
Color: A Framework
for Applying Graph Coloring to Subgraph Cardinality Estimation

Kyle Deeds*

University ofWashington

kdeeds@cs.washingon.edu

Diandre Sabale*

University ofWashington

dmbs@uw.edu

Moe Kayali

University ofWashington

kayali@cs.washington.edu

Dan Suciu

University ofWashington

suciu@cs.washington.edu

ABSTRACT

Graph workloads pose a particularly challenging problem for query

optimizers. They typically feature large queries made up of entirely

many-to-many joinswith complex correlations. This puts significant

stress on traditional cardinality estimationmethodswhich generally

see catastrophic errors when estimating the size of queries with only

a handful of joins. To overcome this, we propose COLOR, a frame-

work for subgraph cardinality estimation which applies insights

from graph compression theory to produce a compact summary that

captures the global topology of the data graph. Further, we identify

several key optimizations that enable tractable estimation over this

summary even for large query graphs. We then evaluate several de-

signs within this framework and find that they improve accuracy by

up to 10
3× over all competing methods while maintaining fast infer-

ence, a small memory footprint, efficient construction, and graceful

degradation under updates.
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1 INTRODUCTION

The core operation of queries over graphs is subgraph matching
where instances of a querygraphpattern,𝑄 , are foundwithin a larger

data graph,𝐺 . This is the main primitive in graph query languages

like GQL, SQL/PGQ, and SPARQL which are implemented by graph

databasemanagement systems such as Neo4J, TigerGraph, Virtuoso,

QLever, andAmazonNeptune [3, 4, 10, 11, 27]. On critical workloads

likefinancial frauddetection, subgraphmatching is a part of virtually

all analysis pipelines [33]. For example, money laundering often

manifests as cycles of transactions in financial networks [17, 31].

Estimating the count, or cardinality, of subgraphs is crucial to
the optimization of graph queries. Specifically, subgraph matching

algorithms are generally either search-based or join-based [5, 36]. In

both cases, the query optimizer attempts to choose a query plan (a

query-vertex order or join order, respectively) which minimizes the

size of intermediate results. However, graph workloads commonly

contain large query graphs with ten or more edges; these queries

may producemuch larger intermediateswhichmakes finding a good

query plan particularly crucial for execution [6, 25, 34]. Historically,

cardinality estimation has been the key obstacle in identifying good

query plans over relational data [9, 22, 29]. Applying these lessons

* These authors contributed equally to the work.
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Figure 1: Lifted counting example.We estimate the number

of occurrences of the query graph𝑄 pattern (𝑢→𝑣←𝑤 ) in the

data graph𝐺 . First, the data graph is partitioned offline: the

resulting summary is stored as the lifted graph G. At runtime,

the cardinality estimate is computed on the lifted graph G
without reference to the underlying data graph.

to the graph setting, the database community has begun a concerted

effort to improve subgraph cardinality estimation, withmany recent

methods and benchmarks [8, 21, 28, 29, 35]. In this vein, our paper

applies novel insights from graph theory to improve cardinality

estimation for subgraph matching.

Prior work on this problem generally follows one of three ap-

proaches. Pattern-based methods [28, 38] count the frequency of a
small, pre-defined set of patterns offline, combining them at run-

time to produce estimates by assuming independence between their

counts. Simple queries can be effectively captured by the combina-

tion of one or two patterns—complex ones cannot, as they require

combining many correlated patterns. For this reason, performance

is adequate on simple queries but degrades rapidly for workloads

with larger queries: resulting in median underestimates of up to

1010× (Sec. 8). Online-sampling methods [8, 21, 23, 37, 39] perform
runtime sampling, generally randomwalks, to estimate cardinalities.

Unfortunately, these methods often suffer from sampling failure.

While generating samples for smaller, less selective query patterns

is feasible, finding even a single match for complex patterns can be

challenging [24]. We later show 60−99% failure rate for online sam-

pling methods on the most challenging workloads (Sec. 8). Further,
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Figure 2: Accuracy of coloring as the number of colors

increases

online sampling in disk-based or distributed settings can incur a

prohibitive latency as it relies on fast random reads over the whole

graph. Summarization methods [7, 35] group nodes in the data graph
into a super structure and store summary statistics. However, the

grouping is done by predefined rules or hashing, without regard

to the edge distribution between these groups. Because these sum-

maries are not tailored to the graph structure, i.e.make a uniformity

assumption, they produce median error of up to 1012×, and we find
that they timeout on larger queries (Sec. 8).

In this paper, we propose a new approach to subgraph cardinality

estimation based on graph compression; we call this method Color.

By taking advantage of recent advances in lossy graph representa-

tions such as quasi-stable coloring [19], we approximately capture

the topology of the graph in a small summary. We then directly

estimate cardinalities on the summary without needing to access

the data graph.

The key idea is to color the graph𝐺 such that nodes of the same

color have a similar number of edges to each other color. This miti-

gates the effect of the uniformity and independence assumptions. In

Figure 1 for example, the coloring assigns the 𝑐,𝑑,𝑒 nodes to the same

green color. This is because green nodes have a similar number of

incoming edges fromblue and orangenodes, andno out edges.Mean-

while,𝑎,𝑏 are assigned to the blue color as theyhave a similar number

of outgoing edges to green nodes and none to orange nodes. This

helpsmitigate the uniformity assumption because, within nodes of a

fixed color, the edge distribution is nearly uniform. Further, because

high and lowdegree nodes tend to be placed in different colors, corre-

lations in the connections between themcanbe identified,mitigating

the independence assumption.

Real world graphs are more complex, but it turns out that our

approach canmeaningfully capture their topologywith a small num-

ber of colors, typically just 32 in our experiments. Figure 2 shows

the maximum difference in edge counts from nodes in one color to

nodes in another, averaged over all pairs of colors for four of our

benchmark datasets. Lower values indicate a better coloring and

smaller differences between the two most different nodes in each

color. A handful of colors is sufficient to capture most of the graph

topology and reduce non-uniformity by 1-2 orders of magnitude.

With these colorings inmind,we return to the example in Figure 1.

During the offline phase, our method takes the data graph,𝐺 , and

produces a compact summary,G called a lifted graph, with one super-
node for each color (Sec. 3). We keep statistics on the number and

kinds of edges which pass between these colors. During the online

phase, the cardinality estimate is computedon the lifted graphbyper-

formingaweightedversionof subgraphcountingwhichwecall lifted
subgraph counting (Sec. 4). To extend this to cyclic queries, which
occur frequently in graph databases, we also propose a technique

based on a novel statistic called the path closure probability (Sec. 5).
To enable efficient inference on a more detailed, and therefore

accurate, lifted graph, we propose three critical optimizations. Tree-

decompositions and partial aggregation, introduced in Sec. 7.1, re-

duce the inference latency by over 100×. Importance sampling and

Thompson-Horowitz estimation over the lifted graph, the subject

of Sec. 7.2, ensure a linear latency w.r.t. the size of the query while

maintaining a 6x lower error than a naive sampling approach. Lastly,

we demonstrate how to maintain the lifted graph under updates in

Sec. 7.3, reducing the need to rebuild the summary by providing

reasonable estimates even when over 1/2 of the graph is updated.
In summary, we make the following contributions:

• Develop the COLOR framework for producing lifted graph

summaries from colorings (Sec. 3) and evaluate six possible

coloring schemes (Sec. 6).

• Define a general formula for performing inference over a

lifted graph, show its optimality for acyclic queries (Sec. 4),

and extend it to cyclic ones (Sec. 5).

• Develop optimizations that allow for efficient and accurate

inference and robust handling of updates (Sec. 7). These op-

timizations are: tree-decomposition, importance sampling,

and Thompson-Horowitz estimation.

• Empirically validate COLOR’s superior performance on

eight standard benchmark datasets and against nine com-

parison methods (Sec. 8).

2 PROBLEM SETTING

PropertyGraphs. The datamodel thatwe use for thiswork is prop-

erty graphs. These are directed graphs where each edge and vertex

is associated with a set of attributes. These attributes can be simple

labels (e.g. : 𝑓 𝑟𝑖𝑒𝑛𝑑𝑂𝑓 ) or key-value pairs (e.g.𝐴𝑔𝑒 =72). This is the

most general data model for graphs; it matches the model of GQL,

Cypher, and GraphQL, and it captures the RDFmodel [2, 12, 18].

Formally, we define property graphs as follows:

Definition 1. A property graph,𝐺 (𝑉 ,𝐸,𝜆,𝜒), is a directed graph
with vertices𝑉 , edges 𝐸, attribute domainA, and two annotation func-
tions,

• 𝜆 : 𝑉→2
A which maps a vertex to a set of attributes 1

• 𝜒 : 𝐸→2
A which maps an edge to a set of attributes

Subgraph Counting. The goal of subgraph counting is to find the
number of occurrences of a query graph𝑄 in a larger data graph𝐺 .

On a property-less graph, an occurrence is defined as any mapping

from the vertices in𝑄 to the vertices in𝐺 such that all edges in𝑄 are

1
2
𝑋

denotes the set of subsets of X.
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mapped to edges in𝐺 , i.e. a homomorphism from𝑄 to𝐺 . To account

for properties, each vertex and edge of the query graph is associated

with a predicate, 𝑃 , that returns true or false based on the attributes

(e.g. "hasLabel:friendOf " or "age>60"). Formally, this is defined as

follows,

Definition 2. For a property-less query graph𝑄 and data graph
𝐺 , we define the set of subgraph matches as,

hom(𝑄,𝐺)= {𝜋 :𝑉𝑄→𝑉𝐺 |𝜋 (𝐸𝑄 ) ⊆𝐸𝐺 }
Eachmatch,𝜋 , is a function from𝑉𝑄 to𝑉𝐺 .When𝑄 and𝐺 are property
graphs, we add the natural conditions for each 𝜋 ,

𝑃𝑣 (𝜋 (𝑣))=1 ∀𝑣 ∈𝑉𝑄 𝑃𝑒 (𝜋 (𝑒))=1 ∀𝑒 ∈𝐸𝑄 (1)

The subgraph count is then |hom(𝑄,𝐺) |.

