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Abstract

Feedback delay has been identified as a key ingredient in the quorum sensing synchronization
of synthetic gene oscillators. While this influence has been evidenced at the theoretical level in
a simplified system of degrade-and-fire oscillators coupled via a common activator protein, full
mathematical certifications remained to be provided. Here, we prove from a rigorous mathemat-
ical viewpoint that, for the very same model, the synchronized degrade-and-fire oscillations are
1/ unstable with respect to out-of-sync perturbations in absence of delay, and 2/ are otherwise
asymptotically stable in presence of delay, no matter how small is its amplitude. To that goal,
we proceed to an extensive study of the population dynamics in this system, which in particular
identifies the mechanisms of, and related criteria for, the delay-dependent stability of periodic
orbits with respect to out-of-sync perturbations. As an additional outcome, the analysis also
reveals that, depending on the parameters, multiple stable partially synchronized periodic orbits
can coexist with the fully synchronized one.

May 14, 2024.

1 Introduction

Starting with the toggle-switch and repressilator [2, 3], elementary regulatory circuits have been
proposed, and implemented, as basic building blocks of gene networks in Synthetic Biology. By
understanding (and by controlling) the functioning of simple representative examples, this now
popular field of research intends to yield advances in bio-engineering and medical applications,
beyond intrinsic interest to fundamental biology [16].

A more recent development of Synthetic Biology aims at investigating the collective dimension
of the regulatory dynamics in populations composed by many individuals equipped with simple
genetic circuits. In particular, in suitably designed populations of quorum sensing oscillators,
stunning evidence of fully synchronized oscillations has been obtained, bringing a standard notion
in Physics into the realm of micro-biological colonies [1].

This experimental phenomenology has called for theoretical conceptualization based on (sim-
plified) mathematical models for the underlying systems dynamics. In particular, the state of each
individual in [1] is represented by the concentration of an auto-repressor protein. Oscillatory be-
haviour then results from a negative feedback loop for the protein concentration level. The system
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has been designed so that the production occurs via short but large bursts. Fast production is
followed by a slow degradation over longer time intervals. Under appropriate considerations, this
degrade-and-fire (DF) mechanism can be represented by a differential equation whose vector field
is negative constant (corresponding to degradation) and where the concentration is instantaneously
reset when it reaches 0 (firing) [17].

In simple models of coupled DF oscillators, rigorous proofs of a sharp transition from a virtu-
ally uncoupled regime to massive clustering upon increase of the interaction strength, have been
established [4, 5] and confirm appropriate modelling of the phenomenology.

In a more elaborated model [18], the quorum sensing mechanism that favours synchrony relies on
the presence of a common activator protein that increases the amplitude of the firings. The activator
concentration is encoded in an additional variable that is coupled to the mean concentration of the
individual repressors. Moreover, as a simplification of the detailed mechanistic model in [1], a delay
has been introduced into the dynamics, which affects the activator concentration involved in the
firings. Numerics and theoretical investigations have revealed that this delay plays a crucial role in
stabilizing the synchronized oscillations.

Delayed interactions are known to have a significant impact of the functioning of biological sys-
tems, for instance in the regulation of the synchronization of oscillations in gene networks during
development [10, 13, 14]. There exists a large literature on the Lyapunov stability of synchronized
oscillations in systems of delayed differential equations [9, 11, 19]. The literature also includes in-
stances of systems whose characteristics are close (but distinct) to the degrade-and-fire oscillators
and for which stability is shown to sharply depend on the parameter(s) [7, 15]. The crucial role
played by the delay to favor synchronization has been highlighted in different situations. For exam-
ple in [12], it has been shown how a time-delayed coupling between two oscillators can result into
synchronization for arbitrarily small size of the coupling strength (while perturbation arguments
show that synchrony cannot be achieved in absence of delay).

Back to [18], the authors have carried out a numerical investigation of the typical orbits arising
in their model under various conditions. In particular, different values of the degradation rate of the
concentration of the activator protein, different responses of the reset value on the concentration of
the activator, different delays, and different amplitude of the noise (added at each firing event) have
been considered. The system exhibits a plethora of behaviours, especially synchronization, stable
and metastable clustering, and absence of synchronization. One of the main outcomes of these
investigations is that the delay in the coupling has a crucial role in favoring the synchronization of
the concentrations.

The goal of the present paper is to mathematically certify the observations in [18]. More
precisely, we prove in particular that for the deterministic dynamics of the model therein, the
synchronized oscillations are unstable (with respect to out-of-sync perturbations) in absence of
delay, and that they are otherwise asymptotically stable for every positive delay.

The paper is organized as follows. Firstly, we recall the definition of the model and we provide
the basic properties that are useful for the analysis of its dynamics. Then, we proceed in Section
3 to the study of the existence and the delay-dependent stability of the fully synchronized periodic
orbit (Proposition 3.1). This analysis identifies the main mechanisms involved in that phenomenol-
ogy. These elements are further developed in Section 4 which presents a systematic approach
to the stability of arbitrary periodic orbits with partially synchronized repressor concentrations.
In particular, a criterion for instability in absence of delay and another criterion for stability in
presence of delay are established. The theory culminates with a delay-dependent existence and
stability statement (Theorem 4.4) which is based on the corresponding properties inside the par-
tially synchronized subspace, in absence of delay. Theorem 4.4 is the extension of Proposition 3.1
to arbitrary partially synchronized orbits. Finally, an example of application to periodic orbits
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with several clusters of equi-distributed repressor concentrations is given, which shows in particular
that several forms of asymptotically stable (partially) synchronized oscillations can coexist in this
system.

Aknowledgments: This project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Sklodowska-Curie grant agreement No 843880.

2 The dynamical system and its basic properties

2.1 Definition of the dynamics

Following [18], we consider a population of N DF oscillators (N ∈ N) represented by the variable
(x, A) ∈ (R+)N+1 where x = (x1, · · · , xN ) ∈ (R+)N collects the concentrations xi of the repressor
proteins and A denotes the activator concentration.

The dynamics can be depicted as follows. Each repressor concentration decays independently
at constant speed -1. When it reaches zero, it is instantaneously reset to a value that depends on
the activator concentration. We shall refer to reset events as firings. In addition, the repressor
proteins contribute to the synthesis of activator, which itself also degrades at constant rate. In
formal terms, time variations of the variable (x, A) are governed by the following coupled equations{

ẋi(t) = −1 if xi(t) > 0
xi(t

+) = R+ νA(t− τ) if xi(t) = 0
∀i ∈ {1, · · · , N} (1)

Ȧ(t) = m(t)− βA(t) if m(t+) = m(t) where m(t) = 1
N

∑N
i=1 xi(t) (2)

with initial repressor concentration vector x(0) = x0 ∈ R+ and initial activator concentration
profile A|[−τ,0] ∈ (R+)[−τ,0].

The dynamics depends on four parameters,1 namely R, β, ν ∈ R+
∗ and τ ∈ R+ for which, for

the sake of the analysis, we impose the conditions2

ν < β and τ < R,

and the inequalities (8) and (11) below. Some of the formal statements below explicitly express
the dependence on certain parameters, especially β and τ . In these cases, all other parameters are
implictly assumed to be given beforehand.

As norms are concerned, both in RN and for real functions, we shall use the following notations

∥x∥N = max
i∈{1,··· ,N}

|xi| and ∥A|I∥0 := sup
t∈I

|A(t)|,

where N ∈ N and the interval I are arbitrary.

2.2 Basic considerations and elementary properties

2.2.1 Existence of global trajectories and conditions for well-posedness in (R+)N+1

Existence and uniqueness of global solutions. Given an arbitrary function A : [−τ,+∞) →
R+, an index i ∈ {1, · · · , N} and x0i ∈ R+, equation (1) for the single real variable xi, with

1The definition in [18] has an additional parameter for the repressors decay rate. However, this rate can be set to
1 by an appropriate rescaling of the variables and other parameters.

2Notice that the inequalities ν < β and τ < R hold in all numerical results in [18].
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initial condition xi(0) = x0i , trivially admits a unique piecewise linear left continuous solution
xi : [0,+∞) → R+ with constant slope −1 and positive jump discontinuities at firings.

Independently, let m : [0,+∞) → R+ be an arbitrary left continuous piecewise affine function
with finitely many discontinuities in every bounded interval and let A0 ∈ R+ be arbitrary. Equation
(2) with initial condition A(0) = A0 admits a unique continuous solution A(t) = ϕt

m(A0) where
ϕ·
m : [0,+∞) → R+ is defined by the following variation of constant formula3

ϕt
m(A) :=

(
A+

∫ t

0
eβsm(s)ds

)
e−βt. (3)

In addition, this expression implies that A(t) is Lipschitz continuous on every bounded interval. Its
Lipschitz constant is controlled by the supremum of m on the interval under consideration together
with the value of A.

Put together, and since the mean value 1
N

∑N
i=1 xi(t) associated with the solution must be left

continuous and has finitely many jumps on every interval [0, t], the arguments above imply that the
coupled equations (1)-(2) have, given any initial datum (x0, A|[−τ,0]), a unique global solution
(x(t), A(t)) such that x(0) = x0 and t 7→ A(t) is continuous on t ∈ R+.

