltonian

Ĥ
(I)
eff =− ℏΩ2

4
(|+⟩⟨−|+ |−⟩⟨+|) + ℏδnâ†â

+
ℏgn
2

(|+⟩⟨+| − |−⟩⟨−|)(â†n + ân)

=
ℏωq,eff

2
σ̂z + ℏωr,effâ

†â

+ ℏgn,effσ̂x(â†n + ân), (13)

where ωq,eff = Ω2/2, ωr,eff = δn and gn,eff = gn/2.
Here, we have rewritten the Hamiltonian in the bare
basis where σ̂x = σ̂+ + σ̂− = |+⟩⟨+| − |−⟩⟨−| and
σ̂z = −(|+⟩⟨−|+ |−⟩⟨+|)/2. The effective system param-
eters are highly tunable and allow for a quantum sim-
ulation of the n-photon Rabi model in various coupling
regimes. Note that when Ω2 = 0 (i.e. in the absence of
the second drive), Eq. (13) is the same as Eq. (9) with
the only difference being a transformation with respect
to the resonator term via exp

(
iδntâ

†â
)
. Therefore, in the

case of Ω2 = 0, we recover the results of Sec. II B 1.
In the multiphoton generalizations of the Rabi model,

the relationship between the order of the interaction and
the critical coupling at which the spectral collapse oc-
curs is unknown. Thus, an effective Hamiltonian with
tunable parameters allows us to probe the dynamical be-
haviour in such extreme scenarios. Figure 1 shows the
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dynamics of the effective Hamiltonian in Eq. (13) com-
pared to Eq. (12) for the case n = 2 in the ultrastrong
coupling regime which starts around g2,eff/ωr,eff ≃ 0.1.
As the amplitude Ω1 increases, the effective and full
Hamiltonian dynamics get closer to each other. Even
for experimentally realistic drive strengths (Fig. 1 uses
Ω1 = 2π × 1.4GHz), the dynamics of the full Hamil-
tonian with the same parameters very closely resembles
that of the effective model.

Increasing the native coupling strength of the system
– as we will see later – typically comes with an increase
in the strength of spurious terms that may completely
ruin the desired interaction. Thus, engineering effective
Hamiltonians in extreme parameter regimes using
appropriately designed driving fields allows for achieving
experimentally inaccessible regimes using easily accessi-
ble coupling strengths.

III. APPLICATIONS

In this section, we focus on the quantum information
processing applications stemming from the two-photon
interaction generating qubit-conditional squeezing. We
also discuss how these applications can be generalized
for higher-order interactions where n > 2.

A. Two-photon interactions

The effective time-evolution operator of Eq. (8) results
in qubit-state-dependent displacement (n = 1), squeez-
ing (n = 2), trisqueezing (n = 3), etc., whose effects are
most pronounced when the driving is (n-photon) cross-
resonant, δn = 0, as the relevant parameters grow linearly
in time, ignt. The effect of cross-resonance is, therefore,
to facilitate the most efficient and sustained channeling
of photons from the drive through the qubit into the res-
onator.

The strong driving regime of the one-photon interac-
tion has been studied in the works of Refs. [36, 37]. The
main outcome, when n = 1, is the generation of qubit-
conditional displacements that allow for the generation
of Schrödinger cat states. In this section, we explore the
case of n = 2 yielding qubit-conditional squeezing and its
applications. Qubit-conditional squeezing has previously
been investigated using a different mechanism, which re-
lied on the motional modes of trapped ions to generate
the required interaction [46].
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e(
α
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−5

0

5

Im(α)
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e(
α
)
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−0.5

0

0.5

(a) (b)

W

1FIG. 2. Wigner function heatmap of the resonator state for
the case of n = 2 when measuring the qubit in the dressed
vs the bare bases. The resonator state (after a qubit mea-
surement) generated by Eq. (14) after time-evolution period
of g2t/2π = 0.15 for an initial state |g⟩ |0⟩. The parameters
used are g2 = 2π × 20MHz, and ∆ = δ2 = 0. For simplicity,
we set ∆ = 0 which makes g2 = g2. (a) The resonator is left
in a single well-defined squeezed state when the qubit is mea-
sured in the dressed basis. (b) On on the other hand, it is left
in a superposition of orthogonally squeezed states when the
qubit is measured in the bare basis.

1. Schrödinger-cat-like superposition of orthogonally
squeezed states

When n = 2, the time-evolution operator of Eq. (8) is

Û
(I)
eff (t, 0) = |+⟩⟨+| Ŝ(ζ(t)) + |−⟩⟨−| Ŝ(−ζ(t)), (14)

where Ŝ(ζ) = exp
(
(ζ∗â2 − ζâ†2)/2

)
is the squeezing op-

erator and ζ(t) = g2(e
i2δ2t − 1)/2δ2 is the squeezing

parameter; when δ2 → 0, ζ(t) = ig2t. For simplic-
ity, we henceforth assume ∆ = 0 such that |±⟩ = |±⟩
[47]. When the system is initialized with the qubit in
the ground state and the resonator in vacuum, |ψi⟩ =

|g⟩ |0⟩ = (|+⟩+ |−⟩) |0⟩ /
√
2, the time-evolved state reads

|ψ(t)⟩(I) = 1√
2
(|+⟩ |ζ(t)⟩+ |−⟩ |−ζ(t)⟩)

=
1

2
|g⟩ (|ζ(t)⟩+ |−ζ(t)⟩)

+
1

2
|e⟩ (|ζ(t)⟩ − |−ζ(t)⟩), (15)

where |ζ⟩ = Ŝ(ζ) |0⟩ is a squeezed vacuum state. If the
qubit is measured in the basis {|g⟩ , |e⟩}, the resonator
state becomes a Schrödinger-cat-like superposition of or-
thogonally (opposite phase) squeezed states

|Ψ±⟩ =
1

N±
(|ζ⟩ ± |−ζ⟩), (16)

where N± =
[
2(1± 1/

√
cosh(2r))

]1/2
, and the sign de-

pends on the measured qubit state. The Wigner function
of the resonator state after measuring the qubit state in
different bases is shown in Fig. 2. When the resonator
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⟨â
† â
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1FIG. 3. Dynamics of the squeezing parameter and photon
number over time. The values of δ2 used are δ2 = 2g2 (black),
δ2 = g2 (pink), δ2 = 0.5g2 (green), δ2 = 0.1g2 (red) and
δ2 = 0 (blue dashed). For a fixed value of g2, the squeezing
and, consequently, the photon number grow larger in time as
δ2 goes to zero. As in Fig. 2, we set ∆ = 0 so that g2 = g2.

is in a superposition of orthogonally squeezed states, its
Wigner function dips to negative values in various re-
gions of phase space, as shown in Fig. 2(b), thus making
it a useful resource for non-Gaussian quantum compu-
tation [48]. The statistical and interference properties
of general superpositions of squeezed states with differ-
ent phases have been previously examined [49]. More
recently, these states have been proposed as a resource
for generating of heralded single photons [50].

As mentioned above, when the qubit driving is two-
photon-cross-resonant with the resonator (δ2 = 0), the
squeezing parameter, ζ, grows linearly in time. This leads
to an exponential growth of the resonator photon number
in time,

⟨±ζ(t)| â†â |±ζ(t)⟩ = sinh2(g2t). (17)

Figure 3 displays how the squeezing parameter and pho-
ton number change as a function of time for a fixed g2
and varying δ2. When δ2 ≪ g2, ζ behaves similarly to
the two-photon-cross-resonant case.

