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Abstract. In 1990, Jakeman (see [21]) defined the binomial process as a special case of the classical
birth-death process, where the probability of birth is proportional to the difference between a fixed
number and the number of individuals present. Later, a fractional generalization of the binomial
process was studied by Cahoy and Polito (2012) (see [7]) and called it as fractional binomial process
(FBP). In this paper, we study second-order properties of the FBP and the long-range behavior of
the FBP and its noise process. We also estimate the parameters of the FBP using the method of
moments procedure. Finally, we present the simulated sample paths and its algorithm for the FBP.

1. Introduction

A linear birth and death process, introduced by Feller (see [18]), is widely used to model popu-
lation dynamics (see [2, 3, 38]), queuing systems (see [19]), and other phenomena (see [11, 35, 43])
in which entities enter and exit a system over time. In population model, individuals give birth to
new individual with the rate λ > 0 and individuals die with rate µ > 0, independent of each other.
Several researchers have studied its statistical properties (see [10, 14, 25, 26, 42]), and there are
numerous domains in which it finds use, including biology (see [39, 45]), ecology (see [2, 11, 12]),
and finance (see [27, 28, 41]).

Jakeman (see [21]) studied a linear birth and death process in which the birth rate is proportional
to N − n, where N is a fixed large number and n is present population, while the mortality rate
stays linear in n. Moreover, it is demonstrated that an equilibrium with a binomial distribution
is attained as time tends to infinity, and therefore it is called the binomial process. The behavior
of the binomial process differs from that of the traditional linear birth-death process, since in the
binomial process the birth rate is proportional to N − n makes chances of birth equal to zero
whenever population size n reaches N . Therefore, population never crosses size N in the binomial
process, whereas no such restriction of upper bound on population size in the classical linear birth
and death process exists. The binomial process has found its application in several areas, such as,
the telegraph wave models (see [1, 23]), quantum optics (see [15, 24, 13]), and etc.

Recently, the fractional binomial process (FBP) {N ν(t)}t≥0, was introduced by Cahoy and Polito

(see [7]), with birth rate λ > 0 and death rate µ > 0. It is obtained by taking the fractional-order
derivative in place of the integer order derivative in the governing differential equation of the bi-
nomial process. They also showed that one dimensional distribution of the FBP is same as the
binomial process subordinated by inverse ν-stable subordinator, 0 < ν < 1. It preserves the bino-
mial limit when time tends to infinity which makes it appealing for application in areas such as
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quantum optics (see [22]) and several other disciplines (see [20, 33, 44]).

Cahoy and Polito (see [7]) have studied several statistical properties of the FBP such as mean,
variance, extinction probability and state probability. The second order properties of the FBP still
remains to be investigated and one of them is the long-range dependence (LRD) property. The
LRD property of a stochastic model or a process refers to the presence of long-term persistence
of autocorrelation over time. More specifically, it means that the autocorrelation function of the
process decays slowly, indicating that distant observations are still not uncorrelated. This property
is in contrast to short-range dependence (SRD) property, where correlation decay quickly as the
lag between observations increase. The LRD property has found use-cases in several sub-domains
like modeling, prediction, and risk management. One can find its applications in various fields,
including finance (see [31, 33]), climate science (see [44]), biomedical engineering (see [20, 37]),
econometrics (see [36]), etc.

In this paper, we prove that the FBP has the LRD property. Let δ > 0 be fixed, the increments of
the FBP are defined as:

Zδ
ν(t) = N ν(t+ δ)−N ν(t), t ≥ 0,

which we call the fractional binomial noise (FBN). We prove that the FBN has the SRD property.

Parameter estimation is a fundamental aspect of data analysis, where the goal is to determine
the values of unknown parameters in a model or system based on observed data. The parameter
estimation of the the FBP is not known in the literature and in this paper we discuss the same
using the method of moments. The simulated sample paths of the FBP gives an visual idea of the
evolution of the process and in this paper we present simulated sample paths for the FBP.

The subsequent sections of the paper are structured as follows. In Section 2, we have stated
some preliminary results regarding the binomial process and the FBP. Section 3 deals with the
LRD property of the FBP and the SRD property of the FBN. Section 4 presents different simula-
tion algorithms to create the sample path of the FBP. Finally, in Section 5, we have studied the
parameter estimation for the FBP.

2. Preliminaries

In this section, we introduce some notations, definitions and results that will be used later. A
linear birth-and-death (LBD) process is a continuous-time Markov chain (CTMC), {Y (t) : t ≥ 0},
defined on the countable state space S = {0, 1, 2, 3, ...} and, the transitions are permitted only
to its nearest neighbours. The state probability pn(t) = P {Y (t) = n|Y (0) = M} of LBD satisfies
following Cauchy problem (see [3])

(2.1)


d

dt
pn(t) = µ(n+ 1)pn+1(t)− µnpn(t)− λnpn(t) + λ(n− 1)pn−1(t),

pn(0) =

{
1 n = M,
0 n ̸= M,

where, M ≥ 1 is the initial population. An LBD process have applications in several areas, such as,
modelling population dynamics (see [2, 3, 38]), queuing systems (see [19]) and biological systems
(see [39, 45, 2, 11, 12]). Jakeman (see [21]) studied linear birth and death process with some
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modifications and obtained the binomial process. We next present some preliminary results of the
binomial process that will be needed later in this paper.

