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Abstract—Automated deception detection is crucial for assisting humans in accurately assessing truthfulness and identifying
deceptive behavior. Conventional contact-based techniques, like polygraph devices, rely on physiological signals to determine the
authenticity of an individual’s statements. Nevertheless, recent developments in automated deception detection have demonstrated
that multimodal features derived from both audio and video modalities may outperform human observers on publicly available datasets.
Despite these positive findings, the generalizability of existing audio-visual deception detection approaches across different scenarios
remains largely unexplored. To close this gap, we present the first cross-domain audio-visual deception detection benchmark, that
enables us to assess how well these methods generalize for use in real-world scenarios. We used widely adopted audio and visual
features and different architectures for benchmarking, comparing single-to-single and multi-to-single domain generalization
performance. To further exploit the impacts using data from multiple source domains for training, we investigate three types of domain
sampling strategies, including domain-simultaneous, domain-alternating, and domain-by-domain for multi-to-single domain
generalization evaluation. Furthermore, we proposed the Attention-Mixer fusion method to improve performance, and we believe that
this new cross-domain benchmark will facilitate future research in audio-visual deception detection. Protocols and source code are
available at https://github.com/Redaimao/cross domain DD.

Index Terms—audio-visual, multimodal deception detection, cross-domain, generalization.
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1 INTRODUCTION

AUDIO-visual deception detection involves utilizing AI
techniques and algorithms to automatically detect de-

ceptive behavior in speech and facial movements [5], [6],
[7], [8]. Deception detection has a significant impact on
various real-world applications such as law enforcement [9],
healthcare [10], and business [11]. It has the potential to
prevent fraud, improve security measures, and enhance
trust and confidence. A reliable deception detection tool can
support more accurate decision-makings.

Traditional deception detection is often a contact-based
method. It assesses whether someone is telling the truth or
not by monitoring physiological responses like skin conduc-
tance and heart rate [12]. Experts’ Behavioral observation
and analysis are another technique that evaluates changes
in a person’s body language, speech patterns, and eye
movements [13], [14]. However, such an assessment can be
time-consuming and require significant expertise to perform
accurately.

Recently, the development of automated deception de-
tection systems using AI and machine learning techniques
has gained significant attention as the existing methods have
limitations in terms of reliability, accuracy, and scalability.
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Fig. 1: Typical samples from different publicly deception
detection datasets: Real Life Trials [1], Bag of Lies [2],
MU3D [3], and Box of Lies [4]. The samples in each row
are from different datasets while those in each column are
with different modalities (visual vs. audio) and ground
truth labels (i.e., truthful vs. deceptive). It can be seen that
serious domain shifts (e.g., resolution/illumination/pose
in visual faces and pitch/loudness/noise in audio) occur
among these datasets.

Various multimodal datasets have been introduced, includ-
ing real-life trials from court scenes [1], lab-based setups [2],
[3], and game show scenarios [4]. These datasets provide a
wide variety of deceptive samples from different domains,
enabling researchers to examine the effectiveness of AI
models on deception detection. Based on these datasets,
progress has been made in deception detection techniques

ar
X

iv
:2

40
5.

06
99

5v
1 

 [
cs

.S
D

] 
 1

1 
M

ay
 2

02
4

https://github.com/Redaimao/cross_domain_DD


IEEE TRANSACTIONS ON AFFECTIVE COMPUTING 2

within specific domains [6], [7], [15]. Recent studies have
utilized rich visual and audio features [16], [17], [18], such as
Mel Spectrogram, emotional states, and facial action units,
to enhance the performance of deception detection tasks.

However, there remains a substantial research gap that
needs to be addressed. Specifically, fewer studies have
explored the cross-domain issue, despite the presence of
significant domain shifts in public deception detection
datasets. As shown in Figure 1, domain shifts are observed
in both audio and visual modalities from publicly available
datasets. The generalizability of the models is critical for
practical applications. Therefore, such domain shifts need
to be investigated in order to develop deception detection
models that can be generalized across different contexts.
Additionally, effective methods must be proposed to alle-
viate the domain shift issue by fusing both audio and visual
features in a meaningful way. Addressing these issues can
benefit automated deception detection systems in improv-
ing generalizability in real-world applications.

To address the issue of cross-domain deception detec-
tion, we introduce a new benchmark that evaluates the
generalization capacity of AI models using audio and visual
features over publicly available datasets. Our benchmarking
approach utilizes widely adopted audio and visual features,
and we compare the single-to-single domain performance
and multi-to-single domain generalization using different
architectures. Specifically, for the multi-to-single setting,
three domain sampling strategies, i.e., domain simultane-
ous, domain alternating, and domain-by-domain, are imple-
mented to conduct cross-domain testing. To further enhance
performance, we propose an Attention-Mixer fusion method
based on MLP-Mixer [19]. This benchmarking framework
serves as an important tool for evaluating the effectiveness
of audio-visual deception detection models in diverse con-
texts, which will help improve the capabilities of automated
deception detection systems in real-world settings. Addi-
tionally, we hope our work will inspire further research
on multimodal models that address domain shift issues. In
summary, our main contributions include:

• Introducing a new benchmark for evaluating the
generalization capacity of AI models using audio and
visual features across different domains.

• Comparing the single-to-single domain and multi-to-
single domain generalization using different archi-
tectures.

• Providing three domain sampling strategies i.e.,
domain simultaneous, domain alternating, and
domain-by-domain, to conduct multi-to-single cross-
domain testing.

• Proposing the Attention-Mixer fusion method to en-
hance performance.

In the rest of the paper, Sec. 2 provides a review of related
psychological studies on cues to deception and multimodal
deception detection works. Sec. 3 introduces our bench-
marking approach and fusion method. Sec. 4 provides the
cross-domain benchmark results and fusion results. Finally,
conclusions and future works are given in Sec. 5.

2 RELATED WORK

2.1 Cues to Deception

The research on using behavioral cues for deception has
gradually become active over the past few decades. Psycho-
logical researchers have published a large number of works
on the analysis of cues to deception [20], [21], [22]. Among
the studied behavioral cues, verbal and nonverbal cues
were preferred as humans may behave differently between
lying and telling the truth. DePaulo et al. [23] studied and
reported experimental results on 158 cues to deception.
They revealed that, in general, people who tell lies are less
forthcoming and less convincing than those who tell the
truth. Liars usually talk about fewer details and make fewer
spontaneous corrections. They also sound less involved but
more vocally tense. Through the study, the researchers sta-
tistically found that liars often press their lips, repeat words,
raise their chins, and show less genuine smiles. The results
show that some behavioral cues do potentially appear in
deception and are even more pronounced when liars are
more motivated to cheat.