Henceforth, we refer to the procedure of applying
Eq. (14) as the QCS protocol. Interestingly, this pro-
tocol allows for the encoding of an arbitrary qubit state
in a superposition of orthogonally squeezed states, akin
to how qubit states can be encoded using coherent states
in bosonic cat codes [51–53]. A peculiar feature of the
superpositions of orthogonally squeezed states with oppo-
site relative phases (|Ψ±⟩) is that they belong to different
Fock subspaces. This can be seen by writing these states
in the Fock basis as

|Ψ±⟩ =
1

N±

∞∑
n=0

√
(2n)!

2nn!
(eiϕ tanh(r))n((−1)n ± 1) |2n⟩ .

(18)

As shown in Ref. [49], depending on the relative phase
between the two orthogonally squeezed states, the odd
coefficients vanish for the plus sign and the state belongs
to the even-two-photon multiples (four-photon) subspace

spanned by {|4n⟩}, where n = 0, 1, 2, .... Meanwhile,
the even coefficients vanish for the minus sign, and the
state belongs to the odd-two-photon multiples subspace
spanned by {|4n+ 2⟩}. These states, |Ψ+⟩ and |Ψ−⟩,
are orthogonal (⟨Ψ±|Ψ∓⟩ = 0) and can be used to en-
code a logical qubit where we can take |0L⟩ = |Ψ+⟩ and
|1L⟩ = |Ψ−⟩. The transition between the |0L⟩ and |1L⟩
subspaces can be implemented using two-photon jumps,
i.e. application of the operators â†2 and â2. Using a
simple parity (non-destructive) measurement of the res-
onator, as done in the usual dispersive readout relying
on σ̂zâ

†â, one could infer when a two-photon jump has
occured. Using the QCS protocol, we can generate one of
the logical qubit states by measuring the qubit in Eq. (15)
and depending on the measurement outcome we get |0L⟩
or |1L⟩. We now outline how to prepare an arbitrary
logically-encoded qubit state. First, note that the Pauli-
X logical states are

|±L⟩ =
1√
2
(|0L⟩ ± |1L⟩)

=
1√
2N+

(|ζ⟩+ |−ζ⟩)± 1√
2N−

(|ζ⟩ − |−ζ⟩)

= |ζ⟩
(

1√
2N+

± 1√
2N−

)
+ |−ζ⟩

(
1√
2N+

∓ 1√
2N−

)
. (19)

In the limit of large squeezing, N± ≈
√
2 which means

that |±L⟩ ≃ |±ζ⟩. Thus, by preparing an arbitary qubit
state c+ |+⟩+ c− |−⟩ and the resonator in vacuum, then
performing the QCS protocol and measuring the qubit in
the bare basis, we leave the resonator in the logically en-
coded state ∝ c+ |+L⟩ ± c− |−L⟩ with the relative phase
depending the measurement outcome. Even when the
squeezing is not large enough for this approximation, the
finite sums and differences, (N+ ±N−), can be incorpo-
rated into the coefficients of the qubit state. From the
definition of the logical states, we can construct logical
one- and two-qubit gates. The form of these gates is
somewhat strange since they are expressed in terms of
squeezed states, e.g.

σ̂x,L = |0L⟩⟨1L|+ |1L⟩⟨0L|
∝ |ζ⟩⟨ζ| − |−ζ⟩⟨−ζ|+ |ζ⟩⟨−ζ| − |−ζ⟩⟨ζ| .

However, with universal control over the resonator
Hilbert space, one can synthesize arbitrary unitaries and
so this should not be a problem for state-of-the-art se-
tups. The proposed encoding here serves as a two-photon
generalization of the original bosonic damping cat code
in Ref. [51]. This proposal should pave the way for fur-
ther research into the quantum error correction protocols
associated with this code.
It is worth noting that the use of squeezing in augment-

ing existing quantum error correction codes is an active
area of research and has been found to be useful in some
cases, e.g. squeezed cat codes [54].
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Qubit |g⟩ H H

Bosonic mode |ψ⟩ Ŝ(ζ)

1

FIG. 4. Bosonic phase estimation using a controlled-squeeze
gate which can be implemented with a single QCS operation
(up to an unconditional squeezing). This circuit is the two-
photon generalization of the controlled-displacement-based
bosonic phase estimation protocol in Refs. [55] and [56]. The
QCS operation can be decomposed into a global squeeze gate
(not shown here) followed by a controlled-squeeze gate all
sandwiched with a qubit Hadamard gate. If the QCS opera-
tion is performed in the bare basis (∆ ̸= 0 and ∆ ≫ Ω ), the
decomposition does not have the Hadamard gates and they
must be added.

2. Bosonic phase estimation using a controlled-squeeze gate

A unitary operator, Û , has eigenvalues of the form eiφk

with respective eigenstates satisfying Û |φk⟩ = eiφk |φk⟩.
The basic idea of the phase estimation algorithm is to
perform a unitary operator Û conditioned on the state of
an ancilla qubit, which enables the measurement of the
eigenvalue, eiφk and the projection of any input state
onto |φk⟩. Phase estimation is typically done using two
systems, an ancilla qubit and a target register of qubits.
The controlled unitary Û is implemented using standard
quantum gates, and the measurement is performed on
the ancilla qubit. This can be generally done using any
two quantum systems; the system types can be both con-
tinuous variable, both discrete variable, or a discrete-
continous variable hybrid (in either permutation).

A prototypical example of phase estimation can be seen
in Fig. 4 where Ŝ(ζ) is our specific target unitary of in-
terest (as we discuss below), and generally it can be re-

placed with an arbitrary Û . Note that there are differ-
ent variants of the phase estimation circuit, e.g. some
include a qubit rotation before the measurement to cor-
rect previous rounds of the protocol. For an overview of
the different variants see the review and comparisons of
various phase estimation protocols in Ref. [57]. Phase es-
timation has many crucial applications such as quantum
algorithms [58, 59] including Shor’s prime factorization
algorithm [60], ground-state energy estimation [61], and
synchronizing clocks [62].

