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ABSTRACT

Strong magnetically dominated Alfvénic turbulence is an efficient engine of non-thermal particle

acceleration in a relativistic collisionless plasma. We argue that in the limit of strong magnetization,

the type of energy distribution attained by accelerated particles depends on the relative strengths

of turbulent fluctuations δB0 and the guide field B0. If δB0 ≪ B0, the particle magnetic moments

are conserved and the acceleration is provided by magnetic curvature drifts. Curvature acceleration

energizes particles in the direction parallel to the magnetic field lines, resulting in log-normal tails of

particle energy distribution functions. Conversely, if δB0 ≳ B0, interactions of energetic particles with

intense turbulent structures can scatter particles, creating a population with large pitch angles. In this

case, magnetic mirror effects become important, and turbulent acceleration leads to power-law tails of

the energy distribution functions.

1. INTRODUCTION

Turbulence governed by Alfvénic fluctuations is ubiq-

uitous in magnetized space and astrophysical plasmas.

In many natural systems, turbulent fluctuations exist in

a broad range of scales, from the macroscopic size of the

system to the micro scales associated with particle iner-

tial or gyroscales. When the collisions between the par-

ticles are less frequent than the typical turbulent inter-

actions, the particles can be energized by turbulence in a

non-thermal fashion, so that their momentum distribu-

tion function significantly deviates from a Maxwellian.

A small fraction of the particles can even be accelerated

to form a runaway population, leading to a power-law
tail of the energy distribution function (e.g., Zhdankin

et al. 2017b; Comisso & Sironi 2019; Wong et al. 2020;

Nättilä & Beloborodov 2021, 2022; Demidem et al. 2020;

Trotta et al. 2020; Pezzi et al. 2022; Vega et al. 2022b;

Bresci et al. 2022; Comisso & Sironi 2022; Vega et al.

2023).

Non-thermal energetic particles are essential compo-

nents of many natural and laboratory plasmas. They

may influence plasma dynamics and define the spectra

of radiation coming from astrophysical objects. Parti-

cle acceleration plays a fundamental role in the solar

flares, radiation coming from pulsar wind nebulae, jets
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from active galactic nuclei, non-thermal Galactic radio

filaments, gamma-ray bursts, and other astrophysical

phenomena (e.g., Bykov & Meszaros 1996; Selkowitz &

Blackman 2004; Petrosian & Liu 2004; Tramacere et al.

2011; Bian et al. 2012; Xu et al. 2019; Asano et al. 2020;

Yusef-Zadeh et al. 2022).

It is well established that efficient particle acceleration

can be provided by magnetic plasma structures such as

collisionless shocks (e.g., Blandford & Eichler 1987; Mar-

cowith et al. 2016) or intense reconnecting current sheets

(e.g., Uzdensky et al. 2011; Drake et al. 2013; Sironi &

Spitkovsky 2014; Sironi 2022; French et al. 2023; Guo

et al. 2020, 2023). Astrophysical Alfvénic turbulence

contains a hierarchy of strongly nonlinear fluctuations

(eddies) that typically span an enormous range of spa-

tial and temporal scales. Turbulent flows also sponta-

neously generate intermittent structures such as mag-

netic discontinuities, shocks, vortices, and reconnecting

current layers (e.g., Matthaeus & Lamkin 1986; Loureiro

& Boldyrev 2017, 2018, 2020; Roytershteyn et al. 2019;

Walker et al. 2018; Mallet et al. 2017; Comisso & Sironi

2019; Boldyrev & Loureiro 2017, 2018, 2019; Vega et al.

2020; Dong et al. 2022). Although numerical simula-

tions suggest that strong Alfvénic turbulence is an ef-

ficient engine for non-thermal particle acceleration, at

present, there is no complete understanding of this pro-

cess. Recent analytical and numerical studies, however,

indicate that spontaneously generated turbulent struc-

tures may indeed play an essential role in particle en-

ergization (e.g., Trotta et al. 2020; Ergun et al. 2020;
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Lemoine 2021; Pezzi et al. 2022; Bresci et al. 2022; Vega

et al. 2022b; Xu & Lazarian 2023; Lemoine et al. 2023).

It is reasonable to believe that particle energization

by magnetic fluctuations is related to the properties of

Alfvénic turbulence itself. Let us assume that turbu-

lence is generated by forces or instabilities operating at

some scale L0 that is much larger than the plasma mi-

croscales. We will refer to this scale as the outer scale

of turbulence. We denote the strength of magnetic fluc-

tuations at the outer scale as δB0 and also assume that

the system is immersed in a uniform background mag-

netic field B0. The presence of the background field is

important only if B0 is greater than δB0, which may

happen when the background field is imposed by ex-

ternal mechanisms not related to considered turbulence.

Examples are magnetospheres of planets and stars or ex-

ternal coils in laboratory experiments. Conversely, when

the uniform field is weak, B0 ≪ δB0, its presence is not

significant for the statistics of turbulent fluctuations.

