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Motivated by a recent prediction [Com. Phys., 6, 195 (2023)] that time-of-flight experiments with ultracold atoms
could test different interpretations of quantum mechanics, this work investigates the arrival times predicted by the
stochastic interpretation, whereby quantum particles follow definite but non-deterministic and non-differentiable
trajectories. The distribution of arrival times is obtained from a Fokker-Planck equation, and confirmed by direct
simulation of trajectories. It is found to be in general different from the distribution predicted by the Bohmian
interpretation, in which quantum particles follow definite deterministic and differentiable trajectories. This result
suggests that trajectory-based interpretations of quantum mechanics could be experimentally discriminated.

1 Introduction

Do quantum particles follow definite trajectories? In the
textbook presentations of quantum mechanics [1–4] fol-
lowing the standard Copenhagen interpretation of the
theory or its statistical interpretation [5, 6], emphasis is
put on measurements as the only accessible elements of
reality. Classical concepts such as trajectories are thus
considered unnecessary or even inconsistent with obser-
vations. In this conception, a particle is only described
by its quantum state in the absence of any observation,
and “materialises” only at a certain position where it
is observed by an experimental apparatus at a certain
time.

However, it was shown long ago, prominently by
Bohm [7, 8], that the formalism of quantum theory is
not inconsistent with the particles having definite tra-
jectories in-between measurements. This has led to the
de Broglie-Bohm theory or pilot wave theory, which has
been recognised as an alternative interpretation of quan-
tum mechanics [9], in so far as it yields the same pre-
dictions as the standard interpretation. The Bohmian
interpretation, however, has not gained much popular-
ity, notably because it posits the seemingly unnecessary
existence of hidden variables (the particles’ positions at
all times), and mainly because, like most interpretations
of quantum mechanics, it does not seem to provide any
new testable prediction.

It has long been known, however, that there are mea-
surements for which the interpretations of quantum me-
chanics may lead to different predictions, namely the
measurements of arrival times [10]. While the quan-
tum formalism gives the probabilities of a particle’s po-
sition measurements at a given time through the square
modulus |ψ(x, t)|2 of its wave function, it does not pro-
vide explicit probabilities for the time t at which a par-
ticle arrives at a certain point x. One could naïvely
think that this probability distribution is still provided
by the square modulus |ψ(x, t)|2 at a fixed point x,

but a quick dimensional analysis shows that it cannot
be so: |ψ(x, t)|2 has the units of density, whereas the
sought probability distribution should be a number per
units of surface and time. The mathematical reason
behind this difficulty is that time is only a parameter
in standard quantum mechanics, whereas the conven-
tional formalism requires measurable quantities to be
described by a self-adjoint operator, and it is known
that a self-adjoint operator cannot be constructed for
time [11, 12]. This problem has led to various efforts to
find a plausible way to predict arrival times in quantum
mechanics. Some of these works [13–19] either extend
or reformulate the original formalism of quantum the-
ory to obtain predictions, while others [6, 20–30] have
attempted to obtain predictions within the conventional
framework of quantum theory (although this has been
disputed [31–34]). On the other hand, in a trajectory-
based interpretation of quantum mechanics such as the
Bohmian interpretation, there is seemingly no difficulty
to predict arrival times since the particle is assumed to
follow a definite trajectory, with a definite arrival time
at a certain point [35, 36]. As a result, rather than a
mere interpretation it becomes a falsifiable theory in its
own right when applied to the arrival time problem. By
measuring arrival times in time-of-flight experiments, it
is therefore possible in principle to test the different for-
mulations, extensions, and trajectory-based interpreta-
tions of quantum mechanics [37].

However, up to now, time-of-flight measurements have
only been performed far from the particle’s source of
emission, in a regime where all theories give the same
predictions, consistent with a classical motion of the
particle near the dectector. The situation may change,
however, as a recent proposal [38] shows that it may be
possible to discriminate these theories by measuring the
arrival time distribution in a double-slit (or double-well)
experiment.