This work studies the problem of cardinality estimation. Recent
work in both graph and relational databases has demonstrated the

importance of cardinality estimation for producing efficient query

plans [22, 30]. This problem consists of two phases: 1) a preprocess-

ing phase where the statistics, denoted s, are computed and 2) an

online phasewhere querygraphs come in and approximate subgraph

counts are returned. Formally, we can view it as follows,

Definition 3. A cardinality estimation method E consists of two
algorithms: 1) computing statistics during the preprocessing phase,

s
def
= E𝑝𝑟𝑒 (𝐺) and 2) estimating the cardinality during the online

phase, 𝑐
def
= E𝑜𝑛 (𝑄,s) ∈R+. The goal is to produce an estimate where

𝑐≈ |hom(𝑄,𝐺) |.

The primary metrics for these algorithms are: 1) the accuracy of

𝑐≈ |hom(𝑄,𝐺) | 2) the latency of E𝑜𝑛 and 3) the size of s.

Traditional Estimators. The classic SystemR approach to cardinal-

ity estimation in relational databases combines the number tuples

in the joining relations, the number of unique values in the joining

columns, and assumptions (uniformity, independence, preservation

of values) to produce a basic cardinality estimate [16, 22]. In the

graph setting, this estimation method looks like the following,

Definition 4. Given a query graph 𝑄 (𝑉𝑄 ,𝐸𝑄 ) and data graph
𝐺 (𝑉 ,𝐸), the traditional estimation method is,

(1) E𝑡𝑟𝑎𝑑𝑝𝑟𝑒 (𝐺)= ( |𝑉 |,|𝐸 |) (number of vertices and of edges)

(2) E𝑡𝑟𝑎𝑑𝑜𝑛 (𝑄,s)=
∏

𝑣∈𝑉𝑄 |𝑉 | ·
∏

𝑒∈𝐸𝑄
|𝐸 |
|𝑉 |2

Intuitively, the estimation formula calculates the number of pos-

sible embeddings of the query graph in the data graph,

∏
𝑣∈𝑉𝑄 |𝑉 |,

then scales this by the probability of any embedding having the

correct set of edges,

∏
𝑒∈𝐸𝑄

|𝐸 |
|𝑉 |2 . In effect, this estimation procedure

assumes that the data graph is distributed like an Erdos-Renyi ran-

dom graph with |𝐸 | edges and |𝑉 | vertices and produces an accurate
estimate given this assumption. However, the structure of most real

world graphs is much more complex. This results in very different

subgraph counts from those on Erdos-Renyi random graphs and

motivates the use of more complex estimators.

Example 1. Recall that the standard estimate of a join𝑄 (𝑥,𝑦,𝑧)=
𝑅(𝑥,𝑦)∧𝑆 (𝑦,𝑧) is |𝑅 | · |𝑆 |

max( |𝑅.𝑦 |, |𝑆.𝑦 | ) . When both𝑅,𝑆 are the edge relation
𝐸, then𝑅.𝑦=𝑆.𝑦=𝑉 (assuming no isolated vertices) and the traditional

estimator becomes |𝐸 | · |𝐸 ||𝑉 | , which is the same as the formula above,

|𝑉 |3 |𝐸 |
2

|𝑉 |4 .

3 COLORINGS & LIFTEDGRAPHS

Colorings and lifted graphs are the core of our framework, so we

start by formally defining them here. For clarity of presentation, we

will begin by ignoring predicates and reintroduce them later. Given

a graph𝐺 (𝑉 ,𝐸), a coloring 𝜎 is a function from𝑉 to𝐶 where𝐶 is a

small set of colors, |𝐶 |≪ |𝑉 |. Under a quasi-stable coloring [19], two
vertices in the same color will have similar distributions of outgoing

edges to different colors, i.e. any two red vertices should have nearly

the same number of edges to blue vertices. Formally,

Definition 5. A coloring, 𝜎 , is quasi-stable if the following prop-
erties hold for all pairs of vertices 𝑣1,𝑣2. If 𝜎 (𝑣1)=𝜎 (𝑣2), then:

∀𝑐 ∈𝐶 : |{(𝑣1,𝑣) ∈𝐸 |𝜎 (𝑣)=𝑐}| ≈|{(𝑣2,𝑣) ∈𝐸 |𝜎 (𝑣)=𝑐}| (2)

In English, 𝜎 is quasi-stable if for any two colors 𝑐0,𝑐 , any two

vertices 𝑣1,𝑣2 colored 𝑐0 have approximately the same number of

neighbors colored 𝑐 . If we replace ≈with = in (2), then 𝜎 is called a

stable coloring. Stable colorings are commonly used in graph isomor-

phism algorithms, and have elegant theoretical properties [13, 15].

However, they are unsuitable for our purpose, because stable color-

ings of real-world graphs require a very large number of colors [19].

In fact, in a randomgraph, every vertex has a distinct colorwith high

probability [14]. Instead, we relax equality = to approximation ≈ in
Definition 5 in exchange for using a much smaller number of colors.

To do this, we apply a variety of coloring algorithms (Sec. 6) which

produce a dramatic reduction in the number of colors with only a

small relaxation of = to ≈. We demonstrate this in Fig. 2. This graph

shows the average range of degrees from nodes in one color to nodes

in another as the number of colors varies. Across all graphs, a color-

ingwith just 32 colors (using the Quasi-Stable coloringmethod from

[19]) lowers the average degree range by over 2 orders of magnitude

as compared to the initial graph.

For any color 𝑐 ∈𝐶 , we denote the set of vertices colored 𝑐 by𝑉𝑐
def

=

{𝑣 ∈𝑉 |𝜎 (𝑣)=𝑐}. For any two colors 𝑐1,𝑐2 we denote the set of edges
between themby𝐸𝑐1𝑐2

def

= 𝐸∩(𝑉𝑐1×𝑉𝑐2 ). The lifted graph consists of a
quasi-stable coloring, together with statistics for each pair of colors:

Definition 6. Fix a directed graph𝐺 = (𝑉 ,𝐸), and a coloring 𝜎
with colors𝐶 . A lifted graph is a triple, G= (𝐹,𝜓,𝜏), consisting of the
following parts.

• 𝐹 = (𝑉𝐹 , 𝐸𝐹 ) is a graph where 𝑉𝐹 = 𝐶 and 𝐸𝐹 = {(𝑐1,𝑐2) |
𝐸𝑐1𝑐2 ≠∅}.

• 𝜓 :𝐶→Nwhere𝜓 (𝑐)= |𝑉𝑐 |
• 𝜏 :𝐸𝑐1𝑐2→R+ maps edges of the graph to statistics about the

edges in 𝐸𝑐1𝑐2

In this paper, we consider the following choices for the edge sta-

tistics function 𝜏 :

𝜏min (𝑐1,𝑐2)=min{|{(𝑣1,𝑣2) | 𝑣2 ∈𝑉𝑐2 }| | 𝑣1 ∈𝑉𝑐1 }

𝜏avg (𝑐1,𝑐2)=
|𝐸𝑐1𝑐2 |
|𝑉𝑐1 |

𝜏max (𝑐1,𝑐2)=max{|{(𝑣1,𝑣2) | 𝑣2 ∈𝑉𝑐2 }| | 𝑣1 ∈𝑉𝑐1 }
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Table 1: Notation Dictionary

Symbol Meaning

𝐺 (𝑉 ,𝐸,𝜆,𝜒) Property graph with vertices 𝑉 , edges 𝐸, vertex

attributes 𝜆, and edge attributes 𝜒 .

G(𝐹,𝜓,𝜏) Lifted graph with color graph 𝐹 , color cardinalities

𝜓 , and color edge statistics 𝜏 .

𝑊 (𝜋,𝑄,G) Estimate of the subgraph count for query𝑄 with

coloring 𝜋 based on lifted graph G.
Φ(𝑄,G) Estimate of the subgraph count for query𝑄 based

on lifted graph G.
𝛾 (𝐶1,𝐶2,𝐷) Probability of a path closing a cycle from𝐶1 to𝐶2

with directionality𝐷

They represent the minimum degree, the average degree, and the

maximum degree of a vertex in 𝑐1 to vertices in 𝑐2 respectively. In

the following sections, it will be sufficient to assume that 𝜏 means

𝜏avg, unless otherwise noted.

Thus,𝜓 is a function that returns the number of vertices with the

color𝑐 , and𝜏 is a function that returns statistics about the set of edges

between a pair of colors. The lifted graph forms a fuzzy compression

of the data graph, and is computed offline, during preprocessing. In

our approach, this is the statistic, s=E𝑝𝑟𝑒 , as defined in Def. 3.

Example 2. Consider again the example data graph and coloring in
Figure 1. First, the data graph𝐺 is colored with a quasi-stable coloring.
This produces three different colors, which reflect that topologically
there are three different "kinds" of vertices in the data graph. In par-
ticular, orange vertices have an 3 out-degree, no in-degree; the green
vertices no out-degree, 2 out-degree; and blue 1.5 average out-degree,
no in-degree. Due to the arrangement of these edges, we can produce a
“good” coloring where vertices𝑎 and𝑏 are assigned to the blue partition.
Further, we can produce the lifted graph G by choosing the degree sum
as our edge statistic. In this figure, the vertex labels are the partition
cardinalities, i.e. the values of𝜓 . The label edges represent the sum of
edges between two colors: for example, green vertices have a total of 3
edges into the orange vertices, i.e. the values of 𝜏Σ. Note that this lifted
graph closely captures the distribution of edges in the data graph while
being half the size.