For definiteness, assume that we are dealing with a

pair plasma. We consider the limit of magnetically dom-

inated turbulence characterized by a large magnetiza-

tion parameter,

σ̃ =
(δB0)

2

4πn0w0mec2
≳ 1, (1)

where w0 is the specific enthalpy associated with the

distribution of bulk plasma electrons (say, thermal dis-

tribution), and n0 is their density. When σ̃ ≫ 1, tur-

bulent fluctuations are intense enough to heat plasma

to ultra-relativistic energies, w0 ≫ 1. Supra-thermal

particles accelerated by such turbulence will also have

ultra-relativistic velocities. Since the particle energy is

given by γmec
2, we will discuss particle acceleration by

considering the evolution of the Lorenz factor γ.

In the presence of a strong background magnetic field,

the correlation scales of turbulence are different in the

directions parallel and perpendicular to this field.1 We

denote the field-parallel outer scale as L∥,0 and the cor-

responding field-perpendicular scale L⊥,0. These scales

are related by the so-called critical balance condition,

L⊥,0/L∥,0 ∼ δB0/B0 (Goldreich & Sridhar 1995). In

a turbulent state, the strength of Alfvénic fluctuations

decreases with the field-parallel scale as δB⊥/δB0 ∼
(l/L∥,0)

1/2, and with the field-perpendicular scale ap-

1 As discussed previously (e.g., Zhdankin et al. 2018; Nättilä &
Beloborodov 2021; Vega et al. 2022b) and also mentioned in sec-
tion 2, relativistic plasma turbulence rapidly relaxes to the state
with ultra-relativistic particle temperature but mildly relativis-
tic bulk fluctuations. Therefore, turbulent fluctuations at large
hydrodynamic scales can be described, to the leading order, in
the framework of non-relativistic MHD.

proximately as δB⊥/δB0 ∼ (λ/L⊥,0)
α, with α ≈ 1/3

or α ≈ 1/4, depending on the phenomenological model

(e.g., Goldreich & Sridhar 1995; Boldyrev 2006). The

exact value of the exponent α is not important for our

consideration.

Whether a uniform background magnetic field is im-

posed or not, turbulent subdomains of scales λ ≪ L⊥,0

possess a nearly uniform background magnetic field pro-

vided by the outer-scale eddies. Such subdomains may

however be separated by relatively sharp boundaries,

with thickness as small as the inner scale of turbulence

(e.g., Borovsky 2008; Zhdankin et al. 2012a,b). In the

case of a pair plasma, it is the electron inertial scale. The

strongest magnetic-field variations, δB0, occur across

the boundaries between the largest eddies. Such spa-

tially intermittent structures occupy a small volume, so

they do not significantly affect the Fourier spectra of

turbulent fluctuations. However, they may contribute to

particle heating and acceleration (e.g., Zhdankin et al.

2016, 2017a).

In this work, we propose a description of particle ac-

celeration caused by their interactions with a hierarchy

of nonlinear fluctuations (eddies) produced by Alfvénic

turbulence. In a collisionless plasma, turbulence can

be set up at outer scales in a variety of different ways,

which may affect the processes of particle heating and

acceleration. In our discussion, we assume the follow-

ing “self-consistent” way of turbulence excitation. We

assume that the initial particle distribution is mildly rel-

ativistic and isotropic, and that the turbulence is driven

by initially strong magnetic perturbations, σ̃0 ≫ 1, that

are allowed to decay freely. In this setting, the details of

the initial particle distribution are not essential; rather,

both the bulk and non-thermal parts of the energy dis-

tribution function are self-consistently shaped by turbu-

lence. We also neglect particle cooling by radiation.
We argue that in the considered limit of strong magne-

tization, the nature of the resulting particle acceleration

process is governed by the relative strength of the guide

field. We start with the case of a strong guide field,

B0 ≫ δB0. In this case, decaying Alfvénic turbulence

heats the particles along the magnetic field lines, which

leads to a nearly one-dimensional ultra-relativistic par-

ticle distribution function. (Such strongly anisotropic

distributions are also common in astrophysical systems

where the particles are significantly cooled in the field-

perpendicular direction by synchrotron radiation.) We

argue that in the case of a strong guide field, the ac-

celeration is relatively inefficient. In this limit, parti-

cle magnetic moments are preserved, particles are ac-

celerated in the direction parallel to the magnetic field,

and their energy distributions generally have log-normal
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statistics. We then turn to the limit of a moderate guide

field, B0 ≲ δB0. In this case, magnetic moments of en-

ergetic particles are not conserved during interactions

with intense turbulent structures, the acceleration pro-

cess becomes more efficient, and the particle energy dis-

tribution functions develop power-law tails.

2. PARTICLE ACCELERATION BY ALFVÉNIC

TURBULENCE

A relativistic particle whose gyroradius is much

smaller than the typical scale of magnetic field varia-

tions preserves its first adiabatic invariant, the magnetic

moment. Such a particle can be accelerated by turbu-

lent fluctuations in several different ways. These can be

divided into three categories. First is the acceleration by

a parallel electric field, that is, the electric-field compo-

nent parallel to the magnetic field. Second is the acceler-

ation due to magnetic curvature drifts. And third is the

acceleration by magnetic mirror forces. In all the cases,

a particle is, of course, accelerated by an electric field.