In this context, it is of interest to revisit a rather lit-
tle known trajectory-based interpretation of quantum
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Figure 1: Cloud of particles released from a single harmonic well of frequency ω = ℏ/2mσ2 and oscillator length
σ. Left (a): integrated density

∫
dxdy|ψ(x, t)|2 as a function of time. Middle (b): z-component of 400 Bohmian

trajectories. Right (c): z-component of 400 stochastic trajectories. The trajectories are calculated from Eqs. (4)
and (5) with dt = 1/(1600ω). The red dashed line indicates the position of a detector at the distance L = 5σ from
the centre of the well.

Figure 2: Cloud of particles of mass m = 4mu released from two wells of oscillator length σ = 0.5µm, separated
by a distance 2d = 20µm along the z direction. The panels are similar to those of Fig. 1. The red dashed line
indicates the position of a detector at the distance L = 15µm from the centre of the two wells.

mechanics called stochastic mechanics. Stochastic me-
chanics started with the realisation by Fényes [39] and
then Nelson [40] that the Schrödinger equation naturally
appears when considering a certain kind of frictionless
Brownian motion. This led to an attempt to reconstruct
quantum theory from the stochastic motion of particles
induced by a hypothetical fluctuating ether [41]. Ref-
erence [42] gives a good account of the current status
of stochastic mechanics. Although the original aim of
deriving quantum theory from a more fundamental the-
ory has not been achieved by stochastic mechanics, it
allows for a given wave function to assign definite (but
non-deterministic and non-differentiable) trajectories to
the corresponding particles in accordance with the pre-
dictions of quantum mechanics. From this perspective,
it can be used as an alternative pilot wave theory. This
theory may be regarded as a stochastic version of the de
Broglie-Bohm pilot wave theory, and we shall call it the
stochastic pilot wave theory, to distinguish it from the
original stochastic mechanics.

Although the Bohmian and stochastic pilot wave the-
ories are similar, there appear to have been no detailed
comparisons between stochastic and Bohmian trajecto-
ries’ arrival times. Previous results [43,44] suggest that
stochastic trajectories and Bohmian trajectories lead to
the same arrival time distribution. In this work, it is
shown that they do in fact lead to different arrival time
distributions, most notably in the case of the double-well
experiment proposed in Ref. [38]. This opens the pos-
sibility to evidence and characterise the trajectories of
particles underlying the standard quantum theory. How-
ever, this requires the arrival times of such trajectories to
be faithfully reported by a detecting apparatus, without
any substantial error or perturbation from the detection
scheme. The last section of this article discusses possible
issues with actual measurements of these arrival times.
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2 Bohmian and stochastic trajec-
tories

The definitions of Bohmian and stochastic trajectories
for a given wave function are closely related. Consider
for simplicity, the case of a single non-relativistic par-
ticle of mass m, described by a wave function ψ(x, t).
One can define from the wave function the complex ve-
locity V = ℏ

m∇ lnψ with real part u and imaginary
part v called respectively osmotic and average veloci-
ties [40]. Accordingly, one obtains the two probability
currents i = ρu and j = ρv, where ρ is the probability
density |ψ|2. Note that j is the usual probability current
ℏ
m Im (ψ∗∇ψ) satisfying the continuity equation:

∂ρ

∂t
+∇ · j = 0. (1)

One may also define the forward and backward drifts,

b = v + u (2)
b∗ = v − u (3)

and the corresponding forward and backward currents,

J = ρb

J ∗ = ρb∗

The Bohmian trajectory starting from a point x0 at
time t0 is simply the trajectory that remains tangent to
the average velocity field v. Namely, the position x′ at
time t′ = t+ dt is obtained from the position x at time
t by the relation:

x′ = x+ v(x, t)dt (4)

Note that the trajectory is by construction differen-
tiable, uniquely defined by the starting point, and never
intersects any other trajectory starting from a different
point at the same time.

On the other hand, a stochastic trajectory starting
from a point x0 at time t0 is defined as a stochastic
diffusive process drifting along the forward velocity field
b. Namely, the position x′ at time t′ = t+dt is obtained
from the position x at time t by the relation:

x′ = x+ b(x, t)dt+ ξ (5)

where ξ is a random vector with average zero and vari-
ance ℏ

mdt. Note that, in this case, the trajectories are
non-deterministic, non-differentiable, and may intersect.

