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FAITHFUL ARTIN INDUCTION AND THE CHEBOTAREV

DENSITY THEOREM

ROBERT J. LEMKE OLIVER AND ALEXANDER SMITH

Abstract. Given a finite group G, we prove that the vector space spanned by the
faithful irreducible characters of G is generated by the monomial characters in the
vector space. As a consequence, we show that in any family of G-extensions of a fixed
number field F , almost all are subject to a strong effective version of the Chebotarev
density theorem. We use this version of the Chebotarev density theorem to deduce
several consequences for class groups in families of number fields.

1. Introduction

1.1. Induction theorems and faithful characters. Given a finite Galois extension
of number fields K/F and a character χ : Gal(K/F ) → C, there is an L-function
associated with χ referred to as the Artin L-function L(s, χ). In 1924, Artin introduced
these functions and showed that L(s, χ)m had meromorphic continuation to all of C
for some positive integer m. In his paper, Artin developed what is now termed the
“Artin formalism,” after which the key input to Artin’s theorem is the following result
in character theory.

Theorem 1.1. [Art24, Section 6] Given a finite group G, any character χ : G → C
is a Q-linear combination of characters of the form IndG

Hψ, where H ranges over the
cyclic subgroups of G and ψ ranges over the linear characters of H.

In 1947, Brauer proved that L(s, χ) itself was meromorphic. This too was a direct
consequence of a result in character theory:

Theorem 1.2. [Bra47] Given a finite group G, any character χ : G→ C is a Z-linear
combination of characters of the form IndG

Hψ, where H ranges over the elementary
subgroups of G and ψ ranges over the linear characters of H.

Both of these results, and especially Brauer’s theorem, have since assumed a funda-
mental role in the character theory of finite groups [Isa76, Chapter 8].

The first major goal of this paper is to prove a strong form of Artin’s theorem for
faithful characters. Like Artin and Brauer, we will subsequently apply this result to
the study of Artin L-functions.

Theorem 1.3. Given a finite group G, any faithful irreducible character χ : G → C
is a Q-linear combination of characters of the form IndG

Hψ, where H ranges over the
nilpotent subgroups of G and ψ ranges over the linear characters of H such that IndG

Hψ
is a sum of irreducible faithful characters of G.
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We note that an equivalent condition to IndG
Hψ being a sum of irreducible faithful

characters is that

(1.1) N ∩H 6≤ kerψ for every nontrivial normal subgroup N of G.

It is convenient to isolate the role of a single normal subgroup N in this condition.
This leads to the following definition, which was first considered in work of the first
author with Thorner and Zaman [LTZ24].

Definition 1.4. Given a finite group G and a normal subgroup N of G, we write that
Hypothesis T (G,N) holds if every irreducible character χ whose kernel does not contain
N is a a Q-linear combination of characters of the form IndG

Hψ, where H ranges over
the subgroups of G and ψ ranges over the linear characters of H such that

N ∩H 6≤ kerψ.

The following result then verifies [LTZ24, Conjecture 3.3].

Corollary 1.5. Given any finite group G and any normal subgroup N of G, Hypothesis
T (G,N) holds.

It is straightforward to prove this result from Theorem 1.3. In this paper, though, we
proceed in the opposite direction, first proving a variant of this corollary as Theorem
2.3 before showing it implies Theorem 1.3.

Remark 1.6. We have so far been unable to find a counterexample to the natural
analogue of Theorem 1.3 where we restrict our attention to Z-linear combinations of
induced characters. We cautiously expect such a generalization to hold, but it does
not directly follow from the ideas behind the proof of Theorem 1.3.

1.2. A Chebotarev density theorem for most field extensions. In proving The-
orem 1.3, our eventual goal is to prove an averaged form of the Chebotarev density
theorem in the style of [PTBW20]. Such results take the following form: given a num-
ber field F and a group G, if K/F is a G-extension outside a certain sparse set, we have
an effective form of the Chebotarev density theorem for K/F . The primary application
of this kind of result is to find unconditional proofs of theorems that previously relied
on the extended Riemann hypothesis.

To state our averaged form the Chebotarev density theorem, we need to define our
sparse set of bad fields. We begin by fixing some basic notation for the paper.