The proposed division into the three categories helps

to associate the acceleration mechanisms with turbulent

structures. Below, we analyze these cases concentrating

on an ultra-relativistic electron-positron pair plasma.

2.1. Acceleration by parallel electric field

The parallel electric field fluctuations are relatively

weak in Alfvénic turbulence with a strong guide field.

For instance, in a magnetically dominated ultrarelativis-

tic plasma with one-dimensional momentum distribu-

tion of particles,2 the linear wave analysis in (Vega et al.

2024) yields for the parallel and perpendicular electric

fluctuations at scales λ ≳ drel:

E∥

E⊥
≈ 1

w2
0

k∥k⊥d
2
rel, (2)

see Appendix A: Eq. (A3). Here, k⊥ = 2π/λ is the

field-perpendicular wave number of the electric field,

k∥ = 2π/l the field-parallel wavenumber, w0 is the en-

thalpy per particle associated with the (relativistic) dis-

tribution function of the bulk electrons, and drel is the

corresponding electron inertial scale.

The parallel electric field is strongest at the electron

inertial scale k⊥drel ≈ 1. As a relativistic electron prop-

agates through such an eddy, its energy gain is

mec
2∆γ = qE∥l ∼ 2πq drel δB⊥(l)/w

2
0, (3)

2 This is certainly an idealization, since in reality (and in numer-
ical simulations) the particle distributions are not strictly one-
dimensional. Moreover, turbulence may contain a small admix-
ture of ordinary and extraordinary modes (e.g., Vega et al. 2024).

where we used the fact that the electric and mag-

netic fluctuations are in approximate equipartition in

magnetically-dominated turbulence, E⊥(l) ∼ δB⊥(l).

Substituting here the scaling δB⊥(l) ∼ δB0

(
l/L∥

)1/2
,

we express the energy gain as

∆γ ∼ π
√
2σ̃

w0

(
l

L∥

)1/2

. (4)

Depending on the direction of the parallel electric

field, an electron can either gain or lose energy in an

individual interaction. The typical energy gain is then

proportional to the square root of the number of electron

interactions with the eddies of scale l. We can express

this number as N0L∥/l, where N0 is the number of outer

scale distances crossed by the electron. As a result, we

obtain a typical energy gain after N0 large-scale crossing

times:

∆γ ∼ π
√
2σ̃

w0

√
N0. (5)

When σ̃ is initially large, which is the case in some

numerical setups of decaying turbulence (e.g., Comisso

& Sironi 2018, 2019; Vega et al. 2022b,a, 2023, 2024),

the parallel particle heating and acceleration are ini-

tially strong. However, as the magnetic perturbations

relax and release energy to plasma particles, plasma

magnetization σ̃ decreases while (in the absence of sig-

nificant radiative cooling) the particle enthalpy w0 in-

creases. As a result, parallel electric heating by Alfvén

modes becomes progressively less significant. Moreover,

the parallel electric acceleration is linear (or algebraic)

in time, as opposed to the exponential acceleration due

to curvature and mirror effects discussed below. Finally,

we note that parallel heating and acceleration increase

the field-parallel momentum of a particle, but not its

field-perpendicular momentum. Therefore, the parti-

cle’s pitch angle, that is, the angle between the particle

velocity and the magnetic field line, decreases as a result

of such a process.

2.2. Curvature acceleration

When the parallel electric field effects become negligi-

ble and the particle magnetic moment is conserved, the

dominant acceleration is provided by the curvature drift.

Indeed, this drift does not vanish in the limit of small

pitch angles and, therefore, it remains efficient when the

particle’s parallel momentum increases. To discuss the

curvature acceleration, assume that the uniform com-

ponent of the magnetic field is in the z-direction. The

Alfvénic magnetic perturbation δB⊥ is then in the x−y

plane. A sketch of the projection of a curved magnetic-

field line onto the x − y plane is given in Fig. 1. We
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Figure 1. Sketch of a curved magnetic field line. The pro-
jection of the line on the plane normal to the background
magnetic field B0 is shown. For simplicity, it is assumed that
the magnetic structure moves with velocity β in the direction
parallel to the field-line curvature. An electron propagating
along the curved line, experiences curvature acceleration.

assume that such a magnetic structure is moving with

the velocity β = uE×B/c, as shown. Here, the E-cross-

B velocity, uE×B = cE ×B/B2, describes the bulk (or

fluid) velocity fluctuations of the plasma. Such fluid

fluctuations are typically only mildly relativistic (e.g.,

Zhdankin et al. 2018; Vega et al. 2022b), so for simplic-

ity, we can neglect relativistic factors associated with the

fluid motion. A relativistic electron propagating along

the magnetic field line experiences curvature accelera-

tion. When the pitch angle is small, the electron moves

along the line at nearly the speed of light. As the elec-

tron passes the curved part of the line, its energy changes

according to (e.g., Northrop 1963):

∆ ln(γ) ∼ β
S

Rc
, (6)

where Rc is the curvature radius of the total magnetic

field line (that is, not its projection in Fig. 1) and S

is the corresponding length of the curved path. Here,

β = β · Rc/Rc is the projection of the velocity β onto

the direction of the curvature vector, that is, the vector

connecting the point on the trajectory with the curva-

ture center. For the collision shown in Figure 1, the

particle gains energy, β > 0. Such collisions are more

probable, so the particle gains energy on average.