Bosonic phase estimation refers to a setup where the
target unitary is applied to a single or many bosonic
modes. An important case of bosonic phase estimation
is that of the displacement operator, D̂(α). The time-
evolution operator of Eq. (8) for the case of n = 1 is the
qubit-conditional displacement (QCD) operation

ÛQCD(α) = |+⟩⟨+| D̂(α) + |−⟩⟨−| D̂(−α), (20)

where the time dependence is kept implicit in α. This
operation can be decomposed into a global displacement
followed by a controlled-displacement which allows for

the phase estimation of the displacement operator;

ÛQCD = HD̂(α)ĈD(−2α)H,

where H is the qubit Hadanard gate and

ĈD(α) = |g⟩⟨g|+ |e⟩⟨e| D̂(α)

is the controlled-displacement gate. The controlled-
displacement phase estimation protocol has been studied
in Ref. [55].
Here, we generalize the displacement phase estimation

protocol [55] to the squeezing operator using a decom-
position of the QCS operation into a composition of a
global squeeze and controlled-squeeze gate. We write the
QCS operation, the time-evolution operator in Eq. (14),
while only keeping the ζ dependence and hiding the time
dependence as implicit,

ÛQCS(ζ) = |+⟩⟨+| Ŝ(ζ) + |−⟩⟨−| Ŝ(−ζ). (21)

We define a controlled-squeeze gate that is controlled by
the qubit as

ĈS(ζ) = |g⟩⟨g|+ |e⟩⟨e| Ŝ(ζ). (22)

Then, we can decompose the QCS unitary into a global
squeeze operation followed by a controlled-squeeze oper-
ation all sandwiched by a qubit Hadamard gate:

ÛQCS(ζ) = HŜ(ζ)ĈS(−2ζ)H. (23)

With this decomposition, we can straightforwardly use
QCS for bosonic phase estimation [63]. In particular,
with a repeated application of the circuit in Fig. 4, the
resonator state is projected onto an approximate eigen-
state of the squeezing operator, Ŝ(ζ), and the approx-
imate eigenstate improves after each round [55, 56]. If
we, once again, consider a qubit interacting with a res-
onator simultaneously through a one- and two-photon in-
teraction, one can then perform bosonic phase estimation
concatenating controlled-displacement and controlled-
squeeze allowing for the eigenvalue (phase) estimation

of the concatenated operator, D̂(α)Ŝ(ζ) (or Ŝ(ζ)D̂(α))
[64]. As mentioned above, phase estimation can be
used for ground state energy (eigenvalue) estimation of
a given Hamiltonian. With our controlled-squeeze phase
estimation circuit and its concatenation with controlled-
displacement, we can generally estimate the ground state
energy of a bosonic Hamiltonian of the form Ĥ =
ℏ(ξ1â† + ξ∗1 â+ ξ2â

†2 + ξ∗2 â
2). This can be achieved when

the qubit interacts with the resonator simultaneously
through one- and two-photon interactions, i.e. with an
interaction Hamiltonian of the form

ĤI = ℏg1σ̂x(â† + â) + ℏg2σ̂x(â†2 + â2).

Then, the qubit can be tuned to be one-photon resonant
when we implement the QCD operation where the two-
photon interaction can be ignored. On the other hand,
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we can tune it to the two-photon resonance to implement
the QCS operation.

As a worthwhile side note, we comment on the rela-
tionship between bosonic phase estimation and quantum
error correction. The study of Ref. [55] connects the dis-
placement phase estimation protocol to the generation
of Gottesman-Kitaev-Preskill (GKP) logical states [65].
The ideal GKP logical code states are unnormalizable
states composed of an infinite superposition of displaced
states quadrature (x̂ or p̂) eigenstates which are eigen-

states of the displacement operators {D̂(α), D̂(β)} with
α and β together defining a GKP lattice, e.g. for a square
GKP lattice, α =

√
2π and β = i

√
2π which defines the

desired commutation relation between D̂(α) and D̂(β)
[65]. Approximate forms of these states are found by re-
placing each displaced quadrature eigenstate with a dis-
placed highly squeezed vacuum state and placing a Gaus-
sian envelope over them - making the states of finite en-
ergy and, thus, physical. The displacement phase estima-
tion protocol projects an input state onto the eigenstate
of the displacement operator, and the repeated applica-
tion of this phase estimation iteratively yields a better ap-
proximation of the D̂(α) eigenstate which when α is prop-
erly selected, yields an approximate GKP state [55, 56].
The GKP code protects against small shift, i.e. displace-
ment, errors or errors that can be decomposed into small
shifts, which include photon loss or dephasing. Apply-
ing the same insight into our proposed squeezing phase
estimation protocol, the repeated application of this pro-
tocol yields an approximate eigenstate of Ŝ(ζ). Using
SU(1, 1) Lie-algebraic decomposition properties, one can
show that the composition of squeezing operators in cer-
tain cases obeys Ŝ(ζ1)Ŝ(ζ2) = Ŝ(ζ3(ζ1, ζ2))R̂(θ(ζ1, ζ2))

with R̂(θ) = exp
(
iθâ†â

)
[66]. Essentially, two squeezes,

under proper selection of squeezing parameters, ζ1 and
ζ2, composed with each other yield a rotation followed
by a squeeze. This identity can then be used to con-
struct desired commutation relations, [Ŝ(ζ1), Ŝ(ζ2)], for
particular ζ1 and ζ2 values which would define a general-
ization of the GKP lattice to squeezing operators. This
Lie-algebraic identity can be used to formulate general-
ized desired commutation relations analogous to those of
the displacement operators first formulated in [65]. This
presents an opportunity to define an approximate bosonic
error correction code that can correct small ‘squeezes’,
i.e. squeezing errors, and other errors that can be de-
composed into small squeezes.

3. Expanding the generating set for universal
qubit-resonator control

In Ref. [39], the qubit-conditional displacement Hamil-
tonian (Eq. (7) for n = 1) together with qubit rota-
tions are shown to allow for (approximate) universal con-
trol of the joint qubit-resonator Hilbert space on short
timescales, i.e. using a sequence of qubit-conditional dis-
placements and qubit rotations one can (approximately)

generate any arbitrary unitary on the total Hilbert space.
Defining the generalized position and momentum oper-
ators as x̂ = (â† + â)/

√
2 and p̂ = i(â† − â)/

√
2, re-

spectively, the universal control can be though of as gen-
erating all possible operators of the form σ̂j x̂

kp̂l where

σ̂ ∈ {Î, σ̂x, σ̂y, σ̂z} and j, k are non-negative integers.

For a generating set of Hamiltonians {Ĥ1, Ĥ2}, the
short-timescale (short time steps δt in the limit δt → 0)
universal control follows from the repeated application of
following identities [39, 67]

e−iĤ1τe−iĤ2τeiĤ1τeiĤ2τ = e[Ĥ1,Ĥ2]τ
2

+O(τ3),
(24a)

eiĤ1τ/2eiĤ2τ/2eiĤ2τ/2eiĤ1τ/2 = ei(Ĥ1+Ĥ2)τ +O(τ3),
(24b)

where τ = δt/ℏ. With these identities, one can generate
arbitrary superpositions of nested commutators from the
generating set of Hamiltonians. In Ref. [39], the set of
generators is that of conditional displacements and qubit
rotations, G1 = {σ̂zx̂, σ̂z p̂, σ̂x, σ̂y, σ̂z}. This set is univer-
sal and can generate any operator of the form σ̂j x̂

kp̂l.
Here, we propose the inclusion of the generators of

conditional squeezing, σ̂z(â
†2+ â2) and iσ̂z(â†2− â2) [68],

which naturally enable reaching higher order polynomials
in fewer steps and, thus, accumulating smaller errors due
to the approximate nature of the identities in Eq. (24).
We can rewrite these generators using x̂ and p̂ as

σ̂z(x̂
2 − p̂2) and σ̂z(x̂p̂ + p̂x̂) = σ̂z{x̂, p̂}. We now show

the steps required to obtain the generators σ̂z(x̂
2 − p̂2)

and σ̂z{x̂, p̂} using elements of the universal set G1. To
realize the first generator, we need to obtain σ̂zx̂