Notation 1.7. Given any number field F , we will write ∆F for the magnitude of the
absolute discriminant of F . Given an ideal a of F , we write Na for the rational norm
of a. We write πF (H) for the number of primes of F of rational norm at most H .

Given a finite Galois extension K/F and a conjugacy class C of Gal(K/F ), we take
πC(H ;K/F ) to denote the number of primes p of F of norm at most H that are
unramified in K/F and whose corresponding Frobenius element Frob p lies in C.

Finally, given a character χ : Gal(K/F ) → C and a prime p of F , we take

χ(p) =

{
χ(Frob p) if K/F is unramified at p

0 otherwise.
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Definition 1.8. Given a number field F and a positive number ǫ, we call a finite
nontrivial Galois extension K/F an ǫ-bad extension of F if there is an irreducible
faithful character χ of Gal(K/F ) such that we have

(1.2)

∣∣∣∣∣
∑

Np≤H

χ(p)

∣∣∣∣∣ ≥
H

logH
· exp

(
−c(ǫ) ·

√
logH

)
for some H ≥ (log∆K)

2+ [K:F ]
2ǫ ,

where we have taken

(1.3) c(ǫ) = min

(√
ǫ

18
,

1

29 · [K : Q]1/2

)
.

We take Xbad(F, ǫ) to be the set of ǫ-bad extensions of F .

The main number theoretic result of this paper is the following sparsity result for
ǫ-bad extensions of F . It will be proved in Section 6.2.

Theorem 1.9. For each number field F and integer d ≥ 2, there is a constant
C(F, d) > 0 such that for any positive ǫ < 1 and ∆ ≥ 3, we have

∣∣{K ∈ Xbad(F, ǫ) : ∆K ≤ ∆ and [K : F ] ≤ d
}∣∣ ≤ ∆ǫ(1+δ) · (log∆)C(F,d),

where we have taken
δ = C(F, d) · (log log∆)−1/2.

Moreover, we may take C(F, d) = 400d2 · [F : Q] so long as ∆ ≫F,d 1.

In short, the number of ǫ-bad extensions of F of degree d is on the order of ∆ǫ(1+o(1))

at most.
We will prove the following simple proposition in a strengthened form as Theorem 6.7.

Proposition 1.10 (The averaged Chebotarev density theorem). Choose a number field
F , a nontrivial finite group G, and a positive number ǫ ≤ 1. Choose a G-extension K
of F , and suppose K contains no field in Xbad(F, ǫ).

Then, for any conjugacy class C of G, we have

∣∣∣∣πC(H ;K/F ) − |C|
|G| · πF (H)

∣∣∣∣ ≤
H

logH
· exp

(
−c(ǫ) ·

√
logH

)
.

for all H ≥ (log∆K)
2+ [K:F ]

2ǫ , where c(ǫ) is defined by (1.3).

Taken together, Proposition 1.10 and Theorem 1.9 constitute an averaged form of the
Chebotarev density theorem as seen in [PTBW20] and [LTZ24]. The central advantage
of our result over prior work is the fact that G may be an arbitrary finite group, with
the previous results all placing substantial hypotheses on this group.

Another advantage of these statements compared to previous work is that ǫ may
vary with ∆ in Theorem 1.9 since the constant C(F, d) does not depend on ǫ. In par-
ticular, this allows for a trade off between the number of “exceptional fields” in the set
Xbad(F, ǫ) and the range in which the effective Chebotarev density theorem applies.
For example, by taking ǫ to be proportional to log log∆

log∆
, we obtain an effective Cheb-

otarev density theorem that applies as soon as H is a small power of the discriminant
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(a range of critical interest in [PTBW20]), with a much better bound (log∆)O(1) on
the number of exceptional fields than was provided by either [PTBW20] or [LTZ24].

Remark 1.11. Choose a positive integer d. If ǫ is sufficiently small, the subset of ǫ-bad
extensions among the Galois extensions of F of degree at most d is sparse. However,
the subset of such extensions that contain an ǫ-bad extension of F might not be sparse
under some orderings. For example, combining the results of [Mäk85] and [BW08], one
easily sees that a positive proportion of Galois sextic fields ordered by discriminant
contain any fixed cyclic cubic field, e.g. Q(ζ7 + ζ−1

7 ).
A consideration of subfields is inevitable. A class function f : Gal(K/F ) → C is

uniquely expressible in the form
∑

L fL, where the sum is over the Galois extensions
L/F contained in K and each fL is a complex combination of the faithful irreducible
characters of Gal(L/F ). The averaging procedure needs to handle the character sum
for each fL separately; if we average over K in a family of fields containing a fixed
intermediate field L, the procedure can only handle the contribution from fL if L has
sufficiently small discriminant to apply an unconditional Chebotarev density theorem.