A standard geometric calculation gives for the curva-

ture radius

Rc = λ

[
1 +

(
B0

δB⊥

)2
]
, (7)

and for the path length

S = 2ϕλ

[
1 +

(
B0

δB⊥

)2
]1/2

, (8)

where fore an estimate, one can assume 2ϕ ≲ π. Substi-

tuting these expressions into Eq. (6), we obtain

∆ ln(γ) ∼ 2ϕβ

[
1 +

(
B0

δB⊥

)2
]−1/2

. (9)

We note that this result does not depend on the magni-

tude of the curvature given by the structure’s scale, λ.

Indeed, a smaller curvature radius would provide a

stronger acceleration, however, the propagation path

would be shorter, resulting in the same energy gain.

We also note that Eq. (8) relates the field-parallel and

field-perpendicular dimensions of the turbulent eddy

considered in Fig. (1). Consider small enough scales

where δB⊥/B0 ≪ 1. If we formally introduce the

field-parallel and field-perpendicular wavenumbers as

k⊥ = 2π/(2λ) and k∥ = 2π/S, and set 2ϕ = π, we

derive

k⊥
k∥

δB⊥

B0
=

π

2
. (10)

This formula is the critical balance condition of Gol-

dreich & Sridhar (1995) that takes into account the

magnetic-field-line curvature effects.

The analysis of particle acceleration can be advanced

further if the magnetic fluctuations are relatively weak,

δB⊥/B0 ≪ 1. In this case, we approximate:

∆ ln(γ) ∼ 2ϕβ
δB⊥

B0
. (11)

In strong magnetically dominated Alfvénic turbulence,

the electric and magnetic fluctuations are nearly in

equipartition, E⊥ ∼ δB⊥ (e.g., TenBarge et al. 2021;

Chernoglazov et al. 2021; Nättilä & Beloborodov 2021;

Vega et al. 2022b). Therefore, at small field-parallel

scales, l ≪ L∥,0, the plasma velocity fluctuations can be

evaluated as

β(l) ∼ δB⊥(l)

B0
∼ δB0

B0

(
l

L∥,0

)1/2

, (12)

where we used the field-parallel scaling of magnetic fluc-

tuations characteristic of Alfvénic turbulence; see our

discussion in the introduction. We then estimate the
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contribution of an eddy of scale l to the energy gain as3

∆ ln(γ) ∼ 2ϕ

(
δB⊥(l)

B0

)2

∼ 2ϕ

(
δB0

B0

)2
l

L∥,0
. (15)

We see that the acceleration rate is sensitive to the rel-

ative strength of the turbulent fluctuations; it rapidly

decreases as δB0/B0 decreases. We also notice that

larger-scale fluctuations provide stronger acceleration,

suggesting that the process is dominated by the parti-

cle interactions with the largest, outer-scale turbulent

eddies, l ∼ L∥. If we allow β to attain both positive

and negative values with certain probabilities, Eq. (15)

would lead to a logarithmic random walk. It would

result in log-normal energy distributions of accelerated

particles. The typical value of ∆ ln(γ) will then be eval-

uated as

∆ ln(γ) ∼ 2ϕ

(
δB0

B0

)2 √
N0, (16)

where N0 is the number of large-scale crossing times.

Formulae (15) and (16) are our main result for the cur-

vature acceleration in magnetically dominated Alfvénic

turbulence. They have several important consequences.

First, in contrast with the linear acceleration provided

by a parallel electric field, the curvature acceleration is

exponentially fast. Given long enough acceleration time

(say, running time of numerical simulations), it would

dominate over the energization provided by the parallel

electric field. Second, in the limit of a strong guide field,

δB0 ≪ B0, the electron magnetic moment is conserved

even when the electron interacts with intense intermit-

tent structures. Therefore, as the electron accelerates,

its field-perpendicular momentum does not significantly

change, while the field-parallel momentum increases.

3 As a consistency check, we verify that as a particle gets acceler-
ated by a turbulent eddy, its drift in the field-perpendicular di-
rection does not exceed the eddy field-perpendicular size λ. One
can check that due to the curvature drift, a particle propagating
through such an eddy, gets displaced in the field-perpendicular
direction by a distance

∆R⊥ ∼ γρ0

(
δB0

B0

)(
λ

L⊥,0

)1/3

. (13)

In Section 2.3: Eq. (23), we demonstrate that the typical per-
pendicular gyroradius of such a particle is

ρ⊥ ∼ ρ0

(
δB0

B0

)3/2 ( ρ0

L⊥,0

)1/2

γ3/2, (14)

where ρ0 = c/Ωs and Ωs = qsB/(msc) is the particle’s cyclotron
frequency. It is easy to see that the condition ∆R⊥ < λ is equiva-
lent to the condition ρ⊥ < λ. Since particles can only be acceler-
ated by eddies that are larger than their gyroradii, the condition
∆R⊥ < λ is always satisfied.