It has be shown for both Bohmian [45] and stochas-
tic [40, 41] trajectories that when starting from an en-
semble of points x0 at time t0 distributed according to
the initial density distribution ρ(x, t0), the subsequent
positions along the trajectories at a later time t are
distributed according to the density ρ(x, t), in accor-
dance with the predictions of standard quantum me-
chanics. This is illustrated in Figs. 1 and 2 for the
case of an ensemble of particles initially confined in
the ground state of a single harmonic well of oscillator
lengths σx, σy, σz ≡ σ, with a wave function given by:

ψ(x, t) = Gσx
(x, t)Gσy

(y, t)Gσ(z, t) (6)

and in the ground state of two degenerate harmonic wells
separated by distance 2d in the vertical direction z, with
wave function:

ψ(x, t) = Gσx
(x, t)Gσy

(y, t)
Gσ(z − d, t) +Gσ(z + d, t)√

2
(7)

where Gσ denotes the expanding gaussian wave packet,

Gσ(x, t) =
exp

(
− x2

4σst

)
(2πs2t )

1/4
with st = σ +

iℏt
2mσ

. (8)

In both cases, it is assumed that the confining wells are
immediately switched off at time t = 0, letting the par-
ticles free thereafter. In the case of the double well, it is
assumed that the two wells are well separated (d ≫ σ),
so that the free expansion leads to an interference pat-
tern in the density. One can check in Fig. 2 that this
interference pattern is correctly reproduced by both the
Bohmian and stochastic trajectories.

3 Arrival time distribution
Now let us consider the arrival time of the particle on
a detector. As mentioned earlier, the determination of
arrival times is in principle straightforward since the par-
ticle’s possible trajectories are known. Nevertheless, one
is immediately faced with several important assumptions
about the detector that can affect the measured arrival
times. Is the detector localised around a single point,
or a two-dimensional plane? Is the particle “destroyed”
by the detector when it is detected (in the sense that
it cannot be detected again)? Does the detector affect
the particle’s motion? If so, does it simply select trajec-
tories guided by the wave function, or does it directly
affect the wave function itself?

In the following, it will be assumed that the detector
is planar, destroys the particle as soon as it is detected,
but does not affect its wave function (i.e. the wave func-
tion is assumed to remain the same as in the absence of
detector). Let us say that the detector is placed at a cer-
tain distance L below the source of the particle. Then,
according to our assumptions, the particle can only ar-
rive from above the detector plane (assuming that the
detector plane is large enough to prevent any trajectory
from going around the detector and hitting it from be-
low). For a statistical distribution of trajectories, the
arrival time distribution is then simply proportional to
the arrival flux of trajectories hitting the detector plane
from above. Note that the motion in the three spa-
tial directions are independent due to the separability
of the wave functions Eqs. (6,7), so that one can simply
consider the motion along the z direction, as far as the
arrival times on the detector are concerned.

In the case of Bohmian trajectories, it has been
shown [46] that the flux of trajectories through a plane
is simply the flux of the probability current j through
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(b) Detection distance L = 5

Bohmian simulation

Probability flux -∫ⅆS·j

Stochastic simulation

Forward flux -∫ⅆS·

Backward flux -∫ⅆS·*

Stochastic Fokker-Planck 0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

Time t [ω-1]
A
rr
iv
al
flu
x
F
(t
)
[ω

]

(c) Detection distance L = 2

Figure 3: Arrival flux of a cloud of particles released from a single well of frequency ω = ℏ/2mσ2 and oscillator
length σ, onto a detector at different distances L from the well. (a) L = 50σ; (b) L = 5σ; (c) L = 2σ. The
Bohmian (grey fill) and stochastic (red fill) arrival fluxes are obtained by sampling 32,000 trajectories propagated
from Eqs. (4) and (5) with dt = 1/(1600ω).
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Figure 4: Arrival flux of a cloud of particles released from a double well, onto a detector at a distance L = 15µm
from the centre of the two wells: (a) case of Bohmian trajectories ; (b) case of stochastic trajectories. The fluxes
are obtained by sampling 5× 106 trajectories propagated from Eqs. (4) and (5) with dt = 3.75µs.
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that plane. When all trajectories hit the detector plane
from above, as in the case of a particle released from a
single harmonic well (see Fig. 1b), the arrival flux F (t)
is thus the flux −