Lifted Property Graphs. To account for attributes and predicates
in the lifted graph, we adjust the definition of 𝜓 and 𝜏 to accept

predicates in addition to colors. Suppose that a query has a vertex

predicate 𝑃 , thenwe define𝑉𝑐,𝑃 as the set of data vertices in the color

𝑐 which pass the predicate 𝑃 . Similarly, 𝐸𝑐1,𝑐2,𝑃𝑒 ,𝑃𝑣 is the set of edges

starting in color 𝑐1, matching predicate 𝑃𝑒 , and landing on a node in

color𝑐2whichmatches𝑃𝑣 .With this,we can then redefine𝜓 and𝜏𝑎𝑣𝑔 ,

𝜓 (𝑐,𝑃)=|𝑉𝑐,𝑝 | 𝜏𝑎𝑣𝑔 (𝑐1,𝑐2,𝑃𝑒 ,𝑃𝑣)=
|𝐸𝑐1,𝑐2,𝑃𝑒 ,𝑃𝑣 |
|𝑉𝑐1 |

We allow these functions to be exact or approximate in order to ac-

commodate more complex predicates. If the predicates are all of the

formℎ𝑎𝑠𝐿𝑎𝑏𝑒𝑙 :𝑋 and there are few edge label/vertex label combina-

tions, then this canbe calculated and stored explicitly.However, pred-

icates like range or LIKE benefit from approximating |𝐸𝑐1,𝑐2,𝑃𝑒 ,𝑃𝑣 |
using standard techniques like histograms or n-grams. This can then

be extended to 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 using techniques similar to those in [9].

4 LIFTED SUBGRAPHCOUNTING

We have described the lifted graph, a small weighted graph which

approximately captures the topology of the data graph. Next, we

show how to use the lifted graph for cardinality estimation, which

we call the lifted subgraph counting problem,

Definition 7. Fix a lifted graph G= (𝐹,𝜓,𝜏) and a query graph𝑄 .
An estimation procedure is a function

𝑊 :hom(𝑄,𝐹 )×𝑄×G→R+
The lifted subgraph count is,

Φ(𝑄,G)=
∑︁

𝜋∈hom(𝑄,𝐹 )
𝑊 (𝜋,𝑄,G) (3)

A homomorphism 𝜋 :𝑄→ 𝐹 associates to each query vertex 𝑥

a color 𝜋 (𝑥) ∈𝐶; we will also call 𝜋 a coloring of the query𝑄 . The
estimator𝑊 (𝜋,𝑄,G) approximates the number of outputs of the

query with coloring 𝜋 . Note, we generally drop𝑄 and G when obvi-

ous from context. The total estimate, Φ(𝑄,G) is simply the sum over

all colorings 𝜋 . To see the intuition, recall that errors in traditional

cardinality estimation come from correlation and skew. For example,

the former could mean that high degree vertices are more likely to

be connected to high degree vertices (or vice versa), while the latter

means that the degrees of vertices have a wide range. By grouping

vertices into colors based on their local topology (their degrees, their

neighbors’ degrees, etc), and fixing a particular coloring 𝜋 of the

query vertices, we reduce the variance of the estimate𝑊 (𝜋), leading
to a reduced error overall. In the rest of this section we define the

estimate function𝑊 assuming that the query graph is acyclic. We

will extend it to arbitrary query graphs in Sec. 5.

4.1 Acyclic Query Graphs

For acyclic queries, we use the following function𝑊 :

Definition 8 (LiftedEstimator forAcyclicQueries). Let𝑄 =

(𝑉𝑄 ,𝐸𝑄 ) be an acyclic query graph, and let 𝑥1,...,𝑥 |𝑉𝑄 | be a topological
ordering of its vertices: in other words, every vertex 𝑥 𝑗 is connected to
some 𝑥𝑖 for 𝑖 < 𝑗 . For any homomorphism 𝜋 :𝑄→𝐹 , we define:

𝑊 (𝜋) def= 𝜓 (𝜋 (𝑥1),𝑃𝑥1 )
∏

(𝑥𝑖 ,𝑥 𝑗 ) ∈𝐸𝑄
𝜏 (𝜋 (𝑥𝑖 ),𝜋 (𝑥 𝑗 ),𝑃𝑥 𝑗

,𝑃 (𝑥𝑖 ,𝑥 𝑗 ) ) (4)

We adopt the convention that if 𝑥𝑖 and 𝑥 𝑗 are connected by a

reverse edge, i.e. 𝐸𝑄 contains (𝑥 𝑗 ,𝑥𝑖 ) rather than (𝑥𝑖 ,𝑥 𝑗 ), then this is
reflected in the query graphwith a predicate,𝑑𝑖𝑟 =←, on the edge. In-

tuitively, we process the edges in the topological order, so we always

multiply with the in/outdegree of the color assigned to the topologi-

callyearliervertex. In thispaperwechoose the topological order such

as to minimize the time needed to compute hom(𝑄,𝐺𝐹 ), see Sec. 7.
Example 3. Here we show that the lifted graph estimator general-

izes the traditional estimator in Def. 4. We illustrate this with a graph
𝐺 = (𝑉 ,𝐸) and the 2-edge query 𝑄 (𝑥,𝑦,𝑧) = 𝐸 (𝑥,𝑦) ∧ 𝐸 (𝑦,𝑧) from
Example 1. Assume that we use a lifted graph, G(𝐹,𝜓,𝜏), consisting of
a single color 𝑐 and a single edge: 𝐹 = ({𝑐},{(𝑐,𝑐)}). Then the statistics
are 𝜓 (𝑐) = |𝑉 | and 𝜏 (𝑐,𝑐) = |𝐸 ||𝑉 | (recall that we assumed 𝜏 refers to
𝜏𝑎𝑣𝑔), there is a single homomorphism 𝜋 :𝐺 → 𝐹 , and our estimate

is𝑊 (𝜋) = 𝜓 (𝑐) (𝜏 (𝑐,𝑐))2 = |𝑉 | |𝐸 |
2

|𝑉 |2 =
|𝐸 |2
|𝑉 | . This is the same as the

traditional estimator in Example 1.
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Example4. Weillustratenowhowabetter designed liftedgraphcan
lead toan improved estimator.Assume that thedatagraph is thedisjoint
union of two graphs,𝐺 =𝐺1∪𝐺2, where𝐺1 (𝑉1,𝐸1) is a 2-regular graph
on 10000 vertices, and𝐺2 (𝑉2,𝐸2) is a clique of size 100. Suppose𝑄 is
a path of length 𝑘 . Since the average degree in𝐺 is ≈4, a traditional
estimate for𝑄 is 10100·4𝑘 , which vastly underestimates the true count,
because it doesn’t capture the skew and correlation introduced by the
clique sub-graph. Suppose we pre-compute a lifted graph consisting
of two colors: green contains all vertices𝑉1 and red color contains all
vertices𝑉2. There are only two edges (green,green) and (red,red), and
therefore only two colorings𝜋 of the query𝑄 .We compute𝑊 separately
for each of the two colorings, then return their sum, 100·99𝑘 +10000·2𝑘 ,
which, for our simple data graph, is an exact count.

4.2 Special Case: Stable Colorings

As a theoretical justification of our method, we prove that if the

lifted graph is a stable coloring (meaning: ≈ is = in Def. 5), then our

estimate for acyclic queries is exact, although we defer the formal

proof to the technical report [1] for space.

Theorem 1. Let G be a lifted graph defined by a stable coloring 𝜎 .
Then 𝜏min=𝜏avg=𝜏max, and, for any acyclic query𝑄 , the lifted graph
estimator is exact:

|hom(𝑄,𝐺) |=Φ(𝑄,G) (5)

This theorem states that stable colorings are a perfect statistic for

cardinality estimation of acyclic query graphs. However, we cannot

use them in practice, because the number of stable colors needed to

represent real graphs is close to the number of vertices in the data

graph [19, 26].However, the theoremdemonstrates that, as colorings

approach stability, the estimate converges to the true subgraph count.

5 HANDLINGCYCLES

Cyclic queries are a fundamentally different challenge for cardinality

estimators because they allow complex dependencies between ver-

tices within the query graph. Practically, they require estimating the

probability that an edge between two vertices exists, conditioned on

the fact the these vertices are already connected in the query graph.

This section outlines new techniques to estimate this cycle closure
probability.

5.1 Cycle Closure Probability

To ground this discussion,we begin by defining the probability space

and random variables. The former is defined by a uniform random

selection of |𝑉𝑄 | vertices from𝑉𝐺 with replacement. This is equiva-

lent to a randommapping from𝑉𝐺 to𝑉𝑄 . The set of vertices selected

by this process is denoted with the random variables 𝑉1, ... ,𝑉|𝑉𝑄 | .
Further, each edge of the query graph, (𝑣𝑖 ,𝑣 𝑗 )=𝑒𝑖 ∈𝐸𝑄 , is associated

with a binary random variable 𝐸𝑖 which is true when (𝑉𝑖 ,𝑉𝑗 ) ∈𝐸𝐺 .
In other words, 𝐸𝑖 is true iff the data vertices mapped to that edge

of the query have an edge between them.