We, therefore, propose that in magnetically domi-

nated strong-guide-field Alfvénic turbulence, the accel-

eration is provided by curvature drifts, particles are ac-

celerated along the magnetic field lines, and they attain

log-normal energy distributions. Due to the quadratic

dependence of the acceleration rate on the intensity of

turbulent fluctuations, the acceleration time increases

significantly when δB0/B0 decreases. These results

are consistent with the numerical observations in (Vega

et al. 2024). In Section 2.4, we will discuss the mir-

ror acceleration mechanism. However, before that, we

would like to present some relevant results on magnetic

moment conservation in Alfvénic turbulence.

2.3. Magnetic moment conservation in a turbulent

magnetic field

In a collisionless plasma where fluctuations of the elec-

tric and magnetic fields are relatively small in com-

parison with B0, a charged particle preserves the first

adiabatic invariant, the magnetic moment. The com-

plete expression for the magnetic moment includes not

only field-perpendicular but also field-parallel particle

momentum (e.g., Northrop 1963; Littlejohn 1983, 1984;

Egedal et al. 2008). This is especially relevant for the

case when the field-parallel momentum of a particle

is much larger than its field-perpendicular momentum,

p⊥/p∥ ≪ 1, which we consider here. In this limit, the

leading order expression for the magnetic moment is

µ(0) = p2⊥/(2msB0). The next-order term becomes rel-

evant when p⊥ ∼ p2∥c/(qsB0Rc). We propose that as

the relative value of the field-perpendicular momentum

decreases, it cannot become smaller than the value dic-

tated by balancing the leading and sub-leading terms

in the expression for the magnetic moment. Therefore,

in a curved magnetic field, as the field-parallel momen-

tum increases during particle acceleration, so should the

field-perpendicular momentum. For an ultrarelativistic

particle, we may then obtain the typical value attained

by the particle’s perpendicular momentum as its parallel

momentum increases:

p⊥ ∼ p2∥c/(qsB0Rc) ∼ p∥γρ0/Rc. (17)

Here ρ0 = c/Ωs and Ωs = qsB/(msc) is the particle

non-relativistic cyclotron frequency, qs its charge, and

ms its rest mass. Expressing the particle gyroradius as

ρ⊥ = γρ0 sin θ, we rewrite formula (17) for a small pitch

angle:

ρ⊥ ∼ ρ20γ
2/Rc. (18)

If the particle gyroradus, ρ⊥, is smaller than the inner

scale of Alfvénic turbulence, drel, the largest curvature
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of the magnetic-field lines is provided by the smallest

turbulent eddies, that is, the eddies with scales drel.

The curvature radius can then be evaluated as in for-

mula (7),

Rc ∼ drel

(
B0

δB⊥(drel)

)2

∼ L⊥,0

(
drel
L⊥,0

)1/3 (
B0

δB0

)2

. (19)

Here, for simplicity, we assumed the Goldreich & Srid-

har (1995) scaling of the magnetic fluctuations, α = 1/3.

Substituting this expression into Equation (18), we de-

rive the scaling of the typical particle gyroradius with

the energy:

ρ⊥ ∼ ρ0

(
ρ0

L⊥,0

)(
δB0

B0

)2 (
L⊥,0

drel

)1/3

γ2. (20)

This gyroradius becomes comparable to the inner scale

of turbulence, drel, when the particle energy reaches the

critical value:

γc =
B0

δB0

drel
ρ0

(
L⊥,0

drel

)1/3

. (21)

For energies larger than the critical energy, the cur-

vature of the magnetic field lines guiding the particle

motion, is provided by the eddies comparable to the par-

ticle gyroradius, λ ∼ ρ⊥. In this case, the field curvature

radius needs to be estimated differently,

Rc ∼ L⊥,0

(
ρ⊥
L⊥,0

)1/3 (
B0

δB0

)2

. (22)

Substituting Eq. (22) into Eq. (18), we derive the scaling

of the particle gyroradius with the Lorenz factor,

ρ⊥ ∼ ρ0

(
δB0

B0

)3/2 (
ρ0

L⊥,0

)1/2

γ3/2. (23)

This scaling holds only when ρ⊥ is larger than the small-

est scale of Alfvénic turbulence, drel.

Interestingly, in this limit we can give an alternative

derivation of formula (17), which is more suitable for our

analysis of magnetic turbulence. In an Alfvénic turbu-

lent eddy with the field-perpendicular and field-parallel

scales λ and l, the directions of magnetic field lines

are known with the angular uncertainty of θλ ∼ λ/l.

Therefore, a particle with a gyroradius ρ⊥ ∼ λ cannot

maintain a pitch angle smaller than θλ. Expressing the

(small) particle pitch angle as p⊥/p∥, we write this con-

dition as

p⊥
p∥

∼ λ

l
. (24)

The magnetic-line curvature associated with such an

eddy can be evaluated as Rc ∼ l2/λ, and the scale of the

𝐵𝐵1 𝐵𝐵2

𝜷𝜷

𝐵𝐵1 𝐵𝐵2

𝜷𝜷

Figure 2. Sketch of an electron-mirror interaction for small
pitch angles. For simplicity, velocity β is directed along the
magnetic mirror axis.

eddy guiding the particle motion as λ ∼ ρ⊥ = γρ0 sin θ.