Levine et al. [24] reviewed the status quo and pro-
vided a new perspective on the theories of deception. They
pointed out that lying usually happens when problematic
information is involved. It is critical to understand the
verbal content in the context. Vrij et al. [25] realized that
interviewers play a vital role in eliciting and enhancing
cues to deceit. The authors proposed the “interviewing to
detect deception” technique to open a new path in the
deception detection research field. They argued that dif-
ferent psychological states can be exploited by adopting
appropriate interview techniques of liars and truth-tellers.
Hirschberg et al. [26] proposed a method to distinguish
deceptive from non-deceptive speeches by a large corpus.
They also conducted experiments using acoustic, lexical,
and speaker-dependent features, which showed improved
performance by combining multiple feature sets. Warren et
al. [27] conducted experiments to investigate the relation-
ship between affective facial expressions to deception. The
results indicated that leaked emotions with the incongruous
intended message can provide useful cues to deception,
which supported the nonverbal leakage theory [28], [29].

2.2 Multimodal Deception Detection

Recent works for deception detection usually use verbal
and non-verbal features and propose effective fusion meth-
ods [15], [16], [17], [30]. For example, some works utilized
facial features from RGB images to perform deception de-
tection [5], [15], [17]. To capture facial movements, facial
action units (AUs) were utilized. Other features, such as
facial expression, were also adopted [6], [30]. Besides vi-
sual features, many works incorporated audio features to
boost performance [6], [7], [15]. For example, Wu et al. [6]
used MFCC (Mel-frequency Cepstral Coefficients) features
and Karimi et al. [15] used raw audio. Most of the recent
works mentioned above have considered multimodal fusion
approaches that extract visual, audio, and text information
to boost performance. In addtion to visual, audio and text,
Karnati et al. [16] exploited physiological signals, i.e., EEG
representations for deception detection.
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Fig. 2: Main network and method. (a) Model architecture. Visual modality includes face and behavior inputs. Audio
modality includes Mel Spectrogram input. The features obtained by the respective encoders. The fusion methods include
score fusion and feature fusion. (b) Domain sampling strategies. Domain-simultaneous: each batch consists of samples from
multiple sources. Domain-alternating: each batch is alternatively sampled from multiple sources. Domain-by-domain: the
batches are sampled from one source and then from another.

To better fuse the multimodal features, different fusion
methods were proposed, which can be broadly categorized
into feature-level fusion and decision-level fusion. Specifi-
cally, feature-level fusion focused on producing better mul-
timodal embeddings and used the linear layers to extract
crossmodal dynamics [5], [6], [7], [15], [17]. Rather than that,
decision-level fusion aimed to fuse multimodal dynamics at
a late stage, to reduce computational complexity and learn
good marginal representations [7], [16].

However, previous works on multimodal deception de-
tection did not consider cross-domain issues that occur from
one domain to another, which is the focus of this work.

3 METHODOLOGY

The mainstream architecture for audio-visual deception
detection usually includes encoders for unimodal feature
extraction and/or a fusion module. We follow the widely
adopted architecture to build the benchmark on cross-
domain audio-visual deception detection in this work. As
shown in Fig. 2, audio and visual features are extracted from
audio and visual encoders. The fusion module is performed
based on audio and visual features. The fused feature
is input to the classifier for classification. We build the
benchmark for cross-domain generalization performance
based on such network architecture with different encoders.
We conducted single-to-single and multi-to-single evalua-
tions where three domain sampling strategies included, i.e.,
domain-simultaneous, domain-alternating, and domain-by-
domain.

3.1 Audio and Visual Feature Learning
To establish a benchmark for cross-domain audio-visual
deception detection, we utilize widely adopted audio and

visual features along with their respective encoders. Our
approach treats audio and visual features as equally impor-
tant, extracting different types of features simultaneously.
As depicted in Fig. 1, this network structure offers several
advantages: (1) flexibility in network selection: different
audio or visual encoders can be effortlessly incorporated
and compared in a fair manner, (2) adaptability: the addition
or removal of specific modules and/or losses is straight-
forward. For instance, a fusion module can be inserted
before classifiers, and (3) easy performance benchmarking:
the system facilitates evaluating performance in various
settings, such as score-level fusion and feature-level fusion.
In this work, we focus on audio and visual modalities for
deception detection. In particular, two kinds of visual fea-
tures are extracted, i.e., face features from RGB face images
and behavior features consist of AUs, affects, etc.

As shown in Fig. 1, given a detected RGB face image
as input Xf , the deep features Ff could be extracted via
face encoder networks Ef (e.g., ResNet18 [31]). Similarly,
behavior inputs such as the AU and/or affect features Xb

are encoded by OpenFace [32] or affect model (e.g., Emo-
tionNet [33]) Eb to output behavior features Fb. Note that we
regard both face frames and behavior features as the visual
modality but differentiate them in this work as they have
different types of information and representations. Given
audio input Xa (either Mel Spectrogram [34] or waveforms),
audio features Fa are extracted through audio encoder Ea.
The corresponding classification heads for face frames (Hf ),
behavior features (Hb), and audio features (Ha) output the
prediction logits Ŷf , Ŷb, and Ŷa, respectively. The fusion
head G takes Ff , Fb, and Fa as input. G is determined by the
actual fusion method, e.g., liner layer, transformer layers,
MLP, etc. The output logit of G is denoted by Ŷg . Therefore,
the audio and visual learning process can be denoted as
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follows:

Ff = Ef (Xf ), Ŷf = Hf (Ff ),

Fb = Eb(Xb), Ŷb = Hb(Fb),

Fa = Ea(Xa), Ŷa = Ha(Fa),

Ŷg = G(Ff , Fb, Fa).

(1)

Loss Function. For deception detection ground truth
Y , where Y = 0 for truthful and Y = 1 for deception, the
binary cross-entropy loss (BCE) is adopted. The loss for each
sample with a certain modality or fused prediction can be
denoted as

Lm = −(Y log(Ŷm) + (1− Y )log(1− Ŷm)), (2)

where m ∈ {f, b, a, g}, Ŷm is the corresponding prediction
logits. In other words, the BCE loss is calculated separately
for each type of modality and/or its fused feature depend-
ing on whether a sample has any face frames, visual inputs,
or audio inputs. The overall loss function can be described
as follows:

L =
1

N

N∑
i=i

 ∑
m=f,b,a

Lm,i + λLg,i

 , (3)

where N is the number of data samples and λ is a trade-off
parameter between modality loss and fusion loss. λ is set to
0.5 in our experiments.

