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Quantum resonance in the paradigmatic kicked rotor model is a purely quantum effect that
ignores the state of underlying classical chaos. In this work, the effect of quantum resonance on
entanglement generation in the N -interacting kicked rotors is studied. We show a compelling feature:
entanglement growth is superlinear in time until the timescale t∗, beyond which the entanglement
production slows down to a logarithmic profile with superimposed oscillations. Notably, we find that
at resonance, the entanglement dynamics is independent of the kick strength of rotors, but depends
solely on the interaction strength. By mapping positional interaction to momentum space and
analytically calculating the linear entropy, we elucidate the underlying mechanism driving these
distinct growth profiles. The analytical findings are in excellent agreement with the numerical
simulations performed for two- and three-interacting kicked rotors. Our results are amenable to an
experimental realization on ultracold atom setup.

Quantum entanglement captures the degree of non-
local correlation between two groups of particles and
serves as a crucial resource for quantum technologies,
e.g., quantum computation [1], teleportation [2, 3], and
secure communication [4]. In many-body quantum sys-
tems, entanglement as quantified by the von-Neumann
entropy SvN carries signatures of the quantum phases and
the phase transitions [5]. For instance, in ergodic phase,
SvN grows linearly with time before saturating. In non-
ergodic many-body localized phases, asymptotically, SvN

displays an even slower logarithmic growth with time. As
entanglement is a useful resource for quantum technolo-
gies, faster than linear rate of generating entanglement,
e.g., superlinear growth rate, will be useful in many prac-
tical settings.

In recent years, efforts has been made to generate faster
entanglement. Interestingly, it has been achieved in non-
Hermitian PT-symmetric systems in the vicinity of ex-
ceptional points at which the eigenlevels and eigenstates
coalease. Exceptional points can appear when two ex-
ternally driven non-Hermitian qubits are weakly coupled
together. Then, in parameteric regime close to an ex-
ceptional point, entanglement between the qubits is gen-
erated over a timescale much faster than the inverse of
coupling strength [6, 7]. Another variant of fast entangle-
ment generation problem appeals to quantum speed limit
in the framework of Mandelstamm and Tamm [8–10] for
achieving (maximally) entangled states such as GHZ and
Werner states, starting from product states, using opti-
mised Hamiltonians that can saturate the quantum speed
limit bounds [11]. In the former case, enhanced entan-
glement rate depends on being in the vicinity of an ex-
ceptional point, which itself will require a system that is
capable of displaying an exceptional point. In the lat-
ter case, a target entangled state is necessary to verify if
quantum speed limit lower bound is saturated or not. In
both these cases, rate of entanglement generation is not
an asymptotic effect and also depends on factors such as
the choice of initial states and symmetry of the system.

In contrast to these studies [6, 11], we study entan-
glement growth rates in interacting many-body chaotic
quantum systems. Early results using two-body chaotic
models such as kicked tops have shown that, for short
times, entanglement growth is linear with a rate propor-
tional to classical Lyapunov exponent [12]. In interacting
systems, presence of many-body localized effects slows
down entanglement growth, asymptotically, to logarith-
mic increase with time. Then, it is natural to ask if faster-
than-linear entanglement production is possible. In this
work, we provide an affirmative answer and that too has
been obtained in a Hermitian time-dependent many-body
quantum system with a chaotic classical limit.

Hence, in this work, we consider N -interacting quan-
tum kicked rotors (QKR) set to be at resonance. The
off-resonant QKR and its variants are one of the ex-
tensively studied paradigms in chaotic dynamics, both
theoretically [13–16] and through experiments [17, 18].
It serves as a rich platform for exploring various phe-
nomena such as quantum-classical correspondence [18–
20], decoherence [21, 22], quantum ratchet [23, 24], and
several others. The off-resonant QKR is characterized
by the emergence of dynamical localization indicating a
suppression of energy growth with time [25]. In contrast,
resonant QKR ignores the underlying classical dynam-
ics, and the quantum energy growth is ballistic: ⟨E⟩ ∼ t2

[26]. The resonance and off-resonance conditions of QKR
are distinguished by their driving frequency, a feature ex-
ploited in experiments for frequency discrimination [27].
Furthermore, QKR at resonance has been used to study
topological phases [28, 29] and has also found applica-
tion in atom interferometers [30]. Resonant conditions
on interacting QKR systems have been studied yet.