2 and
−σ̂z p̂2 which we can then get the sum of using Eq. (24a).
Note that σ̂zx̂

2 ∝ [σ̂xx̂, σ̂yx̂] and σ̂z p̂
2 ∝ [σ̂xp̂, σ̂yp̂] which

are themselves nested commutators since σ̂xx̂ ∝ [σ̂y, σ̂zx̂]
and σ̂xp̂ ∝ [σ̂y, σ̂z p̂] (similarly for σ̂yx̂ and σ̂yp̂). Thus,
first we must generate σ̂j x̂ (and σ̂j p̂) for j = x, y which
requires applying 2 qubit rotations and 2 conditional dis-
placements for each j to use Eq. (24a), i.e. 4 operations
to get each generator σ̂j x̂ or σ̂j p̂. Then, to obtain the
generator σ̂zx̂

2 (σ̂z p̂
2), we must apply the unitary gener-

ated by σ̂xx̂ twice and that generated by σ̂yx̂ twice to use
Eq. (24a) which in total requires 16 operations and sim-
ilarly for σ̂z p̂

2. Finally, to obtain the desired generator
σ̂z(x̂

2 − p̂2), we need 64 operations since we must apply
the 16 operations four times to use Eq. (24b). A simi-
lar counting argument applies to obtaining the generator
σ̂z{x̂, p̂}.
For any higher order target generator in the Lie

algebra requiring the generators σ̂z(x̂
2 − p̂2) and

σ̂z{x̂, p̂} as an intermediate step, it can be obtained
using far less operations by having native access to
these generators. Additionally, reducing the circuit
depth allows for more operations during the coherence
lifetime of the device. The (redundant) generating set
G2 = {σ̂zx̂, σ̂z p̂, σ̂z(x̂2 − p̂2), σ̂z{x̂, p̂}, σ̂x, σ̂y, σ̂z} helps
synthesize target unitaries generated by higher order
joint qubit-resonator operators more efficiently than
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the generating set G1, and it can be natively obtained
through a qubit interacting with a resonator simultane-
ously through a one- and two-photon interaction (along
with qubit rotations) as noted earlier.

B. Higher-order interactions

We can extend the above derivations and applications
to higher order interactions with n > 2.

Effective qubit-conditional generalized n-photon
squeezing operators as in Eq. (8) can be generally
decomposed into a circuit involving a controlled-
generalized-n-photon-squeezing gate. This controlled
gate can be arranged in circuit as in Fig. 4 which can
be used in single-shot or repeated bosonic phase esti-
mation protocol of the generalized n-photon squeezing
operators.

The unitary synthesis advantage provided by the gen-
erators of conditional squeezing holds true for gener-
alized squeezing as well. For the n-photon case, the
two generators on orthogonal axes in phases space are
σ̂z(â

†n + ân) and iσ̂z(â
†n − ân) which in terms of x̂ and

p̂ can be written as σ̂z((x̂ − ip̂)n + (x̂ + ip̂)n)/
√
2n and

iσ̂z((x̂− ip̂)n − (x̂+ ip̂)n)/
√
2n, respectively. Unsurpris-

ingly, having native access to these generators provides
a shortcut to synthesizing unitaries generated by higher
order qubit-resonator operators.

Finally, an unexplored research direction is the use of
opposite phase generalized n-photon squeezed states for
encoding a qubit as done here for n = 2 and previously
for n = 1 in Ref. [51]. One can investigate the Fock
subspaces which these superposition states belong to
and find out their orthogonality conditions. Similarly
to the cases n = 1 and n = 2, the states with a ‘+’
relative phase, ∝ (Ŝn(λ) + Ŝn(−λ)) |0⟩, contain only
even multiples of n photons and hence belong to the
subspace spanned by {|2kn⟩}, where k = 0, 1, 2, ..., while

the states ∝ (Ŝn(λ) − Ŝn(−λ)) |0⟩ contain only odd
multiples of n photons and hence belong to the subspace
spanned by {|(2k + 1)n⟩}. This property make these
states viable candidates for a logical qubit encoding:
owing to the orthogonality and good separation between
the Fock states in these two subspaces, we can for
example take the ‘+’ relative phase state to be |0L⟩
and the ‘−’ state to be |1L⟩. One difficulty with the
theoretical treatment of these states is that we do
not have explicit analytic expressions for the states in
the Fock basis, and the power series expansion of the
generalized squeezing operators Ŝn(λ) does not converge
for n > 2 [69]. However, it has been shown that the
operators’ matrix elements can be numerically obtained
for small squeezing parameters [35, 70].

IV. CIRCUIT QED IMPLEMENTATION

While the experiments proposed in Secs. III and IIC
are implementation independent, we are interested in

ϕt ϕr

ϕ1

ϕ2

Transmon Resonator

Asymmetric SQUID

EJt

CJt

Ct Cr Lr

EJ1 CJ1

Φext

EJ2 CJ2

1FIG. 5. Transmon coupled to a resonator via an asymmetric
SQUID. The transmon is characterized by a Josephson energy
EJt and charging energy ECt = 2e/(CJt + Ct) depending on
the junction and shunt capactiance; EJt/ECt for this device
is above 50 to operate in the transmon regime. The asymmet-
ric SQUID has differing Josephson energies, EJ1 and EJ2, to
exclusively allow for odd-order terms. The flux degrees of
freedom are shown for the transmon, ϕt, resonator, ϕr, and
the SQUID (coupler), ϕ1 and ϕ2. The coupler degrees of free-
dom are a function of the transmon, resonator and external
flux threading the SQUID.

circuit QED as an implementation platform due to the
range of coupling strengths it can achieve and its poten-
tial for scalability. There are two proposals in the litera-
ture for a circuit implementation of the two-photon Rabi
model; a flux qubit inductively coupled to a supercon-
ducting quantum interference device (SQUID) [27, 32]
and a split-Cooper-pair-box (charge qubit) inductively
coupled to a transmission line [29]. In fact, the use of
a (dc or rf) SQUID as a tunable coupler has long been
known (see e.g. Refs. [71, 72]), even though employing it
to obtain nonperturbative nonlinear interactions is fairly
recent [40, 73].

A. Two-photon operation mode

Here, we propose to employ the more widely used
transmon qubit [74] coupled to a lumped-element LC res-
onator via an asymmetric DC-SQUID threaded with an
external flux, as shown in Fig. 5. The circuit Hamiltonian
is (see App. B for a detailed derivation)

Ĥ =
q̂2t
2Ct

− EJt cos

(
2πϕ̂t
ϕ0

)
+
q̂2r
Cr

+
ϕ̂2r
2Lr

+
1

Cc

q̂tq̂r

− Ec cos

(
2π(ϕ̂t − ϕ̂r)

Φ0

)

− Es sin

(
2π(ϕ̂t − ϕ̂r)

Φ0

)
. (25)
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TABLE I. Circuit and Hamiltonian parameter estimates for
operating a transmon coupled to a resonator via an asymmet-
ric SQUID in the two-photon Jaynes-Cummings regime.