3.2 Cross-domain Generalization

We benchmark the cross-domain generalization on the de-
ception detection task. First, we introduce the notations
and definitions in this section. A domain is composed
of data that are sampled from a distribution (dataset),
which can be denoted as S = {(X;Y )i}Ni=1 ∼ PS , where
X = (Xf , Xb, Xa), Xf , Xb, Xa represent samples of face
frames, behavior, and audio modalities, respectively. Y
denotes the label, and PS denotes the joint distribution
of the input samples and the output label. In this pa-
per, for simplicity, we follow similar definitions in [35],
[36] to treat each dataset as an individual domain due
to their obvious distribution gaps, but more fine-grained
intra-domain factors would be explored in future work.
For domain generalization, M source domains (training
datasets) are given, i.e., Strain = {Sj |j = 1, · · · ,M}, where
Sj = {(X;Y )i}

Nj

i=1 ∼ PSj
denotes the j-th domain, and

PSi
̸= PSj

for 1 ≤ i, j ≤ M . Nj is the number of total
samples in Sj . The goal of domain generalization is to learn
the predictive function h in M source domains to achieve
minimum error on an unseen test domain Stest ∼ PStest

,
and PStest

̸= PSj
for 1 ≤ j ≤ M :

min E(X;Y )∈Stest
[L(h(X), Y )] , (4)

where X = (Xf , Xb, Xa), Y is the label, L is the loss
function, and E is the expectation.

When M = 1, it is a Single-to-single Cross-domain Gen-
eralization task, where the modal is trained on one training
dataset and tested on another dataset. When M ⩾ 2, we
propose three strategies to learn from multiple domains for
the Multi-to-single Cross-domain Generalization. Let B denote
one batch of training data with a size of NB . Given multiple

training domains Strain = {Sj |j = 1, · · · ,M}, B is a set of
training data sampled from Strain.
Domain-Simultaneous means to train multiple domains
in parallel within each batch of data. In domain simultane-
ous training, the k−th batch of training data is a group of
samples from different domains, i.e., Bk = (bkS1

, · · · , bkSM
),

k ∈ [1, · · ·K], where bkSj
is the batch samples from domain

Sj for j = 1, · · · ,M , K is the number of batches during
training. The total number of bkSj

is NB . As shown in Fig. 2
(b), each training batch contains smaller batch samples from
all the source domains during training. Models are trained
to learn from different domains simultaneously by feeding
the mixed batch data.
Domain-Alternating is different from domain simulta-
neous strategy in terms of batch samples. In domain-
alternating, Bk = bkSj

for j = k − ⌊ (k−1)
M ⌋ ·M , where ⌊·⌋

is the flooring operator. The number of bkSj
is NB . Fig. 2

(b) shows that the consecutive batch samples come from
different domains.
Domain-by-Domain aims to train the model by feeding
data from source domain data one by one. Bk = bkSj

for ⌈
∑i=j−1

i=0 Ni

NB
⌉ ⩽ k ⩽ ⌈

∑i=j
i=0 Ni

NB
⌉, N0 = 0, where ⌈·⌉ is

the ceiling operator. The number of bkSj
is NB . As shown

in Fig. 2, the batch data samples from one domain after
finishing sampling from its previous domains.

3.3 Attention-Mixer Fusion
Besides investigating cross-domain sampling strategies, in-
spired by [19], we propose Attention-Mixer Fusion to enhance
the performance by fusing audio-visual modalities, where
the attention mixer layer takes multimodal features as input
to produce fused features. In particular, an attention mixer
layer is composed of unimodal MLP layers, self-attention
layers [37], and crossmodal MLP layers. First, for batch
size NB , the input features from different modalities are
concatenated and projected to be a tensor U ∈ RNB×Nm×D

by a Liner layer, followed by several attention mixer layers,
where Nm is the number of input modalities. Specifically,
the unimodal MLP layer, the self-attention layer, and the
crossmodal MLP layer can be respectively described as

U∗,∗,i = F ∗,∗,i
g +W2 σ(W1 LN(F ∗,∗,i

g )), i = [1, D] , (5)

U =

[(
softmax

(
UW3(UW4)T√

D

)
UW5

)
h

]
W6, h = [1, H], (6)

U∗,j,∗ = U∗,j,∗ +W8 σ(W7 LN(U∗,j,∗)), j = [1, Nm] , (7)

where LN(·) denotes the Layer Normalization, W1−8 are
trainable weights, H is the number of heads in multihead
self-attention, and ∗ denotes all the entries in that dimen-
sion. Several attention mixer layers are stacked as a deep
block, which is set as a hyperparameter in practice. We
set it to 6 in our experiment. Finally, U ∈ RNB×Nm×D is
reduced to U ∈ RNB×Nm×1 by obtaining the mean value
on the feature dimension. In Eq. 5, the unimodal MLP
layer is conducted along the feature dimension to learn the
dynamics in each unimodal feature. Eq. 6 shows the multi-
head self-attention operation on the tensor U , which further
explores the attention between the unimodal features. In
Eq. 7, the crossmodal MLP layer learns the dynamics across
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the modality dimension from the corresponding feature
tokens.

4 EXPERIMENTS

In this part, extensive experiments are conducted to bench-
mark the cross-domain performances on public deception
detection datasets. In the following, we sequentially de-
scribe the benchmark datasets & metrics (Sec. 4.1), imple-
mentation details (Sec. 4.2), benchmarking results (Sec. 4.3 -
4.4) and fusion performances (Sec. 4.5).

4.1 Databases and Metrics

Datasets. We benchmarked the cross-domain generaliza-
tion performance based on four publicly available datasets.
Real Life Trials [1] dataset is a popular real-world dataset
collected from public court trials, which consists of 121
videos including 61 deceptive and 60 truthful video clips.
As it is a real-world dataset, the Real Life trial dataset has
more noise on both the video and audio. We filtered out
some corrupted videos and obtained 108 videos (54 truthful
and 54 deceptive) with 58 subjects for our experiments. Bag
of Lies [2] is a multimodal dataset collected from well-
controlled lab-based scenarios, where video, audio, EEG,
and gaze data are collected. It has 35 subjects, 163 truthful
and 162 deceptive video clips. The backgrounds for the
videos are relatively clean and it is less noisy. MU3D [3] has
320 video clips and 80 subjects that cover different races and
genders. It is also a lab-based dataset that uses the personal
description paradigm to stimuli real-world cases. Each par-
ticipant tells a positive truth, a positive lie, a negative truth,
and a negative lie. Box of Lies [4] is a deception dataset
collected from an online gameshow, which has 25 videos
and 26 participants (6 male and 20 female). The full video
set contains 29 truthful and 36 deceptive rounds of games.
However, the quality of the original Box of Lies dataset is
not satisfactory. The visual (the face of the participant) and
audio from many clips are not matching due to the frequent
changes of viewpoints. To perform a fair comparison, we
preprocessed and cleaned the Box of Lies dataset. After
preprocessing, 101 video clips were extracted for testing.
Some of the typical samples from these datasets are shown
in Fig. 1.