2.1. Binomial process. Jakeman (see [21]) introduced the classical binomial process {N (t)}t≥0

with birth rate λ > 0 and death rate µ > 0 has initial value problem for the state probability pn(t)
given by

(2.2)


d

dt
pn(t) = µ(n+ 1)pn+1(t)− µnpn(t)− λ(N − n)pn(t)

+λ(N − n+ 1)pn−1(t), if 0 ≤ n ≤ N ,

pn(0) =

{
1 n = M,
0 n ̸= M,

where pn(t) = P {N (t) = n|N (0) = M}, M is the initial population and N is the maximum attain-
able population. The state space of the binomial process is {0, . . . , N}. The generating function
for N (t) is defined as

Q(u, t) =
N∑

n=0

(1− u)npn(t),

and it satisfies the following partial differential equation (pde)

(2.3)


∂

∂t
Q(u, t) = −µu

∂

∂u
Q(u, t)− λu(1− u)

∂

∂u
Q(u, t)− λNuQ(u, t)

Q(u, 0) = (1− u)M , |1− u| ≤ 1,

where M ≥ 1 is the initial number of individuals and N ≥ M . The solution of the above equation
(2.3) is given by

(2.4) Q(u, t) = [1− (1− θ)ξu]N
(
1− [(1− θ)ξ + θ]u

1− (1− θ)ξu

)M

,

where ξ = λ
λ+µ and θ(t) = exp[−(µ+λ)t]. The joint probability generating function of the binomial

process is given as (see [21] )

Q(u, u′, t) =
N∑

n=0

(1− u)nPnQn(u
′, t),(2.5)

where Qn(u
′, t) is given by (2.4) and the subscript n denotes the initial population. The probability

of finding n individuals Pn given by (see [21])

(2.6) Pn =

{ (
N
n

)
ξn(1− ξ)N−n n ≤ N,

0 n > N.

Moreover, it is observed in [21] that as time tends to infinity, the evolving population follows a
binomial distribution with parameters N and λ/(λ+ µ). We now state some preliminary results of
the FBP that will be needed later.
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2.2. Fractional Binomial process. The FBP (see [7]) {N ν(t)}t≥0 is obtained by taking fractional-
order derivative in place of the integer-order derivative in the governing differential equation of the
binomial process given in (2.2). The governing differential equation of the FBP {N ν(t)}t≥0 with
birth rate λ > 0 and death rate µ > 0 is given by
(2.7)

dν

dtν
pνn(t) = µ(n+ 1)pνn+1(t)− µnpνn(t)− λ(N − n)pνn(t) + λ(N − n+ 1)pνn−1(t), 0 ≤ n ≤ N ,

pνn(0) =

{
1 n = M,
0 n ̸= M.

The inverse ν-stable subordinator is defined as the right-continuous of the ν-stable subordinator
{Dν(t)}t≥0 (see [6, 34])

Eν(t) = inf{x > 0|Dν(t) > x}, 0 < ν < 1, t ≥ 0.

It is observed (see [7]) that the one-dimensional distribution of the FBP {N ν(t)}t≥0 can be writ-

ten as time-changed binomial process {N (t)}t≥0 by an independent inverse ν-stable subordinator

Eν(t), i.e.,

(2.8) N ν(t)
d
= N (Eν(t)),

where t ≥ 0 and ν ∈ (0, 1). It is known that (see [7]) the generating function of the FBP Qν(u, t) =∑N
n=0(1− u)npνn(t) solves the following differential equation

(2.9)


∂ν

∂tν
Qν(u, t) = −µu

∂

∂u
Qν(u, t)− λu(1− u)

∂

∂u
Qν(u, t)− λNuQν(u, t),

Qν(u, 0) = (1− u)M , |1− u| ≤ 1,

where the initial number of individuals is M ≥ 1, and N ≥ M .

Definition 2.1. Let f(x) and g(x) be two functions, then they are called asymptotically equivalent
denoted by f(x) ∼ g(x), if

lim
x→∞

f(x)

g(x)
= 1.

The Mittag–Leffler function can be defined as (see [17])

Eα(z) =
∞∑
r=0

zr

Γ(αr + 1)
α, z ∈ C, R(α) > 0.

Now, using expansion of Eν(−x) = 1
π

∑∞
n=0

an(ν)
xn+1 , where 0 < ν < 1 (see [5]), we will show that

Eν(−x) asymptotically equivalent to a0(ν)
πx , that is

Eν(−x) =
1

xπ

[
a0(ν) +

a1(ν)

x
+

a2(ν)

x2
+ · · · ·

]
=

1

π

[
a0(ν)

x
+

a1(ν)

x2
+

a2(ν)

x3
+ · · ·

]
=

1

π

[
a0(ν)

x
+O

(
1

x2

)]
∼ a0(ν)

πx
.(2.10)
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The mean and variance of the FBP {N ν(t)}t≥0 are given by (see [7] )

E[N ν(t)] =

(
M − Nλ

λ+ µ

)
Eν(−(λ+ µ)tν) +

Nλ

λ+ µ
(2.11)

Var[N ν(t)] =

(
λ2N(N − 1)

(λ+ µ)2
− 2λM(N − 1)

λ+ µ
+M(M − 1)

)
Eν(−2(λ+ µ)tν)

+

(
2λ2N

(λ+ µ)2
− λ

λ+ µ
(N + 2M) +M

)
Eν(−(λ+ µ)tν)

−
(
M −N

λ

λ+ µ

)2

Eν(−(λ+ µ)tν)2 +
Nλµ

(λ+ µ)2
,(2.12)

where Eα(ξ) =
∑∞

r=0
ξr

Γ(αr+1) is the Mittag–Leffler function.