From equation (1) and expression (3), one easily deduces that each oscillator must fire infinitely
often in every trajectory. Moreover, the time duration between two consecutive firings of any given
oscillator is equal to the reset concentration at the previous firing; in particular this time cannot
be smaller than R. In addition, the first firing time of oscillator i is x0i .

Condition for well-posedness in (R+)N+1. To provide the profile A|[−τ,0) in the initial datum
only serves to specify the reset concentration(s) at any firing that would occur in the time interval
[0, τ). Actually, since τ < R, only the first firing of some/all oscillators - those firings at the times
x0i < τ - can occur in this interval, because any reset value is at least R. Therefore, it suffices
to provide (x0, A0 and) the values A(x0i − τ) for x0i < τ , in order to define the trajectory, ie. the
dynamics is indeed well-posed in finite dimension.

In particular, for τ = 0, the knowledge of (x0, A0) suffices to define the trajectory; hence the
dynamics is well-posed in (R+)N+1, which is particularly convenient for the stability analysis of
periodic orbits.

When τ > 0, if
minx0 := min

i
x0i ≥ τ,

then no firing can occur in the time interval [0, τ); hence the subsequent trajectory is again well-
defined given only (x0, A0). This is also the case when minx0 < τ if it is impossible that a firing
occurs in the past time interval [minx0−τ, 0). Indeed, one can reverse the time direction in equation
(2) in order to compute the values A(x0i − τ) for x0i < τ using (x0, A0). More precisely, we have

A(x0i − τ) = ϕ
x0
i−τ

m (A0) where for t ∈ R+, ϕ−t
m (A) is defined by the backward time variation of

constant formula

ϕ−t
m (A) :=

(
A−

∫ t

0
e−βsm(−s)ds

)
eβt, (4)

with m(−s) = m0 + s for s ∈ [0, τ −minx0 ] and m0 := 1
N

∑N
i=1 x

0
i . We must also make sure that

the values A(x0i − τ) are non-negative, viz. A0 ≥ Ax0(τ), where

Ax0(τ) :=

∫ τ

0
e−βs(m0 + s)ds,

3Indeed, equation (2) determines ϕt
m(A0) on a dense subset of R+, which can then be uniquely extended to the

entire R+ by continuity.
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(which tends to 0 as τ → 0).
As expression (3), the backward time formula (4) is Lipschitz continuous on every bounded

interval. Given x, A, β and τ , let K := Kx,A,β,τ be its Lipschitz constant on [0, τ ] when computed

with m(−s) = 1
N

∑N
i=1 xi + s.

Claim 2.1. Assume that minx0 ≥ τ or minx0 < τ and

maxx0 := max
i

x0i < R+ νA0 + (νK + 1)minx0 − (2νK + 1)τ and A0 ≥ Ax(τ).

Then the trajectory is well-defined given (x0, A0) ∈ (R+)N+1 and lies in (R+)N+1.

Proof: The proof is immediate. Together with the Lipschitz continuity mentioned above, the
condition in the statement implies

xi(t) = maxx0 + t < R+ νA(t− τ), ∀t ∈ [minx0 − τ, 0],

ie. no reset value can be attained by the backward flow; hence no firing can occur in the time
interval [minx0 − τ, 0). □

Notice finally that the last inequality indicates that the following stronger condition

maxx0 +minx0 < R− τ and A0 ≥ Ax(τ), (5)

suffices to obtain the same conclusion. We shall use this sronger condition in the stability analysis
of the synchronized periodic orbit in Section 3.3. Moreover, notice also that the condition in Claim
2.1 will be necessary for the stability analysis of periodic orbits with equidistributed repressor
concentrations (see Section 4.6).

2.2.2 Attracting invariant set

The dissipative term in equation (2) suggests that the trajectories should asymptotically approach
a bounded forward invariant set. This property is formally expressed in the next statement. Let

Amax :=
R

β − ν
and Q := [0, R+ νAmax]

N × [0, Amax]. (6)

Lemma 2.2. Assume that x0 ∈ [0, R + νAmax]
N and A|[−τ,0] ∈ [0, Amax]

[−τ,0]. Then the solution
satisfies

(x(t), A(t)) ∈ Q, ∀t ∈ R+.

In addition, given any initial datum (x0, A|[−τ,0]), the subsequent trajectory satisfies

lim sup
t→+∞

A(t) ≤ Amax, and then lim sup
t→+∞

xi(t) ≤ R+ νAmax ∀i ∈ {1, · · · , N}.

In the rest of the paper, we always assume that (x(t), A(t)) ∈ Q for all t ∈ R+, even when this
is not explicitly stated.

Proof. Assume that x0 ∈ [0, R + νAmax]
N and A|[−τ,0] ∈ [0, Amax]

[−τ,0]. Then, expression (3)
implies that A(t) ≥ 0 for all t ∈ R+. We prove that A(t) ≤ Amax for all t ∈ R+ (and then
maxi xi(t) ≤ R + νAmax for all t ∈ R+) by contradiction. Since t 7→ ϕt

m(A(0)) is continuous,
assume otherwise the existence of δ, tδ ∈ R+

∗ such that

A(tδ) = Amax + δ and A(t) < Amax + δ for t ∈ [−τ, tδ).
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Then, we certainly have m(t) < R+ ν(Amax + δ) for t ∈ [0, tδ). Using expression (3), the definition
of Amax and the condition ν < β successively imply

A(tδ) ≤
(
Amax + (R+ ν(Amax + δ))

eβtδ − 1

β

)
e−βtδ = Amax +

ν

β
δ(1− e−βtδ) < Amax + δ

which is impossible.

Considering now an arbitrary trajectory, we first prove that for every t∗ > maxx0 such that

A(t∗) = max
t∈[−τ,t∗]

A(t),

we must have A(t∗) ≤ Amax. By contradiction, the fact that all oscillators must have been reset at
least once before time t∗ and the definition of t∗ imply that we must have m(t∗) ≤ R+ νA(t∗) and
hence

Ȧ(t∗) ≤ R+ νA(t∗)− βA(t∗) < 0

where the second inequality follows from A(t∗) > Amax. Moreover, the derivative Ȧ(t) is left
continuous. Hence A must be decreasing in the left neighbourhood of t∗, which is impossible from
the definition of t∗. Therefore, we must have supt∈R+ A(t) < +∞ in every trajectory.

In order to prove that lim supt→+∞A(t) ≤ Amax, we use a bootstrap argument. Let ρ ∈ (0, 1)
be sufficiently large so that ν < ρβ. We claim that for every δ > 0 such that

A(t) ≤ (1 + δ)Amax, ∀t ∈ [−τ,+∞), (7)

there exists tδ ∈ R+ such that A(t) ≤ (1+ ρδ)Amax for all t ∈ [tδ,+∞). Indeed, assume firstly that
A(t) > (1 + ρδ)Amax for all t ∈ R. Then we would have

Ȧ(t) < −β(1 + ρδ)Amax +R+ ν(1 + δ)Amax = (ν − ρβ)Amaxδ < 0, ∀t ∈ R+,

ie. A(t) would have to decrease at least linearly. Given the inequality (7), it would be impossible
that it remains above (1 + ρδ)Amax forever. Moreover, a similar reasoning implies that if A(tδ) =
(1 + ρδ)Amax, then we must have A(t) ≤ A(tδ) for all t > tδ.

2.2.3 Preservation of the order in which the oscillators fire

Since all degradation rates are equal, in every trajectory, the initial ordering of the repressor
concentrations is preserved until the first firing. Under the assumption

ν <
β

1 + βR
, (8)

we are going to show that, when inside Q, between any two consecutive firings of a given oscillator,
every reset concentration must lie above the current concentration of that oscillator. By induction,
this implies that, after the last of the first firing times of each oscillator, the order of the repressor
concentrations is cyclically permuted at each firing (and evidently remains constant in time between
firings), implying that the order in which the oscillators fire is preserved forever. That property
will make the analysis of the dynamics simpler.

Given i ∈ {1, · · · , N} and k ∈ N, let tki be the instant of the kth firing of oscillator i.
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Claim 2.3. Assume that inequality (8) holds and consider a trajectory for which (x(t), A(t)) ∈ Q
for all t ∈ R+. Let i ∈ {1, · · · , N} and k ∈ N be arbitrary. If an oscillator j ∈ {1, · · · , N} fires
between the kth and (k + 1)th firings of i (ie. if there exists ℓ ∈ N such that tℓj ∈ (tki , t

k+1
i )), then

we have
xi

(
(tℓj)

+
)
< xj

(
(tℓj)

+
)
.

Proof. If (x(t), A(t)) ∈ Q then we have |Ȧ(t)| ≤ βAmax. The assumption (8) then implies |Ȧ(t)| < 1
ν

which in turn yields

R+ νA(t1 − τ)− (t2 − t1) < R+ νA(t2 − τ), ∀t2 > t1,

from where the conclusion is immediate.

2.2.4 Return map

In every trajectory, firings must occur infinitely often and their consecutive occurrences are sepa-
rated by positive time intervals. Moreover, the order preservation obtained in the previous section
implies that (for t > maxi t

1
i = maxx0) between any two consecutive firings of oscillator i, all other

oscillators having repressor concentration distinct from xi must fire exactly once. Accordingly, in
order to analyse the dynamics, it suffices to study the iterations of a return map that acts on
data immediately before the firing of a given oscillator, say oscillator N .