∫
P
dS · j(x, t) of j through the detec-

tion plane P . Here, dS = dSn, where dS is the surface
integration element and n the unit vector orthogonal
to the detection plane and pointing out from the de-
tecting side. Figure 3 confirms that the arrival flux of
Bohmian trajectories numerically simulated from Eq. (4)
(grey fill) coincides with the flux of the probability cur-
rent j (dashed curve). As discussed in Ref. [38], the
situation is more complicated in the case of the double
well, because some trajectories may cross the detection
plane three times (see Fig. 2b), thus hitting once the de-
tector plane from below (a situation known as quantum
reentry [47, 48]). According to the assumption that the
particle is destroyed as soon as it first hits the detec-
tor from above, the subsequent contributions from these
trajectories to the flux of j through the plane should
be discarded in the calculation of the arrival flux. This
can only be achieved through the simulation of many
trajectories, as shown in Fig. 4a. One can see that the
obtained arrival flux (grey fill) is zero at, and slightly af-
ter, the arrival times where the flux of j (dashed curve)
is negative, because the corresponding trajectories are
blocked by the detector. Away from these specific ar-
rival times, the arrival flux is well reproduced by the
flux of j.

In the case of stochastic trajectories, one could think
by comparing Eqs. (4) and (5) that the arrival flux
would be given by the forward current J . However,
that it is not the case. As shown in Fig. 3, the ar-
rival flux of stochastic trajectories numerically simulated
from Eq. (5) (red fill) is in fact better approached by the
flux of the backward current J ∗ (dotted curve) than the
forward current J (dot-dashed curve). This makes sense
when one realises that the backward current corresponds
to the average current arriving at a given point, whereas
the forward current corresponds to the average current
departing from that point. Yet, the backward current
only provides an approximation of the arrival flux.

It is actually possible to determine the arrival flux ex-
actly by considering the density ρL(x, t) of trajectories
that do not reach the detection plane. That is because
once the density of such trajectories is known at a cer-
tain instant, one can calculate the number of those first
reaching the plane at the next instant. As shown in Ap-
pendix 4, the density ρL satisfies the following forward
Fokker-Planck equation,

∂ρL
∂t

+∇ · (bρL)−
ℏ
2m

∇2ρL = 0, (9)

which is also known to be satisfied by the full density
ρ(x, t) of all possible trajectories [40]. However, here
it is complemented by the following Dirichlet boundary
condition at the detection plane, ρL(x, t) = 0 ∀x ∈ P ,
which effectively implements the restriction that the un-
derlying trajectories cannot reach the plane. It can be
shown (see Appendix 4) that the first-arrival flux F (t)
at the plane (for trajectories that do reach the plane) is

then given by

F (t) = −
∫
P

dS · ℏ
2m

∇ρL(x, t). (10)

Figures 3 and 4b show that the flux of Eq. (10) obtained
by solving numerically the Fokker-Planck equation (9)
(red curve) agrees within the sampling errors with the
one calculated from the simulation of stochastic trajecto-
ries from Eq. (5) (red fill). Unlike the case of Bohmian
trajectories, the arrival time distribution of stochastic
trajectories can thus be obtained without resorting to a
sampling of trajectories.

4 Experimental observation
Figures 3 and 4 clearly demonstrate that the arrival
fluxes of Bohmian and stochastic trajectories are in gen-
eral different. However, they may be difficult to distin-
guish experimentally. As found in Ref. [44], far from the
source of particles, both the Bohmian and stochastic
fluxes are indistinguishable from the flux of the prob-
ability current j, as it can be seen in Fig. 3a. They
become in principle distinguishable for detectors closer
to the source, as shown in Fig. 3b, but remain largely
proportional to each other. Unless the initial number of
particles is precisely known and the detection is 100%
efficient, one could only extract the arrival time distri-
bution from the detector’s counts, which would not be
conclusive. Much closer to the source, as in Fig. 3c where
the distance L is only twice the trap width σ, the arrival
time distributions are predicted to be noticeably differ-
ent. However, besides the technical issues with imple-
menting such a close detector, the assumption that the
detector does not alter the wave function is questionable
in this case.