2.3. The long and short range dependence. In the literature, there are various definitions of
the LRD and SRD characteristics of a stochastic process. However, for the purpose of this paper,
we will utilize the following definition (see [4, 16, 32]) for non stationary process.

Definition 2.2. Let d > 0 and {X(t)}t≥0 be a stochastic process and the asymptotic behaviour of
its correlation function is given by

lim
t→∞

Corr [X(s), X(t)]

t−d
= c(s), 0 < s < t

for fixed s and c(s) > 0. Then, we say that the stochastic process {X(t)}t≥0 has the LRD property

if d ∈ (0, 1), otherwise it is said to have the SRD property when d ∈ (1, 2) .

3. Dependence structure for the FBP

The aim of this section is to examine the LRD and SRD property of the FBP {N ν(t)}t≥0 and

the fractional binomial noise (FBN)
{
Zδ
ν(t)

}
t≥0

respectively. Now, we derive some results which

are needed to prove it. First, we derive the recurrence relation for the joint probability generating
function (pgf) of the FBP.

Lemma 3.1. The joint pgf of the FBP satisfies the following relationship

Qν(u, u′) =
N∑

n=0

(1− u)nPnQ
ν
n(u

′, t),(3.1)

where Pn is given by (2.6) and Qν
n is the solution of (2.9) with initial population n.

Proof. Let P ν
nn′ denote the probability of finding n individuals present at time t0 and n′ individuals

at time t0 + t, and is given by

P ν
nn′ = P

(
N ν(t0 + t) = n′,N ν(t0) = n

)
= P

(
N ν(t0 + t) = n′|N ν(t0) = n

)
P(N ν(t0) = n).(3.2)

Now, we have the generating function for the FBP as

Qν(u, u′; t) =

N∑
n,n′=0

(1− u)n(1− u′)n
′
P ν
nn′
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=

N∑
n,n′=0

(1− u)n(1− u′)n
′
P
(
N ν(t0 + t) = n′|N ν(t0) = n

)
P(N ν(t0) = n) (using (3.2))

=
N∑

n=0

(1− u)nP(N ν(t0) = n)
N∑

n′=0

(1− u′)n
′
P
(
N ν(t0 + t) = n′|N ν(t0) = n

)
=

N∑
n=0

(1− u)nP(N ν(t0) = n)Qν
n(u

′, t),

using (2.5). Now, using limt0→∞P(X(t0) = n) = Pn and we have that

Qν(u, u′; t) =
N∑

n=0

(1− u)nPnQ
ν
n(u

′, t). □

We next evaluate E[N ν(s)N ν(t)] function for the FBP.

Theorem 3.2. Let 0 < ν < 1 and {N ν(t)}t≥0 be the FBP, then

E[N ν(s)N ν(t)] = (Nξ)2 −Nξ(ξ − 1)(Eν(−(λ+ µ)(t− s)ν)).(3.3)

Proof. Using equation (3.1), we get

∂

∂u′
Qν(u, u′; t− s) =

∂

∂u′

(
N∑

n=0

(1− u)nPnQ
ν
n(u

′, t− s)

)

=

(
N∑

n=0

(1− u)nPn
∂

∂u′
Qν

n(u
′, t− s)

)
.

We have that

∂2

∂u∂u′
Qν(u, u′; t− s) =

∂

∂u

[
N∑

n=0

(1− u)nPn
∂

∂u′
Qν

n(u
′, t− s)

]

=

N∑
n=1

−n(1− u)n−1Pn
∂

∂u′
Qν

n(u
′, t− s))

∂2

∂u∂u′
Qν(u, u′)

∣∣
u=0,u′=0

=
N∑

n=1

−nPn(−ENν(t− s))

=
N∑

n=1

n[(n−Nξ)Eν(−(λ+ µ)(t− s)ν) +Nξ]Pn

=

N∑
n=1

n2(Eν(−(λ+ µ)(t− s)ν))Pn −
N∑

n=1

nNξ(Eν(−(λ+ µ)(t− s)ν)− 1)Pn.(3.4)

Solving both parts separately in the above expression, we have the following

N∑
n=1

n2(Eν(−(λ+ µ)tν))Pn =
N∑

n=1

n2Eν(−(λ+ µ)tν)[NCnξ
n(1− ξ)N−n]
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= NEν(−(λ+ µ)tν)ξ

N∑
n=1

(N − 1)!

(N − n)!(n− 1)!
nξn−1(1− ξ)N−n

=

(
N(N − 1)Eν(−(λ+ µ)tν)ξ2

N∑
n=2

(N − 2)!