An expression of the return map can be computed as follows. Given x0 with x0N = 0, for
convenience in the sequel, we denote by tR, the time t2N = xN (0+) = R + νA(−τ) of the second
firing of xN . We also assume that maxx0 < xN (0+) so that the order in which the oscillators fire is
preserved from t = 0. Accordingly, for any oscillator for which x0i > 0, the corresponding repressor
concentration between t1i = x0i and tR is given by

xi(t) = R+ νA(x0i − τ)− (t− x0i ), ∀t ∈ (x0i , tR].

Hence, we have

xi(tR) = x0i + ν
(
A(x0i − τ)−A(−τ)

)
, ∀i ∈ {1, · · · , N − 1}.

In particular, if (x, A) ∈ Q lies in the Poincaré section xN = 0 and satisfies the conditions of Claim
2.1, then the return map FN writes (x′, A′) = FN (x, A) where{

x′i = xi + ν(ϕxi−τ
m (A)− ϕ−τ

m (A)) for i ∈ {1, · · · , N − 1}
A′ = ϕ

R+νϕ−τ
m (A)

m (A)
(9)

In the stability analyis of periodic orbits (either fully synchronized or only partially synchronized)
in the various sections below, we shall ensure that all iterates (xk, Ak) := F k

N (x, A) of sufficiently
small initial perturbations satisfy the conditions of Claim 2.1 (or even condition (5) in the case
of the full synchronized orbit), so that the stability analysis actually reduces to the study of their
(linearized) dynamics in (R+)N .

Of note, Appendix A states and proves a certain property of Lipschitz-continuous dependence
of the return map on its input datum, not only when the map reduces to one of (R+)N but also
in the case of an arbitrary datum (x, A|[−τ,0]). This property will be employed in the proof of a
stability criterion for partially synchronized periodic orbits in Section 4.
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3 Existence and stability analysis of the synchronized periodic
orbit

As a system with mean-field interactions, the equations (1)-(2) commute with every permutation
of the repressor indices. This suggests to study the synchronized dynamics inside the invariant
subspace x1 = x2 = · · · = xN . The synchronized dynamics of the population of N oscillators
reduces to that of the N = 1 system. In this section, we first investigate the corresponding return
map F1, a one-dimensional map that acts on the variable A (since we always have x1 = 0 along
every orbit). We show that all orbits asymptotically converge to a unique fixed point AFP. Then,
we study the Lyapunov stability in (R+)N for N ≥ 2, of the fixed point (0, · · · , 0, AFP) of the
return map FN . We show that this stability depends on whether the delay-parameter τ vanishes
or it is positive; however and remarkably, it is independent of N . The results are collected in the
following statement. Letting

Rτ = R+ ν
1 + βτ − eβτ

β2
and ντ = νeβτ , (10)

we will assume the following conditions on the parameters

Rτ > 0 and ντ < β. (11)

Proposition 3.1. Assume that (11) holds. Then the one-dimensional return map F1 has a unique
globally attracting fixed point AFP.
Assume that (8) also holds.
(i) If τ = 0, then for every N ≥ 2, the corresponding fixed point (0, · · · , 0, AFP) of FN is unstable
in (R+)N .
(ii) There exists τ0 ∈ R+

∗ such that for every τ ∈ (0, τ0) and every N ≥ 2, the fixed point
(0, · · · , 0, AFP) of FN is locally asymptotically stable in (R+)N .

This statement confirms the numerical observations reported in [18] about the delay-dependence
of the stability of the synchronized periodic orbit associated with AFP.

4 An illustration is given in
Fig. 1.

The rest of this section is devoted to the proof of Proposition 3.1.

3.1 Existence of a globally attracting fixed point of the map F1

For N = 1, the condition (5) reduces to

A ≥ A0(τ) =
1− (1 + βτ)e−βτ

β2
.

Moreover, using (4) with m(−s) = s for s ∈ [0, τ ], we obtain that the reset concentration at any
firing is given by (NB: see (10) for the definition of Rτ and ντ and see Fig. 2 for an illustration)

R+ νϕ−τ
m (A) = Rτ + ντA,

Therefore, using (3) with m(s) = Rτ + ντA− s for all s ∈ (0, Rτ + ντA] yields the following explicit

expression for the return map F1(A) = ϕ
R+νϕ−τ

m (A)
m (A)

F1(A) =
1

β2
+

(
A(1− ντ

β
)− Rτ

β
− 1

β2

)
e−β(Rτ+ντA).

4In [18], the repressor resets R + νA(t − τ) are perturbed by a (small) additive random noise. Our result shows
that the stability of the synchronized periodic orbit is not affected by these random fluctuations.
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Figure 1: Time series of two trajectories for N = 10, t ∈ [0, 20] and τ = 0 (left)/τ = 0.2 (right). The
other parameters are R = 2, β = 1, and ν = 0.2. The sawtooth series correspond to the repressor
concentrations xi(t) (i ∈ {1, · · · , 10}) and the central series in red color corresponds to the activator
concentration A(t). On the left picture, the instability of the synchronized periodic orbit is marked
although rather weak. On the right picture, the asymptotic stability is more evident.

Letting Aτ := Rτ
β−ντ

, the assumption (11) implies A0(τ) < Aτ . Clearly, this assumption also
implies that the asymptotic dynamics of F1 must lie in the interval [A0(τ), Aτ ], again see Fig. 2 for
illustration. The following features then yield that F1 must have a unique globally attracting fixed
point inside this interval, proving the preliminary claim in Proposition 3.1:

• F1(A0(τ)) =
1
β2 −

(
(1+βτ)

β2 e−βτ + R
β

)
e−βR > A0(τ) for every τ ∈ [0, R).

• F1(Aτ ) =
1
β2

(
1− e−β2Aτ

)
< Aτ , so that altogether F1([A0(τ), Aτ ]) ⊊ [A0(τ), Aτ ].

• F ′
1(Aτ ) > 0 and F ′′

1 |[0,Aτ ] < 0, viz. F1|[0,Aτ ] is increasing with decreasing derivative.

3.2 Proof of instability for τ = 0

In this section, we prove item (i) in Proposition 3.1. Consider the restriction of FN to the subspace
of 2-cluster states for which N−1 repressor concentrations are equal, more precisely, the restriction
to those x for which x1 > 0 and x2 = · · · = xN = 0. We are going to show that (0, · · · , 0, AFP) is
linearly repelling along the direction of x1.

Letting ϵ > 0 sufficiently small, assume that

x1 ∈ (0, ϵ) and |A−AFP| < ϵ.

In particular, ϵ must be small enough so that such (x, A) satisfies the condition (5).
Given that x2 = · · · = xN = 0, we have for the continuous time trajectory

m(t) =
(N − 1)(R+ νA) + x1

N
− t, ∀t ∈ (0, x1],

which yields using (3) and after simple algebra

ϕx1
m (A) = A+ x1

(
N − 1

N
(R+ νA)− βA

)
+O(x21).

From (9), we obtain the following expansion for the coordinate x′1 of the first iterate (x′, A′) =
FN (x, A)

x′1 = x1 + ν(ϕx1
m (A)−A) = x1

(
1 + ν

(
N − 1

N
(R+ νA)− βA

))
+O(x21).
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Figure 2: Left. Illustration of the vector field (light blue arrows) and some segments of trajectories
(solid black curves) of the synchronized dynamics/system with one oscillator (N = 1), under the
assumptions (8) and (11). Initial conditions: (A0(τ), Rτ + ντA0(τ)), (AFP, Rτ + ντAFP), (Aτ , Rτ +
νAτ ); where the orbit of (AFP, Rτ + ντAFP) is the unique attracting periodic orbit. Right. Graph
of the corresponding return map F1.

Therefore, in order to prove the desired instability, all we have to show is N−1
N (R+νA)−βA > 0 for

all |A−AFP| < ϵ with ϵ small. By continuity, it suffices to show that N−1
N (R+ νAFP)− βAFP > 0.

Since N−1
N ≥ 1

2 for all N ≥ 2, it suffices to show that this inequality holds for N = 2, viz.

AFP <
R

2β − ν
.

Given the properties of F1 described in the previous subsection, in order to prove that inequality, it
suffices to verify that F1(

R
2β−ν ) <

R
2β−ν . Explicit computations show that the sign of F1(

R
2β−ν )−

R
2β−ν

is the same as the one of tanh
(

β2R
2β−ν

)
− β2R

2β−ν , which is negative for every R, β ∈ R+ and ν ∈ (0, β).

This concludes the proof of instability for τ = 0. □

3.3 Proof of stability for τ > 0

We first give some heuristic for the synchronization mechanism when τ > 0. Given a small initial
perturbation (x, A) of the fixed point, the vector field in (2), when computed at instants immediately
before the first firing (which occurs at time 0) must be negative because m(t) must be close to 0
and A(t) must be close to AFP, which is positive. Therefore for τ > 0 small enough and xi ∈ (0, τ),
since there cannot be any firing in the interval [−τ, xi − τ ], we must have

ϕxi−τ
m (A) = ϕ−τ

m (A)− C ′xi + h.o.t.,

for some C ′ ∈ R+
∗ , which implies that the image x′i of xi under FN is given by

x′i = xi + ν(ϕxi−τ
m (A)− ϕ−τ

m (A)) = xi(1− νC ′) + h.o.t.