Asabasic example,wecancalculate theunconditionedprobability

of 𝐸𝑖 for any edge 𝑒𝑖 as follows,

𝑃 (𝐸𝑖 )=
|𝐸𝐺 |
|𝑉𝐺 |2

Further, we can express the cardinality of an arbitrary query as,

|𝐻𝑜𝑚(𝑄,𝐺) |= |𝑉𝐺 | |𝑉𝑄 | ·𝑃 (∩𝑒𝑖 ∈𝐸𝑄𝐸𝑖 )

With conditional probability, we can expand the probability as,

𝑃 (∩𝑒𝑖 ∈𝐸𝑄𝐸𝑖 )=
∏

𝑒𝑖 ∈𝐸𝑄
𝑃 (𝐸𝑖 |𝐸1,...,𝐸𝑖−1)

When the endpoints of an edge are contained within the previous

edges, 𝑒𝑖 ∈∩𝑖−1𝑗=1
𝑒 𝑗 , the probability within the product is a cycle clo-

sure probability. It is this probability which we try to estimate in

this section, and the crucial challenge is estimating the effect of the

previous edges, 𝐸1,...,𝐸𝑖−1.
The naive solution is to consider all patterns of a fixed size (i.e.

the pattern induced by 𝐸1,...,𝐸𝑖−1) and calculate the probability of an
edge occurring between two nodes of that pattern in the data graph.

However, the number of patterns increases super-exponentially in

their size due to the choices of basic graph pattern, edge direction,

and predicates, so this approach is infeasible for all but the small-

est queries. Our approach attempts to tackle this by considering a

smaller set of patterns and composing them smartly.

5.2 Path Closure Probability

We introduce path closure probabilitieswhich represent the probabil-
ity that a path in the data graph is "closed", i.e. there is an edge from

the starting vertex to the ending vertex. To limit the number of prob-

abilities that we store, paths are grouped by their directionality, e.g.

𝐷 = {←,→}𝑘 , and by the color of their starting and ending vertices.
We denote this probability as,

Definition 9. LetP𝑐1,𝑐2,𝐷 (𝐺) be the set of paths in the data graph
𝐺 with directions matching 𝐷 and starting/ending color 𝑐1/𝑐2. Let
C𝑐1,𝑐2,𝐷 (𝐺) be the subset of paths inP𝑐1,𝑐2,𝐷 (𝐺) which are closed. The
path closure probability is then,

𝛾 (𝑐1,𝑐2,𝐷)=
|C𝑐1,𝑐2,𝐷 (𝐺) |
|P𝑐1,𝑐2,𝐷 (𝐺) |

Given this statistic, we can define an expression for the cycle

closure probability, 𝑃 (𝐸𝑖 |𝐸1,...,𝐸𝑖−1). Let S𝑖−1 be the set of simple

paths in 𝐸1, ... ,𝐸𝑖−1 which start at the source of 𝐸𝑖 and end at its

destination. Note that the closure of any path within 𝑆 implies that

𝐸𝑖 is true. Based on this, we treat the closure of each of these paths

as an independent event (a conservative assumption), and calculate

the cycle closure probability as,

𝑃 (𝐸𝑖 |𝐸1,...,𝐸𝑖−1)=1−
∏

(𝑐1,𝑐2,𝐷 ) ∈S𝑖−1
(1−𝛾 (𝑐1,𝑐2,𝐷))

We can now explain howwe extend the definition of the acyclic

estimator (4) to handle arbitrary query graphs. Fix a query graph

𝑄 = (𝑉𝑄 ,𝐸𝑄 ), and consider a topological edge ordering, 𝑒1,...,𝑒 |𝐸𝑄 | ,
which means that every edge 𝑒 𝑗 has a vertex in common with some

previous edge 𝑒𝑖 , 𝑖 < 𝑗 . This ordering defines a spanning tree 𝑇 ,

consisting of the subset of edges that introduce a new vertex, i.e.

𝑇 = {𝑒 𝑗 | 𝑒 𝑗 ⊈
⋃

𝑖< 𝑗𝑒𝑖 }. If 𝑒𝑖 = (𝑥,𝑦) is not a tree edge, then both

vertices 𝑥,𝑦 are already connected in the subgraph consisting of
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𝑒1,...,𝑒𝑖−1. The modified definition of the estimator (4) is:

𝑊 (𝜋)=𝜓 (𝜋 (𝑥1,𝜆𝑄 (𝑥1)))
∏

𝑒𝑖 ∈𝐸𝑄
𝜔 (𝑒𝑖 ) (6)

𝜔 (𝑒𝑖 )=
{
𝜏 (𝜋 (𝑥),𝜋 (𝑦),𝜆𝑄 (𝑥),𝜒𝑄 (𝑥,𝑦))) if 𝑒 = (𝑥,𝑦) ∈𝑇
1−∏(𝑐1,𝑐2,𝐷 ) ∈S𝑖−1 (1−𝛾 (𝑐1,𝑐2,𝐷)) if 𝑒 = (𝑥,𝑦) ∉𝑇

(7)

To keep the construction of our statistics tractable, we do not calcu-

late𝛾 exactly. Instead, we sample paths from the lifted graph and use

these to calculate probabilities. As a default, we use 100,000 sampled

paths when calculating these statistics in our experiments. If a par-

ticular color combination doesn’t occur in our samples, we fall back

to the probability just conditioned on the sequence of directions.

6 ALTERNATECOLORINGMETHODS

Because a coloring can be anymapping from vertices to colors, there

is a wide design space of algorithms for creating colorings. The goal

of this section is to find colorings which facilitate improved cardinal-

ity estimations. In thiswork,we focus on divisive coloringswhere all

vertices begin in the same color and then the following steps proceed

iteratively: 1) identify a color, 𝑐 , to split into two colors 2) for each

vertex in 𝑐 , determine whether it should stay in 𝑐 or join the new

color. The benefit of this approach is that arbitrary coloringmethods

can be composed, allowing for more robustness and accuracy.

Quasi-Stable Coloring [19]. As explained earlier, this is a gener-
alization of the traditional color-refinement algorithm. Rather than

producing a stable coloring, this algorithm softens the requirements

and instead requires vertices in each color to have a "similar" number

of edges to each other color. At each iteration, it selects the color

with the widest range of degrees w.r.t. another color and splits it into

two colors with more uniform counts relative to the other color.

Degree Coloring. This coloring simply separates vertices into col-

ors based on their overall degree. The intuition is that vertices with

high degree are generally occupying similar positions in the data

graph and vice versa with low degree vertices. It begins by selecting

the color with the largest range of degrees to split, then separates

vertices into two colors depending on whether they are above or

below the average degree.

Neighbor Label Coloring. An alternative to quasi-stable coloring,
this method attempts to reduce the variance introduced by label

predicates (e.g. "hasLabel:X") by grouping vertices based on their

neighbors’ label attributes. First, it selects the color whose vertices

have the widest range of degrees w.r.t. the vertex labels of their

neighbors. It then splits it into two colors which have more uniform

connections to vertices with each vertex label.

Vertex Label Coloring. Amore direct version of the previous ap-

proach, this coloring also aims to reduce the effect of label predicates.

This time it aims to make the distribution of vertex labels within

colors more uniform. To do this, it first identifies the color, 𝑐1, with

the most even distribution of a particular label, weighted by size.

The nodes in 𝑐1 which have that label attribute are then put in a new

color and the ones which do not remain in 𝑐1.

Mixture Coloring. The previous colorings generally target a par-
ticular source of variance related to either topology or attribute

distributions, and they divide the color where this kind of variance

appears most strongly. So, it makes sense to layer these colorings

in order to jointly manage these different concerns, and we call this

a mixture coloring. In the experiments (Fig. 9), we show that this is

the most accurate coloring across a range of workloads.

Hash Coloring. For completeness, we consider the naive hash

coloring which uniformly randomly sorts vertices into colors. This

corresponds to the partitioning used by [7] to tighten their cardi-

nality bounds. This method is convenient because construction is

linear in the size of |𝐺 |, and it does not require coordination in a

distributed setting. However, it offers limited improvement to the

estimator because it doesn’t take the specific topology or attributes

of the graph into account.

Algorithm 1Optimized Inference Algorithm

Require: 𝐹𝐺,𝜎,𝑙 (𝐺𝐹 (𝐶,𝐸𝑉 ),𝜓,𝜏), 𝑄 (𝑉𝑄 ,𝐸𝑄 ), 𝑣1, ... ,𝑣 |𝑉𝑄 | //

Lifted Graph, Query Graph, Vertex Order

1: 𝑃𝐶 = {({},1)} // Partial Colorings
2: 𝑉𝐹 = {}
3: for 𝑖 ∈ [1,...,|𝑄 |] do
4: 𝑃𝐶′= {}
5: 𝐸𝑖 = {𝑒 ∈𝐸𝑄 |𝑣𝑖 ∈𝑒}
6: for 𝜋,𝑤 ∈𝑃𝐶 do

7: for 𝑐 ∈𝐶 do

8: 𝜋 ′=𝜋∪(𝑣𝑖→𝑐)
9: 𝑤 ′=𝑤 ·∏𝑒∈𝐸𝑖𝜔 (𝜋

′,𝑒) ← Estimator Sec. 5.1

10: 𝑃𝐶′=𝑃𝐶′∪{𝜋 ′,𝑤 ′}
11: end for

12: end for

13: 𝑃𝐶 =𝑃𝐶′

14: 𝑉𝑆 = {𝑣 ∈𝑉 | (𝑣,𝑣 𝑗 ),(𝑣 𝑗 ,𝑣) ∉𝐸𝑄∀𝑗 > 𝑖}\𝑉𝐹
15: 𝑉𝐹 =𝑉𝐹

⋃
𝑉𝑆

16: 𝑃𝐶 =
∑
𝑉𝑆 𝑃𝐶← Partial Aggregation Sec. 7.1

17: 𝑃𝐶 =𝑆𝑎𝑚𝑝𝑙𝑒 (𝑃𝐶) ← Sampling Sec. 7.2

18: end for

19: return 𝑃𝐶

7 OPTIMIZATION

7.1 Partial Aggregation

Naively, the runtime of inference on the lifted graph would be ex-

ponential in the size of the query graph, making it intractable for

evenmoderately sized query graphs. This is because the lifted graph

is complete, or nearly complete, so the size of𝐻𝑜𝑚(𝑄,𝐹 ) is approxi-
mately |𝐶 | |𝑄 | . Fortunately, we can rephrase the sum in Eq. 3 to drasti-

cally reduce this runtime via aggregate push-down. To do this, we ex-

press the set of lifted graphmatches, hom(𝑄,𝐹 ), as (𝑐1,...,𝑐 |𝑄 | ) ∈𝐶 |𝑄 | .
We then use the definition of𝑊 from 6 and, as before, we assume a

topological ordering on the edges, 𝑒1,...,𝑒 |𝐸 | , and vertices, 𝑣1,...,𝑣 |𝑄 | .