(N − n)!(n− 2)!
ξn−2(1− ξ)N−n

+NEν(−(λ+ µ)tν)ξ

N∑
n=1

(N − 1)!

(N − n)!(n− 1)!
ξn−1(1− ξ)N−n

)
= N(N − 1)(Eν(−(λ+ µ)(t− s)ν))ξ2 +N(Eν(−(λ+ µ)(t− s)ν)ξ.(3.5)

Now, considering second part, we have that

N∑
n=1

nNξ(Eν(−(λ+ µ)(t− s)ν)− 1)Pn =

N∑
n=1

nNξ(Eν(−(λ+ µ)(t− s)ν)− 1)[NCnξ
n(1− ξ)N−n]

= N(Eν(−(λ+ µ)(t− s)ν)− 1)
N∑

n=1

N !

(N − n)!n!
nξn+1(1− ξ)N−n

= (Nξ)2(Eν(−(λ+ µ)(t− s)ν)− 1)[1− ξ]N−1

= (Nξ)2 (Eν(−(λ+ µ)(t− s)ν)− 1) .(3.6)

Using equations (3.4), (3.5) and (3.6), we get

∂2

∂u∂u′
Qν(u, u′)

∣∣
u=0,u′=0

=
[
N(N − 1)(Eν(−(λ+ µ)(t− s)ν))ξ2 +N(Eν(−(λ+ µ)(t− s)ν)ξ

−(Nξ)2 (Eν(−(λ+ µ)(t− s)ν)− 1)
]

= (Nξ)2 (Eν(−(λ+ µ)(t− s)ν))−Nξ2 (Eν(−(λ+ µ)(t− s)ν))

+Nξ (Eν(−(λ+ µ)(t− s)ν))− (Nξ)2 (Eν(−(λ+ µ)(t− s)ν)) + (Nξ)2

= (Nξ)2 +Nξ(1− ξ)(Eν(−(λ+ µ)(t− s)ν)).

Hence, we have

E[N ν(s)N ν(t)] =

(
∂2

∂u∂u′
Qν(u, u′)

∣∣
u=0,u′=0

)
= (Nξ)2 +Nξ(1− ξ)(Eν(−(λ+ µ)(t− s)ν)). □

Next, we compute autocovariance function of the FBP.

Theorem 3.3. The autocovariance function of the FBP {N ν(t)}t≥0 is given by

Cov[N ν(s),N ν(t)] = (Nξ(1− ξ)(Eν(−(λ+ µ)(t− s)ν)))−
(
(M2 − 2MNξ +N2ξ2)

× Eν(−(λ+ µ)sν)Eν(−(λ+ µ)tν))− {(M −Nξ)Nξ[Eν(−(λ+ µ)sν) + Eν(−(λ+ µ)tν)]} .
(3.7)

Proof. Using (2.11), we obtain the following expression

E[N ν(s)]E[N ν(t)] = (M2 − 2MNξ +N2ξ2)Eν(−(λ+ µ)sν)Eν(−(λ+ µ)tν)

+ (M −Nξ)Nξ[Eν(−(λ+ µ)sν) + Eν(−(λ+ µ)tν)] +N2ξ2.
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Using equation (3.3), we get

Cov[N ν(s),N ν(t)] = E[N ν(s)N ν(t)]− E[N ν(s)]E[N ν(t)]

= ((Nξ)2 +Nξ(1− ξ)(Eν(−(λ+ µ)(t− s)ν)))−
(
(M2 − 2MNξ +N2ξ2)Eν(−(λ+ µ)sν)

× Eν(−(λ+ µ)tν))− {(M −Nξ)Nξ[Eν(−(λ+ µ)sν) + Eν(−(λ+ µ)tν)]} −N2ξ2

= (Nξ(1− ξ)(Eν(−(λ+ µ)(t− s)ν)))−
(
(M2 − 2MNξ +N2ξ2)Eν(−(λ+ µ)sν)Eν(−(λ+ µ)tν)

)
− {(M −Nξ)Nξ(Eν(−(λ+ µ)sν) + Eν(−(λ+ µ)tν))} . □

We next present the asymptotic behavior of the variance and covariance function of the FBP.

Theorem 3.4. The variance and covariance functions of the FBP are asymptotically equivalent to

Var[N ν(t)] ∼ a0(ν)

π(λ+ µ)tν

[(
ξ2N(N − 1)− 2ξM(N − 1) +M(M − 1)

)
2

+
(
2ξ2N − ξ(N + 2M) +M

)]
,

Cov[N ν(s),N ν(t)] ∼ a0(ν)

π(λ+ µ)tν
[
Nξ(1− ξ)−

(
(M −Nξ)2Eν(−(λ+ µ)sν)

)
− {(M −Nξ)Nξ}

]
,

as t → ∞, where 0 < ν < 1, 0 < s < t < ∞ and s is fixed.