Thus, we must have x′i < xi when (x, A) is sufficiently close to (0, · · · , 0, AFP), which together with
the fact that x′i > 0 (from order preservation), implies the desired synchronisation.
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Proof of item (ii) in Proposition 3.1 We are going to show that for every N ≥ 2, the map FN

is a contraction in a small neighbourhood of (0, · · · , 0, AFP) in (R+)N when τ > 0 is small enough.
Given τ ∈ (0, R), let (x, A) with xN = 0, and ∥x∥N−1, |A − AFP| small. In particular, we assume
that ∥x∥N−1 < τ and that (x, A) satisfies the condition (5).

Let i ∈ {1, · · · , N − 1}. The condition (5) ensures that no firing occurs in the time interval
[−τ, 0); hence

m(t) = m(0)− t for t ∈ [−τ, xi − τ ],

from where we obtain using (3), after simple algebra

ϕxi−τ
m (A) =

(
ϕ−τ
m (A) +

∫ xi

0
eβsm(s− τ)ds

)
e−βxi = ϕ−τ

m (A)− xi
(
βϕ−τ

m (A)− τ
)
+O(∥x∥2N−1)

and thus, the following expansion results for the coordinate x′i of the first iterate (x
′, A′) = FN (x, A)

x′i = xi
(
1− ν

(
βϕ−τ

m (A)− τ
))

+O(∥x∥2N−1)

= xi(1− νβAFP + (β(A− ϕ−τ
m (A))− τ)) + νβxi(AFP −A) +O(∥x∥2N−1)

That no firing occurs in the interval [−τ, 0) implies that ϕ−τ
m is close to the identity when τ is small.

Therefore, there exists Kτ > 0 with limτ→0Kτ = 0 such that

|β(A− ϕ−τ
m (A))− τ | ≤ Kτ

for all A uniformly bounded, and in particular when |A−AFP| is small. In addition, order preserva-
tion, which must hold for the initial conditions (x, A) under consideration here, implies that x′i ≥ 0
for all i. Letting τ → 0 and A → AFP, we must have 1− νβAFP ≥ 0. Altogether, this implies the
existence of γ1 ∈ (0, 1) such that

∥x′∥N−1 ≤ (γ1 + νβ|A−AFP|) ∥x∥N−1,

when τ, ∥x∥N−1 and |A−AFP| are sufficiently small.
In order to control the dynamics of the activator variable, we are going to show that A′ is close

to F1(A) when ∥x∥N−1 is small and then use that F1 is a contraction in the neighbourhood of AFP in
R. Recalling the notation tR = R+νϕ−τ

m (A) for the return time and letting tsyncR = R+νϕ−τ
msync

(A)
and msync for the quantities associated with the synchronized trajectory issued from (0, A) at t = 0,
we observe that together with (4), the expressions

m(t) =
1

N

N−1∑
i=1

xi − t and msync(t) = −t for t ∈ [−τ, 0],

result in

tR − tsyncR = −ν
eβτ − 1

βN

N−1∑
i=1

xi < 0.

Accordingly, we obtain from (3)

A′ =F1(A) +

(
A+

∫ tR

0
eβsmsync(s)ds

)
(e−βtR − e−βtsyncR ) +

∫ tR

0
eβ(s−tR)(m(s)−msync(s))ds

+

∫ tsyncR

tR

eβ(s−tsyncR )msync(s)ds
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The expression of tR− tsyncR above implies that the second and last terms in the RHS are controlled
by ∥x∥N−1, also because all quantities A, tR, t

sync
R and msync are bounded when in (or close to) the

attracting set.
In order to control the third term, we first observe that it suffices to provide an estimate of

the integral between time t = ∥x∥N−1 (namely the time of the last first firing of all oscillators)
and t = tR because the remaining integral can be controlled by the same arguments as before.
Moreover, we have

m(s) = R+
ν

N

N∑
i=1

ϕxi−τ
m (A)+

1

N

N−1∑
i=1

xi−s and msync(s) = R+νϕ−τ
msync

(A)−s for s ∈ [∥x∥N−1, tR]

and again from (3)

|ϕxi−τ
m (A)− ϕ−τ

m (A)| ≤ ϕ−τ
m (A)(1− e−βxi) + ∥m|[−τ,xi−τ ]∥0

eβxi − 1

β
.

In addition, from the expressions of m and msync above, we have

ϕ−τ
m (A) = ϕ−τ

msync
(A)− eβτ − 1

βN

N−1∑
i=1

xi.

Combining all the estimates above, we finally conclude about the existence of K ∈ R+ such that

|A′ −AFP| ≤ |F1(A)−AFP|+K∥x∥N−1 +O(∥x∥2N−1)

when ∥x∥N−1 is sufficiently small. Besides, the analysis of the map F1 in a previous section implies
the existence of γ2 ∈ (0, 1) such that

|F1(A)−AFP| ≤ γ2|A−AFP|

when A is sufficiently close to AFP.
Altogether, when τ, ∥x∥N−1 and |A−AFP| are sufficiently small, the return dynamics of ∥x∥N−1

and |A−AFP| is dominated by a matrix whose eigenvalues are close to γ1 and γ2. Hence, the map FN

must be a contraction (for an appropriate norm in RN ) in the neighbourhood of (0, · · · , 0, AFP), as
desired. In particular, we are sure that (x′, A′) also satisfies condition (5) provided that ∥x∥N−1, |A−
AFP| are sufficiently small; hence the argument can be repeated to conclude about asymptotic
stability of (0, · · · , 0, AFP). □

4 Stability analysis for partially synchronized periodic orbits

The analysis in the previous section and its arguments are not limited to synchronized trajectories.
They extend to partially synchronized periodic orbits. A partially synchronized trajectory
(whether it is periodic or not) is a solution of the equations (1)-(2) for which two or more repressor
concentrations are equal at all times (NB: this is the case iff the concentrations are equal at t = 0).

For an arbitrary fixed point of the return map in a given partially synchronized subspace (see
next section for an accurate definition), we establish a stability criterion for τ > 0 (Lemma 4.2)
and an instability criterion for τ = 0 (Lemma 4.3). For simplicity, we only consider stability with
respect to initial perturbations that affect a single cluster of the periodic orbit under investigation.
The stability with respect to perturbations that affect several clusters are direct extensions that

12



are left to the interested reader. In addition, we also consider initial conditions that are given by
the datum (x, A|[−τ,0]), even though we have argued that only finite many values of A suffice in
order to define any trajectory.

In a second step, we apply these criteria to fixed points that are exponentially stable in their own
partially synchrony subspace for τ = 0. The result for the continued fixed point for τ > 0 small can
be regarded as an extension of Proposition 3.1 to the family under consideration: while for τ = 0,
the orbit is unstable with respect to perturbations that smear its clusters, it becomes stable against
the same perturbations for every positive (and small) value of τ (Theorem 4.4). An example of
application to fixed points with two clusters with equi-distributed repressor concentrations is given
in Lemma 4.5.

4.1 Characteristics of partially synchronized trajectories and of fixed points of
the corresponding return map

By grouping the oscillators with equal repressor concentration into one cluster, the population at
every instant can be described by the vector

(
{nk, yk}Kk=1, A

)
where nk ∈ {1, · · · , N} denotes the

size of the cluster k and yk the corresponding repressor concentration (K ≤ N is the total number
of clusters and we have

∑K
k=1 nk = N).5 From the equations (1)-(2), it follows that the cluster

distribution {nk}Kk=1 remains constant in every trajectory; hence we may consider separately the
dynamics in each subspace, called partially synchronized subspace, for which this distribution
is given. Every trajectory for which K < N is called partially synchronized. Obviously, the
synchronized dynamics in Section 3 is a particular case of partially synchronized subspace (K = 1).

Let N ∈ N, K ∈ {1, · · · , N − 1} and a cluster distribution {nk}Kk=1 be given. For the sake of
the presentation, we only consider those partially synchronized periodic orbits that are fixed points(

{nk, y
FP
k }Kk=1, A

FP|[−τ,0]

)
of the return map to the Poincaré section yK = 0. In other words, we assume that the period
TFP > 0 coincides with the return time. However the analysis developed below extends to arbitrary
periodic orbits of such map, without additional conceptual difficulties.

Notice also that the labelling of the clusters is irrelevant because of the permutation symmetry.
For convenience, we assume that this labelling has been chosen so that the fixed point repressor
concentrations yFPk are ordered ie.

yFP1 > yFP2 > · · · > yFPK−1 > 0.

Furthermore, the expression (3) and the fact that the non-negative function mFP certainly does not
entirely vanish over [0, TFP], impose that, in any partially synchronized periodic orbit, the activator
function AFP must be positive.

4.2 Considerations about stability

As technical considerations about stability are concerned, focus will be made on the strongest form
of local Lyapunov stability, namely the exponential stability that results when the return dynamics
of small perturbations is a contraction in an appropriate setting (space and norm). In particular, a
prerequisite for our stability criterion will be that the periodic orbit is exponentially stable inside its
proper partially synchronized space. The criterion will then ensure exponential stability in a higher

5The variables yk can be formally defined as follows. For each i ∈ {1, · · · , N}, there exists ki ∈ {1, · · · ,K} such
that yki = xi and xj ̸= xi iff ykj ̸= yki .
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dimensional space that contains perturbations that smear the clusters. More precisely, we shall
deal with the following notions (NB: Throughout, the symbol y denotes the collection {yk}Kk=1).