Evaluation Metrics. In this work, we followed the widely
adopted metric, binary classification accuracy (%), for ex-
perimental evaluation. The deceptive clips were labeled as
1 and truthful clips were labeled as 0.

4.2 Implementation Details

Feature Extraction. Several widely-adopted audio and vi-
sual features were extracted by different tools. For visual
features, OpenFace [32] was used to extract 35-dimensional
AUs and 8-dimensional gaze features. Face frames were
extracted and aligned by MTCNN [39], where we uniformly
sampled 64 face frames for each video clip. Affect features
were extracted by Emonet [33], where the feature included
5-class emotions, arousal, and valence. For audio features,
Mel Spectrograms were extracted by OpenSmile toolkit [34].
Raw audio waveforms were also used in our experiments.

Protocols. Inspired by [35], [36], we treated each dataset
as a domain. To evaluate the models’ cross-domain general-
ization capacity and alleviate domain information leakage,
all the preprocessed data including original training and
test data from each dataset was used for either training or
testing. Note that the Box of Lies dataset was only used
for testing as many samples were filtered out due to their
unsatisfactory quality. The experiments were conducted on
the single-to-single domain (e.g., R to B1 stands for training
on Real-life Trial (R) and testing on Bag of Lies (B1)) and
multi-to-single domain (e.g., R&M to B2 stands for training
on Real-life Trial (R) and MU3D (M) and testing on Box of
Lies (B2)).
Model Selection. Models for audio and visual modalities
were selected to fit the data volume. For face frames, we
adopted ResNet18 [31] and Gate Recurrent Unit (GRU) [40]
models for facial feature extraction and temporal modeling,
respectively. Two-layer multilayer perception (MLP) [41]
models were used for AUs, gaze, and affect feature repre-
sentation. For the audio-based Mel spectrogram, we used
the ResNet18 [31] model for time-frequency feature repre-
sentation. For audio waveforms, the Wave2Vec [42] model
was applied for audio feature extraction.
Experimental Setting. Our proposed method was imple-
mented with Pytorch. The ImageNet pretrained models
(e.g., ResNet18) for classification were trained on the bench-
mark datasets using SGD optimizer with the initial learning
rate (lr), momentum, and weight decay (wd) were 1e-3, 0.9,
and 5e-5, respectively. We trained models with a maximum
of 30 epochs and batchsize 32 on a single Nvidia V100 GPU.
As for the fusion models (e.g., Atten-Mixer on face frames
and Mel Spectrogram), Adam optimizer with initial lr=1e-
3 and wd=5e-5 was used. The models were trained with
batchsize 16 for a maximum of 30 epochs.

4.3 Cross-domain Testing with Unimodal Features
In this subsection, we present the benchmark results of
cross-domain testing by investigating unimodal features to
evaluate their generalization capacities. For clarity, we use
“visual (face frames)” to indicate face inputs and “visual
(AU/gaze/affect)” to indicate behavior inputs.
Single-to-Single Domain. Specifically, the models were
trained on one dataset from one domain and tested on
the other dataset from another domain. The experiments
were conducted on the four public datasets, Real-life Trial
(R), Bag of Lies (B1), Box of Lies (B2), and MU3D (M). As
shown in Tabel 1, for visual modalities, we extracted the
most adopted visual features including face frames, and
behavior features such as AUs, gaze and affect. For audio
modality, Mel spectrogram and waveform were extracted.
We also applied several different backbone networks as
audio and visual encoders. We can observe that R and B1
datasets generalized the best on B2, and M generalized the
best on R. Note that the B2 dataset was not adopted as a
source domain dataset as the original dataset had too much
noise and we cleaned it only for testing. On average, we can
observe that the best result was achieved by using visual
(AU+gaze+affect) features.
Multi-to-Single Domain. Here we fully evaluate the per-
formance of multi-to-single cross-domain generalization us-
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TABLE 1: The results of single-to-single cross-domain generalization accuracy (%) on benchmark datasets, Real-life Trial
(R), Bag of Lies (B1), Box of Lies (B2), and MU3D (M).

Modality & Inputs Method R to B1 R to B2 R to M B1 to R B1 to B2 B1 to M M to R M to B1 M to B2 Avg
Visual (AU) LSTM [38] 48.11 - - 61.21 - - - - - -

Visual (Face frames) ResNet18 52.00 61.39 51.25 50.93 57.43 50.62 57.94 51.69 57.43 54.52
Visual (Face frames) ResNet18+GRU 53.54 63.37 52.81 57.41 59.41 51.56 46.73 52.92 55.45 54.80
Visual (AU+Gaze) MLP 50.77 65.35 56.87 58.88 58.42 50.94 46.73 51.69 53.47 54.79

Visual (Affect) MLP 50.46 58.42 50.31 50.47 51.49 52.19 66.36 51.08 60.40 54.58
Visual (AU+Gaze+Affect) MLP 54.46 59.41 54.37 50.47 57.43 54.69 60.75 51.69 55.45 55.41
Audio (Mel spectrogram) ResNet18 46.77 53.47 52.19 50.47 66.34 50.62 54.21 51.38 55.45 53.43

Audio (Waveform) Wave2Vec 51.08 48.51 50.94 46.73 58.42 50.00 63.55 56.31 56.44 53.55

TABLE 2: The results of multi-to-single cross-domain generalization accuracy (%) on benchmark datasets, Real-life Trial
(R), Bag of Lies (B1), Box of Lies (B2), and MU3D (M), for different generalization strategies.