The two-body quantum kicked rotor (TB-QKR) is a
well-studied instance of a general coupled N -body QKR.
The former displays dynamical phases ranging from local-
ization [31] to diffusion [32]. The entanglement dynamics
of TB-QKR defined with cylindrical boundary conditions
(momentum space is unbounded but the position space
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has a periodic boundary condition) displays initial lin-
ear growth akin to the ergodic many-body system and is
followed by a logarithmic growth [32]. In contrast, the
TB-QKR with toral boundary conditions (both momen-
tum and position have periodic boundary condition) dis-
plays initial linear growth followed by a saturation arising
from finite size of Hilbert space [33–35]. However, it has
been shown in ref. [36] that depending on the coherence
of the initial state and for small interaction strengths,
a super-linear entanglement growth is observed at short
times followed by a linear growth and ultimately leads
to saturation. Importantly, all these studies are focused
particularly on the off-resonance condition of QKR. A
natural question is how does this picture change at an
on-resonance setting in many-body kicked rotors?

The main contribution of this work is towards unrav-
eling the entanglement dynamics in N -interacting QKR,
when the quantum resonance condition is satisfied. It is
also worth highlighting that this is the first-ever study
of entanglement dynamics in an N -interacting rotors. In
this work, we show that the entanglement initially grows
super-linearly succeeded by a logarithmic growth with
a superimposed oscillation. We further show that the
crossover time from super-linear to logarithmic growth
depends inversely on the interaction strength. We ob-
tain insight into the underlying mechanism driving the
distinct entanglement growth profiles by analytically cal-
culating a relatively simpler quantity, the linear entropy.
Furthermore, we show that under a coordinate transfor-
mation, the N -interacting rotor problem at resonance re-
duces to a single-kicked rotor problem. Our analytical
prediction is in excellent agreement with the numerical
simulations. Additionally, we assert that entanglement
not only limited to detecting phase transition in quan-
tum many-body systems, but can also serve as a versa-
tile probe capable of identifying resonance phenomena
in N -interacting kicked rotors and thus detecting critical
driving frequency in an experimental settings.

System: The Hamiltonian of the N -interacting kicked
rotors is

H =

N∑
i=1

τip
2
i

2
+ [Vkick + Vint]

∑
n

δ(t− nT ) (1)

where xi and pi are the position and momentum of
the ith rotor with mass 1/τi. Here, we consider τi ∈
Z and τi/τj ̸= 1. The kicking potential is Vkick =∑N

i=1Ki cos(xi) with kick strength Ki. In this work,
motivated by experiments, an all-to-all interaction be-

tween the rotors of the form Vint = K cos
(∑N

i=1 xi

)
is

considered, where K is the interaction strength and T
is the time period for the application of kick and inter-
action potentials: Vkick and Vint. The interaction in the
position space can be mapped to an interaction in the
momentum space. In an experiment, interaction only
in momentum space can be easily generated using two

lasers with incommensurate frequencies [18]. To obtain
the mapping, one needs to perform a coordinate trans-
formation. For instance, consider two-interacting rotors
with kick strength Ki = 0, i = 1, 2 in Eq. (1) and per-
form a coordinate transformation Θ = x1 + x2, θ =
x1 − x2, u = p1 + p2, and v = p1 − p2. Under this
transformation, the interaction in position gets mapped
to the momentum space as ηuv, where η = τ1 − τ2. Con-
sideration of Ki = 0 will become clear in the subsequent
section. Several variants of two-interacting kicked rotors
have been studied extensively [14, 32, 36, 37].
The quantum dynamics is obtained using the time-

evolution operator U = (U1 ⊗ U2 ⊗ · · · ⊗ UN )Uint, where

Ui = U free
i Ukick

i

= exp[−iτip2iT/2ℏs] exp[−iKi cos(xi)/ℏs]
(2)

is the time-evolution operator of the i-th rotor and ℏs
is the scaled Planck’s constant. The interaction appears
as Uint = exp[−iK cos(