Parameter Two-photon mode
ωq 2π×10GHz

EJt/ℏ 2π×86.5GHz
ECt/ℏ 2π×150MHz
ωr 2π×5GHz
Cr 330 fF

EJ1/ℏ 2π×10.00-18.00GHz
EJ2/ℏ 2π×9.94-17.50GHz
g2 2π×25-50MHz
g̃e1 2π×1.08-2.16GHz
g̃e2 2π×1.34-2.68GHz
g̃e3 2π×5-10MHz
g̃e4 2π×10-40MHz
g̃e5 2π×20-80MHz
g̃c 2π×30-50MHz

where Φ0 is the magnetic flux quantum, Φext is the ex-

ternal flux threading the SQUID, and ϕ̂k and q̂k are
subsystem k’s flux and charge operators with k = r
referring to the resonator and k = t referring to the
transmon. The transmon is characterized by a Joseph-
son energy EJt and total (renormalized) capacitance Ct,
while the resonator is characterized by an inductance
Lr and (renormalized) capacitance Cr. Finally, the
SQUID coupler is characterized by asymmetric Joseph-
son junctions with energies EJ1 and EJ2 dictating effec-
tive coupler energies Ec = EJ1 cos(2πΦext/Φ0)+EJ2 and
Es = EJ1 sin(2πΦext/Φ0). We assume that EJ1 ≥ EJ2.
The asymmetry is necessary to exclusively generate odd-
order qubit-resonator interactions, i.e., interactions of

the form ϕ̂jt ϕ̂
k
r where j + k is an odd integer. We set

Φext = Φ0 arccos(−EJ2/EJ1)/2π, thus, making Ec = 0
such that the even order interactions are completely can-
celed. This results in a purely odd-order interaction. The
two-photon JC interaction is classified under odd-order

terms, generated by ϕ̂tϕ̂
2
r. When the qubit and resonator

zero-point-fluctuation flux values are small, we may trun-

cate the sine term, sin
(
2π(ϕ̂t − ϕ̂r)/Φ0

)
, at third order.

Since the transmon is anharmonic and we assume the
transition between the ground and first excited states to
be the only resonant transition, the dynamics are con-
fined to the lowest two energy eigenstates. Therefore,
we also employ the two-level approximation (TLA) such
that the circuit QED Hamiltonian reads

ĤTLA =
ℏωq

2
σ̂z + ℏωrâ

†â− ℏg̃e4(â† + â)3

− ℏg̃e5σ̂z(â† + â) + ℏg2(σ̂+ + σ̂−)(â
† + â)2

− ℏg̃c(σ̂+ − σ̂−)(â
† − â),

− ℏ(g̃e1 − g̃e3)(σ̂+ + σ̂−)

− ℏ(2g̃e5 − g̃e2)(â
† + â),
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FIG. 6. Two-photon Rabi oscillations exhibited in the dy-
namics of the qubit excited state probability and resonator
photon number for an initial state |g⟩ |2⟩. The blue lines are
generated by the two-photon Jaynes-Cummings Hamiltonian
in Eq. (28) and the red lines are generated by the two-level
approximation circuit QED Hamiltonian in Eq. (26).

where g̃e1, g̃e2 g̃e3, g̃e4 and g̃e5 are spurious inductive cou-
plings and g̃c is a spurious capactive coupling. Here,

ωq =
√
8ECtEJt − ECt and ωr = 1/

√
LrCr. We now

proceed to simplify this model to achieve the two-photon
JC Hamiltonian. First, we neglect the linear offset terms,
∝ σ̂++ σ̂− and ∝ â†+ â, as they can be tuned to zero in-
situ by applying a microwave field, and, thus, the tuned
circuit QED Hamiltonian reads

ĤTLA =
ℏωq

2
σ̂z + ℏωrâ

†â− ℏg̃e4(â† + â)3

− ℏg̃e5σ̂z(â† + â) + ℏg2(σ̂+ + σ̂−)(â
† + â)2

− ℏg̃c(σ̂+ − σ̂−)(â
† − â). (26)

We now assume the two-photon JC conditions

2ωr = ωq and g2 ≪ ωr. (27)

With these conditions, only the two-photon JC terms are
resonant, while all the other terms are off-resonant and
can be neglected (see App. B for details). Then, the
effective circuit QED Hamiltonian becomes

ĤTLA ≃ ℏωq

2
σ̂z + ℏωrâ

†â+ ℏg2(σ̂+â2 + σ̂−â
†2). (28)

This final Hamiltonian shows that the proposed circuit
has the necessary two-photon qubit-resonator interaction
required to host the QCS protocol (and its subsequent
applications) and to obtain an effective two-photon Rabi
Hamiltonian at arbitrary coupling strengths.
In Table I, we provide realistic experimental param-

eters of the proposed circuit that can achieve the two-
photon JC interaction. The details of the spurious cou-
plings and their relations to the physical circuit param-
eters are derived in detail in App. B. We perform nu-
merical simulations of the circuit QED model including
spurious couplings using our estimated parameters to val-
idate the two-photon JC interaction. Figure 6 shows the
dynamics generated using Eq. (26) contrasted to those
generated using Eq. (28). The probability of the excited
state and the resonator photon number are shown as they
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evolve in time starting from an initial state |g⟩ |2⟩. The
circuit QED model exhibits two-photon Rabi oscillations
in in excellent agreement with the ideal model.

The asymmetry of the SQUID we rely on here has also
been used to implement multiphoton spontaneous para-
metric down conversion (SPDC) between bosonic modes
[31, 40, 73, 75, 76]. The proposed device here is based
on the same principles used for multiphoton SPDC with
the difference being that we are coupling a bosonic mode
to a transmon effectively truncated to its two lowest en-
ergy eigenstates. Our proposal can be used to reach the
two-photon near-resonance strong coupling regime, i.e.,
g2 ≫ κ, γ1, γϕ and ωq ≃ 2ωr, where κ is the resonator
photon loss rate, γ1 is the qubit relaxation rate and γϕ is
the qubit dephasing rate. Typical decoherence rates are
all on the order of a few kHz while our coupling strength
in the two-photon operation regime is on the order of tens
of MHz, which is well into the strong coupling regime.

B. Higher-order interactions

The potential use for an asymmetric SQUID is not lim-
ited to the two-photon interactions. Since the SQUID can
host all orders of interactions it can, in principle, be used
to obtain a specific order interaction with the qubit being
tuned resonant with it, but the strength of the interac-
tion terms rapidly diminish with higher orders. Even if
we simply crank up the interaction strength through the
SQUID’s Josephson energies, each higher order interac-
tion introduces its own unique problems such as qubit
and resonator frequency renormalization, and resonant
spurious terms that cannot be neglected with an RWA.

We briefly examine the issues arising from attempting
to tune the system to realize a n-photon Jaynes-
Cummings qubit-resonator interaction Hamiltonian,
ĤI = ℏgn(σ̂+ân + σ̂−â†n) for n = 3 which illustrates
the aforementioned issues. In the case of n = 3, we rely
on a fourth-order expansion of the SQUID interaction

Ec cos
(
2π(ϕ̂t − ϕ̂r)/Φ0

)
to obtain the term ϕ̂tϕ̂

3
r which

is proportional to σ̂+â
†3 + σ̂−â3 under a three-photon

resonance between the qubit and resonator. This term

comes with other spurious terms; ϕ̂4t , ϕ̂
4
r, ϕ̂

3
t ϕ̂r and ϕ̂2t ϕ̂

2
r.