If one expresses λ and l through ρ⊥ and Rc, one can

verify that Eq. (24) becomes equivalent to Eq. (17).

It is also easy to see that the condition (24) or (23)

is the resonance condition between a particle and a tur-

bulent eddy. When a particle’s energy reaches the criti-

cal value γc, its gyroradius γρ0 becomes comparable to

the field-parallel size of the smallest Alfvénic eddy. The

particle’s gyrofrequency also becomes comparable to the

turnover rate of the smallest eddy of scale drel at this

energy. This interaction leads to the scattering of the

particle’s pitch-angle. However, as the pitch angle in-

creases and moves away from the resonance condition

(23), the scattering becomes less effective. The curva-

ture acceleration, on the other hand, tends to increase γ

and decrease the pitch angle. Therefore, it is reasonable

to expect that at γ > γc, the resulting pitch-angle will

be governed by the “critical balance” condition (23).

2.4. Mirror acceleration

Curvature acceleration discussed in Section 2.2 does

not significantly depend on the pitch angle in that it

remains efficient even when the pitch angle is small. In

contrast, the mirror acceleration depends crucially on

the value of the pitch angle. Fig. 2 shows a head-on

interaction of an electron with a magnetic mirror when

the electron pitch angle is small, sin2 θ < 1− (∆B/B2).

Here, ∆B = B2−B1 > 0 is the variation of the magnetic

field strength, as shown in the figure. In this case, the

electron is not reflected by the mirror but rather propa-

gates through the mirror throat. For simplicity, assume
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that the electron is ultra-relativistic and the mirror is

moving at a relatively lower speed. When the electron

passes through the mirror, its energy increases approxi-

mately as

∆ ln(γ) ∼ 1

2
β

(
∆B/B2

1−∆B/B2

)
sin2 θ, (25)

where we assumed sin2 θ ≪ 1. We see that for small

pitch angles, the mirror acceleration given by Eq. (25)

is much less efficient than the acceleration by curvature.

Due to the conservation of magnetic moment in Alfvénic

turbulence with a strong guide field, δB0 ≪ B0, parti-

cle acceleration decreases the pitch angle even further,

sin2 θ ∼ 1/γ2. Therefore, the mirror acceleration be-

comes even less relevant.

The situation changes drastically in the case of a mod-

erate guide field, B0 ∼ δB0. In this case, collisions

with intermittent structures with thickness drel and

magnetic-field variations δB0 provide significant pitch-

angle scattering to particles whose gyroradius exceeds

drel. When a particle is accelerated in a curved mag-

netic field, its gyroradius depends on its energy γ. As

demonstrated in Section 2.3, in Alfvénic turbulence the

particle’s gyroradius exceeds drel when its energy ex-

ceeds the critical value, γ ≥ γc given by

γc =
B0

δB0

drel
ρ0

(
L⊥,0

drel

)1/3

. (26)

In this formula, ρ0 = c/Ωs and Ωs = qsB/(msc) is the

particle cyclotron frequency.

At such energies, and when δB0/B0 ∼ 1, energetic

particles can be scattered to large pitch angles, sin2 θ >

1−∆B/B2, in which case they may be efficiently accel-

erated by mirrors. Such a situation is shown in Fig. 3.

In such an interaction, a particle gets reflected from the

mirror, and its energy increases according to

∆ ln(γ) ∼ 2β cos θ. (27)

This energy gain is larger than that associated with a

small pitch angle, Eq. (25). It is comparable to the

curvature acceleration at a similar guide-field strength.

Therefore, in the case of a moderate guide field, the

population of particles with large pitch angles satisfying

sin2 θ > 1− (∆B/B2), is accelerated by both curvature

and mirror effects. As a result, such particles gain en-

ergy at a higher exponential rate than the population

with small pitch angles, sin2 θ < 1− (∆B/B2).

This consideration is broadly consistent with the

model of particle acceleration proposed in (Vega et al.

2022b). In this model, particles are accelerated fast in

𝐵𝐵1 𝐵𝐵2

𝜷𝜷

𝐵𝐵1 𝐵𝐵2

𝜷𝜷

Figure 3. Sketch of an electron-mirror interaction for large
pitch angles. For simplicity, velocity β is directed along the
magnetic mirror axis.

the phase-space region defined by the pitch angle con-

dition, sin2 θ > 1 − (∆B/B2). Due to pitch-angle scat-

tering, particles leak from this region when their pitch

angles become smaller. At smaller pitch angles, the ac-

celeration is exponentially weaker and it is neglected.

Such a “phase-space leaky box” leads to power-law en-

ergy distributions of accelerated particles. The power

law exponent depends on the rate of particle leakage,

which in turn, is a function of the turbulence intensity,

∆B/B2.