∑N
i=1 xi)/ℏs]. Now, starting with

initial state chosen to be a product state, i.e. |ψ(0)⟩ =
|p1 = 0⟩ ⊗ |p2 = 0⟩ · · · |pN = 0⟩, the time-evolved state is
obtained as |ψ(t)⟩ = U|ψ(0)⟩. The resonance condition is
incorporated by setting ℏsT = 4πp/q, where p, q ∈ Z [14].
In what follows, we fix ℏs = 4π/T and T = 12. Due to
this choice, U free

i becomes an identity operation and does
not contribute to the dynamics, and the resulting time-
evolution operator is U = (Ukick

1 ⊗Ukick
2 ⊗· · ·⊗Ukick

N )Uint.
Entanglement is evaluated using the von-Neumann en-

tropy SvN = −Tr1ρ1 ln ρ1 = −∑
j λj lnλj , where ρ1 is

the reduced density matrix of the rotor-1 obtained by
tracing out the rest of the system and λj are the Schmidt
eigenvalues of ρ1. Figure 1(a) shows the growth of the en-
tanglement for two-interacting kicked rotors. This shows
two distinct growth profiles of entanglement. Contrary
to the initial linear growth commonly observed in the
chaotic regime, the entanglement (at resonance) grows
super-linearly, as expressed by SvN = tµ with µ = 1.6;
see left inset of Fig. 1(a). However, for t > t∗, entan-
glement grows logarithmically accompanied by an oscil-
lation superimposed on it. Over time, the amplitude of
this oscillation diminishes. Furthermore, the oscillation
is a superposition of different frequencies. To the best of
our knowledge, such distinct growth profiles have never
been observed before. This result can be generalized to
N -interacting kicked rotors, and entanglement for three
rotors is shown in Fig. 3(b).

To gain more insight, we examine the Schmidt eigen-
values λ1 > λ2 > · · · > λN ≥ 0 of ρ1. Figure 1(b)
illustrates the behavior of 1 − λ1 over time, where λ1
is the largest Schmidt eigenvalue that makes major con-
tribution to SvN. It is evident from the Fig. 1(b) that
1 − λ1 initially exhibits a quadratic growth, which at
later times t > t∗ displays logarithmic growth with an ac-
companying single-frequency oscillation. However, with
time, the amplitude of oscillation vanishes. The initial
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FIG. 1. (a) Time dynamics of the von-Neumann entropy
of two-interacting kicked rotors is plotted. It displays two
distinct growth profiles: (Left inset) Log-log plot illustrates
the super-linear, SvN ∼ t1.6 growth of SvN at initial times
and (Right inset) Log-normal plot highlights the logarithmic
growth with added oscillation at later times of SvN growth.
The black vertical dashed line in the main plot and the left
inset represent the crossover time t∗ between these two dis-
tinct growth profiles. The red solid line in the left inset is a fit
to the super-linear growth. (b) Plot illustrates the quadratic
growth of (1-λ1), where λ1 is the largest Schmidt eigenvalue
of the reduced density matrix ρ1, for t < t∗. The black solid
line is the fit to this quadratic growth. Inset displays the time
dynamics of the six largest Schmidt eigenvalues λi. (c) The
linear entropy Slin of two-interacting kicked rotors is plotted.
Inset plots the log-normal of Slin to highlight the oscillatory
behavior of the late-time Slin growth. The parameter sets are
K1 = 4, K2 = 5, K = 0.05, τ1 = 1, τ2 = 2, T = 12, and basis
size of each rotor, L = 210.

quadratic growth of 1 − λ1 can be understood following
ref. [36, 37]. Despite being started with a zero momen-
tum state, |pi = 0⟩ with i = 1, 2, as an initial state
of both the rotors, the |pi = 0⟩ state can be expressed
as a coherent superposition of the respective Floquet
states |pi = 0⟩ = 1/

√
L
∑L

j=1 |ϕij⟩, where |ϕi⟩ is the Flo-
quet state of the ith rotor. Reference [36] explains that
for such coherent states, λ1 initially grows quadratically.
The oscillation observed in SvN being not of a single fre-
quency can be understood from the inset of Fig. 1(b)
which displays the largest six Schmidt eigenvalues. It
can be noticed that each λi has its own distinct frequen-
cies which gets nontrivially added up in the evaluation of
SvN resulting in such oscillation.