Proof. Using (2.12), we have

Var[N ν(t)] =
(
ξ2N(N − 1)− 2ξM(N − 1) +M(M − 1)

)
Eν(−2(λ+ µ)tν)

+
(
2ξ2N − ξ(N + 2M) +M

)
Eν(−(λ+ µ)tν)− (M −Nξ)2Eν(−(λ+ µ)tν)2 +Nξ

µ

µ+ λ

∼
(
ξ2N(N − 1)− 2ξM(N − 1) +M(M − 1)

) a0(ν)

(2π(λ+ µ)tν)

+
(
2ξ2N − ξ(N + 2M) +M

) a0(ν)

π(λ+ µ)tν
− (M −Nξ)2

(
a0(ν)

π(λ+ µ)tν

)2

+Nξ
µ

µ+ λ

∼ a0(ν)

π(λ+ µ)tν

[(
ξ2N(N − 1)− 2ξM(N − 1) +M(M − 1)

)
2

+
(
2ξ2N − ξ(N + 2M) +M

)
−(M −Nξ)2

(
a0(ν)

π(λ+ µ)tν

)]

∼ a0(ν)

π(λ+ µ)tν

[(
ξ2N(N − 1)− 2ξM(N − 1) +M(M − 1)

)
2

+
(
2ξ2N − ξ(N + 2M) +M

)]
.

(3.8)

Using (3.7) and (2.10), we have

Cov[N ν(s),N ν(t)] = (Nξ(1− ξ)(Eν(−(λ+ µ)(t− s)ν)))− (M2 − 2MNξ +N2ξ2)Eν(−(λ+ µ)sν)

× Eν(−(λ+ µ)tν)− {(M −Nξ)Nξ[Eν(−(λ+ µ)sν) + Eν(−(λ+ µ)tν)]}

∼ Nξ(1− ξ)
a0(ν)

π(λ+ µ)(t− s)ν
−
(
(M −Nξ)2Eν(−(λ+ µ)sν)

a0(ν)

π(λ+ µ)tν

)
−
{
(M −Nξ)Nξ

(
Eν(−(λ+ µ)sν) +

a0(ν)

π(λ+ µ)tν

)}
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∼ Nξ(1− ξ)
a0(ν)

π(λ+ µ)(t− s)ν
−
(
(M −Nξ)2Eν(−(λ+ µ)sν)

a0(ν)

π(λ+ µ)tν

)
−
{
(M −Nξ)Nξ

(
a0(ν)

π(λ+ µ)tν

)}
∼ a0(ν)

π(λ+ µ)tν

[
Nξ(1− ξ)

(1− s/t)ν
−
(
(M −Nξ)2Eν(−(λ+ µ)sν)

)
− {(M −Nξ)Nξ}

]
∼ a0(ν)

π(λ+ µ)tν
[
Nξ(1− ξ)−

(
(M −Nξ)2Eν(−(λ+ µ)sν)

)
− {(M −Nξ)Nξ}

]
. □

We now prove the main result of this section.

Theorem 3.5. The FBP {N ν(t)}t≥0 exhibits the LRD property.

Proof. Let 0 < s < t and using (3.8) and (3.9), we get

Corr[N ν(s),N ν(t)] =
Cov[N ν(s),N ν(t)]

(Var[N ν(s)]Var[N ν(t)])1/2

∼

(
a0(ν)

π(λ+ µ)tν

)1/2 [
Nξ(1− ξ)−

(
(M −Nξ)2Eν(−(λ+ µ)sν)

)
− {(M −Nξ)Nξ}

]
{
Var[N ν(s)]

[(
ξ2N(N − 1)− 2ξM(N − 1) +M(M − 1)

)
2

+ (2ξ2N − ξ(N + 2M) +M)

]}1/2

∼ c(s)

tν/2
,

where

c(s) =

(
a0(ν)

(π(λ+ µ))

)1/2 [
Nξ(1− ξ)−

(
(M −Nξ)2Eν(−(λ+ µ)sν)

)
− {(M −Nξ)Nξ}

]
{
V ar[N ν(s)]

[(
ξ2N(N − 1)− 2ξM(N − 1) +M(M − 1)

)
2

+ (2ξ2N − ξ(N + 2M) +M)

]}1/2
.

Since ν ∈ (0, 1], the FBP has LRD property. □

Definition 3.6 (Fractional Binomial Noise). Let δ > 0 be fixed, and define the increments of the
fractional binomial process as the fractional binomial noise (FBN) is

Zδ
ν(t) = N ν(t+ δ)−N ν(t), t ≥ 0.

The noise process find applications in sonar communication (see [40]), vehicular communications
(see [30]), wireless sensor networks (see [29]) and many other fields, where signals are transmitted
through noise. We now explore the dependence structure of the fractional binomial noise (FBN){
Zδ
ν(t)

}
t≥0

.

Theorem 3.7. The FBN
{
Zδ
ν(t)t≥0

}
has the SRD property.