It is also worth noting that in Alfvénic turbulence,

mirror structures are generally spatially separated from

the regions of large curvature, and, therefore, may

be considered as complementary effects. Indeed, phe-

nomenological arguments and numerical simulations

suggest that magnetic strength and magnetic curva-

ture are anti-correlated in Alfvénic turbulence (e.g.,

Schekochihin et al. 2004; Kempski et al. 2023). More-

over, magnetic mirrors are also separated from the inter-

mittent structures that provide pitch-angle scattering.

Indeed, strong magnetic shears in Afvénic turbulence

are typically associated with rotations of magnetic field

direction rather than with variations of magnetic field

strength (e.g., Zhdankin et al. 2012a,b).

3. NUMERICAL ILLUSTRATION

To illustrate the discussion in the previous section, we

show the results from two 2.5D numerical simulations of

decaying turbulence in a pair plasma. The simulations

were run with fully relativistic particle-in-cell code VPIC

(Bowers et al. 2008). A 2.5D simulation can be seen as a
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Run Size (d2e) # of cells ωpeδt B0/δB0 σ̃

I 20002 166402 2.1× 10−2 1 40

II 16002 235522 1.2× 10−2 10 40

Table 1. Parameters of the runs. Here, de is the nonrela-
tivistic electron inertial scale. The table also shows the initial
value of B0/δB0 and the initial value of the magnetization
σ̃ defined by formula (1). Some results of these simulations
we also analyzed in (Vega et al. 2022b, 2024), where more
specific details of the initial setup can be found.

3D simulation with continuous translational symmetry

along one direction (the z direction in our case), so only

one two-dimensional cut needs to be simulated.

Both simulation domains were double periodic L× L

squares with 100 particles per cell per species and had

a uniform magnetic guide-field B0 = B0ẑ. Turbulence

was initialized with randomly phased magnetic pertur-

bations of the Alfvénic type

δB(x) =
∑
k

δBkξ̂k cos(k · x+ ϕk), (28)

where the unit polarization vectors are normal to the

background field, ξ̂k = k×B0/|k×B0|. The wave vec-

tors of the modes are given by k = {2πnx/L, 2πny/L},
where nx, ny = 1, ..., 8. All modes have the same ampli-

tudes δBk. The rms value of the perturbations is given

by δB0 = ⟨|δB(x)|2⟩1/2. The initial temperature of the

particles was chosen to be θ0 ≡ kBT0/mec
2 = 0.3, which

corresponds to the initial enthalpy of w0 ≈ 1.88. In the

figures below, time is normalized to the large-scale light

crossing time L⊥,0/c, where c is the speed of light and

L⊥,0 = L/8 is the outer scale of turbulence. Table 1

summarizes the parameters of the runs.

Both runs are very similar in the way the Alfvénic

turbulence is initialized. The only significant difference

is the strength of the applied guide field, B0. In both

cases, the most efficient phase of particle heating con-

tinued until the growing energy of particles approaches

an approximate equipartition with the decaying energy

of electromagnetic fluctuations. This happened when

about half of the initial magnetic energy was transferred

to particles, so their energies reached ⟨γ⟩ ∼ 10 for each

species. The electromagnetic spectra of turbulence and

the energy distribution functions of the electrons are

shown at these moments in Figures 4 and 5. Figure 4

shows that the spectra of electromagnetic fluctuations

in the Alfvénic interval, k⊥drel ≲ 1, are similar in both

runs.

Note, however, that it took a significantly longer time

to energize the particles in the case of a strong guide field

than in the case of a moderate guide field, in qualitative

agreement with our discussion. Moreover, the resulting

non-thermal tails (γ > 10) of the energy distribution

functions are drastically different in the two cases. In

the case of a strong guide field, the distribution is well

approximated by a log-normal function. In the case of a

moderate guide field, the distribution is close to a power

law. This also qualitatively agrees with our modeling.

Figure 6 shows the distributions of pitch angles of ac-

celerated particles. In the case of a strong guide field,

the pitch angles are extremely small. This is consis-

tent with our formula for the critical energy, Eq. (26),

that gives for this case γc ≈ 8000. This means that

even the most energetic particles generated in our run,

with the energies γ ∼ 1000, will have gyroradii much

smaller than drel. The process of curvature acceleration

is described by Eq. (16), leading to a log-normal particle

energy distribution.

The situation is fundamentally different in the case

of a moderate guide field. Here, the critical energy es-

timate provided by Eq. (26), gives γc ≈ 70. Figure 6,

left panel, indeed shows that particles with the smaller

energies, γ ≪ 70, are accelerated mostly along the mag-

netic field lines. However, particles with higher energies

γ ≳ 70 are more efficiently accelerated when they have

large pitch angles. This is consistent with our picture

of particle acceleration suggesting that in the case of a

moderate guide field, B0 ∼ δB0, particles with γ ≳ γc
experience strong pitch-angle scattering and efficient ac-

celeration by magnetic mirrors.

4. DISCUSSION

We have proposed a phenomenological description

of non-thermal relativistic particle acceleration in a

magnetically dominated Alfvénic turbulence. We con-

sidered the setting where turbulence is excited by initial

field perturbations with strong magnetization, σ̃0 ≫ 1.