Most of these spurious terms can be neglected since they
are way off-resonance from the required three-photon

resonance between the qubit and resonance. However, ϕ̂4t
and ϕ̂4r introduce two issues: 1) they produce terms that
renormalize the qubit and resonator frequencies which
in turn alters the three-photon resonance condition, and
2) they produce resonant spurious Kerr-nonlinearities
(∝ â†2â2) that need a careful treatment. These problems
do not completely ruin the desired features, but they
require more careful considerations and potentially slight
modifications to the circuit. These problems similarly
arise for orders higher than n = 3.

V. SUMMARY AND CONCLUSIONS

To summarize, we presented a general theory on
driving-enhanced n-photon qubit-resonator interactions.
The multiphoton interactions are generated in the strong
and qubit-detuned weak driving regimes with n-photon
cross-resonance yielding the highest rate of generating
photons in the resonator. After exploring the regimes of
the driving-enhanced interactions, we explored the use of
two drives to obtain an effective n-photon Rabi Hamil-
tonian with arbitrary coupling strength. When the first
drive is the largest energy scale, the second drive plays
the role of the qubit term in the effective Hamiltonian,
while the detuning between the first drive and the res-
onator serves as the effective resonator frequency. Inter-
estingly, the effective qubit-resonator n-photon coupling
is given by the native coupling strength and is indepen-
dent of the drive parameters.
After developing the general framework for driving-

enhance multiphoton qubit-resonator interactions, we fo-
cused on the case of n = 2, where the theory yields qubit-
conditional squeezing (QCS). Then, we described how the
QCS protocol can be used in encoding a qubit state in the
superposition of orthogonally squeezed states. Further-
more, we outlined a controlled-squeeze bosonic phase es-
timation algorithm relying on QCS as well as its concate-
nation with controlled-displacement phase estimation.
Another potential application is the expansion of the gen-
erating set for universal control of a qubit-resonator sys-
tem using the generators of QCS which allows for more
efficient unitary synthesis.
From the implementation side, the generation of non-

perturbative n-photon qubit-resonator interactions be-
yond n = 1 is a challenging task. First, one major diffi-
culty lies in obtaining a Hamiltonian where the nth order
interaction can be isolated without the presence of spuri-
ous terms of comparable coupling strength. Second, the
coupling strength in most systems significantly dimin-
ishes as the order of the interaction increases. Therefore,
even if it is possible to obtain a Hamiltonian with the de-
sired interaction, we require the strong coupling regime,
i.e., gn ≫ κ, γ1, γϕ. Without satisfying these conditions,
the system will be dominated by losses, rendering the
sought effects incoherent and suppressed by the system’s
losses. Here, we proposed an implementation that can
achieve the necessary conditions for our theory in the
case of n = 2. The circuit uses a transmon qubit coupled
to an LC resonator by means of an asymmetric SQUID.
We provided realistic experimental parameters and vali-
dated the circuit QED model using numerical simulations
exhibiting two-photon Rabi oscillations.
Throughout the paper, we exclusively discussed uni-

tary evolution. In App. A, we perform extensive open
system numerical simulations for worse-than-average de-
coherence qubit and resonator parameters and corrob-
orate the analytical results; the predictions are robust
against qubit energy relaxation and dephasing and res-
onator photon loss. We find the fidelity of the states
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generated to be largely unaffected at the timescales of
consideration used in the paper.

This work paves the way for a new set of nonpertur-
bative multiphoton qubit-resonator effects that can be
leveraged for applications in various quantum applica-
tions for information processing — as presented here,
sensing, and communication.
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After completion of this manuscript, we became aware
of three manuscripts that discuss related proposals and
applications: Ref. [77] is a comprehensive review of
hybrid qubit-oscillator architectures and their proto-
cols with a segment dedicated to controlled-squeezing,
Ref. [78] proposes a controlled-squeeze operation simi-
lar to our proposal but instead relying on the dispersive
regime and a two-photon drive, and Ref. [79] reports the
experimental realization of qubit-conditional squeezing,
triqsqueezing and quadsqueezing in a trapped ion sys-
tem.

Appendix A: Decoherence

We only considered unitary time evolution in the main
text. The qubit-resonator system are not completely iso-
lated from the environment. Here, we take into account
qubit energy relaxation, qubit dephasing and resonator
photon loss. Since we are operating in the strong cou-
pling regime, the qubit and resonator are not strongly
hybridized and, thus, we can assume they interact with
separate baths at zero temperature. For these conditions,
it suffices to model the open system using a Lindblad
master equation that reads [80, 81]

d

dt
ρ̂ = − i

ℏ
[Ĥ, ρ̂] + γ1D(σ̂−)ρ̂+

γϕ
2
D(σ̂z)ρ̂+ κD(â)ρ̂,

(A1)

where ρ̂ is the full system density matrix, D(Ô)ρ̂ =

Ôρ̂Ô† − {Ô†Ô, ρ̂}/2 is the dissipator for a given oper-

ator Ô, γ1 and γϕ are the qubit energy relaxation and

dephasing rates, and κ is the resonator photon loss rate.
In what follows we use the Python library QuTiP [82]
We seek to evaluate the contribution of different de-

coherence parameters on the prepared state, ρ̂prep. For
that purpose, we define the fidelity as

F =

(
Tr

(√√
ρ̂prepρ̂ideal

√
ρ̂prep

))2

,

where we use an ideal reference state ρ̂ideal obtained using
Eq. (1) and ρ̂prep is arrived at using the master equation,
Eq. (A1). Figure 7 demonstrates the results of numeri-
cal simulations in which both the reference and prepared
states experienced time evolution over a normalized time
of g2t/2π = 0.3. The same figure also highlights that
the photon loss rate in the resonator is the most signif-
icant factor affecting the fidelity of the state. Although
qubit relaxation contributes to a reduction in fidelity, the
influence of qubit dephasing is almost inconsequential
within this timescale. It is important to note that the
maximum decoherence rates used in our simulations, set
at 1MHz, are substantially higher than those typically
found in present circuit QED setups, and even more so
in state-of-the-art devices.
Note that the time-evolution period may seem short

(g2t/2π = 0.3), but by the analytic estimate of Eq. (7)
in the main text, the resonator will contain much more
than 100 photons in a duration less than g2t/2π = 0.5.
This is also apparent by the form of the squeezing param-
eter, ζ = ig2t which grows linearly in time. Due to this
fact, it is very hard to simulate long-time dynamics using
traditional software packages such as QuTiP (employed
here). For these simulations, we truncated the resonator
Hilbert space to 150 photons. A more rigorous numerical
study is needed for the study of the long-time dynamics
and eventual decay of the photon number, but for the
purpose of ensuring the robustness of state preparation
against decoherence, the simulations here suffice to cor-
roborate the analytical predictions.

Appendix B: Derivation of Circuit QED
Implementation

In this section, we derive and quantize the system
Hamiltonian for the circuit implementation proposed in
the main text. We then proceed to apply the two-level
approximation to the transmon along with the relevant
RWA to obtain the two-photon Jaynes-Cummings Hamil-
tonian.