Proof. Let s, δ ≥ 0 be fixed, and 0 ≤ s+ δ ≤ t. We begin with

Cov[Zδ
ν(s), Z

δ
ν(t)] = Cov[N ν(s+ δ)−N ν(s),N ν(t+ δ)−N ν(t)]

= Cov[N ν(s+ δ),N ν(t+ δ)] + Cov[N ν(s),N ν(t)]− Cov[N ν(s+ δ),N ν(t)]
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− Cov[N ν(s),N ν(t+ δ)].(3.9)

From (3.9), we have

Cov[N ν(s),N ν(t)] ∼ r

tν
[
Nξ(1− ξ)−

(
(M −Nξ)2Eν(−(λ+ µ)sν)

)
− {(M −Nξ)Nξ}

]
,

where r = a0(ν)
π(µ+λ) . Using above equation, we get

Cov[Zδ
ν(s), Z

δ
ν(t)] ∼

r

(t+ δ)ν
[
Nξ(1− ξ)−

(
(M −Nξ)2Eν(−(λ+ µ)(s+ δ)ν)

)
− {(M −Nξ)Nξ}

]
+

r

tν
[
Nξ(1− ξ)−

(
(M −Nξ)2Eν(−(λ+ µ)sν)

)
− {(M −Nξ)Nξ}

]
− r

tν
[
Nξ(1− ξ)−

(
(M −Nξ)2Eν(−(λ+ µ)(s+ δ)ν)

)
− {(M −Nξ)Nξ}

]
− r

(t+ δ)ν
[
Nξ(1− ξ)−

(
(M −Nξ)2Eν(−(λ+ µ)sν)

)
− {(M −Nξ)Nξ}

]
∼ r(M −Nξ)2

[
−Eν(−(λ+ µ)(s+ δ)ν)

(t+ δ))ν
− Eν(−(λ+ µ)sν)

tν
+

Eν(−(λ+ µ)(s+ δ)ν)

tν
+

Eν(−(λ+ µ)sν)

(t+ δ)ν

]
∼ r(M −Nξ)2

(
1

(t+ δ)ν
− 1

tν

)
(Eν(−(λ+ µ)sν)− Eν(−(λ+ µ)(s+ δ)ν))

∼ r(M −Nξ)2

tν

(
−νδ

t

)
(Eν(−(λ+ µ)sν)− Eν(−(λ+ µ)(s+ δ)ν))

∼ r(M −Nξ)2
(
−νδ

t1+ν

)
(Eν(−(λ+ µ)sν)− Eν(−(λ+ µ)(s+ δ)ν)) .

Observe that

Var[Zδ
ν(t)] = Var[Nν(t+ δ)] + Var[Nν(t)]− 2Cov[Nν(t+ δ), Nν(t)]

Var[N ν(t)] ∼ r

tν

[(
ξ2N(N − 1)− 2ξM(N − 1) +M(M − 1)

)
2

+
(
2ξ2N − ξ(N + 2M) +M

)]
Cov[N ν(t+ δ),N ν(t)] = (Nξ(1− ξ)(Eν(−(λ+ µ)(δ)ν)))

−
(
(M2 − 2MNξ +N2ξ2)Eν(−(λ+ µ)(t+ δ))ν)Eν(−(λ+ µ)tν)

)
− {(M −Nξ)Nξ[Eν(−(λ+ µ)(t+ δ))ν + Eν(−(λ+ µ)tν)]}

∼ −
(
r2(M2 − 2MNξ +N2ξ2)

1

(t(t+ δ))ν

)
−
{
(M −Nξ)Nξr

[
1

(t+ δ)ν
+

1

tν

]}
.

Using above equations, we get

Var[Zδ
ν(t)] = Var[N ν(t+ δ)] + Var[N ν(t)]− 2Cov[N ν(t+ δ),N ν(t)]

∼ r

tν

[(
ξ2N(N − 1)− 2ξM(N − 1) +M(M − 1)

)
2

+
(
2ξ2N − ξ(N + 2M) +M

)]

+
r

(t+ δ)ν

[(
ξ2N(N − 1)− 2ξM(N − 1) +M(M − 1)

)
2

+
(
2ξ2N − ξ(N + 2M) +M

)]

+ 2

(
(M2 − 2MNξ +N2ξ2)r2

1

(t(t+ δ))ν

)
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+ 2

(
(M −Nξ)Nξ

[
r

(t+ δ)ν
+

r

tν

])
∼ r

tν

([(
ξ2N(N − 1)− 2ξM(N − 1) +M(M − 1)

)
2

+
(
2ξ2N − ξ(N + 2M) +M

)](
1 +

1(
1 + δ

t

)ν
)

+2(M −Nξ)Nξ

(
1 +

1(
1 + δ

t

)ν
))

∼ 2r

tν

[(
ξ2N(N − 1)− 2ξM(N − 1) +M(M − 1)

)
2

+
(
2ξ2N − ξ(N + 2M) +M

)
+ 2(M −Nξ)Nξ

]
.