As advocated in Ref. [38], the double-well system
with a detection plane perpendicular to the axis join-
ing the two wells is more promising. The authors pro-
pose to confine a cloud of ultracold atoms in a double-
well trap, release the trap and measure the arrival
times of the atoms on a detector. At ultracold tem-
perature, all atoms condense into the ground state of
the trap. Each atom thus constitutes a realisation of
a single-particle time-of-flight experiment for the same
wave function. The best candidate for this purpose
is metastable helium-4, since it can be efficiently de-
tected due to its high internal energy [49]. For eas-
ier comparison, the same parameters as those chosen
in Ref. [38] have been taken in Figs. 2-4-5, namely
m = 4mu (helium-4 mass, with mu the atomic mass
unit), d = 10µm, σ = 0.5µm. Note that the horizontal
initial velocity assumed in Ref. [38] to mimick a double-
slit experiment does not affect the vertical motion, and
is irrelevant in a double-well experiment where atoms
are simply released from their trap. For a detector at
L = 15µm from the centre of the double well (thus at
a distance 10σ from the nearest well), about 44% of the
released atoms reach the detector within 6 ms. Their
normalised arrival time distribution in that timeframe
is shown in Fig. 5, for both the Bohmian (grey) and
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Figure 5: Top: Arrival time distribution normalised over 6 ms, for different theories: the Kijowski arrival time
distribution (black) obtained in several theories of the quantum arrival time [6, 21, 23, 25, 26], and the first-arrival
time distributions obtained from Bohmian (grey) and stochastic (red) trajectories. The dashed curve shows the
normalised distribution proportional to the wave function density |ψ(x, t)|2 integrated on the detection plane; this
distribution corresponds to the multiple-arrival time distribution of stochastic trajectories, as well as the as the
distribution obtained in the quantum clock proposal [37]. Bottom: closeup of top panel around 2 ms, showing the
time frames where the Bohmian and stochastic distributions vanish.
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stochastic trajectories (red). They are compared with
the Kijowski arrival time distribution (black), which
constitutes an important reference since it can be de-
rived from different approaches to arrival time measure-
ments, such as an axiomatic approach [23], an absorp-
tion potential model [21], a canonical quantisation of
the arrival time with the construction of a (generally
non self-adjoint) arrival-time operator [6, 25], or a self-
adjoint arrival-time operator that is not conjugate to the
Hamiltonian [26].

One can see clear discrepancies between the three
predicted distributions. In particular trajectory-based
interpretations of quantum theory both predict time
frames where there are no arrivals, in contrast with the
prediction of the Kijowski distribution. Observing a sig-
nal in these timeframes would therefore invalidate these
theories. To simulate the statistical noise, the Bohmian
and stochastic distributions are calculated with the tra-
jectories of 5 × 106 atoms, a number typically achieved
in experiments. One can see that this noise is not an
issue for distinguishing the curves. A major drawback is
that to experimentally rule out any of these curves, the
experimental data must be compared with a theoretical
calculation. Thus, very precise calibrations of all the
parameters of the experiments, in particular the posi-
tion of the detector, trap frequency, and time of release,
are necessary. Nevertheless, the experimental discrimi-
nation appears to be feasible in principle.

It is important to note that the above conclusions are
bound to the assumptions made in Section 3. Let us
briefly discuss what to expect if these assumptions are
invalidated.

If one assumes that the detector does not necessarily
detect the particle on its first arrival, but has a certain
probability distribution for detecting the particle on its
various positions as it goes through the detector, the
resulting arrival time distribution may be quite differ-
ent, especially for stochastic trajectories. Indeed, while
Bohmian trajectories are smooth and cross the detector
plane at most three times, stochastic trajectories can en-
ter the detector many times if the particle is not imme-
diately destroyed. It was found numerically in Ref. [44]
that taking into account these multiple counts through
the detector gives a flux that is proportional to the den-
sity |ψ(x, t)|2 on the detector plane. This result may
sound surprising, since the density does not have the
units of a flux, as it was stressed earlier. The propor-
tionality coefficient must therefore have units of velocity.
But what could be that constant velocity? Although the
work of Ref. [44] did not address this question, it is in
fact possible to express analytically the flux F (t) of all
stochastic trajectories through the detector plane (see
Appendix 5). It turns out that this flux is indeed propor-
tional to the density, but the proportionality coefficient
is formally infinite:

F (t) = lim
dt→0

2

√
ℏ

2mπdt

∫
P

dS|ψ(x, t)|2. (11)