Modality & Inputs Method R&M to B1 R&M to B2 R&B1 to B2 R&B1 to M B1&M to R B1&M to B2 R&B1&M to B2 Avg
Domain-Simultaneous

Visual (Face frames) ResNet18 53.85 49.50 49.50 50.94 44.86 60.40 44.55 50.51
Visual (Face frames) ResNet18+GRU 52.62 54.46 51.49 51.88 53.27 59.41 44.55 52.53
Visual (AU+Gaze) MLP 53.54 47.52 48.51 50.94 52.34 53.47 56.44 51.82

Visual (Affect) MLP 50.15 54.46 55.45 52.19 53.27 57.43 62.38 55.04
Visual (AU+Gaze+Affect) MLP 50.46 52.48 61.39 51.25 51.4 60.4 63.37 55.82
Audio (Mel spectrogram) ResNet18 48.92 45.54 53.47 53.12 43.93 62.38 50.5 51.12

Audio (Waveform) Wave2Vec 52.92 55.45 44.55 51.25 69.16 42.57 46.53 51.78
Domain-Alternating

Visual (Face frames) ResNet18 50.15 45.54 56.44 51.56 50.47 54.46 65.85 53.50
Visual (Face frames) ResNet18+GRU 55.38 52.48 60.40 50.00 50.47 60.40 64.62 56.25
Visual (AU+Gaze) MLP 55.45 47.52 53.47 51.25 54.21 57.43 60.40 54.25

Visual (Affect) MLP 51.08 56.44 61.39 52.19 52.34 58.42 53.47 55.05
Visual (AU+Gaze+Affect) MLP 51.38 58.42 63.37 50.31 53.27 52.48 60.40 55.66
Audio (Mel spectrogram) ResNet18 50.15 60.40 53.47 50.31 58.88 51.49 47.52 53.17

Audio (Waveform) Wave2Vec 52.92 55.45 44.55 50.62 64.49 58.42 48.51 53.57
Domain-by-Domain

Visual (Face frames) ResNet18 52.00 53.47 56.44 50.00 59.81 41.58 55.45 52.68
Visual (Face frames) ResNet18+GRU 54.46 41.58 66.34 50.62 51.40 56.44 60.40 54.46
Visual (AU+Gaze) MLP 51.08 43.56 55.45 53.75 57.01 53.47 54.46 52.68

Visual (Affect) MLP 55.69 57.43 57.43 51.56 52.34 49.50 61.39 55.05
Visual (AU+Gaze+Affect) MLP 50.15 56.44 58.42 50.00 57.94 60.40 63.37 56.67
Audio (Mel spectrogram) ResNet18 52.31 50.50 58.42 49.38 53.27 56.44 59.41 54.24

Audio (Waveform) Wave2Vec 56.00 47.52 44.55 53.12 67.29 57.43 58.42 54.90

ing unimodal features. We conducted experiments for dif-
ferent domain sampling strategies. As shown in Table 2,
for domain-simultaneous training, the best generalization
performance is achieved by training on the Bag of Lies and
MU3D datasets and testing on the Real-life Trial dataset
(69.16%), which was also the case for domain-by-domain
training strategy (67.29%). For the domain-alternating strat-
egy, the best result was observed when transferring to the
Box of Lies dataset using the rest three datasets for training
(65.85%). The results showed that the best generalization
performances were obtained when transferring to the real-
world dataset and the gameshow dataset by training on the
lab-based datasets. This was because the lab-based datasets
(Bag of Lies and MU3D) are relatively clean compared to
the real-world dataset (Real-life Trial) and the gameshow
dataset (Box of Lies). However, in the opposite case, the
generalization performance degraded, for example, R&M
to B1 and R&B1 to M. Different domain sampling strate-
gies reached their best average performance on different
input features and backbone networks. To be specific, for
both domain-simultaneous and domain-by-domain strate-
gies, models trained on visual (AU+gaze+affect) features
reached their highest accuracies, which were 55.82% and
56.67%, respectively. Using the domain-alternating strategy,
the best accuracy of 56.25% was achieved by training on
visual (face frames) features. We can observe that models
trained on visual modalities outperformed those trained on
audio modalities across all the generalization strategies. This

may be due to the rich deceptive cues captured by visual
modalities in the publicly available datasets.

4.4 Domain-Simultaneous with Gradient Reversal
Layer (GRL)
Following the implementation by Ganin et al. [43], we com-
pared the multi-to-single domain generalization accuracies
w/w.o GRL. GRL was proposed to mitigate the domain
shift issue by manipulating the training gradients. It worked
by acting as an identity transform in forward propagation
and multiplying the gradient by a certain negative con-
stant during the backpropagation without having trainable
parameters. GRL was inserted between encoders and do-
main classifiers, which was easy to implement. As GRL
is a widely adopted method for domain generalization, it
is investigated to show its effectiveness for the deception
detection task. We selected domain-simultaneous as the
baseline and added GRL to the original network with the
same training setups. The average accuracies were reported
in Fig. 3, where different types of visual and audio fea-
tures and methods were compared. Training with GRL,
the performance of ResNet18 and ResNet18+GRU models
using visual (face frames) features and Wave2Vec model
using waveform were enhanced. However, we observed
that MLP models using visual (AU/gaze/affect) features
and the ResNet18 model using Mel spectrograms degraded
in performance. Generally, ResNet18 trained with GRL per-
formed better than MLP for visual modality, and Wave2Vec
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TABLE 3: The fusion results of single-to-single cross-domain generalization accuracy (%).

Modality & Inputs Fusion Postion Fusion Method R to B1 R to B2 R to M B1 to R B1 to B2 B1 to M M to R M to B1 M to B2 Avg
Score-level Average 53.23 41.58 51.88 64.49 62.38 50.62 57.94 53.23 62.38 55.30

Concat 51.08 55.45 51.88 54.21 58.42 51.25 57.01 50.15 61.39 54.54
SE-Concat 53.85 60.40 51.25 55.14 58.42 50.62 56.07 51.38 65.35 55.83

Cross-Atten 55.38 61.39 52.19 51.40 60.40 51.25 55.14 56.31 60.40 55.98
MLP-Mixer 55.08 48.51 53.44 56.07 58.42 53.75 55.14 59.08 59.41 55.43

Visual (Face frames)
+

Visual (AU+Gaze+Affect) Feature-level

Atten-Mixer(Ours) 56.92 59.41 57.94 63.37 53.75 53.75 60.75 56.00 61.39 58.14
Score-level Average 53.23 49.50 51.88 50.47 59.41 53.75 65.42 56.31 49.50 54.39

Concat 50.77 53.47 50.47 62.38 51.56 51.88 54.21 52.62 58.42 53.98
SE-Concat 50.15 44.55 51.40 61.39 53.12 52.50 65.42 56.31 66.34 55.69

Cross-Atten 54.46 51.49 55.14 58.42 51.25 52.19 63.55 56.62 66.34 55.95
MLP-Mixer 52.31 55.45 57.94 63.37 53.12 51.25 64.49 57.85 62.38 57.57

Visual (Face frames)
+

Audio (Mel spectrogram) Feature-level

Atten-Mixer(Ours) 57.54 55.45 56.07 61.39 50.94 53.12 67.29 57.85 64.36 58.22
Score-level Average 49.85 58.42 54.06 45.79 60.40 50.62 49.53 56.00 63.37 54.23

Concat 49.54 53.47 47.66 61.39 53.44 51.88 57.01 50.15 58.42 53.66
SE-Concat 50.15 48.51 55.14 60.40 53.12 50.00 57.01 49.85 63.37 54.17