1. Circuit Hamiltonian

We first begin by stating the total system (transmon,
resonator and coupler) Lagrangian for the circuit shown
in Fig. 5. We use the system constraints to eliminate
the coupler degree of freedom and express it in terms of
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FIG. 7. Fidelity of prepared state with varying decoherence rates. The Hamiltonian parameters used for the simulations are
Ω = 2π × 0.5GHz, g2 = 2π × 20MHz, and ∆ = δ2 = 0 (identical to those in Fig. 1 in the main text with the decoherence
parameters varied) with a joint initial state |g⟩ |0⟩. (a)-(c) The fidelity between a state prepared via time-evolution using
Eq.(A1) and a reference state evolved with Eq.(1) is plotted for different qubit and resonator decoherence rates, with a time-
evolution period of g2t/2π = 0.3. The resonator photon loss rate, κ, is the most detrimental parameter to the state fidelity.
The qubit relaxation rate, γ1, also diminishes the fidelity but the qubit dephasing, γϕ, is practically negligible as the three plots
are nearly identical.

the transmon and resonator degrees of freedom. Then,
we obtain the classical Hamiltonian by means of a Leg-
endre transformation. Then, we promote the conjugate
variables to quantum operators, arriving at a quantum-
mechanical description of the circuit.

The total system Lagrangian is [40]

Ltotal = Ltransmon + Lresonator + Lcoupler, (B1)

where

Ltransmon =
1

2
CΣϕ̇

2
t + EJt cos

(
2πϕt
Φ0

)
, (B2)

Lresonator =
1

2
Crϕ̇

2
r −

1

2Lr
ϕ2r, (B3)

and

Lcoupler =
1

2
CJ1ϕ̇

2
1 +

1

2
CJ2ϕ̇

2
2

+ EJ1 cos

(
2πϕ1
Φ0

)
+ EJ2 cos

(
2πϕ2
Φ0

)
. (B4)

Here, ϕj is the flux variable and ϕ̇j is its time deriva-
tive for the j subsystem with t denoting the transmon,
r denoting the resonator and 1 and 2 denoting the two
junctions of the DC-SQUID coupler. The transmon is
characterized by Josephson energy EJt and total (junc-
tion and shunting capacitance) CΣ = CJt + Ct. The
resonator is characterized by the inductance Lr and ca-
pacitance Cr. Lastly, the SQUID is characterized by its
junction capacitances CJ1 and CJ2 and Josephson ener-
gies EJ1 and EJ2.

We now derive relations between the different circuit
variables and use these relations as constraints to elimi-
nate redundant variables. Specifically, we would like to
eliminate the coupler and instead obtain a Lagrangian
written in terms of the transmon and resonator variables
only. For this purpose, we need to examine the circuit
in Fig. 5. Assuming a constant external flux, the time-
derivatives of the flux variables are related through Kir-
choff’s voltage law (KVL) by:

ϕ̇1 − ϕ̇2 = 0. (B5)

and

ϕ̇t − ϕ̇2 − ϕ̇r = 0 (B6)

Integrating these KVL constraints yields the flux rela-
tions

ϕ1 − ϕ2 = Φ̃ (B7)

and

ϕt − ϕ2 − ϕr =
˜̃
Φ, (B8)

where Φ̃ and
˜̃
Φ are constants of integration that are de-

termined based on the fluxes in the different loops in the
circuit. As mentioned above, a flux Φext is applied to the
SQUID loop. We assume that there is no external flux
applied to the loop that goes from the ground through
the transmon’s junction, the coupler’s bottom junction,
the resonator’s inductance and back to the ground. The

constants Φ̃ and
˜̃
Φ are then given by Φ̃ = −Φext + k1Φ0

and
˜̃
Φ = k2Φ0 for some integers k1 and k2. We now use
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Eqs. (B5) and (B7) to eliminate ϕ1 from Eq. (B4) and
obtain

Lcoupler =
1

2
(CJ1 + CJ2)ϕ̇

2
2 + EJ1 cos

(
2π(ϕ2 − Φext)

Φ0

)
+ EJ2 cos

(
2πϕ2
Φ0

)
=
1

2
Ccϕ̇

2
2 + Ec cos

(
2πϕ2
Φ0

)
+ Es sin

(
2πϕ2
Φ0

)
,

(B9)

where

Cc =CJ1 + CJ2,

Ec =EJ1 cos

(
2πΦext

Φ0

)
+ EJ2,

Es =EJ1 sin

(
2πΦext

Φ0

)
. (B10)

Next we use Eqs. (B6) and (B8) to eliminate ϕ2 from
Eq. (B9) and obtain

Lcoupler =
1

2
Cc(ϕ̇t − ϕ̇r)

2 + Ec cos

(
2π(ϕt − ϕr)

Φ0

)
+ Es sin

(
2π(ϕt − ϕr)

Φ0

)
. (B11)

The total Lagrangian can then be written as

L =
1

2
˙⃗
ϕTC

˙⃗
ϕ− U(ϕ⃗) (B12)

where

ϕ⃗ =

(
ϕt
ϕr

)
, (B13)

C =

(
Ct + CJt + CJ1 + CJ2 −(CJ1 + CJ2)

−(CJ1 + CJ2) Cr + CJ1 + CJ2

)
,

(B14)

and

U(ϕ⃗) =− Ec cos

(
2π(ϕt − ϕr)

Φ0

)
+ Es sin

(
2π(ϕt − ϕr)

Φ0

)
− EJt cos

(
2πϕt
Φ0

)
+

1

2Lr
ϕ2r. (B15)

Then, the Hamiltonian can be derived via the Legendre
transform as

H =
1

2
q⃗ T (C−1)q⃗ + U(ϕ⃗), (B16)

where

q⃗ =

(
qt
qr

)
, (B17)

with qk = ∂L/∂ϕ̇k (k = q, r) being the charges stored

in the qubit and resonator. We label (C−1)11 ≡ C
−1

t ,

(C−1)22 ≡ C
−1

r , and (C−1)12 = (C−1)21 ≡ C
−1

c . Thus,
the Hamiltonian can be written as

H =
q2t
2Ct

− EJt cos

(
2πϕt
ϕ0

)
+
q2r
Cr

+
ϕ2r
2Lr

+
1

Cc

qtqr

− Ec cos

(
2π(ϕt − ϕr)

Φ0

)
+ Es sin

(
2π(ϕt − ϕr)

Φ0

)
. (B18)

Finally, we promote the classical Poisson brackets to com-
mutator brackets via the rule

{ϕt, qt}= 1 7→ [ϕ̂t, q̂t] = iℏ,

{ϕr, qr}= 1 7→ [ϕ̂r, q̂r] = iℏ,

where q̂k, ϕ̂k are now quantized operators. By reeplac-
ing the variables with operators, we obtain the quantum
circuit Hamiltonian in Eq. (25).

For the derivations to follow, we isolate the inductive
and capacitive SQUID interactions from the total Hamil-
tonian. The inductive SQUID interaction Hamiltonian
we refer to is

Ĥ ind
I,SQ =− Ec cos

(
2π(ϕ̂t − ϕ̂r)

Φ0

)

− Es sin

(
2π(ϕ̂t − ϕ̂r)

Φ0

)
. (B19)

While, the capacitive SQUID interaction Hamiltonian is

Ĥcap
I,SQ =

1

Cc

q̂tq̂r. (B20)

Finally, we rewrite the qubit and resonator flux and
charge operators using the bosonic creation and anni-
hilation operators,

q̂r = iqzpf,r(â
† − â), (B21a)

ϕ̂r = ϕzpf,r(â
† + â), (B21b)

q̂t = iqzpf,t(b̂
† − b̂), (B21c)

and

ϕ̂t = ϕzpf,t(b̂
† + b̂), (B21d)

where ϕzpf,t and qzpf,t (ϕzpf,r and qzpf,r) are the qubit
(resonator) zero-point-fluctuation flux and charge values,
respectively. The commutation relations for the qubit
and resonator creation and annihilation operators are

[b̂, b̂†] = I and [â, â†] = I, respectively.
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2. Two-photon Jaynes-Cummings Hamiltonian

For small zero-point-fluctuation flux values, we may
Taylor-expand the sine and cosine into the first few poly-

nomial terms. We are interested in the odd order terms to
obtain an effective two-photon Jaynes-Cummings Hamil-
tonian. For this purpose, we now focus on the odd order
terms by setting Φext = Φ0 arccos(−EJ2/EJ1)/2π, thus,
making Ec = 0.