This means that the stochastic trajectories cross the de-
tector plane so many times that it results in an infi-

nite flux. Physically, however, the proportionality co-
efficient should be finite due to the limited temporal
resolution of the detector. Therefore, a detector de-
tecting many passages of a single particle is expected
to yield a finite number of counts proportional to the
density. The first-arrival detection and multiple-passage
detection constitute two opposite limits. For a detec-
tor detecting the particle with some delay probability
distribution, the measured arrival time distribution is
expected to be somewhere in-between these two lim-
its. These limits are shown in Fig. 5 by the solid red
curve (immediate detection of the first arrival) and the
dashed red curve (multiple-passage detection). One can
conclude from that figure that even if the detector ex-
periences delays and multiple counts, the distribution
resulting from stochastic trajectories likely remains dis-
tinguishable from other predictions, although it is more
complicated to predict. Incidentally, let us remark that
the normalised distribution obtained from the flux of
Eq. (11) coincides with the distribution obtained from
the quantum clock proposal [37], according to which
time measurement is obtained from the entanglement
of the particle with a clock taken as a time reference.

Finally, there remains the question of whether the de-
tector affects the wave function. Some works [50–53]
have proposed that the wave function is affected by
the detector through an absorbing boundary condition
making the wave function proportional to its gradient
through the detector,

n ·∇ψ(x, t) = iκψ(x, t) ∀x ∈ P (12)

where κ is an inverse length characterising the detec-
tor. It is clear that this condition makes the current
n · ρV = ℏ

mψ
∗n · ∇ψ purely imaginary, i.e. n · j =

n · J ∗ = ℏ
mκρ. This situation is similar to that of

Fig. 3a, where n · j = n · J ∗ . It was observed in
that case that the stochastic and Bohmian trajectories
lead to indistinguishable arrival time distributions. It is
therefore likely that such a back effect of the detector on
the wave function would make it difficult to distinguish
the predictions of stochastic and Bohmian trajectories.
However, it is presently unknown whether the detector
affects the wave function in this way.

5 Conclusion

This work shows that two trajectory-based interpreta-
tions of quantum mechanics, the Bohmian and stochas-
tic pilot wave theories, do not in general yield the
same arrival times. It appears that these theories
could be discriminated experimentally from other the-
ories of arrival time, as well as from each other, us-
ing ultra-cold atoms released from a double well trap,
as proposed in Ref. [38]. Although questions remain
regarding the role of the detection scheme, it is an
intriguing prospect that such experiments could shed
some light on the long-standing question of the exis-
tence and nature of trajectories in quantum mechanics.
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Appendix

1 Stochastic motion
Let us consider a one-dimensional stochastic motion
with forward drift b(x, t) and diffusion coefficient D =
ℏ
2m . Namely, the position x′ of the particle at time
t′ = t + dt is obtained from its position x at time t
by the relation:

x′ = x+ b(x, t)dt+ ξ (1)

where ξ is a random number with average zero and vari-
ance 2Ddt. A realisation of such motion is shown in
Fig. 1.

2 Temporal distribution F

Let us define F (x, t|x0, t0)dt as the probability for first
reaching x between t and t+dt starting from x0 at time
t0. « First » means that x has not been crossed along
the trajectory: the particle reaches x for the first time
between t and t+ dt (see the green section of the curve
in Fig. 1).

The probability for reaching x between time t0 and t
starting from x0 is therefore:

0 ≤
∫ t

t0

F (x, τ |x0, t0)dτ ≤ 1 (2)

3 Spatial distribution R

Let us now define R(x, t|x0, t0)dx as the probability for
reaching t between x and x + dx, starting from x0 at
time t0 (see the whole curve in Fig. 1).