Φ(𝑄,𝐹,𝑊𝜓,𝜏 )=
∑︁

𝑐1,...,𝑐 |𝑄 |∈𝐶
𝜓 (𝑐1)

|𝐸𝑄 |∏
𝑖=1

𝜔 (𝜋𝑐1,...,𝑐 |𝑄 | ,𝑒𝑖 ) (8)

At this point, we can identify this problem as a Functional Aggregate
Query as described in [20], and we can apply the techniques there
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to solve it efficiently.
2
As an example, suppose that the query graph

𝑄 is a line graph 𝑣1→ 𝑣2→ 𝑣3. The naive expression would be the

following𝑂 ( |𝐶 |3) expression,

Φ(𝑄,𝐹,𝑊𝜓,𝜏 )=
∑︁

𝑐1,𝑐2,𝑐3∈𝐶
𝜓 (𝑐1)𝜏 ((𝑐1,𝑐2))𝜏 ((𝑐2,𝑐3))

However, by pushing down the summation over 𝑐1, we can produce

an expression which requires𝑂 ( |𝐶 |2) time to evaluate.

𝑓 (𝑐2)=
∑︁
𝑐1∈𝐶

𝜓 (𝑐1)𝜏 ((𝑐1,𝑐2))

Φ(𝑄,𝐹,𝑊𝜓,𝜏 )=
∑︁

𝑐2,𝑐3∈𝐶
𝜏 ((𝑐2,𝑐3)) 𝑓 (𝑐2)

This version materializes a a vector of intermediate values and then

uses that vector in the second line. Doing this allows us to avoid

performing an unnecessary summation over 3 variables at once.

More generally, we can apply this strategy by choosing a variable

order and at each step summing out the next variable in the order.

The efficacy of this strategy depends on the variable order, and, in

particular, it depends on the maximum number of variables present

in any intermediate product. If an intermediate product involves

𝑘 variables, then we need to compute a relation of size |𝐶 |𝑘 which

dominates the runtime. We defer the details of the proof to the tech-

nical report [1], but this intuition can be formalized as follows using

the theory of tree decompositions and treewidth,

Theorem 2. Given a query graph, 𝑄 , a lifted graph, 𝐹 , and a
decomposable estimator𝑊 , Φ(𝑄,𝐹,𝑊𝜓,𝜏 ) can be computed in time
𝑂 ( |𝐶 |tw(𝑄 )+1) where tw(𝑄) is the treewidth of𝑄 .

Of course, this relies on finding a good ordering of the query ver-

tices, and finding the optimal one is naively NP-Hard with respect

to the size of𝑄 . Fortunately, there are very effective heuristics for

identifying good tree decompositions, and we apply these in our

system, using the min-fill heuristic [32]. Further, in order to accom-

modate the sampling techniques that we discuss next, we restrict

these tree decompositions to path decompositions and get runtime

results relative to the pathwidth.

7.2 Sampling Techniques

In realworld systems, cardinalityestimationneeds tobeanextremely

fast and consistent process because it is an overhead incurred by

every query. While partial aggregation significantly speeds up infer-

ence for simple query graphs with low treewidth, larger and denser

query graphs may still pose a problem under these requirements.

To avoid this, we integrate a sampling procedure into the inference

process which ensures a linear inference time w.r.t the size of the

query (see Fig. 13).

At a high level, this sampling procedure is similar to a weighted

versionof theWanderJoinalgorithmfrom[23].WeapplyaThompson-

Horowitz estimator to randomlychosenpathswithin the liftedgraph.

However, we adjust the method in two important ways: 1) we in-

corporate the sampling into the aggregation framework from Sec.

7.1 2) we apply importance sampling to account for the fact that

different paths within the lifted graphs contribute more or less to

the cardinality estimate.

2
Note, this is closely related to the variable elimination algorithm for probabilistic

graphical models as well as tensor contraction algorithms.

Sampling During Aggregation. At each step of our algorithm, we

process a single vertex of the query graph and materialize an inter-

mediate result consisting of partial colorings and weights associated

with them. After this materialization, we apply sampling in order

to reduce the amount of partial colorings that we extend in the next

step. By doing this at each step, we can maintain a constant number

of partial colorings at all times and ensure a linear runtime w.r.t. the

size of the query graph. Further, because we can still apply aggre-

gation where possible, we reduce the amount of sampling required

to maintain a small number of partial colorings.

Importance Sampling. This is a classical technique for approximat-

ing the value of an integral, and we adapt it here by noting that our

summation in 8 is simply a discrete integral over a product. The core

idea is to sample points of the integrandwhich contributemore heav-

ily to theresultwithhigherprobability inorder to reduce thevariance.

Becausedetermining the contributionof apartial coloring to thefinal

result is inherently challenging, we instead approximate this con-

tribution via its associated weight. This reflects an assumption that

partial colorings with high weight are likely to disproportionately

contribute to the final sum. To keep our estimator unbiased,we apply

Thompson-Horowitz estimation and simply multiply the weight of

each sampled partial coloring by the inverse of its selection proba-

bility. Finally, we scale the total weight of the sampled colorings to

make it equal to the weight of the partial colorings prior to sampling.

7.3 Handling Updates

Updates pose a challenge to summary-based estimators because the

statistics which they collect become stale over time as updates are

applied to thedatabase.Traditionally, summarybasedestimators sim-

ply recalculate the summary on a regular basis to accommodate up-

dates [16]. This approach leads to severe decreases in accuracy under

evenmodestupdates because the estimator is entirely "blind" to them.

On the other hand, recalculating the summary before each query is

far too costly. In this section, we demonstrate how COLOR supports

amiddle ground approach that applies fast, basic updates to the lifted

graph, allowing it to maximize the time between full rebuilds.

First, we formally define updates in our setting,

Definition 10. Given a data graph G, an update 𝜃 can either add
an edge between existing vertices or a new vertex with attributes𝐴:

• 𝜃𝑉 = (𝑣,𝐴) where 𝑣 ∈𝐺𝑉 ,𝐴∈A
• 𝜃𝐸 = (𝑣1,𝑣2,𝐴) where 𝑣1 ∈𝐺𝑉 ,𝑣2 ∈𝐺𝑉 ,𝐴∈A

This definition allows for adding a single edge or vertex to the

graph at a time. We then define a summary update function to incor-

porate these updates without accessing𝐺 .

Definition 11. Given a data graph𝐺 , a lifted graph 𝐹 = (𝐺𝐹 ,𝜓,𝜏),
and update 𝜃 , we define the summary update function as follows where
𝐹 ′ is the updated lifted graph,

𝐹 ′=𝛿 (𝐹,𝜃 )
Depending on the type of 𝜃 , the functionality of 𝛿 can change:

𝛿 =

{
𝛿𝑉 , 𝜃 ∈𝜃𝑉
𝛿𝐸 , 𝜃 ∈𝜃𝐸

Dependingon the estimator, the correct definitionof𝛿will change.

Here, we focus on the average degree estimator.
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Table 2: Estimator Failure Rates per dataset. Only Color and Characteristic Sets (cset) succeed on all queries. Later we will

see Color outperforms cset’s accuracy substantially.

Dataset\Method cs wj jsub impr cset alley alleyTPI BSK++ sumrdf Color

human 0.67 0.00 0.22 0.63 0.00 0.00 0.00 0.00 0.00 0.00

aids 0.69 0.07 0.14 0.28 0.00 0.04 0.01 0.02 0.39 0.00

lubm80 0.83 0.17 0.67 0.67 0.00 0.00 0.00 0.00 0.00 0.00

yeast 1.00 0.97 0.97 0.11 0.00 0.63 0.60 0.63 0.88 0.00

dblp 1.00 0.99 0.94 0.15 0.00 0.14 0.14 0.70 0.85 0.00

youtube 0.99 0.93 1.00 0.22 0.00 0.10 0.05 0.63 0.78 0.00

eu2005 0.95 0.90 0.91 0.55 0.00 0.00 0.00 0.22 0.44 0.00

patents 0.98 0.88 0.98 0.08 0.00 0.13 0.13 0.67 0.79 0.00

Vertex Updates. The vertex update function 𝛿𝑉 affects the stored

edge statistics 𝜏 and color sizes𝜓 in the lifted graph. Because a new

vertex has no edges, we have no knowledge about which color it

should be placed once its edges are added. Conservatively, we simply

add it to the largest existing color which dilutes the impact on the

average degree. In this way, we preserve the high quality informa-

tion in other colors while the largest color gracefully degrades to

a traditional estimator as in Def. 4. After choosing the color for the

new vertex, we adjust𝜓 (𝑐) by incrementing its value by one, and

we scale down 𝜏 to account for the new vertex.