Now, we calculate correlation function

Corr[Zδ
ν(s), Z

δ
ν(t)] =

Cov[Zδ
ν(s), Z

δ
ν(t)]

(V ar[Zδ
ν(s)]V ar[Zδ

ν(t)])
1/2

∼
r(M −Nξ)2

(
−νδ

t1+ν

)
(Eν(−(λ+ µ)sν)− Eν(−(λ+ µ)(s+ δ)ν)){

2r
tν

[
(ξ2N(N−1)−2ξM(N−1)+M(M−1))

2 + (2ξ2N − ξ(N + 2M) +M) + 2(M −Nξ)Nξ
]
V ar[Zδ

ν(s)]
}1/2

∼

(
−νδ

t1+
ν
2

)√
r(M −Nξ)2 (Eν(−(λ+ µ)sν)− Eν(−(λ+ µ)(s+ δ)ν)){

2
[
(ξ2N(N−1)−2ξM(N−1)+M(M−1))

2 + (2ξ2N − ξ(N + 2M) +M) + 2(M −Nξ)Nξ
]
V ar[Zδ

ν(s)]
}1/2

∼
(

1

t1+
ν
2

)
c(s), where

c(s) =

(
−νδ

t1+
ν
2

)√
r(M −Nξ)2 (Eν(−(λ+ µ)sν)− Eν(−(λ+ µ)(s+ δ)ν)){

2
[
(ξ2N(N−1)−2ξM(N−1)+M(M−1))

2 + (2ξ2N − ξ(N + 2M) +M) + 2(M −Nξ)Nξ
]
V ar[Zδ

ν(s)]
}1/2

Since ν ∈ (0, 1], there the FBN has the SRD property. □

4. simulation

In this section, we provide algorithm to simulate the FBP, which we will use in Section 5 for
parameter estimation of the FBP.
The sojourn time Sk of the process {N (t)}t≥0 is defined as the duration for which it remains in

current state k. The distribution of sojourn or inter-arrival time Sk is given by (see [38, Chapter
VI, Section 3.2])

P {Sk ≥ t} = exp[−(λ(N − n) + µn)kt],

and thus the pdf of the sojourn time Sk is given by

fSk
(t) = (λ(N − n) + µn)k exp[−(λ(N − n) + µn)kt], t ≥ 0.

Using (2.8), we obtain the sojourn time, Sν
k , for the FBP {N ν(t)}t≥0 as given below

P {Sν
k ≥ t} = Eν [−(λ(N − n) + µn)ktν ].
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This implies that the FBP changes state from k to k + 1 or k − 1 with probability λ(N−n)
(λ(N−n)+µn) or

µn
(λ(N−n)+µn) , respectively. Now, it can be simulated using the following procedure.

Algorithm 1. Simulation of the fractional binomial process

Input: N = 500, M = 300, µ = µn, λ = λ(N − n), and ν.
Output: N ν , simulated sample paths for the fractional binomial process.

Initialisation : n is present population where 0 ≤ n ≤ N , K is desired number of birth or death
occurs and N is fixed large number.

1: for k = 1 : K do
2: generate a negatively exponentially distributed random variable ξk and a one sided ν-stable

random variable .

3: simulate Sν
k

d
= ξ

1/ν
k Vν .

4: if U ≤ λ(N − n)

λ(N − n) + µn
then

5: N ν(sk) = M + 1,
6: otherwise N ν(sk) = M − 1,
7: end if
8: end for
9: return N ν .

(a) ν = 1, λ = 0.015, µ = 0.05, N = 500, M = 300 (b) ν = 0.8, λ = 0.015, µ = 0.05, N = 500, M = 300

Figure 1. Five simulated sample path of binomial and fractional binomial process

Interpretation of the sample paths. We observe from Figure 1 that when we compare the
binomial process with the FBP a sudden population burst (negative burst due to higher death
rate) is visible in the FBP, that is, the population burst frequency increases as we decreases value
of ν from 1 to 0. The sample paths of the FBP in Figure 1- 2 keeps revolving around their theoretical
mean.
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(a) ν = 0.8, λ = 0.05, µ = 0.015, N = 500, M = 300
(b) ν = 0.8, λ = 0.015, µ = 0.015, N = 500,
M = 300

Figure 2. Five simulated sample path of the fractional binomial process

5. Parameter estimation of the FBP

The method of moments (MoM) is a statistical technique used for estimating the parameters
of the distribution of a population. The moments are summary statistics that describe various
aspects of the distribution, such as mean, variance, skewness, and kurtosis. Here, we have not used
maximum likelihood estimator technique as there is no explicit expression of density of the FBP
is available. We can not use linear regression model for parameter estimation used by Cahoy and
Polito used in ( see [8, 9]) as our model is non-linear regression model.

Let T be fixed time and X1, X2, ..., XJ denotes the value obtained by simulating sample paths
of the FBP. Then, using X1, X2, ..., XJ we evaluate sample mean (m1) and sample second moment
(m2) as follows

m1 =
1

J

J∑
n=1

Xn and m2 =
1

J

J∑
n=1

X2
n.(5.1)

We denote the population first moment by µ′
1(λ, ν) (as a function of λ and, ν) and the population

second moment by µ′
2(λ, ν), then using (2.11) and (2.12), we get

µ′
1(λ, ν) =

(
M − Nλ

λ+ µ

)
Eν(−(λ+ µ)tν) +

Nλ

λ+ µ

(5.2)

µ′
2(λ, ν) =

(
λ2N(N − 1)

(λ+ µ)2
− 2λM(N − 1)

λ+ µ
+M(M − 1)

)
Eν(−2(λ+ µ)tν)

+

(
2λ2N

(λ+ µ)2
− λ(N + 2M)

λ+ µ
+M

)
Eν(−(λ+ µ)tν)−

(
M −N

λ

λ+ µ

)2

Eν(−(λ+ µ)tν)2

+
Nλµ

(λ+ µ)2
+

{(
M − Nλ

λ+ µ

)
Eν(−(λ+ µ)tν) +

Nλ

λ+ µ

}2

.