3.1 Basic properties
Since the particle must be somewhere at any time t, one
must have: ∫ ∞

−∞
dxR(x, t|x0, t0) = 1 (3)

Moreover, by summing the probabilities for all possible
positions at an intermediate time τ , one obtains the fol-
lowing chain rule:∫ ∞

−∞
dy R(x, t|y, τ)R(y, τ |x0, t0) = R(x, t|x0, t0) (4)

3.2 Fokker-Planck equation
The probability distribution R can be shown to satisfy
the forward Fokker-Planck equation [54]:

∂R

∂t
+

∂

∂x
(bR)−D ∂2

∂x2
R = 0 (5)

Figure 1: Example of stochastic trajectory going from
(x0, t0) and reaching t between x and x + dx. It first
reaches x between time τ and τ + dt, and then crosses
x again several times between time τ + dt and t. The
ensemble of all possible such trajectories determines the
spatial probability distribution R(x, t|x0, t0). The en-
semble of all possible trajectories going from (x0, t0) and
reaching x for the first time between τ and τ +dt (green
section of the curve) determines the temporal probabil-
ity distribution F (x, τ |x0, t0).

with initial condition R(x, t0|x0, t0) = δ(x − x0). Thus
for any density ρ(x, t) satisfying the above Fokker-
Planck equation with initial condition ρ(x, t0) = ρ0(x),
one can write ρ(x, t) =

∫
dx0R(x, t|x0, t0)ρ0(x0). For

this reason, R(x, t|x0, t0) may be regarded as the prop-
agator of the Fokker-Planck equation.

3.3 Relation between F and R

One can find a relation between F and R by summing
the probabilities for all possible times at which the par-
ticle first reaches x before eventually reaching x again
at the final time t:∫ t

t0

dτR(x, t|x, τ)F (x, τ |x0, t0) = R(x, t|x0, t0) (6)

This relation is illustrated in Fig. 1.

4 Density from trajectories not
reaching y

The probability density for reaching (x, t) starting from
(x0, t0) without having crossed y at any time τ ∈ [t0, t]
is given by:

Ry(x, t|x0, t0) ≡ R(x, t|x0, t0)− R̃(x, t|y|x0, t0) (7)
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where

R̃(x, t|y|x0, t0) =
∫ t

t0

dτR(x, t|y, τ)F (y, τ |x0, t0) (8)

is the probability for reaching (x, t) from (x0, t0) and
having crossed y at least once at some intermediate time
τ . This implies that Ry(y, t|x0, t0) = 0, owing to Eq. (6).

Let us now calculate the following derivatives:

∂

∂t
R̃ =R(x, t|y, t)︸ ︷︷ ︸

δ(x−y)

F (y, t|x0, t0) (9)

+

∫ t

t0

dτ
∂R(x, t|y, τ)

∂t
F (y, τ |x0, t0)

∂

∂x

(
bR̃

)
=

∫ t

t0

dτ
∂

∂x
(bR(x, t|y, τ))F (y, τ |x0, t0) (10)

∂2

∂x2

(
R̃
)
=

∫ t

t0

dτ
∂2

∂x2
(R(x, t|y, τ))F (y, τ |x0, t0) (11)

By summing the above equations and using the fact that
R satisfies the Fokker-Planck equation (5), one arrives
at:

∂

∂t
R̃+

∂

∂x

(
bR̃

)
−D ∂2

∂x2

(
R̃
)
= δ(x− y)F (y, t|x0, t0)

(12)
Therefore, Ry satisfies the Fokker-Planck equation

∂

∂t
Ry +

∂

∂x
(bRy)−D ∂2

∂x2
(Ry) = 0 (13)

on ] − ∞, y[ and ]y,∞[, with a discontinuity of spatial
derivative at x = y given by:[

∂

∂x
Ry

]
x→y+

−
[
∂

∂x
Ry

]
x→y−

=
F (y, t|x0, t0)

D
(14)

Let us suppose that the starting point x0 is on the
left side of y. Since by construction the particle can-
not cross y, Ry(x, t|x0, t0) must be identically zero for
x ≥ y, and the first term in Eq. (14) should van-
ish. Therefore, for an arbitrary initial density distri-
bution ρ0(x) of points x < y, the density ρL(x, t) ≡∫ y

−∞ dx0Ry(x, t|x0, t0)ρ0(x0) is also identically zero for
x ≥ y and satisfies the Fokker-Planck equation

∂

∂t
ρL +

∂

∂x
(bρL)−D ∂2

∂x2
(ρL) = 0 (15)

with the initial condition ρL(x < y, t) ≡ ρ0(x) and
the boundary condition ρL(y, t ≥ t0) = 0. The den-
sity ρL is the density resulting from trajectories not
crossing y from the left, starting from an initial den-
sity ρ0. The temporal distribution FL(y, t) for trajecto-
ries first reaching y from the left at time t is therefore
FL(y, t) ≡