Edge Updates. Given an update 𝜃𝐸 = (𝑣1,𝑣2,𝐴), the edge update
function 𝛿𝐸 marginally increases 𝜏 for the combination of attributes

and colors in the edge update. However, the edge update doesn’t

directly contain the colors of 𝑣1 and 𝑣2 or the attributes of 𝑣2. To

retrieve the colors, 𝑐1 and 𝑐2, associated with 𝑣1 and 𝑣2, we look up

their values in 𝜋 which we store compactly (and approximately) as a

series of cuckoo filters. To calculate the attributes of 𝑣2, we leverage

statistics about the attribute distribution in 𝑐2 and sample a set of

attributes from that distribution.

Path Closure Probabilities. The lifted graph contains statistics

about the cycle-closing probability for existing nodes and edges,

but additions to the graph change this probability. To account for

this, we make an adjustment to the𝜔◦
𝐶𝐶𝑃

function. We calculate the

probability that either the path was originally closed,𝛾 (𝑐1,𝑐2,𝐷), or
is closed by an update edge. For a set of edge updates, S𝜃𝐸 :

𝛾 ′ (𝑐1,𝑐2,𝐷)=1−(1−𝛾 (𝑐1,𝑐2,𝐷)) (1−
|S𝜃𝐸 |
|𝑉𝐹 |2

)

Deletions. To handle deletions, COLOR simply performs the in-

verse of the update logic.

8 EVALUATION

In this section, we provide a detailed experimental analysis of our

framework on eight benchmark datasets and against nine compet-

itive baselines. Compared to existing methods, COLOR exhibits

competitive accuracy, speed, and scalability. We also demonstrate

the significance of our performance optimizations for building and

maintaining graph summaries. Overall, we show that COLOR:

(1) Never experiences estimation failure on any query across

all workloads—unlike all but one comparison method.

Table 3: Experimental Datasets. |ℓ𝑉 | and |ℓ𝐸 | are the number

of unique vertex and edge labels.

Dataset |V| |E| |ℓ𝑉 | |ℓ𝐸 |

human 4674 86282 89 1

aids 254000 548000 50 4

lubm80 2.6M 12.3M 35 35

yeast 3112 12519 71 1

dblp 317080 1M 15 1

youtube 1.1M 3M 25 1

eu2005 862664 16M 40 1

patents 3.8M 16.5M 20 1

(2) Has a median error <10 across all workloads and is up to
103×more accurate than competing methods.

(3) Produced up to 107× tighter boundswhen usingmax degree

statistics, 𝜏𝑚𝑎𝑥 , than BoundSketch while being many orders

of magnitude faster.

(4) Requires up to 80−800× less space than competingmethods

and is up to 10−100× faster to construct.
(5) Handles updates gracefullywithonly3×worsemedian error

when half the graph is updated.

Datasets &Workload.We consider datasets from [29] and [36] for

our analysis. These datasets come from a variety of domains. Those

from [36] are undirected graphs whose queries are larger and vary

in density. Those from [29] are directed graphs whose queries are

smaller and vary in shape. We adapt undirected workloads to di-

rected methods by including reverse edges in the data graph but not

in the query graphs. Both of these sources include label predicates

in their queries with the former using both edge and vertex labels

and the latter using only vertex labels. Table 3 shows their different

characteristics where |ℓ𝑉 | and |ℓ𝐸 | refer to the number of unique

edge and vertex labels.

Comparison Methods. For comparison, we use a superset of the

methods considered in [29] and additionally apply them to the larger,

more complex datasets from [36]. These methods include: 1) Corre-

lated Sampling (CS) [37] 2) Characteristic Sets (CSet)[28] 3) Wander

Join (WJ) [23] 4) Alley (alley) and alleyTPI [21] 5) Join Samplingwith

Upper Bounds (JSUB), an adaptation of [39] 6) Bound Sketch (BSK)

[7] which corresponds to a hash-based coloring and using the max
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Figure 3: Relative Error by Estimator

Figure 4: Inference Time by Estimator

degree estimator.We further apply our partial aggregation optimiza-

tion, and we call this improved version BSK++. 7) IMPR [8] and 8)

SumRDF [35] 9) We also include a traditional independence-based

estimator (IndEst) corresponding to Def. 4. For the sampling based

estimators, we apply the default sampling ratios from [29] and [21]

(i.e. .03 for all methods except for Alley which uses .001). AlleyTPI

uses amaximumpattern length (MAX_L) and amaximumnumber of

stored label groups (NUM_GROUPS) when building its index, with

default values of MAX_L=4 or MAX_L=5 depending on the dataset,

and NUM_GROUPS=32. To prevent excessive index build times on

AlleyTPI (>12 hours) for eu2005, dblp, and patents, we instead used

MAX_L=4. Then for we decreased NUM_GROUPS to 16 for eu2005

and dblp and 8 for patents. We adjusted NUM_GROUPSmore than

MAX_L because small adjustments to the maximum pattern length

greatly decrease the domain of patterns stored by the index [21].

Additionally, we experiment with several instantiations of our

framework which use the following naming convention; first, we

note the kind of degree statistic (Min/Avg/Max), then we describe

the coloring scheme, e.g.𝑄64 as 64 colors from the quasi-stable col-

oring method. The mixed coloring scheme,𝑀𝑖𝑥32, that we use as

the default involves 8 divisions from degree coloring, quasi-stable

coloring, neighbor labels coloring, and node label coloring, in that
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Figure 5: Relative Error by Cardinality BoundMethod

Figure 6: Inference Time by Cardinality BoundMethod

order. Unless otherwise noted, we use 500 samples during inference

and keep track of cycle probabilities for cycles up to length 6.

Experimental Setup. To reduce noise in our latency results, we re-
peat all inference results 3 timesandreport themedian inference time.

We do not do this for our cardinality estimates because this would

unfairly reduce the impact of our sampling approach. These experi-

ments are runon a serverwith an Intel(R)Xeon(R)CPUE7-4890 v2@

2.80GHz CPU, and all summary building and inference is done using

a single thread. The reference implementation is available at: https:

//anonymous.4open.science/r/Cardinality-with-Colors-4333

8.1 Estimator Failure

There are two main ways that an estimator can fail to provide mean-

ingful results: 1) it can time out which we define as taking longer

than 1 minute to report a result 2) a sampling-based method can fail

to find any qualifying samples. In Table 2, we show the proportion

of queries that result in estimation failure for each dataset and tech-

nique. The simpler sampling-based methods (CS, WJ, JSUB, IMPR)

face estimation failure even on the smaller, less dense query work-

loads (human, aids, lubm80) and fail to find samples for nearly any

queries for the larger more complex workloads (yeast, dblp, youtube,

eu2005, patents). Alley achieves much higher success rates across

datasets due to its sophisticated sampling approach, but it still fails a

significant portion of the time on four datasets. The summary-based

methods (BSK++ and SumRDF), on the other hand, time out on over

half of queries for four datasets. In contrast, because our approach

applies sampling to a highly dense lifted graph, we never experience

sampling failure on any query, across all workloads.

8.2 Accuracy

In Fig. 3, we show the relative error of various methods and work-

loads
3
. Across workloads, our method, AvgMix32, is unbiased and

scales well to larger, more cyclic workloads (yeast, dblp, youtube,

eu2005, patents). It even achieves a median error of less than 2 on

human, aids, dblp, and eu2005. We also reproduce the high accuracy

ofWanderJoin and Alley on the G-Care datasets. However, we find

that all methods from [29] fail to scale to the largermore cyclic work-

loads. In particular,we reproduce thefinding in [21] thatWanderJoin,

IMPR, and JSUB overwhelmingly fail to find a positive sample in a

reasonable time on these datasets. Further, SumRDF times out on all

larger queries due to its lack of aggregation and sampling.

Cardinality Bounds. When comparing the cardinality bounding

methods, BSK andMaxQ64, we find that applying a mixture of col-

oring methods rather than hash coloring produces up to 10
6
times

lower error. Notably, because we apply sampling to this method,

we guarantee a linear runtime for all queries in exchange for a less

principled cardinality bound. However, across all workloads, this

never results in significant underestimation.

Coloring Methods. In Fig. 9, we examine the effect of choosing

different colorings on the accuracy of the average degree estimator.

The hash coloring performs the worst across all benchmarks which

is expected because it does not take the labels or graph topology

into account. On the other hand, the quasi-stable coloring algorithm

from [19] works quite well on most datasets with the exception of

dblp because it does not account for the distribution of labels. Over-

all, the mixed coloring performs well across datasets because it can

supplement the topological colorings with a label-based colorings,

accounting for both sources of error.

In this figure, we also vary the number of colors that we use for

the lifted graph. Interestingly, increasing the number of colors kept

does not straightforwardly improve accuracy. This is because we

always use 500 samples during inference, so, as the lifted graph gets

larger, the sampling procedure has a larger impact on the accuracy.

Given this, we find that without increasing the sampling rate the

optimal coloring uses either 32 or 64 colors.

8.3 Inference Latency

Fig. 4 shows the distribution of inference latencies for each method

across workloads. We can see that the inference latency of COLOR

lies in themiddle of the competingmethods acrossworkloads.On the

smaller, less cyclic queries of human, it achieves a very fast median

latency of around 10
−4

seconds due to partial aggregation, and on

the larger more complex queries of patents it has a median latency

of ∼ .05 seconds via sampling.

Further, when compared to the other graph summarization meth-

ods, SumRDF and BSK++, the methods from our framework scale

far better to larger queries. The former methods timeout (>1 minute)

3
In these graphs, outliers (>2 std. deviations) are shown as points. The inner box

shows quartiles, and the whiskers are the max/min non-outlier values. Further, sample

failure is treated as an estimate of 1.

https://anonymous.4open.science/r/Cardinality-with-Colors-4333
https://anonymous.4open.science/r/Cardinality-with-Colors-4333
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Figure 7: Statistics Size

Figure 8: Build Time

on queries of even moderate size as they consider the exponential

number of potential colorings of the query. This occurs even when

using partial aggregation (as in BSK++), demonstrating the necessity

of sampling to achieve consistent latencies.