As a prelude to focussing on the oscillatory behavior,
we emphasize that at resonance, as evident in Fig. 2(a),
the kicking term in Eq. (1) does not contribute to the
entanglement production. This implies that the entan-
glement growth with Ki = 0 is the same as that for
Ki ̸= 0. This leads us to a significant conclusion: Two
distinct initial states of ith rotor yield the same en-
tanglement dynamics. These are product states ; (a)

|ψi(0)⟩ =
∑L

n=1 Jn(Kit/ℏs)|ϕin⟩ = (Ukick
i )t|pi = 0⟩, when

Ki ̸= 0 and L is the basis size of each rotor, and (b) the
zero momentum state |pi = 0⟩ for Ki = 0. While the
initial state (a) is a coherent superposition of Floquet
states, (b) is not so. Yet, these distinct type of states
display super-linear entanglement growth followed by a
logarithric growth with superimposed oscillations, a fea-
ture not observed before and could be useful in quantum
resource theory [38].
For the reasons given above, we set Ki = 0 as it

simplifies the analysis. Further, for reasons of ana-
lytical tractability, linear entropy is computed as en-
tanglement indicator instead of the von Neumann en-
tropy. The linear entropy is defined as Slin = 1− TrAρ

2
A

and Fig. 1(c) displays its growth profile. It is evi-
dent from the inset of Fig. Fig. 1(c) that the linear
entropy also exhibits oscillatory behavior at late times
with a decreasing amplitude as time progresses. Eval-
uating Slin crucially relies on determining the purity,
expressed as µ2 = TrAρ

2
A. To do this, a coordinate

transformation Θ =
∑N

i=1 xi is performed that reduces

the interaction term Uint = exp[−iK cos(
∑N

i=1 xi)/ℏs]
to that of effectively a “non-interacting” single par-
ticle kicking term Uint = exp[−iK cos(Θ)/ℏs], while
the interactions now appear as a complicated func-
tion f(p1, p2, . . . pN , τ1, τ2, · · · τN ) in the momentum
space. At resonance, the free evolution term given by
U free = exp[−if(p1, p2, . . . pN , τ1, τ2, · · · τN )T/2ℏs] be-
comes unity, and hence effectively reducing the many-
body problem to that of a single-particle kicked rotor
at resonance. In this context, the purity, µ2 =

∑
j λ

2
i ,

becomes equivalent to the participation ratio of a single
kicked rotor PR =

∑
n |ψn|4. The Schmidt eigenvalues

λi give the probability of finding the particle in Schmidt
state |ζi⟩ of the ith rotor. For a single kicked rotor at
resonance, it can be shown that PR =

∑
n Jn(Kt/ℏs)4,

where Jn(·) is the Bessel function of first kind and or-
der n. Thus, at resonance, the linear entropy of the N -
interacting kicked rotors described in Eq. (1) is expressed
as

Slin = 1−
∑
n

Jn(Kt/ℏs)4 . (3)

Figure 1(c) illustrates that the analytical result in Eq. (3)
is in excellent agreement with the numerics. Further-
more, the analytical result for Slin in Eq. Eq. (3) is
not limited to two-interacting kicked rotors but remains
valid for any number of interacting rotors described by
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FIG. 2. The von-Neumann entropy SvN of two-interacting
kicked rotors is plotted for (a) different kicking strengths of
rotor 1 (b) distinct interaction strength K. It illustrates the
growth profile of SvN is independent of K1 while it strongly de-
pends on K. Horizontal black dashed line in (b) corresponds
to the critical S∗

vN after which the growth of SvN changes its
profile. It illustrates that S∗

vN is independent of K. Other pa-
rameters are same as in Fig. 1. The log-log plot in the inset
of (b) signifies that the crossover time t∗ inversely depends on
coupling strength K following the relation t∗ ∼ 1/K.

the Hamiltonian in Eq. (1). This illustrates the generic
nature of our findings.