Definition 4.1. (i) The fixed point
(
{nk, y

FP
k }Kk=1, A

FP|[−τ,0]

)
is said to be exponentially stable

inside its proper partially synchronized subspace if there exist ϵ0 ∈ R+
∗ and γ ∈ (0, 1) such

that for every ϵ ∈ (0, ϵ0) and every initial datum
(
{nk, yk}Kk=1, A|[−τ,0]

)
such that

yK = 0 and max
{
∥y − yFP∥K−1, ∥A|[−τ,0] −AFP|[−τ,0]∥0

}
≤ ϵ,

we have for the subsequent trajectory t 7→
(
{nk, yk(t)}Kk=1, A(t)

)
of the system (1)-(2)

max
{
∥y(tR)− yFP∥K−1, ∥A|[tR−τ,tR] −AFP|[−τ,0]∥0

}
≤ γϵ,

where the return time tR defined in Section 2.2.4 corresponds here to the instant of the second firing
of the oscillators in cluster K.

(ii) The fixed point
(
{nk, y

FP
k }Kk=1, A

FP|[−τ,0]

)
is said to be exponentially stable with respect

to small perturbations that smear cluster K if there exist ϵ0, C1, C2 ∈ R+
∗ and γ ∈ (0, 1) such

that for every ϵ ∈ (0, ϵ0), every K ′ ∈ {K + 1, · · · , N}, every cluster distribution {n′
k}K

′
k=1 such that

n′
k = nk for k ∈ {1, · · · ,K − 1}, and every initial datum

(
{n′

k, yk}K
′

k=1, A|[−τ,0]

)
such that yK′ = 0

and

max

{
∥y − yFP∥K−1, C1 max

k∈{K,··· ,K′−1}
yk, ∥A|[−τ,0] −AFP|[−τ,0]∥0

}
≤ ϵ,

we have for the subsequent trajectory t 7→
(
{n′

k, yk(t)}K
′

k=1, A(t)
)
of the system (1)-(2)

max

{
∥y(tnR)− yFP∥K−1, C1 max

k∈{K,··· ,K′−1}
yk(t

n
R), ∥A|[tnR−τ,tnR]

−AFP|[−τ,0]∥0
}

≤ C2γ
nϵ, ∀n ∈ N

where the nth return time tnR is the instant of the (n+ 1)th firing of the oscillators in cluster K ′.

Anticipating the comment after Lemma 4.2, notice that exponential stability inside the proper
partially synchronized subspace does not depend on the phase of the periodic orbit under con-
sideration, viz. the fixed point

(
{nk, y

FP
k }Kk=1, A

FP|[−τ,0]

)
is exponentially stable inside its proper

partially synchronized subspace iff the fixed point(
{n′

k, y
′
k}Kk=1, A

FP|[yFP
K−1−τ,yFP

K−1]

)
,

where

n′
k =

{
nK if k = 1
nk−1 if k ∈ {2, · · · ,K} and y′k =

{
R+ νA(yFPK−1 − τ) if k = 1

yFPk−1 − yFPK−1 if k ∈ {2, · · · ,K} ,

is also exponentially stable in the same sense. This is a standard consequence of the continuity of
the firing dynamics (ie. the fact that the coordinates immediately after firing depend continuously
on the coordinate immediately after the previous firing).
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4.3 Stability criterion for τ > 0

The stability criterion for partially synchronized periodic orbits, which is given in the next state-
ment, is reminiscent of the heuristic argument for the stability of the fully synchronized periodic
orbit given at the beginning of section 3.3.

Lemma 4.2. Assume that (8) holds. Given N ∈ N, K ∈ {1, · · · , N − 1}, a cluster distribution
{nk}Kk=1 and τ > 0, assume that the return map in the Poincaré section yK = 0 in the corresponding
partially synchronized subspace has a fixed point

(
{nk, y

FP
k }Kk=1, A

FP|[−τ,0]

)
. Assume also that the

following conditions hold

• the fixed point is asymptotically stable inside its proper partially synchronized subspace,

• the periodic orbit of (1)-(2) that passes through the fixed point has no firing in any of the
time intervals [−τ, 0] mod TFP, and the derivative of A at t = −τ is negative, ie. ȦFP(−τ) =
mFP(−τ)− βAFP(−τ) < 0.

Then, the fixed point is exponentially stable with respect to small perturbations that smear cluster
K.

That the second condition in this statement depends on the value of the derivative Ȧ at a
certain time suggests that stability with respect to cluster smearing a priori depends on the cluster
under consideration. However, we shall see in the proof of Theorem 4.4 below that, provided that
τ is sufficiently small, this is not the case because the sign of the derivative involved actually does
not depend on the cluster under consideration.

Notice also that in the special case of full synchrony (K = 1), the statement is relevant to the
unique synchronized periodic orbit of Section 3. Recall that this orbit exponentially attracts all
synchronized trajectories. Moreover, the condition τ < R ensures that no firing can happen in the
interval [−τ, 0]. In addition, since mFP(t) = −t for t ∈ [−τ, 0], we have ȦFP(−τ) = τ − βAFP(−τ).
Since we showed that AFP(0) > 0, the continuity at 0 of the map τ 7→ τ − βAFP(−τ) implies
that the conditions of Lemma 4.2 certainly hold when τ is small enough, viz. statement (ii) of
Proposition 3.1 is recovered as a particular instance where Lemma 4.2 applies.

Proof of Lemma 4.2. Given K ′ ∈ {K + 1, · · · , N}, let
(
{n′

k, yk}K
′

k=1, A|[−τ,0]

)
with yK′ = 0 be such

that

max

{
∥y − yFP∥K−1, C1 max

k∈{K,··· ,K′−1}
yk, ∥A|[−τ,0] −AFP

[−τ,0]∥0
}

≤ ϵ

where ϵ ∈ (0, ϵ0) is arbitrary and ϵ0, C1 > 0 are to be determined. We are going to evaluate the
amplitude of the perturbation at the instants tnR by considering separately the coordinates yk(t

n
R)

for k ∈ {1, · · ·K − 1} to those for k ∈ {K, · · · ,K ′ − 1}.

Analysis of the coordinates {yk(tnR)}
K−1
k=1 and A|[tnR−τ,tnR]

. For these coordinates, we use the fact that
the fixed point is asymptotically stable inside its proper partially synchronized subspace. To do so,
we rely on a property of Lipschitz continuity of the return map, which is claimed and proved in
Appendix A.

Let t 7→
(
{nk, y

p.sync
k (t)}Kk=1, A

p.sync(t)
)
be the partially synchronized solution issued from the

initial datum
(
{nk, (1− δk,K)yk}Kk=1, A|[−τ,0]

)
.6 Notice that the value of A(−τ) in this trajectory

is the same as the value of A(−τ) in the original trajectory t 7→
(
{n′

k, yk(t)}K
′

k=1, A(t)
)
. Hence, the

6δi,j is the Kronecker symbol.
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first return time to yK = 0 for this trajectory is the same as the first return time t1R of the original
trajectory.

Consider the decomposition

∥y(t1R)− yFP∥K−1 ≤ ∥y(t1R)− yp.sync(t1R)∥K−1 + ∥yp.sync(t1R)− yFP∥K−1.

By periodicity of the trajectory passing through
(
{nk, y

FP
k }Kk=1, A

FP|[−τ,0]

)
, we must have

yFP1 = max
k∈{1,··· ,K−1}

yFPk < TFP = R+ νAFP(−τ).

Hence, provided that ϵ is sufficiently small, we have

y1 = max
k∈{1,··· ,K′−1}

yk < t1R = R+ νA(−τ)

Applying Lemma A.1 in Appendix A, we obtain the following inequality, when regarding yp.sync and
yp.sync(t1R) as elements of the partially synchronized subspace defined by {n′

k}K
′

k=1 whose coordinates
k ∈ {K, · · · ,K ′} all vanish

∥y(t1R)−yp.sync(t1R)∥K−1 ≤ ∥y(t1R)−yp.sync(t1R)∥K′−1 ≤ L∥y−yp.sync∥K′−1 = L max
k∈{K,··· ,K′−1}

yk ≤ L
ϵ

C1
.

On the other hand, asymptotic stability inside the partially synchronized subspace implies the
existence of γ1 ∈ (0, 1) such that, provided that ϵ is sufficiently small, we have

∥yp.sync(t1R)− yFP∥K−1 ≤ γ1ϵ,

and then

∥y(t1R)− yFP∥K−1 ≤
(
γ1 +

L

C1

)
ϵ.

A similar reasoning applies to ∥A|[t1R−τ,t1R] − AFP
[−τ,0]∥0, which yields the same inequality. As a

consequence, provided that C1 is large enough so that γ2 := γ1 +
L
C1

< 1, we get

max
{
∥y(t1R)− yFP∥K−1, ∥A|[t1R−τ,t1R] −AFP

[−τ,0]∥0
}
≤ γ2ϵ.