8.4 Statistics Size & Build Time

Graph summarization approaches allow for a smooth tradeoff be-

tween accuracy and size/build time; amore granular summary of the

graphwill takemore space butmore accurately capture the structure

of the data graph. Fortunately, even a compact summary (<20MB)

can be highly accurate as shown by Fig. 7. Part of this compactness

comes from the fact that we store our summary sparsely. This means

that if two colors do not share an edge with a particular attribute

then we don’t explicitly store any degree statistic about this combi-

nation. Due to this, a better coloring can actually result in a more

compact summary becausemany of these combinations won’t occur

if the nodes have been properly partitioned. OnHuman and Lubm80,

AlleyTPI’s pattern index requires 600 and 300 MB, respectively.

With respect to build time, our summary construction scales lin-

early in the size of the data graph. For smaller graphs like human,

aids, and yeast, summary construction takes less than 20 seconds,

and it smoothly increases as the data graph gets larger. In Fig. 10, we

confirm this by generating erdos-renyi graphs of varying sizes and

recording the average time to build the lifted graph over 20 trials.

8.5 Updates

In Fig. 11, we evaluate the effectiveness of our method for handling

updates (Sec. 7.3). To do this, we randomly partition the edges of

the human dataset into an initial data graph and an ensuing set

of updates, and we construct a lifted graph using the former then

update it by adding one edge/vertex at a time based on the latter.

Intuitively, whenmore of the graph is provided at the beginning, the

Figure 9: Relative Error by ColoringMethod

Figure 10: Construction Scaling

lifted graph will be more accurate because it can take advantage of

that knowledgewhen coloring the graph. Additionally, due to uncer-

tainty about the attributes for added edges and vertices, the proposed

update method generalizes and may update statistics where it may

be unnecessary, leading to errors at high update proportions.

We find that, as more of the lifted graph is updated, the accuracy

remains very consistent and degrades to the traditional indepen-

dence estimator. This implies that a full rebuilding of the lifted graph

can occur very infrequently and be amortized over many updates.

Due to the small size of the lifted graph, updating it is very fast.

The latency for vertex updates was roughly 0.4 ms while for edge

updates it was roughly 0.1 ms.

8.6 Micro-Benchmarks

Path Closure Probabilities. To show the importance of tracking

cycle probabilities, we show the relative error as we vary the size of

cycles whose probabilities we track in Fig. 12. At size 1, we do not

track any cycle closure probabilities. So, when we close a cycle in

the query graph, we scale down the estimate based on the uniform

probability of an edge existing, i.e. |𝐸 |/|𝑉 |2. When we begin to store

larger cycle sizes, we quickly see the error decrease, and underesti-

mation, in particular, is significantly reduced. These results validate

the necessity of handling cycle closure with a more complex method

than the standard independence estimator.

Partial Aggregation. Fig. 13 demonstrates the effects of partial ag-

gregation and sampling. In this figure, using the Youtube data graph,
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Figure 11: Relative Error vs Proportion Updated (Human)

Figure12:RelativeErrorvsMaxCycleLengthStored (Youtube)

we observe how inference latency changes across different query

pathwidths if partial aggregation or sampling is used. Recall that

pathwidth is a measure of cyclicity where a query with pathwidth

1 is acyclic and higher pathwidth queries are increasingly intercon-

nected. Without partial aggregation, the estimation begins to time

out (>1min)when query pathwidths exceed 2. This is because higher

pathwidth queries tend to be larger and this naive approach has an

exponential runtime w.r.t. the size of the query. When using partial

aggregation without sampling, the estimation times out after query

pathwidths exceed 4. Lastly, when sampling is applied, the inference

latency becomes linear in the size of the query and unrelated to the

pathwidth. The results demonstrate the importance of including par-

tial aggregation for achieving speedups without affecting accuracy,

and that the use of sampling can achieve consistent, fast inference.

Inference Sampling. In Fig. 14, we vary the sample size used dur-

ing inference on the Youtube workload to demonstrate the efficacy

of our sampling method. Using a very small sample size results in

significant underestimation, but even amoderate number of samples

quickly converges to the accuracy of a large number of samples.

Further, this figure shows that importance sampling speeds up this

convergence significantly over a naive uniform sample. For example,

the performance at 250 samples for importance sampling is roughly

equal to the accuracy of uniform sampling at 1000 samples.

Figure 13: Build Time vs Query PathWidth (Youtube)

Figure 14: Relative Error vs Samples (Youtube)

9 CONCLUSION

We develop COLOR, a framework for producing lifted graph sum-

maries from colorings. We define inference over the lifted graph for

acyclic and cyclic queries, developing optimizations to accelerate es-

timation.We empirically validateCOLOR’s superior performance on

eight benchmark datasets, comparing it to state-of-the-art methods.

COLOR is up to 10
3×more accurate than the baselines and stands

out for never experiencing estimation failure. It gracefully handles

updates, degrading to only 3×worse error when half of the data is
replaced.
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A PROOFOF THM. 1

In this section, we prove the following theorem for simple graphs,

but the extension to property graphs is straightforward.

Theorem 3. Let G be a lifted graph defined by a stable coloring 𝜎 .
Then 𝜏min=𝜏avg=𝜏max, and, for any acyclic query𝑄 , the lifted graph
estimator is exact:

|hom(𝑄,𝐺) |=Φ(𝑄,G) (9)

Proof. We start by noting that each match in the data graph, 𝜋 ∈
𝐻𝑜𝑚(𝑄,𝐺), is associatedwithpreciselyonecoloring,𝜋 ′ ∈𝐻𝑜𝑚(𝑄,𝐹 ),
based on the matched vertices’ colors, i.e. 𝜋 ′=𝜎𝑆 ◦𝜋 . We denote the

set of matches with this coloring as𝐻𝑜𝑚(𝑄,𝐺 |𝜋 ′). If we calculate
|𝐻𝑜𝑚(𝑄,𝐺 |𝜋 ′) | for each coloring, 𝜋 ′, then we can compute the total

as

∑
𝜋 ′∈𝐻𝑜𝑚 (𝑄,𝐹 ) |𝐻𝑜𝑚(𝑄,𝐺 |𝜋 ′) |. By this logic and equation 4, we

simply need to show that𝑊 (𝜋 ′)= |𝐻𝑜𝑚(𝑄,𝐺 |𝜋 ′) |.
We note that𝑄 is a acyclic and proceed inductively on the topo-

logical ordering 𝑣1, ...,𝑣 |𝑄 | . Let𝑄𝑖 be the sub-tree restricted to the

vertices 𝑣1,...,𝑣𝑖 , and let 𝜋
′
𝑖
be the coloring restricted to these vertices.

We begin with the base case,

𝑊 (𝜋 ′
1
)=𝜓 (𝜋 ′

1
(𝑣1))= |𝐻𝑜𝑚(𝑄1,𝐺 |𝜋 ′1) |

The number of matches to a vertex of a color is equal to the number

of vertices in that color, so this is immediately true. Now, suppose

that𝑊 (𝜋 ′
𝑖
) = |𝐻𝑜𝑚(𝑄𝑖 ,𝐺 |𝜋 ′𝑖 ) |, and we will show that𝑊 (𝜋 ′

𝑖+1) =
|𝐻𝑜𝑚(𝑄𝑖+1,𝐺 |𝜋 ′𝑖+1) |. We restate Eq. 4 as follows,

𝑊 (𝜋 ′𝑖+1)=𝜓 (𝜋
′
𝑖+1 (𝑣1))

∏
(𝑣𝑗 ,𝑣𝑘 ) ∈𝐸𝑄𝑖+1

𝜏 ((𝜋 ′𝑖+1 (𝑣 𝑗 ),𝜋
′
𝑖+1 (𝑣𝑘 )))

Let 𝑣 𝑗 be the parent of 𝑣𝑖+1, and we can express𝑊𝜓,𝜏 (𝜋 ′𝑖+1) induc-
tively,

𝑊 (𝜋 ′𝑖+1)=𝑊 (𝜋
′
𝑖 ) ·𝜏 ((𝜋𝑖+1 (𝑣 𝑗 ),𝜋𝑖+1 (𝑣𝑖+1)))

By our inductive assumption, this means,

𝑊 (𝜋 ′𝑖+1)= |𝐻𝑜𝑚(𝑄𝑖 ,𝐺 |𝜋 ′𝑖 ) | ·𝜏 ((𝜋𝑖+1 (𝑣 𝑗 ),𝜋𝑖+1 (𝑣𝑖+1)))

Denote the number of edges that a vertex 𝑣 ∈𝑉𝐺 has to vertices with

color𝐶 as 𝑑𝑒𝑔𝐺 (𝑣 |𝐶). Because 𝜎𝑆 is a stable coloring, we know,

𝑑𝑒𝑔𝐺 (𝑣 |𝐶)=𝑑𝑒𝑔𝐺 (𝑣 ′ |𝐶)∀𝑣,𝑣 ′ ∈𝑉𝐺𝑠 .𝑡 .𝜎𝑆 (𝑣)=𝜎𝑆 (𝑣 ′)

By the definition of 𝜏 , this degree is precisely,

𝑑𝑒𝑔𝐺 (𝑣 |𝐶)=𝜏 (𝜎𝑆 (𝑣 𝑗 ),𝐶)

Wedenote this degreewith its color as𝑑𝑒𝑔𝐺 (𝐶 |𝐶′). Returning to our
expression for𝑊𝜓,𝜏 (𝜋 ′𝑖+1),we cannowplug inourdegree expression,