Ĥ ind
I,SQ = −Es

[
2π(ϕ̂t − ϕ̂r)

Φ0
− 1

3!

8π3(ϕ̂t − ϕ̂r)
3

Φ3
0

]

= −Es

[
2π

Φ0
(ϕzpf,t(b̂

† + b̂)− ϕzpf,r(â
† + â))− 1

3!

8π3

Φ3
0

(
ϕ3zpf,t(b̂

† + b̂)3 − ϕ3zpf,r(â
† + â)3

− 3ϕ2zpf,tϕzpf,r(b̂
† + b̂)2(â† + â) + 3ϕzpf,tϕ

2
zpf,r(b̂

† + b̂)(â† + â)2
)]

(B22)

We now rearrange terms using the commutation rela-

tions, [b̂, b̂†] = I and [â, â†] = I, and we use the two-

level approximation where usually b̂ 7→ σ̂− (b̂† 7→ σ̂+)

and b̂†b̂ 7→ σ̂z, and for the higher-order terms we trun-

cate to the two-dimensional subspace. In this case,

b̂†+b̂ ≃ σ̂++σ̂−, (b̂†+b̂)2 ≃ σ̂z+2Î, (b̂†+b̂)3 ≃ 3(σ̂++σ̂−)
and (b̂† + b̂)4 ≃ (9σ̂z + 6Î). Thus, we get that

Ĥ ind,TLA
SQ,I ≃ −Es

[
2π

Φ0
(ϕzpf,t(σ̂+ + σ̂−))−

2π

Φ0
(ϕzpf,r(â

† + â))− 1

3!

8π3

Φ3
0

(
ϕ3zpf,t3(σ̂+ + σ̂−)− ϕ3zpf,r(â

† + â)3

− 3ϕ2zpf,tϕzpf,r(σ̂z + 2Î)(â† + â) + 3ϕzpf,tϕ
2
zpf,r(σ̂+ + σ̂−)(â

† + â)2
)]

= −ℏg̃e1(σ̂+ + σ̂−) + ℏg̃e2(â† + â) + ℏg̃e3(σ̂+ + σ̂−)− ℏg̃e4(â† + â)3

− ℏg̃e5(σ̂z + 2Î)(â† + â) + ℏg2(σ̂+ + σ̂−)(â
† + â)2, (B23)

where ℏg̃e1 = Esηt, ℏg̃e2 = Esηr, ℏg̃e3 = 3Esη
3
t /3!,

ℏg̃e4 = Esη
3
r/3!, ℏg̃e5 = 3Esη

2
t ηr/3! and ℏg2 =

3Esηtη
2
r/3!. Here, ηt/r = 2πϕzpf,t/r/Φ0 is the ratio be-

tween the zero-point-fluctuation flux of the qubit (res-
onator) and the flux quantum. For simplicity, we drop
the linear offset qubit and resonator terms, ∝ σ̂+ ± σ̂−
and ∝ â† ± â, since we can cancel them with a displace-
ment that can be tuned in situ during the experiment.

Next, we turn our attention to the capacitive interac-
tion term with the goal of obtaining the final two-level
approximation form,

Ĥcap
SQ,I =

1

Cc

q̂tq̂r ≃ −ℏg̃c(σ̂+ − σ̂−)(â
† − â), (B24)

where ℏg̃c = qzpf,tqzpf,r/Cc. We now collect the bare and
interaction terms to write down the full Hamiltonian in

the two-level approximation.

ĤTLA =
ℏωq

2
σ̂z + ℏωrâ

†â− ℏg̃e4(â† + â)3

− ℏg̃e5σ̂z(â† + â) + ℏg2(σ̂+ + σ̂−)(â
† + â)2

− ℏg̃c(σ̂+ − σ̂−)(â
† − â), (B25)

where ωq =
√
8ECtEJt − ECt and ωr = 1/

√
LrCr.

We now assume near two-photon resonance between
the qubit and resonator, ωq ≃ 2ωr. We can then

transform to the usual rotating frame via Ûr =
exp
[
−it(ωqσ̂z/2 + ωrâ

†â)
]
. In this frame the operators

oscillate as

σ̂− 7→ σ̂−e
−iωqt,

â 7→ âe−iωrt,

which leads to the two-photon Jaynes-Cummings terms,
σ̂+â

†2 and σ̂−â2, being the only slow-rotating terms while
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everything else is fast-rotating. In particular, we require
that

g̃e4, g̃e5 ≪ ωr, (B26a)

g̃c ≪ |ωq − ωr|, ωq + ωr, (B26b)

and

g2 ≪ ωq + 2ωr. (B26c)

Finally, imposing these conditions and dropping their
associated terms, we arrive at the two-photon Jaynes-
Cummings Hamiltonian

ĤTLA ≃ Ĥ2-JC =
ℏωq

2
σ̂z + ℏωrâ

†â+ ℏg2(σ̂+â†2 + σ̂−â
2).

(B27)

This is the system Hamiltonian needed in Eq. (4) in the
main text for the case of n = 2.
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98, 053859 (2018).

[33] S. Felicetti, J. S. Pedernales, I. L. Egusquiza, G. Romero,
L. Lamata, D. Braak, and E. Solano, Phys. Rev. A 92,
033817 (2015).

[34] R. Puebla, M.-J. Hwang, J. Casanova, and M. B. Plenio,
Phys. Rev. A 95, 063844 (2017).

[35] S. L. Braunstein and R. I. McLachlan, Phys. Rev. A 35,
1659 (1987).

[36] M. Ayyash, X. Xu, and M. Mariantoni, Phys. Rev. A
109, 023703 (2024).

[37] E. Solano, G. S. Agarwal, and H. Walther, Phys. Rev.
Lett. 90, 027903 (2003).

[38] P. Campagne-Ibarcq, A. Eickbusch, S. Touzard, E. Zalys-
Geller, N. E. Frattini, V. V. Sivak, P. Reinhold, S. Puri,
S. Shankar, R. J. Schoelkopf, L. Frunzio, M. Mirrahimi,
and M. H. Devoret, Nature 584, 368 (2020).

[39] A. Eickbusch, V. Sivak, A. Z. Ding, S. S. Elder, S. R. Jha,
J. Venkatraman, B. Royer, S. M. Girvin, R. J. Schoelkopf,
and M. H. Devoret, Nature Physics 18, 1464 (2022).

[40] C. W. S. Chang, C. Sab́ın, P. Forn-Dı́az, F. Quijandŕıa,
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