By induction, the same arguments show that for every sufficiently small ϵ ∈ R+, we have

max
{
∥y(tnR)− yFP∥K−1, ∥A|[tnR−τ,tnR] −AFP

[−τ,0]∥0
}
≤ γn2 ϵ, ∀n ∈ N

provided that one can simultaneously ensure

max
k∈{K,··· ,K′−1}

yk(t
n
R) ≤

γn2 ϵ

C1
.

Analysis of the coordinates {yk(tnR)}
K′−1
k=K . For these coordinates, we separate the cases n = 1 and

n > 1. For n = 1, we simply refer to Lemma A.1 to obtain

max
k∈{K,··· ,K′−1}

yk(t
1
R) ≤ Lϵ,
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and the desired inequality holds for any pair γ,C2 such that L ≤ C2γ
C1

. For n > 1, we proceed by
induction. From the computation of the return map in Section 2.2.4, we have in particular at the
instant t2R of the third firing of the cluster K ′

yk(t
2
R) = yk(t

1
R) + ν

(
A(yk(t

1
R) + t1R − τ)−A(t1R − τ)

)
, ∀k ∈ {K, · · · ,K ′ − 1}.

The assumption that the periodic orbit does not fire in the time interval [TFP−τ, TFP] is equivalent
to assuming that TFP − yFP1 > τ (NB: recall that yFP1 = maxk y

FP
k ). Using that t1R − TFP =

ν(A(−τ)− APF(−τ)), the assumption on the initial datum
(
{n′

k, yk}K
′

k=1, A|[−τ,0]

)
implies that we

also have t1R−y1 > τ (and y1 = maxk yk) when ϵ is sufficiently small, viz. the subsequent trajectory
does not fire in the time interval [t1R − τ, t1R]. Therefore, for ϵ sufficiently small, we have

yk(t
2
R) = yk(t

1
R)
(
1 + νȦ(t1R − τ)

)
+O

(
(yk(t

1
R))

2
)

= yk(t
1
R)
(
1 + ν(m(t1R − τ)− βA(t1R − τ))

)
+O

(
(yk(t

1
R))

2
)
, ∀k ∈ {K, · · · ,K ′ − 1}

The analysis above of ∥A|[t1R−τ,t1R] − AFP
[−τ,0]∥0 showed that |A(t1R − τ) − AFP(−τ)| can be made

arbitrarily small by taking ϵ sufficiently small. Moreover, the fact that no firing takes place in the
time interval [t1R − τ, t1R] implies that

m(t1R − τ) = m(t1R) + τ.

Similarly, we have mFP(−τ) = mFP(0) + τ for the periodic trajectory. In addition, the arguments
above showed that ∥y(t1R)− yFP∥K′−1 can be made arbitrarily small by taking ϵ sufficiently small.
Consequently, the same property holds for |m(t1R−τ)−mFP(−τ)|. Altogether, using the assumption
mFP(−τ) − βAFP(−τ) < 0, this proves the existence of γ3 ∈ (0, 1) such that, provided that ϵ is
sufficiently small, we have

yk(t
2
R) ≤ γ3yk(t

1
R), ∀k ∈ {K, · · · ,K ′ − 1},

from where the desired induction follows with γ = max{γ2, γ3} when the results of the analysis of
the other coordinates are also taken into account. The proof of the Lemma is complete. □

4.4 Instability criterion for τ = 0

The announced instability criterion for partially synchronized periodic orbits is given in the next
statement.

Lemma 4.3. Assume that (8) holds. Given N ∈ N, K ∈ {1, · · · , N − 1} and a cluster distribution
{nk}Kk=1, assume that, for τ = 0, the return map in the Poincaré section yK = 0 in the corresponding
partially synchronized subspace has a fixed point

(
{nk, y

FP
k }Kk=1, A

FP
)
. Let ȦFP(0+) be the right limit

at 0 of the derivative of the activator concentration in the corresponding trajectory. Then, under
the condition

ȦFP(0+) >
R+ νAFP

N

the fixed point is unstable with respect to some arbitrarily small perturbations of cluster K.

In the case of the fully synchronized periodic orbit (K = 1), we have ȦFP(0+) = R + νAFP −
βAFP; hence the condition in the Proposition becomes

N − 1

N
(R+ νAFP)− βAFP > 0,
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which is exactly the identified and proved criterion in the proof of statement (i) in Proposition 3.1.

Proof of Lemma 4.3. Given K ′ ∈ {K + 1, · · · , N}, let
(
{n′

k, yk}K
′

k=1, A(0)
)

with yK′ = 0 be an

initial condition such that

yk =


yFPk if k ∈ {1, · · · ,K − 1}
yK if k = K
0 if k ∈ {K + 1, · · · ,K ′}

where yK > 0 is sufficiently small. There is no firing in the time interval (0, yK). Hence, we have

yK(tR) = yK + ν(A(yK)−A(0)) = yK(1 + νȦ(0+)) +O(y2K)

Moreover, equation (2) implies that Ȧ(0+) = m(0+)− βA(0). Using

yk(0
+) =


yFPk if k ∈ {1, · · · ,K − 1}
yK if k = K

R+ νA(0) if k ∈ {K + 1, · · · ,K ′}
and yFPk (0+) =

{
yFPk if k ∈ {1, · · · ,K − 1}

R+ νAFP if k = K

we get

m(0+) = mFP(0+)− R+ νA(0)

N
+ yK +

nKν(A(0)−AFP)

N
.

It follows that m(0+) − βA(0) can be made arbitrarily close to ȦFP(0+) − R+νAFP

N when yK and
|A(0)−AFP| are sufficiently small. The Lemma easily follows. □

4.5 Delay-dependent stability in arbitrary large populations

Let K ∈ N and {nk}Kk=1 ∈ NK be given. The equations (1)-(2) of the dynamics imply that

if t 7→
(
{nk, yk(t)}Kk=1, A(t)

)
is a partially synchronized trajectory in the population of

∑K
k=1 nk

oscillators, then for every q ∈ N, the function t 7→
(
{qnk, yk(t)}Kk=1, A(t)

)
is a partially synchronized

trajectory in the population of q
∑K

k=1 nk oscillators, viz. the existence and the coordinates of
partially synchronized trajectories do not depend on the (common) scaling of its cluster sizes.

The results on the stability analysis of partially synchronized periodic orbits are summarized
in the following statement, whose conclusions can be regarded as some extension of Proposition
3.1 to fixed points of the return map asssociated with an arbitrary cluster distribution (with given
relative cluster sizes).

Theorem 4.4. Assume that (8) holds. Given K ∈ N and {nk}Kk=1 ∈ NK , assume that for τ = 0, the
return map in the partially synchronized subspace associated with {nk}Kk=1, of the dynamics of a pop-

ulation of
∑K

k=1 nk DF oscillators, has an exponentially stable fixed point, say
(
{nk, y

FP
k }Kk=1, A

FP
)
.

Then, the following assertions hold.
(i) There exists q0 ∈ N such that for τ = 0 and every q > q0, the fixed point

(
{qnk, y

FP
k }Kk=1, A

FP
)

is unstable with respect to some arbitrarily small perturbations of any of its clusters.
(ii) There exists τ0 ∈ R+

∗ such that for every τ ∈ (0, τ0) and q ∈ N, the return map of the partially
synchronized dynamics with delay τ has a fixed point which is the continuation of

(
{qnk, y

FP
k }Kk=1, A

FP
)
.

This continued fixed point is exponentially stable with respect to small perturbations that smear any
of its clusters.
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As an application, we provide in the next section, an example of periodic orbits that fit the
condition of this statement for β sufficiently large, namely the periodic orbits with equi-distributed
repressor concentrations. Evidently, the fully synchronized fixed point also satisfies the assumption
of Theorem 4.4, as already claimed at the begining of Proposition 3.1.7

Proof of Theorem 4.4. The proof decomposes into two parts. The first part establishes the existence
of the continued fixed point for τ > 0 sufficiently small. The second part shows that such return
map fixed points must appropriately satisfy the conditions of Lemmas 4.2 and 4.3.

For the first part, one preliminary shows that continuity arguments ensure that the conditions of
Claim 2.1 hold for τ sufficiently small and in a sufficiently small neighbourhood of

(
{yFPk }Kk=1, A

FP
)

in (R+)K ; hence the return dynamics in that neighbourhood reduces to a mapping of (R+)K into
itself. Moreover, this map can be obtained as the composition of the maps, each called a firing
map, that bring the system from the state immediately before the firing of the (k+1)th cluster to
the one of the kth cluster. The firing maps write, given a datum

(
{yk}Kk=1, A

)
for which yk+1 = 0

and yk = minℓ̸=k+1 yℓ

y′ℓ =

{
yℓ − yk if ℓ ̸= k + 1

R+ νϕ−τ
m (A)− yk if ℓ = k

and A′ = ϕyk
m (A),

where the expressions (3) and (4) are to be used with respectively

m(t) =
1

N

(
K∑
k=1

nkyk +R+ νϕ−τ
m (A)

)
− t, ∀t ∈ (0, yk) and m(t) =

1

N

K∑
k=1

nkyk − t ∀t ∈ [−τ, 0].