𝑊 (𝜋 ′𝑖+1)= |𝐻𝑜𝑚(𝑄𝑖 ,𝐺 |𝜋 ′𝑖 ) | ·𝑑𝑒𝑔𝐺 (𝜋
′
𝑖+1 (𝑣 𝑗 ) |𝜋

′
𝑖+1 (𝑣𝑖+1))

By simply expanding |𝐻𝑜𝑚(𝑄𝑖 ,𝐺 |𝜋 ′𝑖 ) | into a sum, we get,

𝑊 𝑠𝑡𝑑 (𝜋 ′𝑖+1)=
∑︁

𝜋𝑖 ∈𝐻𝑜𝑚 (𝑄𝑖 ,𝐺 |𝜋 ′𝑖 )
𝑑𝑒𝑔𝐺 (𝜋 ′𝑖+1 (𝑣 𝑗 ) |𝜋

′
𝑖+1 (𝑣𝑖+1))

At this point, we use the fact that 𝑑𝑒𝑔(𝜋 ′
𝑖
(𝑣 𝑗 ) |𝜋 ′𝑖+1 (𝑣𝑖+1))

=𝑑𝑒𝑔(𝜋𝑖 (𝑣 𝑗 ) |𝜋 ′𝑖+1 (𝑣𝑖+1)) when 𝜎𝑆 (𝜋𝑖 (𝑣 𝑗 )) =𝜋
′
𝑖
(𝑣 𝑗 ), which is as-

sured by 𝜋 ∈𝐻𝑜𝑚(𝑄𝑖 ,𝐺 |𝜋 ′𝑖 ).

𝑊 𝑠𝑡𝑑 (𝜋 ′𝑖+1)=
∑︁

𝜋𝑖 ∈𝐻𝑜𝑚 (𝑄𝑖 ,𝐺 |𝜋 ′𝑖 )
𝑑𝑒𝑔𝐺 (𝜋𝑖 (𝑣 𝑗 ) |𝜋 ′𝑖+1 (𝑣𝑖+1))

Because𝑄 is a tree, the RHS is the target of the induction,

𝑊 𝑠𝑡𝑑 (𝜋 ′𝑖+1)= |𝐻𝑜𝑚(𝑄𝑖+1,𝐺 |𝜋 ′𝑖+1) |
□

B PROOFOF THEOREM 2

We begin by restating the theorem,

Theorem 4. Given a query graph, 𝑄 , a lifted graph, 𝐹 , and a
decomposable estimator𝑊 , Φ(𝑄,𝐹,𝑊𝜓,𝜏 ) can be computed in time
𝑂 ( |𝐶 |𝑡𝑤 (𝑄 ) ) where 𝑡𝑤 (𝑄) is the treewidth of𝑄 where Φ(𝑄,𝐹,𝑊𝜓,𝜏 )
is defined,

Φ(𝑄,𝐹,𝑊𝜓,𝜏 )=
∑︁

𝑐𝑣
1
,...,𝑐𝑣|𝑄 | ∈𝐶

𝜓 (𝑐0)
|𝐸𝑄 |∏
𝑖=1

𝜔 (𝜋𝑣𝑘→𝑐𝑣𝑘
,𝑒𝑖 |𝑒1,...,𝑒𝑖−1)

We now define tree decompositions,

Definition12. Givenagraph𝐻 , a treedecomposition𝑇 (𝐸𝑇 ,𝑉𝑇 ,𝜒,𝛾)
is composed of four pieces,

(1) 𝐸𝑇 ,𝑉𝑇 are the edges and vertices of a tree
(2) 𝜒 :𝑉𝑇 →2

𝑉𝐻 is a function which maps vertices in the tree to
sets of vertices in𝐻

(3) 𝛾 :𝑉𝑇 → 2
𝐸𝐻 is a function which maps vertices in the tree to

sets of edges in𝐻
Lastly, it has two requirements,

(1) For all 𝑣 ∈𝑉𝐻 , the set of vertices in𝑉𝑇 that contain 𝑣 form a
connected sub-tree

(2) Each edge in 𝐸𝐻 is mapped to exactly one vertex of𝑉𝑇 by 𝛾
and the vertex of𝑉𝑇 which it is mapped to includes both the
endpoints

The treewidth is then defined as follows,

Definition 13. Given a graph𝐻 , let the set of valid tree decom-
positions be T𝐻 . The treewidth is then defined as,

min

𝑇 ∈T𝐻
max

𝑣∈𝑉𝑇
|𝜒 (𝑣) |−1

Intuitively,graphs thatare "moreacyclic"willhavea lower treewidth

and graphs that are "more cyclic" have a higher treewidth.

Proof. For this problem,we can take advantage of tree decompo-

sitions by using them to structure the summation in (8). Suppose that

the treewidth of𝑄 is 𝑘 and let𝑇 (𝐸𝑇 ,𝑉𝑇 ,𝜒) be a tree decomposition

whichmatches thiswidth.Toavoidconfusion,wewilldenotevertices

of𝑇 as 𝑣 ′
𝑖
and vertices of𝑄 as 𝑣𝑖 . Further, let 𝑣

′
1
,···,𝑣 ′|𝑉𝑇 | be a topologi-

cal ordering of𝑇 where 𝑣 ′
1
is the root of the tree, and let 𝑣1,···,𝑣 |𝑉𝑄 | be

an ordering of𝑄 such that the sub-tree corresponding to 𝑣𝑖 is not a

sub-tree of 𝑣>𝑖 . Let𝑃𝑎𝑟 (𝑣 ′) denote the parent of 𝑣 ′ in𝑇 and let𝐶ℎ(𝑣 ′)
be the set of child vertices of 𝑣 ′ in𝑇 . Lastly,we denote the set of query
verticeswhich associatedwith 𝑣 ′|𝑉𝑇 | and not its parent asX𝑖 = 𝜒 (𝑣 ′

𝑖
)\

𝜒 (𝑃𝑎𝑟 (𝑣 ′
𝑖
)).We denote the set of query verticeswhich are associated

with 𝑣 ′|𝑉𝑇 | AND its parent as Y |𝑉𝑇 | = 𝜒 (𝑣 ′|𝑉𝑇 | )∩𝜒 (𝑃𝑎𝑟 (𝑣
′
|𝑉𝑇 | )).
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Wewill proceed iteratively on these vertices starting with 𝑣 ′|𝑉𝑇 |
and proceeding backwards towards the root.

Base Case: Our base case is 𝑣 ′|𝑉𝑇 | which is necessarily a leaf of
the true due to the topological ordering.We denote the output of the

base case as the function 𝑆 |𝑉𝑇 | (𝑐𝑦1 ,...,𝑐𝑦𝑚 ) and define it as follows,

𝑆 |𝑉𝑇 | (𝑐𝑦1 ,...,𝑐𝑦𝑚 )=
∑︁

𝑐𝑥
1
,...,𝑐𝑥𝑛 ∈𝐶

∏
𝑒𝑖 ∈𝛾 (𝑣′|𝑉𝑇 | )

𝜔 (𝜋𝑥 𝑗→𝑐𝑥𝑗
,𝑒𝑖 |𝑒1,...,𝑒𝑖−1)

At this point of the computation, we will fully materialize the values

of the function 𝑆 |𝑉𝑇 | which has a domain of size |𝐶 | |𝑌|𝑉𝑇 | | and each
point requires computing a summation of |𝐶 | |𝑋 |𝑉𝑇 | | terms. Therefore,

the entire computation requires |𝐶 | |𝜒 (𝑣
′
|𝑉𝑇 |
) | ≤ |𝐶 |𝑘 time.

Inductive Case: Suppose that all vertices 𝑣 ′
𝑗
where 𝑗 > 𝑖 have

already been processed, we now consider handling 𝑣 ′
𝑖
. The output

of this step is defined as,

𝑆𝑖 (𝑐𝑌𝑣′
𝑖
,1
,...,𝑐𝑌𝑣′

𝑖
,𝑚
)=

∑︁
𝑐𝑋

𝑣′
𝑖
,1
,...,𝑐𝑋

𝑣′
𝑖
,𝑛
∈𝐶

∏
𝑒𝑖 ∈𝛾 (𝑣′𝑖 )

𝜔 (𝜋𝑋𝑣′
𝑖
,𝑗→𝑐𝑋

𝑣′
𝑖
,𝑗
,𝑒𝑖 |𝑒1,...,𝑒𝑖−1)·

∏
𝑣′
𝑗
∈𝐶ℎ (𝑣′

𝑖
)
𝑆𝑣′

𝑗
(𝑐𝑌𝑣′

𝑗
,1
,...,𝑐𝑌𝑣′

𝑗
,𝑚
)

As in the base case, the computation required to fully materialize

the values of 𝑆𝑖 is bounded by |𝐶 |
|𝜒 (𝑣′|𝑉𝑇 | ) | ≤ |𝐶 |𝑘 .

At thispoint,we justneedtoconfirmthat𝑆1 is equal toΦ(𝑄,𝐹,𝑊𝜓,𝜏 )
by showing that the sequence of computations represents a valid

rearrangement of the sums of the original formula. To this end, we

note that every query vertex appears in the summation of precisely

one inductive step. This is due to the fact that each query vertex

forms a sub-tree in the tree decomposition, so the root of that sub-

tree is the only tree vertex which contains it and whose parent does

not. Further, each instance of 𝜔 (𝜋𝑋𝑣′
𝑖
,𝑗→𝑐𝑋

𝑣′
𝑖
,𝑗
,𝑒𝑖 |𝑒1,...,𝑒𝑖−1) occurs

precisely once because of the requirement that each edge of the

query graph occurs in one vertex of the tree decomposition.

□
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