How does the entanglement dynamics change with cou-
pling strength K. Unlike the kicking strength Ki, the
coupling strength K significantly influences the growth
profile of SvN. This is evident in Fig. 2. With increasing
K, numerical simulations in the inset of Fig. 2(b) shows
that the crossover time t∗ from super-linear to logarith-
mic growth decreases according to the relation t∗ ∼ 1/K.
This reciprocal relation is in contrast to that observed at
off-resonant single QKR where (linear) diffusive timescale
follows t∗ ∼ 1/K2 [32]. A plausible argument is that at
resonance, the momentum distribution is not of a Gaus-
sian profile, an essential condition required to observe the
1/K2 decay of t∗. Moreover, lacking of any analytical ex-
pression of the momentum distribution at resonance hin-
ders the analytical calculation of t∗. Furthermore, the
exponent µ of the super-linear growth SvN ∼ tµ is inde-
pendent of the coupling strength as indicated in Fig. 2(b).
Additionally, the critical entanglement value S∗

vN denoted
by horizontal black dashed line in Fig. 2(b) after which
SvN changes its growth profile barely depends on the cou-
pling strength K. Thus, the entanglement dynamics is
strongly affected by interaction strength rather than the
kick strength.

Dependence on ℏs: Next, we investigate how crucially
the growth profile of entanglement observed in Fig. 1(a)
depends on the resonance condition. To this end, the
kick period T in Eq. (1) is varied through T ′ = T + ϵ,
where ϵ≪ T , while maintaining the scaled Planck’s con-
stant as ℏs = 4π/T thereby slightly deviating from reso-
nance condition. Remarkably, Fig. 3(a) reveals that even
a slight departure from the resonance condition markedly
impacts the growth profile of entanglement. While the
initial growth profile remains akin to that observed at
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FIG. 3. (a) Plot demonstrates that the distinct growth pro-
file of SvN at resonance is highly sensitivity to the resonance
condition. A slight deviation from the resonance condition
significantly changes the growth profile of SvN. Inset displays
the log-log plot of SvN as a function of time. Color signifies
the same values of ϵ as in the main plot. (b) Plot compares
the growth profile of SvN for two- and three-interacting kicked
rotors. The kick strength of the third rotor is K3 = 5.5 while
the other parameters are the same as in Fig. 1.

resonance for small ϵ (see the inset in Fig. 3(a)), a signif-
icant deviation is noticed at later times. This is due to the
fact that when ϵ > 0, then the free evolution part U free

i

embedded in U begins to contribute. In turn, this results
in the addition of phases that become significant as time
progresses. Thus, even small ϵ leads the oscillation to
vanish immediately. This is indicative of its sensitivity
and holds considerable significance in experimental con-
texts. This further indicates the system’s high-quality
factor Q = νr

∆ν , where νr is the frequency of oscillation
at resonance and ∆ν denotes the half-width of the res-
onance curve. Thus, scanning through the lens of ℏs,
we can precisely identify the resonance condition in an
experiment.

Three-interacting kicked rotors: Here, we highlight the
generic nature of the foregoing results. To demonstrate
this, calculation of SvN is extended to three-interacting
kicked rotors. In particular, the entanglement of one ro-
tor with the rest of the system is examined. Remark-
ably, the result displayed in Fig. 3(b) is identical to
that observed for two-interacting rotors. This conclu-
sively establishes the universality of our findings within
the context of the interaction considered in Eq. (1). A re-
mark is in order: For nearest-neighbor interaction of type
Vint =

∑
i cos(xi − xi+1), the initial super-linear growth

of SvN is present, however, the amplitude of oscillation
in the logarithmic regime dies out with the increase in
number of rotors (not shown here).

In summary, the entanglement dynamics of all-to-all
interacting kicked rotors under the resonance condition
is studied. It reveals a novel paradigm: At initial
times, the von-Neumann entropy displays super-linear
growth. However, after a crossover time t∗, growth slows
down to a logarithmic with oscillations superposed on
it. The crossover time t∗ depends inversely on the cou-
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pling strength between the rotors. It is further shown
that for the all-to-all interaction considered in Eq. (1),
at resonance, the kicking term, despite its role inducing
chaos, does not contribute to the entanglement produc-
tion. This effectively reduces the problem to that of a
single-kicked rotor through a coordinate transformation.
Given the challenges in analytically assessing von Neu-
mann entropy, the evolution of a simpler quantity is ex-
amined, namely, linear entropy. This allows us to obtain
analytical insights into the underlying mechanisms driv-
ing the observed growth profile of entanglement. These
findings open a new frontier – faser than linear entangle-
ment production not usually observed in chaotic systems.
An immediate direction is to extend this investigation for
other interaction potentials, namely, the point-to-point
interaction and nearest-neighbor interaction.
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