Accordingly, each firing map is differentiable in RK and, together with its derivative, it continuously
depends on τ . Hence, so does the composed return map. The assumption that

(
{nk, y

FP
k }Kk=1, A

FP
)

is an exponentially stable fixed point implies, using the Implicit Function Theorem, that it can be
uniquely continued as an exponentially stable fixed point of the return map for τ ∈ R+

∗ sufficiently
small. The first part of the proof is complete.

The main argument of the second part consists in establishing the following signs for the left
and right limits of the derivative of AFP

τ (where the explicit dependence on τ has been added for
clarity) at each firing

ȦFP
τ (
(
yFPτ,k

)−
) < 0 and ȦFP

τ (
(
yFPτ,k

)+
) > 0 ∀k ∈ {1, · · · ,K}.

In order to prove these signs, notice that equation (2) and the fact that ṁ(t) = −1 between two
firings imply that if it happens that Ȧ(t) = 0 for some t between two firings, then this can happen
only once and Ȧ(t) > 0 for all t before (resp. Ȧ(t) < 0 after) that instant. Moreover, equation (9),

or the expression of xi(tR) in Section 2.2.4 implies that, for a fixed point
(
{nk, y

FP
0,k}Kk=1, A

FP
0

)
of

the return map for τ = 0, the activator concentration must be the same at each firing, ie.

AFP
0 (yFP0,k) = AFP

0 , ∀k ∈ {1, · · · ,K − 1}.

Therefore, we must have ȦFP
0 (t) = 0 for some t between any two firings, and then the desired signs

hold for τ = 0. By continuous dependence on τ of the coordinates of the continued fixed point, the
same signs hold for AFP

τ provided that τ is small enough.

7Notice that item (i) in Theorem 4.4 is slightly weaker than the corresponding item in Proposition 3.1 (which
claims that q0 = 1 in this case).
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Together with ȦFP
τ (
(
yFPτ,k

)−
) < 0, the implicit assumption in the continuation argument that

there is no firing in any of the intervals [yFPτ,k − τ, yFPτ,k ], and the fact that the fixed point coor-
dinates do not depend on q imply that the assumptions of Lemma 4.2 hold for the fixed point(
{qnk, y

FP
0,k}Kk=1, A

FP
0

)
, for every q ∈ N. Moreover, the same assumptions hold for the return map

fixed point of the corresponding periodic orbit in every Poincaré section yk = 0, implying stability
with respect to smearing of any cluster.

Together with ȦFP
τ (
(
yFPτ,k

)+
) > 0 and the fact that the fixed point coordinates do not depend

on q, we certainly have

ȦFP
τ (
(
yFPτ,k

)+
) >

R+ νAFP

q
∑K

k=1 nk

,

when q is sufficiently large. In this case, the assumptions of Lemma 4.3 hold, as they do for each
corresponding return map fixed point in every Poincaré section yk = 0. The proof of Theorem is
complete. □

4.6 Application to periodic orbits with equi-distributed repressor concentra-
tions

As a example of application of Theorem 4.4, we consider in this section, return map fixed points
for which the repressor coordinates are equi-distributed among N clusters, more precisely, those
elements (xFP, AFP) ∈ RN+1 such that xFPN = 0, the function m(s) = mFP + s for s ∈ [−τ, 0] and 8

xFPi − xFPi+1 =
R+ νϕ−τ

m (AFP)

N
, ∀i ∈ {1, · · · , N − 1} and AFP = ϕ

xFP
N−1

m (AFP).

It is immediate to verifiy that the coordinates of (xFP, AFP) are recovered after every firing in the
trajectory, not only under the action of the return map. Moreover, the repressor coordinates are
entirely determined by AFP. For τ = 0, an equation for AFP can be obtained, which can be shown
to have exactly one solution, viz. for each N > 1, there exists a unique N -cluster equi-distributed
fixed point. Moreover, a systematic stability analysis can be achieved for τ = 0, which is rigorous
for N ∈ {2, · · · , 5} and concludes that the fixed point is stable in its partially synchrony subspace,
provided that β is sufficiently large. All these results are presented in the next statement.

Lemma 4.5. (i) For every N ∈ N, N > 1 and τ = 0, there exists a unique fixed point with
equi-distributed repressor coordinates.
(ii) Given R, ν and N ∈ {2, · · · , 5}, there exists βN > 0 such that for every β > βN , the equi-
distributed fixed point is exponentially stable in its proper partially synchronized subspace.

We believe that statement (ii) holds for every N > 1. In order to ensure this property, it
suffices to prove that the expression of the matrix WN defined in the proof below, holds for every
N . Independently, by combining Lemma 4.5 with Theorem 4.4, one immediately obtains the
following conclusion.

Corollary 4.6. Given N ∈ {2, · · · , 5}, assume that (8) holds with β > βN so that for τ = 0, the
equi-distributed fixed point with N clusters is exponentially stable in its proper partially synchronized
subspace.

8By letting xFP
0 = R + νϕ−τ

m (AFP), one could include the synchronized fixed point in this family, that would be
obtained for N = 1.
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(i) There exists qN ∈ N such that for τ = 0 and every q > qN , the fixed point
(
{q, xFPi }Ni=1, A

FP
)
is

unstable with respect to some arbitrarily small perturbations of any of its clusters.
(ii) There exists τN ∈ R+

∗ such that for every τ ∈ (0, τN ) and q ∈ N, the return map of the partially
synchronized dynamics with delay τ has a fixed point which is the continuation of

(
{q, xFPi }Ni=1, A

FP
)
.

This continued fixed point is exponentially stable with respect to small perturbations that smear any
of its clusters.

One can show that the continuation of (xFP, AFP) for τ > 0 has indeed equi-distributed repressor
concentrations. Moreover, recall from Claim 2.1 that τN also depends on the distance between the
repressor concentrations immediately after firings. Hence, even if we assumed that statement (ii)
in Lemma 4.5 held for all N > 1 with supN>1 βN < +∞, we would not be able to ensure that
infN>1 τN > 0. In order words, we do not know whether or not all equidistributed fixed points can
be simultanously stable for some given delay τ > 0.

Proof of Lemma 4.5. (i) As usual, the return map fixed point (xFP, AFP) is assumed to coincide with
the state at t = 0 of the periodic orbit t 7→ (xFP(t), AFP(t)) of the continuous time system. The fixed

point definition implies that there is no firing in the time interval (0, xFPN−1] where x
FP
N−1 =

R+νAFP

N .
Hence, we have

mFP(t) = mFP(0+)−t, ∀t ∈ (0, xN−1] wherem
FP(0+) =

1

N

(
N−1∑
i=1

xFPi +R+ νAFP

)
=

(N + 1)(R+ νAFP)

2N
.

Using (3), the fixed point equation AFP = ϕ
xFP
N−1

mFP (AFP) then rewrites as f(AFP) = 0 where f is
given by the following expression

f(A) =

(
(N + 1)(R+ νA)

2N
− βA+

1

β

)
(1− e−βR+νA

N )− R+ νA

N
.

In particular, we have f(0) = g(βR)
βN where

g(x) =

(
(N + 1)x

2
+N

)
(1− e−

x
N )− x.

Basic calculations yield
g(0) = 0 and g′(x) > 0, ∀x > 0,

hence f(A) > 0 for all A > 0 sufficiently small. Moreover, recall the upper bound Amax = R
β−ν of

the attracting set. We have

f(Amax) = −β(N − 1)Amax

2N
(1− e−β2 Amax

N ) +
1

β
(1− e−β2 Amax

N )− βAmax

N
< 0

because 1− e−x < x for all x > 0. Therefore, the function f must have a zero AFP in the interval
(0, Amax).

In order to prove uniqueness, we successively compute the first and second derivatives of f to
obtain

f ′′(A) =
βν

N

(
2(ν − β)− βν

N

(
(N + 1)(R+ νA)

2N
− βA

))
e−βR+νA

N .

Since β > ν > νN+1
2N , the expression inside the parenthesis is increasing, viz. the sign of f ′′ can

only change once in [0, Amax], from negative to positive. Together with the facts that f(0) > 0 and
f(Amax) < 0, this implies that f crosses 0 only once in this interval.
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(ii) As in [4], the finite-dimensional return dynamics (that takes place in the neighbourhod of
(xFP, AFP)) can be regarded as the composition of the following variation of the firing maps intro-
duced at the begining at the proof of Theorem 4.4

x′i =

{
R+ νA− xN−1 if i = 1
xi−1 − xN−1 if i ∈ {2, · · · , N − 1} and A′ = ϕ

xN−1
m (A), (12)

More precisely, the local stability of (xFP, AFP) can be obtained from the spectrum of the product
of the derivatives of this map along the elements of the corresponding periodic orbit. However,
since (xFP, AFP) is a fixed point of this firing map, one actually has to evaluate the spectrum of
MN

N where MN is the derivative of (12) evaluated at (xFP, AFP) with

m(t) = m(0+)− t =
1

N

(
N−1∑
i=1

xi +R+ νA

)
− t for ∈ (0, xN−1].

From (3) and m(t) = m(0+)− t, we have

ϕt
m(A) = Ae−βt +

(
m(0+)

β
+

1

β2

)
(1− e−βt)− t

β
,

which yields

∂xiϕ
xN−1
m (A) =


1−e−βxN−1

βN if i ∈ {1, · · · , N − 2}(
m(0+) + 1

β − βA
)
e−βxN−1 − 1

β + 1−e−βxN−1

βN if i = N − 1

and

∂Aϕ
xN−1
m (A) = e−βxN−1 +

ν(1− e−βxN−1)

βN
.