Cross-Atten 53.23 44.55 57.94 55.45 54.69 54.06 63.55 51.69 64.36 55.50
MLP-Mixer 49.54 57.43 50.47 63.37 54.06 53.12 59.81 55.08 69.31 56.91

Visual (AU+Gaze+Affect)
+

Audio (Mel spectrogram) Feature-level

Atten-Mixer(Ours) 53.52 54.46 57.94 61.39 53.12 51.56 69.16 58.15 64.36 58.18
Score-level Average 52.00 58.42 51.88 53.27 58.42 50.94 57.01 53.54 61.39 55.20

Concat 53.23 58.42 55.14 61.39 52.50 52.19 56.07 54.15 60.40 55.94
SE-Concat 51.38 58.42 51.40 62.38 52.81 50.94 59.81 54.77 52.48 54.93

Cross-Atten 51.08 48.51 55.14 60.40 53.12 53.44 60.75 56.31 60.40 55.46
MLP-Mixer 55.69 46.53 44.86 63.37 51.56 50.94 64.49 56.00 60.40 54.87

Visual (Face frames)
+

Visual (AU+Gaze+Affect)
+

Audio (Mel spectrogram)

Feature-level

Atten-Mixer(Ours) 55.08 60.40 57.01 64.36 53.44 51.25 67.29 56.00 62.38 58.58
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Fig. 3: Performance comparisons of Domain-simultaneous
training w/ and w/o Gradient Reversal Layer (GRL).

trained with GRL boosted the performance and surpassed
the model trained on the Mel spectrogram.

4.5 Cross-domain Testing with Multimodal Fusion

Here we present multimodal fusion results of cross-domain
testing to evaluate models’ generalization capacities.

Single-to-Single Domain with Fusion. In this section,
we conducted experiments of single-to-single cross-domain
testing. Two types of fusion positions were involved in-
cluding score-level and feature-level fusion. For feature-
level fusion, multiple fusion methods were adopted such
as simple concatenation, SE-Concat [44], Cross-Atten [37],
MLP-Mixer [19], and Attention-Mixer fusion (Ours). To be
specific, simple concatenation refers to the concatenation of
the extracted features before the input to the classifier. SE-
concat stands for the SE attention applied to the concate-
nated features. Cross-Atten means the crossmodal attention
among input features by using the attention mechanism
from the Transformer. MLP-Mixer uses the method in [19]
on the extracted features. The modalities and input include
three types, visual (face frames), visual (AU+gaze+affect),
and audio (Mel spectrogram). It results in four combina-
tions of either two or three types of inputs. As shown in

Table 4, among each type of input combination, the pro-
posed Attention-Mixer fusion (Atten-Mixer) achieved the
best results. The rest fusion methods showed comparable
results, which were less performed than Atten-Mixer.

Multi-to-Single Domain with Fusion. We benchmarked
multi-to-single cross-domain generalization with different
fusion methods by three types of cross-testing strategies. In
total, seven sub-experiments were conducted for different
domain combinations. The results are shown in Tabel 4.
On average, the best accuracies were 58.43%, 59.13%, and
60.78% on domain-simultaneous, domain-alternating, and
domain-by-domain strategies, respectively. Among these,
for both domain-simultaneous and domain-by-domain
strategies, the best results were achieved by taking visual
(face frames) and visual (AU+gaze+affect) features as input,
while the best result for domain-alternating was achieved
by using visual (face frames), visual (AU+gaze+affect) and
audio (Mel spectrogram) features. Taking a close look at
the average fusion results, for each type of modality input,
Atten-Mixer achieved the best among the six fusion meth-
ods. showing the effectiveness of the proposed method. By
using Atten-Mixer, in general, the average result showed
slightly better when using the domain-by-domain strategy
and taking visual (face frames) and visual (AU+gaze+affect)
features as input. To sum up, the results showed that on
the current publicly available datasets, visual features were
better when it came to multi-to-single cross-domain gener-
alizability. However, the performance differences were not
a large gap, and there were also no significant differences
by comparing two-to-one domain and three-to-one domain
cross-testing performances.

Ablation Study for Attention-Mixer Fusion Module. We
conducted an ablation study for the proposed attention-
mixer fusion module with the changes in the number of
attention-mixer layers. The experiments were conducted
on single-to-single domain testing, where the average ac-
curacies were compared. As shown in Fig. 4, the num-
ber of attention-mixer layers was set to 4, 5, 6, and
7. The modalities and inputs in Table 3 are compared,
where “A” had the inputs of Visual (Face frame) + Vi-
sual(AU+Gaze+Affect), “B” had Visual (Face frames) + Au-
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TABLE 4: The fusion results of multi-to-single cross-domain generalization accuracy (%) for different generalization
strategies.

Modality & Inputs Fusion Postion Fusion Method R&M to B1 R&M to B2 R&B1 to B2 R&B1 to M B1&M to R B1&M to B2 R&B1&M to B2 Avg
Domain-Simultaneous

Score-level Average 53.23 43.56 57.43 50.94 51.40 58.42 48.51 51.93
Concat 52.00 56.44 60.40 51.88 51.40 62.38 57.43 55.99

SE-Concat 55.69 58.42 44.55 52.50 56.07 58.42 58.42 54.87
Cross-Atten 51.08 52.48 55.45 51.56 57.01 60.40 57.43 55.06
MLP-Mixer 53.85 43.56 62.38 52.19 56.07 61.39 59.41 55.55

Visual (Face frames)
+

Visual (AU+Gaze+Affect) Feature-level

Atten-Mixer(Ours) 53.23 57.43 63.37 52.19 57.01 63.37 62.38 58.43
Score-level Average 49.54 55.45 52.48 51.25 54.21 59.41 55.45 53.97

Concat 49.54 54.46 49.50 53.75 44.86 63.37 54.46 52.85
SE-Concat 52.00 58.42 42.57 51.56 54.21 58.42 63.37 54.36

Cross-Atten 50.46 52.48 60.40 53.12 52.34 58.42 59.41 55.23
MLP-Mixer 53.54 57.43 52.48 50.31 52.34 60.40 47.52 53.43

Visual (Face frames)
+

Audio (Mel spectrogram) Feature-level

Atten-Mixer(Ours) 55.69 64.36 56.44 53.75 58.88 59.41 58.42 58.14
Score-level Average 48.62 58.42 56.44 50.94 51.40 56.44 53.47 53.68

Concat 48.31 53.47 56.44 50.31 56.07 63.37 57.43 55.06
SE-Concat 49.85 50.50 47.52 52.19 49.53 57.43 61.39 52.63

Cross-Atten 51.38 63.37 61.39 51.25 48.60 59.41 58.42 56.26
MLP-Mixer 55.69 59.41 57.43 53.75 50.47 61.39 50.50 55.52