(5.3)
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Table 1. Parameter estimation and its dispersion’s of the FBP for parameter λ =
0.3 and ν = 0.8 with µ = 0.5, M = 30 and N = 500.

K = 100 K = 1, 000 K = 10, 000
Mean MAD MSE Mean MAD MSE Mean MAD MSE

λ̂ 0.3045 0.0071 0.000073 0.3036 0.0046 0.00003 0.3016 0.0018 0.00001
ν̂ 0.8652 0.1853 0.0482 0.8588 0.1820 0.0466 0.8358 0.0547 0.0042

Table 2. Parameter estimation and its dispersion’s of the FBP for parameter λ =
0.5 and ν = 0.4 with µ = 0.5, M = 30 and N = 500.

K = 100 K = 1, 000 K = 10, 000
Mean MAD MSE Mean MAD MSE Mean MAD MSE

λ̂ 0.4942 0.0177 0.00049 0.4962 0.0060 0.00006 0.4975 0.0078 0.00009
ν̂ 0.4395 0.0754 0.0090 0.4206 0.0266 0.0011 0.4175 0.0311 0.0017

Table 3. Parameter estimation and its dispersion’s of the FBP for parameter λ =
0.6 and ν = 0.9 with µ = 0.5, M = 30 and N = 500.

K = 100 K = 1, 000 K = 10, 000
Mean MAD MSE Mean MAD MSE Mean MAD MSE

λ̂ 0.5982 0.0141 0.00005 0.5985 0.0042 0.00003 0.5989 0.0012 0.00001

ν̂ 0.9062 0.0934 0.0156 0.8930 0.0290 0.0013 0.8938 0.0071 0.00008

To estimate parameter λ and ν, we equate sample moments of the FBP (5.1) with the population
moments (5.2) and numerically solve the following equation

m1 = µ′
1(λ, ν)

m2 = µ′
2(λ, ν).(5.4)

We took sample J = 500 and repeated this process K times, while estimating parameters, that is,
we generate this samples X1, X2, ..., X500 of the FBP for different sample sizes K = 100, 1000 and
10, 000. Then, we evaluate sample mean (m1,i) and sample second moment (m2,i) using (5.4) for
i = 1, 2, . . . ,K, which gives K estimates of λ and ν each from above equation (5.4), subsequently,

we take average of K estimates of λ and ν to obtain λ̂ and ν̂.
Here, we have used numerical method to solve equations (5.4) as it is easy to observe from

equation (5.2) that they have complicated form and hard to solve analytically. The tables below
display these values together with associated MAD (mean absolute deviation) and MSE (mean
square error). For five distinct pairs of values of λ and ν, the FBP data were simulated.

The estimation Tables 1−5 demonstrate that the relative fluctuation for estimates of λ and
µ keep approaching true value as sample sizes increase. We also observe that the true value of
parameters and estimated parameters are very close to each other and there is nearly less than 5
percent of variation between them. It is important to keep in mind that typical sample size K in
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Table 4. Parameter estimation and its dispersion’s of the FBP for parameter λ =
0.7 and ν = 0.2 with µ = 0.5, M = 30 and N = 500.

K = 100 K = 1, 000 K = 10, 000
Mean MAD MSE Mean MAD MSE Mean MAD MSE

λ̂ 0.6845 0.0157 0.00031 0.6874 0.0029 0.000012 0.6804 0.0009 0.00001

ν̂ 0.1405 0.0595 0.00025 0.1479 0.0521 0.000012 0.1501 0.0020 0.000005

Table 5. Parameter estimation and its dispersion’s of the FBP for parameter λ =
0.9 and ν = 0.5 with µ = 0.5, M = 30 and N = 500.

K = 100 K = 1, 000 K = 10, 000
Mean MAD MSE Mean MAD MSE Mean MAD MSE

λ̂ 0.8877 0.0254 0.0010 0.8896 0.0095 0.00014 0.8902 0.0028 0.00001

ν̂ 0.5383 0.0954 0.0095 0.5221 0.0207 0.00008 0.5209 0.0070 0.00007

many real-world applications, including network traffic data, are in the millions or more. Given
the context and calculations done, we claim that our results shows robust and accurate parameter
estimation. Table 6 shows result for percent bias and coefficient of variation (CV) based on for
1000 simulation, where

Percent bias =
|parameter average value- parameter value|

parameter value
∗ 100

CV =
standard deviation of the estimates

average estimates
∗ 100.

Concluding Remarks. We have investigated that the FBP has the LRD property and its incre-
ment exhibits the SRD property. We have used the one-dimensional distributions of the FBP to
simulate sample path for the process. We have derived the distribution of sojourn time of the FBP
and used it to simulate sample trajectories. We have used MoM estimation technique to estimate
parameters of the FBP. On comparing generated sample path in Figure 1, we can see that time
taken to occur next birth or death reduces and population burst occurs. This behaviour makes the
FBP more applicable in nature as such incidences occurs in real life, for example during Covid-
19 demand of masks, sanitizer, oxygen cylinder and many other things saw a burst in their demands.
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