Evaluating these quantities at (xFP, AFP) and expanding in 1
β , one gets that the derivative MN

writes

MN = UN +
1

β
VN + o(

1

β
),

where UN and VN are the following N ×N matrices

UN =



0 · · · · · · 0 −1 ν
1 0 · · · 0 −1 0

0 1
. . .

...
...

...
...

. . .
...

...
...

0 · · · 0 1 −1 0
0 · · · · · · · · · · · · 0


and VN =



0 · · · · · · · · · · · · 0
...

...
...

...
...

...

0 · · · · · · · · · · · · 0
1
N · · · · · · 1

N −N−1
N

ν
N


.

Accordingly, we have

MN
N = WN + o(

1

β
) where WN := UN

N +
1

β

N−1∑
k=1

Uk
NVNUN−1−k

N .
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For N ∈ {2, · · · , 5}, we have checked that WN writes

WN =



1− (N−1)ν
Nβ

ν
Nβ · · · · · · ν

Nβ −ν(1− ν
Nβ )

ν
Nβ 1− (N−1)ν

Nβ
ν

Nβ · · · ν
Nβ −ν(1− ν

Nβ )

ν
Nβ

ν
Nβ

. . .
. . .

...
...

...
. . .

. . . ν
Nβ

...
ν

Nβ · · · · · · ν
Nβ 1− (N−1)ν

Nβ −ν(1− ν
Nβ )

1
Nβ · · · · · · · · · 1

Nβ − (N−1)ν
Nβ


.

The eigenvectors of WN and its eigenvalues can be readily obtained. Firstly, notice that

UN (ν, · · · , ν, 1)T = VN (ν, · · · , ν, 1)T = 0,

hence WN (ν, · · · , ν, 1)T = 0 too. Moreover, WN clearly has the following N − 2 eigenvectors

(1,−1, 0, · · · , 0)T , (1, 0,−1, 0, · · · , 0)T , · · · , (1, 0, · · · , 0,−1, 0, 0)T , (1, 0, · · · , 0,−1, 0)T ,

(or explicitly (vk)i = δi,1 − δi,k for i, k ∈ {2, · · · , N − 1}) and the corresponding eigenvalue is equal
to 1 − ν

β in each case. Finally, the remaining eigenvector writes (Nβ − ν, 0, · · · , 0, 1)T and the
corresponding eigenvalue is also equal to 1− ν

β . Therefore, the spectrum of WN lies inside the unit

disk; hence so does the spectrum of MN
N when β is sufficiently large. Statement (ii) is proved. □

5 Concluding remarks

In this paper, we have presented an extended mathematical analysis of the dynamics of the model
introduced in [18] of DF oscillators coupled via a common activator, with emphasis on the stability
with respect to out-of-sync perturbations depending on the delay in activator synthesis. After
a study of the basic properties of the flow associated with the equations (1)-(2), the analysis has
firstly considered the case of fully synchronized trajectories and then has adressed arbitrary partially
synchronized periodic orbits.

The most significant outcome of this endeavour is that the stability of periodic orbits abruptly
changes when the delay is switched on. From an unstable solution, the orbit immediately becomes
asymptotically stable with respect to small perturbations that smear its clusters.

While this change of behaviour appears to be spectacular, it can be readily apprehended from
the general criteria of Section 4 (which themselves can be intuited from the expression (9) of the
return map) together with the profile of the activator concentration close to firing, in the periodic
orbit. More precisely, Lemma 4.2 about stability requires that AFP(·), as a function of time, be
decreasing immediately before firing. Lemma 4.3 about instability needs that the derivative of this
function be positive and sufficiently large immediately after firing.

Notice that, according to the original equation (1)–(2), both properties should be commmon
features of the periodic orbits in this system, as illustrated for the synchronized trajectory in the
left panel of Fig. 2. Indeed, the variation of the vector field acting on A must be locally minimal
immediately before any firing (because m decreases between two consecutive firings) and firings
trigger sudden increases of this vector field.

Finally, we believe that these stylized features and the accompanying rapid change in stability
extend to more general, smooth models of DF oscillators with similar ingredients, especially when
firings occur on very short time scales and the corresponding reset values are impacted by some
delay in the activator synthesis. Such extensions could be the subject of future studies.
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A Lipschitz continuity of the return map

Let N ∈ N and τ > 0 be given. Consider an initial datum (x, A[−τ,0]) in the section xN = 0,
∥A|[−τ,0]∥0 < Amax and maxx < xN (0+) = tR = R + νA(−τ), so that the trajectory lies in the
attracting set Q and the order in which the oscillators fire remains the same starting from t = 0.
Assume also that A[−τ,0] is Lipschitz continuous, with maximal Lipschitz constant βAmax when in
Q (see the proof of Claim 2.3 above).

Given another datum (x′, A′
[−τ,0]) with the same constraints, let t′R be the first return time to

the section xN = 0. We have the following statement

Lemma A.1. In addition to the assumptions above on (x, A[−τ,0]) and (x′, A′
[−τ,0]), assume that

maxx < t′R if t′R ≤ tR and maxx′ < tR if tR ≤ t′R.

Then, there exists L ∈ R+ (which is independent of the data) such that we have

max
{
∥x(tR)− x′(t′R)∥N−1, ∥A|[tR−τ,tR] −A′|[t′R−τ,t′R]

∥0
}
≤ Lmax

{
∥x− x′∥N−1, ∥A|[−τ,0] −A′|[−τ,0]∥0

}
.

Proof. Estimate of ∥A|[tR−τ,tR] − A′|[t′R−τ,t′R]
∥0: We have tR − t′R = ν(A(−τ) − A′(−τ)). Using

(3), we consider the following decomposition similar to the one in the proof of statement (ii) of
Proposition 3.1

A(tR − t)−A′(t′R − t) =A(tR − t)(1− e−β(t′R−tR)) +

(
A(0)−A′(0) +

∫ tR∧t′R−t

0
eβs(m(s)−m′(s))ds

+

∫ tR∨t′R−t

tR∧t′R−t
eβsm(s)ds

)
e−β(t′R−t)

for t ∈ [−τ, 0], where

m :=

{
m if tR > t′R

−m′ if tR < t′R

That A(t), A′(t) are uniformly bounded implies the same property for t′R and m,m′. Together with
the expression of tR− t′R above, this implies that the modulus of the first, second and last terms in
the above decomposition can be controlled by ∥A|[−τ,0] − A′|[−τ,0]∥0. For the remaining term, we
need to control |m(s)−m′(s)| for s ∈ [0, tR ∧ t′R − t]. Notice that each oscillator fires at most once
in this interval. Hence, we have

xi(s)− x′i(s) =

{
xi − x′i if s ≤ xi ∧ x′i

ν(A(xi − τ)−A′(x′i − τ)) + xi − x′i if s > xi ∨ x′i

Accordingly, outside the intervals [xi ∧x′i, xi ∨x′i], the quantity |m(s)−m′(s)| is certainly bounded
by

ν

N

N−1∑
i=1

|A(xi − τ)−A(x′i − τ)|+ ν

N

N−1∑
i=1

|A(x′i − τ)−A′(x′i − τ)|+ 1

N

N−1∑
i=1

|xi − x′i|

≤ L1∥x− x′∥N−1 + ν∥A|[−τ,0] −A′|[−τ,0]∥0
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for some L1 ∈ R+ sufficiently large, where, in addition to the fact that A is Lipschitz continuous
on R+, for those xi, x

′
i ∈ (0, τ ], the second inequality also relies on the assumption that A|[−τ,0] is

Lipschitz continuous. Moreover, inside the intervals [xi ∧ x′i, xi ∨ x′i], the quantity |m(s) −m′(s)|
is uniformly bounded because the corresponding trajectories are in Q. There are at most N − 1
such intervals whose length is bounded by ∥x− x′∥N−1. Altogether, the arguments here prove the
existence of L2, L3 ∈ R+ (which do not depend on (x, A[−τ,0]) and (x′, A′

[−τ,0]) when in Q) such
that

∥A|[tR−τ,tR] −A′|[t′R−τ,t′R]∥0 ≤ L2∥x− x′∥N−1 + L3∥A|[−τ,0] −A′|[−τ,0]∥0.

Estimate of ∥x(tR) − x′(t′R)∥N−1: Assume that tR ≤ t′R, the other case can be treated similarly.
Consider the decomposition

xi(tR)− x′i(t
′
R) = xi(tR)− x′i(tR) + x′i(tR)− x′i(t

′
R).

The assumptions maxx,maxx′ < tR imply that all oscillators in both trajectories must have fired
once when at instant tR. Accordingly, the first difference can be controlled using the same estimate
as above in the case s > xi∨x′i. Moreover, all oscillators with x′i > 0 have not fired a second time at
instant t′R. Hence, we have x

′
i(tR)−x′i(t

′
R) = t′R−tR which is also well under control. Altogether, this

proves that a similar estimate as for ∥A|[tR−τ,tR] −A′|[t′R−τ,t′R]∥0 holds for ∥x(tR)− x′(t′R)∥N−1.
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