Visual (AU+Gaze+Affect)
+

Audio (Mel spectrogram) Feature-level

Atten-Mixer(Ours) 55.08 55.45 58.42 54.37 52.34 61.39 60.40 56.78
Score-level Average 54.77 57.43 57.43 52.81 60.75 58.42 56.44 56.86

Concat 54.46 54.46 47.52 53.12 53.27 61.39 56.44 54.38
SE-Concat 53.23 55.45 54.46 52.50 59.81 56.44 58.42 55.76

Cross-Atten 48.62 57.43 50.50 53.12 48.60 58.42 56.44 53.30
MLP-Mixer 48.92 48.51 59.41 52.81 54.21 57.43 51.49 53.25

Visual (Face frames)
+

Visual (AU+Gaze+Affect)
+

Audio (Mel spectrogram)

Feature-level

Atten-Mixer(Ours) 52.31 59.41 58.42 52.50 58.88 61.39 60.40 57.62
Domain-Alternating

Score-level Average 55.38 57.43 58.42 50.94 57.94 50.50 61.39 56.00
Concat 55.08 58.42 63.37 51.56 62.62 62.38 53.47 58.13

SE-Concat 50.46 49.50 63.37 52.19 57.01 65.35 56.44 56.33
Cross-Atten 55.08 59.41 60.40 52.50 48.60 58.42 61.39 56.54
MLP-Mixer 57.54 63.37 63.37 50.94 65.42 52.48 56.44 58.51

Visual (Face frames)
+

Visual (AU+Gaze+Affect) Feature-level

Atten-Mixer(Ours) 56.62 61.39 63.37 51.56 58.88 62.38 58.42 58.95
Score-level Average 50.15 58.42 60.40 50.62 51.40 60.40 58.42 55.69

Concat 53.23 62.38 54.46 51.25 59.81 54.46 54.46 55.72
SE-Concat 50.15 52.48 64.36 50.31 59.81 55.45 50.50 54.72

Cross-Atten 52.92 57.43 49.50 52.81 65.42 53.47 66.34 56.84
MLP-Mixer 51.69 58.42 57.43 51.25 62.62 58.42 56.44 56.61

Visual (Face frames)
+

Audio (Mel spectrogram) Feature-level

Atten-Mixer(Ours) 53.23 63.37 56.44 51.25 63.55 59.41 56.44 57.67
Score-level Average 51.38 56.44 54.46 50.00 64.49 61.39 49.50 55.38

Concat 49.85 62.38 58.42 51.88 61.68 55.45 51.49 55.88
SE-Concat 50.46 62.38 58.42 50.00 57.94 59.41 65.35 57.71

Cross-Atten 49.85 62.38 50.50 53.44 58.88 56.44 56.44 55.42
MLP-Mixer 50.15 55.45 58.42 50.31 58.88 61.39 57.43 56.00

Visual (AU+Gaze+Affect)
+

Audio (Mel spectrogram) Feature-level

Atten-Mixer(Ours) 50.15 59.41 50.50 52.19 58.88 60.40 61.39 56.13
Score-level Average 56.00 52.48 59.41 51.88 51.40 60.40 56.44 55.43

Concat 51.69 58.42 58.42 52.81 57.01 61.39 56.44 56.60
SE-Concat 56.31 59.41 58.42 50.31 53.27 61.39 55.45 56.37

Cross-Atten 49.54 67.33 54.46 51.56 66.36 52.48 60.40 57.45
MLP-Mixer 50.15 63.37 60.40 51.56 62.62 61.39 61.39 58.70

Visual (Face frames)
+

Visual (AU+Gaze+Affect)
+

Audio (Mel spectrogram)

Feature-level

Atten-Mixer(Ours) 51.69 66.34 60.40 51.88 59.81 61.39 62.38 59.13
Domain-by-Domain

Score-level Average 54.77 46.53 59.41 50.62 57.94 59.41 58.42 55.30
Concat 53.85 53.47 63.37 51.88 57.94 65.35 58.42 57.75

SE-Concat 56.62 44.55 63.37 52.19 54.21 58.42 59.41 55.54
Cross-Atten 54.15 49.50 62.38 54.69 57.01 60.40 63.37 57.36
MLP-Mixer 57.54 62.38 71.29 51.25 54.21 62.38 62.38 60.20

Visual (Face frames)
+

Visual (AU+Gaze+Affect) Feature-level

Atten-Mixer(Ours) 57.54 58.42 63.37 52.19 69.16 60.40 64.36 60.78
Score-level Average 52.00 50.50 58.42 51.56 57.94 61.39 60.40 56.03

Concat 50.46 59.41 62.38 52.19 60.75 56.44 57.43 57.01
SE-Concat 55.38 48.51 58.42 52.81 62.62 57.43 59.41 56.37

Cross-Atten 52.31 53.47 58.42 51.25 64.49 58.42 57.43 56.54
MLP-Mixer 53.23 60.40 62.38 52.19 61.68 58.42 58.42 58.10

Visual (Face frames)
+

Audio (Mel spectrogram) Feature-level

Atten-Mixer(Ours) 53.85 66.34 63.37 53.75 58.88 64.36 63.37 60.56
Score-level Average 48.62 59.41 51.49 51.25 60.75 62.38 63.37 56.75

Concat 57.23 60.40 56.44 51.25 56.07 57.43 56.44 56.47
SE-Concat 55.08 60.40 59.41 54.06 60.75 61.39 57.43 58.36

Cross-Atten 50.15 56.44 61.49 57.50 59.81 64.36 58.42 58.31
MLP-Mixer 52.62 56.44 58.42 52.50 60.75 61.39 58.42 57.22

Visual (AU+Gaze+Affect)
+

Audio (Mel spectrogram) Feature-level

Atten-Mixer(Ours) 51.69 56.44 57.43 54.06 66.36 64.36 60.40 58.68
Score-level Average 53.85 51.49 65.35 53.75 58.88 57.43 58.42 57.02

Concat 52.92 52.48 55.45 53.75 62.62 62.38 56.44 56.58
SE-Concat 51.38 60.40 58.42 51.56 57.01 62.38 59.41 57.22

Cross-Atten 51.80 52.48 62.38 53.12 59.81 64.36 60.40 57.76
MLP-Mixer 53.85 55.45 60.40 50.94 59.81 64.36 60.40 57.89

Visual (Face frames)
+

Visual (AU+Gaze+Affect)
+

Audio (Mel spectrogram)

Feature-level

Atten-Mixer(Ours) 55.69 61.39 59.41 55.00 58.88 59.41 60.40 58.60

dio(Mel spectrogram), “C” had Visual (AU+Gaze+Affect) +
Audio (Mel spectrogram), and “D” had Visual (Face frame)
+ Visual (AU+Gaze+Affect) + Audio (Mel spectrogram).
The results showed that models with 6 attention-mixer
layers achieved the best average accuracies, followed by 7
attention-mixer layers.