When such perturbations decay, they drive turbulence

and energize the plasma. As a result, plasma is self-

consistently heated to ultrarelativistic temperatures,

while simultaneously, the developed Alfvénic turbulence

leads to non-thermal particle acceleration. We argue

that in the considered limit of strong magnetization,

the process of particle acceleration is universal in that

it depends only on the relative strength of the imposed

guide magnetic field and the resulting turbulent fluc-

tuations. The process of acceleration is governed by

the conservation of magnetic moment. In the case of a

strong guide field, B0 ≫ δB0, the particle’s magnetic

moment is conserved and the acceleration is provided by

magnetic curvature drifts. The curvature acceleration

energizes particles in the direction parallel to the mag-

netic field lines, resulting in a log-normal tail of particle
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Figure 4. Electric and magnetic energy spectra for simulations with B0/δB0 = 1 (left panel) and B0/δB0 = 10 (right panel).
Note rather weak parallel electric field fluctuations. The slopes indicated by the solid black lines are given for the reader’s
orientation. They are chosen to be consistent with the discussions given in (Vega et al. 2022b, 2024), where some results of
these numerical simulations were also analyzed.

Figure 5. Particle energy probability density function for simulations with B0/δB0 = 1 (left panel) and B0/δB0 = 10 (right
panel). In the case of a moderate guide field, the energy distribution function has a power-law tail. In the case of a strong guide
field, the high-energy tail is well approximated by a log-normal function f(γ) ∝ γ−1 exp[−(ln γ − µ)2/2σ2

s ], with µ ≈ 2.6 and
σ2
s ≈ 0.61. This function is shown by the dashed line. Note the significantly longer time required to accelerate the particles in

the case of a strong guide field.

energy distribution function. The situation is qualita-

tively different in a setting when plasma is immersed

in a moderate guide field, B0 ≲ δB0. In this case, as

the gyroradius of an energetic particle exceeds the in-

ner scale of turbulence (in our case, drel), interactions

with intense turbulent structures like current sheets can

break the particle’s magnetic moment. Magnetic mirror

effects become important at such energies, resulting in

power-law energy distributions of accelerated particles.

The proposed phenomenological picture is consistent

with available numerical simulations, as illustrated in

the examples discussed in section 3.
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Computing Center (TACC) at the University of Texas at

Austin and by the NASA High-End Computing (HEC)

Program through the NASA Advanced Supercomput-

ing (NAS) Division at Ames Research Center. This
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Figure 6. Pitch-angle distribution of ultrarelativistic particles (γ > 100) for simulations with a moderate guide field, B0/δB0 =
1 (left panel) and a strong guide field, B0/δB0 = 10 (right panel). In the case of a strong guide field, the pitch angles are extremely
small. In the case of a moderate guide field, the pitch angles of accelerated particles crucially depend on the particle’s energy.
For energies smaller than the critical energy, γ ≪ γc (in this run, γc ≈ 70), the particles are accelerated mostly along the
background magnetic field. Above the critical energy, γ ≳ γc, particles with larger pitch angles are accelerated more efficiently.

work also used Bridges-2 at Pittsburgh Supercomput-

ing Center. TACC and Bridges-2 access was provided

by allocation TG-ATM180015 from the Advanced Cy-

berinfrastructure Coordination Ecosystem: Services &

Support (ACCESS) program, which is supported by Na-
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APPENDIX

A. POLARIZATION OF THE ELECTRIC FIELD IN ALFVÉNIC TURBULENCE

Here we follow the discussion of the linear Alfvén waves in a collisionless, relativistically hot magnetically dominated

pair plasma presented in (Vega et al. 2024), see also (Godfrey et al. 1975; Gedalin et al. 1998). Assume that Ω2
ce ≫

ω2
pe ≫ ω2, where Ωce and ωpe are the electron cyclotron and plasma frequencies, correspondingly. Conventionally, the

background magnetic field B0 is in the vertical z-direction, while the wave vector has the coordinates k = (k⊥, 0, kz).

Under these assumptions, the electric polarization of the Alfvén mode satisfies:k2z − ω2

c2 0 −kzk⊥

0 k2 − ω2

c2 0

−kzk⊥ 0 k2⊥ − ω2

c2 P


Ex

Ey

Ez

 = 0. (A1)

We assume that the plasma particle distribution function is one-dimensional, pz ≫ p⊥, and ultra-relativistic. For the

field-parallel and field-perpendicular wave numbers satisfying k2z ≪ k2⊥ and k2⊥d
2
rel ≲ 1, one then estimates

P ≈ −
2w0ω

2
pe

k2zc
2

. (A2)

Here, w0 is the specific enthalpy associated with the electron distribution, d2rel = w0c
2/(2ω2

pe) the corresponding

relativistic electron inertial scale, and ω2 ≈ k2zc
2 the Alfvén wave frequency in a magnetically dominated plasma.

From Equations (A1) and (A2) we derive that Ey = 0, and:

E∥

E⊥
≡ Ez

Ex
≈ 1

w2
0

kzk⊥d
2
rel. (A3)
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