∫ y

−∞ dx0F (y, t|x0, t0)ρ0(x0). From Eq. (14),
one obtains:

FL(y, t) = −D
[
∂ρL(x, t)

∂x

]
x→y−

(16)

The formulation can be generalised to a three-
dimensional stochastic motion. The density ρL(x, t) of

three-dimensional trajectories first reaching a plane P
from a given side (say left), starting from an initial den-
sity ρ0(x), satisfies the three-dimensional Fokker-Planck
equation:

∂ρL
∂t

+∇ · (bρL)−D∇2ρL = 0. (17)

with the boundary condition ρL(x, t) = 0 ∀x ∈ P .
The flux of these trajectories through the plane is then
given by:

F (t) = −
∫
P

dS · D∇ρL(x, t). (18)

where dS = dSn is the elementary surface vector point-
ing from the left side of the plane.

5 Flux from all trajectories
Let us now go back to the one-dimensional motion and
consider the flux of all (unblocked) trajectories through
a certain point x0 between time t and t+ dt. The basic
idea of the calculation is as follows. At time t, the proba-
bility density resulting from all unblocked trajectories is
known to given by ρ(x, t). For very small dt, the contri-
butions to the flux between t and t+dt are given by tra-
jectories coming from the neighbourhood of x0, typically
from the range [x0−b(x, t)dt−

√
Ddt, x0−b(x, t)+

√
Ddt]

since the trajectories diffuse during a time dt within a
typical distance ∼ 2

√
Ddt. The number dN of such tra-

jectories is therefore ∼ ρ(x0, t)2
√
Ddt, which gives a flux

dN/dt ∼ ρ(x0, t)2
√
D/dt that is proportional to the lo-

cal density ρ(x0, t) but diverging as dt−1/2.
Here is a more precise derivation. The total num-

ber dN of trajectories starting at time t from the den-
sity ρ(x, t) and crossing the point x0 (either from left or
right) before time t+ dt is given by:

dN =

∫ ∞

−∞
dx ρ(x, t)Px0

(x′|x) (19)

where Px0(x
′|x) is the probability of crossing x0 when

starting from x and ending at x′ given by the stochastic
process of Eq. (1). If the starting point x is smaller
than x0, it is the probability that x′ > x0 and if the
starting point x is larger than x0, it is the probability
that x′ < x0, namely,

Px0
(x′|x) =

{
P (x′ > x0) for x < x0

P (x′ < x0) for x > x0
(20)

From Eq. (1), one has x′ = x + b(x, t)dt + ξ, and since
ξ ∼

√
Ddt, for sufficiently small dt one can neglect the

term b(x, t)dt with respect to ξ in the calculation of the
probabilities. This gives

Px0
(x′|x) =

{
P (ξ > x0 − x) for x0 − x > 0

P (ξ < x0 − x) for x0 − x < 0
(21)

Even if the probability distribution of ξ is not normal
at very small time scale, for dt larger than that time
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scale, it becomes normal due to the central limit theo-
rem. Thus one can write

Px0(x
′|x) = P (ξ > |x0 − x|) (22)

=

∫ ∞

|x0−x|

1√
4πDdt

exp

(
− ξ2

4Ddt

)
dξ

=
1

2
erfc

(
|x0 − x|√

4Ddt

)
Now one can make a Taylor expansion of ρ(x, t) around
x0 by setting x = x0 + ϵ in Eq. (19):

dN =

∫ ∞

−∞
dϵ

[
ρ(x0, t) + ϵ

∂ρ

dx
(x0, t) +O(ϵ2)

]
Px0

(x′|x)

(23)

Performing the integration over ϵ using the explicit ex-
pression of Px0

given by Eq. (22), one arrives at:

dN =

√
4Ddt
π

ρ(x0, t) + 0 +O(dt3/2) (24)

The total flux through x0 at time t is therefore:

dN
dt

=

√
4D
πdt

ρ(x0, t) +O(dt1/2) (25)

which is divergent in the limit of small dt.
The result is generalised to three dimensions for the

adirectional flux through a surface S:

F =

√
4D
πdt

∫
S

dSρ(x, t) (26)
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