4.6 Discussion
We can observe that the general performance of cross-
domain deception detection is unsatisfactory because it is
challenging to reduce the domain gap between each dataset.

The domain generalization ability of widely-adopted meth-
ods was relatively weak using either audio or visual fea-
tures. Different domain sampling strategies worked well for
different audiovisual features. Fusing multiple modalities is
able to mitigate the problem. However, the performance still
needs to be improved.

Ethical Consideration. Developing deception detec-
tion using AI should emphasize respecting privacy, mini-
mizing psychological harm, preventing discrimination, pro-
moting transparency, etc. Researchers should follow appro-
priate regulations to develop and deploy AI systems for
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Fig. 4: Ablation study for attention-mixer layers. The num-
ber of layers 4, 5, 6, and 7 are compared. The modality and
inputs for A, B, C, and D are in line with those in Table 3
from the top to the bottom.

deception detection. Potential misuses and negative impacts
include invasion of privacy, discrimination, erosion of trust,
etc. Mitigating these risks requires responsible practices
from researchers and developers.

5 CONCLUSION

In this paper, we benchmark the cross-domain generaliza-
tion performance for deception detection on publicly avail-
able datasets. We compare the single-to-single domain and
multi-to-single domain generalization performances, where
three strategies are used including domain-simultaneous,
domain-alternating, and domain-by-domain. We also in-
vestigate the effectiveness of the gradient reversal layer
for domain-simultaneous strategy. Moreover, we propose
the Attention-Mixer fusion method to alleviate the domain
shift issue and boost the performance. Future works for
deception detection are encouraged to propose better meth-
ods to improve the domain generalizability on audio-visual
deception detection task.
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[8] L. Mathur and M. J. Matarić, “Unsupervised audio-visual sub-
space alignment for high-stakes deception detection,” in ICASSP
2021-2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2021, pp. 2255–2259.

[9] G. Wang, H. Chen, and H. Atabakhsh, “Criminal identity decep-
tion and deception detection in law enforcement,” Group Decision
and Negotiation, vol. 13, pp. 111–127, 2004.

[10] H. Joudaki, A. Rashidian, B. Minaei-Bidgoli, M. Mahmoodi,
B. Geraili, M. Nasiri, and M. Arab, “Using data mining to detect
health care fraud and abuse: a review of literature.” Global Journal
of Health Science, vol. 7, no. 1, pp. 194–202, 2014.

[11] F. H. Glancy and S. B. Yadav, “A computational model for financial
reporting fraud detection,” Decision Support Systems, vol. 50, no. 3,
pp. 595–601, 2011.

[12] J. Synnott, D. Dietzel, and M. Ioannou, “A review of the poly-
graph: history, methodology and current status,” Crime Psychology
Review, vol. 1, no. 1, pp. 59–83, 2015.

[13] S. Porter and M. Campbell, “A. vrij, detecting lies and deceit: The
psychology of lying and implications for professional practice,”
Expert Evidence, vol. 7, pp. 227–232, 09 1999.

[14] A. Nortje and C. Tredoux, “How good are we at detecting decep-
tion? a review of current techniques and theories,” South African
Journal of Psychology, vol. 49, no. 4, pp. 491–504, 2019.

[15] H. Karimi, J. Tang, and Y. Li, “Toward end-to-end deception
detection in videos,” in 2018 IEEE International Conference on Big
Data (Big Data). IEEE, 2018, pp. 1278–1283.

[16] M. Karnati, A. Seal, A. Yazidi, and O. Krejcar, “Lienet: a deep
convolution neural networks framework for detecting deception,”
IEEE Transactions on Cognitive and Developmental Systems, 2021.

[17] D. Avola, L. Cinque, G. L. Foresti, and D. Pannone, “Automatic
deception detection in rgb videos using facial action units,” in
Proceedings of the 13th International Conference on Distributed Smart
Cameras, 2019, pp. 1–6.

[18] J.-T. Yang, G.-M. Liu, and S. C.-H. Huang, “Multimodal deception
detection in videos via analyzing emotional state-based feature,”
arXiv preprint arXiv:2104.08373, 2021.

[19] I. O. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer, X. Zhai,
T. Unterthiner, J. Yung, A. Steiner, D. Keysers, J. Uszkoreit et al.,
“Mlp-mixer: An all-mlp architecture for vision,” Advances in Neu-
ral Information Processing Systems, vol. 34, pp. 24 261–24 272, 2021.

[20] D. B. Buller and J. K. Burgoon, “Interpersonal deception theory,”
Communication theory, vol. 6, no. 3, pp. 203–242, 1996.

[21] M. Hartwig and C. F. Bond Jr, “Why do lie-catchers fail? a
lens model meta-analysis of human lie judgments.” Psychological
bulletin, vol. 137, no. 4, p. 643, 2011.

[22] A. Vrij, Detecting lies and deceit: The psychology of lying and implica-
tions for professional practice. Wiley, 2000.



IEEE TRANSACTIONS ON AFFECTIVE COMPUTING 10

[23] B. M. DePaulo, J. J. Lindsay, B. E. Malone, L. Muhlenbruck,
K. Charlton, and H. Cooper, “Cues to deception.” Psychological
bulletin, vol. 129, no. 1, p. 74, 2003.

[24] T. R. Levine and S. A. McCornack, “Theorizing about deception,”
Journal of Language and Social Psychology, vol. 33, no. 4, pp. 431–440,
2014.

[25] A. Vrij and P. A. Granhag, “Eliciting cues to deception and truth:
What matters are the questions asked,” Journal of Applied Research
in Memory and Cognition, vol. 1, no. 2, pp. 110–117, 2012.

[26] J. B. Hirschberg, S. Benus, J. M. Brenier, F. Enos, S. Friedman,
S. Gilman, C. Girand, M. Graciarena, A. Kathol, L. Michaelis et al.,
“Distinguishing deceptive from non-deceptive speech,” 2005.

[27] G. Warren, E. Schertler, and P. Bull, “Detecting deception from
emotional and unemotional cues,” Journal of Nonverbal Behavior,
vol. 33, no. 1, pp. 59–69, 2009.

[28] P. Ekman and W. V. Friesen, “Nonverbal leakage and clues to
deception,” Psychiatry, vol. 32, no. 1, pp. 88–106, 1969.

[29] ——, “Detecting deception from the body or face.” Journal of
personality and Social Psychology, vol. 29, no. 3, p. 288, 1974.
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