For some of our arithmetic applications, it is also useful to spell out the following
version of the prime ideal theorem that holds for extensions disjoint from Xbad(F, ǫ).

Proposition 1.12. Let F be a number field, let ǫ > 0, let L/F be a finite extension, let
K/F be its normal closure, and let G = Gal(K/F ). Suppose that L is linearly disjoint

from every field in Xbad(F, ǫ) contained in K. Then for all H ≥ ( |G|
2
log∆L)

2+ |G|
2ǫ , we

have

|πL(H)− πF (H)| ≤ H

logH
· ([L : F ]− 1) · exp

(
−c(ǫ) ·

√
logH

)
,

where c(ǫ) is defined by (1.3).

1.3. Arithmetic applications. One of the virtues of a strong effective Chebotarev
density theorem is that it affords many pleasant arithmetic consequences. We highlight
a few that may be easily derived from Propositions 1.10 and 1.12. We focus our
initial attention on a class of fields for which the linear disjointness hypothesis of
Proposition 1.12 may be easily handled, namely, the class of primitive extensions.
Recall that a finite extension L/F is called primitive if it admits no nontrivial proper
subextensions. (For example, any extension of prime degree is primitive.) For any

integer m ≥ 2, we let F
prim
m,F denote the set of primitive extensions L/F with degree m

inside a fixed algebraic closure F , and for any Q ≥ 1, we let F
prim
m,F (Q) ⊂ F

prim
m,F be the

subset consisting of those L with ∆L ≤ Q.
We begin with the following application to bounding the ℓ-torsion subgroups of the

class group of a number field.

Corollary 1.13. Let F be a number field and m, ℓ ≥ 2 be integers. Then there is a
constant A, depending on F , m, and ℓ, such that for any Q ≥ 3 and all but at most
(logQ)A extensions L ∈ F

prim
m,F (Q), there holds for any ε > 0

|Cl(L)[ℓ]| ≪F,m,ℓ,ǫ |∆L|
1
2
− 1

2ℓ(m−1)
+ε.
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Recall that the Minkowski bound implies that |Cl(L)| ≪[L:Q],ε |Disc(L)| 12+ε for every
ε > 0. Thus, Corollary 1.13 obtains an improvement over the trivial bound |Cl(L)[ℓ]| ≤
|Cl(L)| ≪[L:Q],ε |Disc(L)| 12+ε for almost all L ∈ F

prim
m,F . Analogous improvements were

also obtained in [LTZ24, PTBW20] for certain subsets of F
prim
m,F defined by particular

Galois and inertial conditions. Corollary 1.13 improves over these prior results in
two ways. First, and most substantially, it removes these auxiliary Galois and inertial
conditions. Second, it refines the bound on the number of L to which the result does not
apply from a bound of the form OF,m,ℓ,ε(Q

ε) to the bound (logQ)A as in its statement.
Beyond the “almost all” result of Corollary 1.13, one may ask for bounds on the mo-

ments of |Cl(L)[ℓ]| as L varies in a family such as F
prim
m,F (Q). For this, using machinery

of Koymans and Thorner [KT23] (which builds on and generalizes work of Heath-Brown
and Pierce [HBP17] and Frei and Widmer [FW21]), we obtain the following.

Corollary 1.14. Let F be a number field, m ≥ 2 be an integer, Q ≥ 1, and r ≥ 1 be
an integer. Then for every integer ℓ ≥ 2 and every ε > 0, there holds

∑

L∈F
prim
m,F (Q)

|Cl(L)[ℓ]|r ≪F,m,ℓ,ε Q
r
2
+ε ·

(
1 + |F prim

m,F (Q)|1−
r

ℓ(m−1)+1

)
.

The main theorem of [KT23] proves Corollary 1.14 in the case that m is prime. For
general m, they prove a result analogous to Corollary 1.14, but only for the subset
F

Sm
m,F ⊆ F

prim
m,F consisting of extensions L/F whose normal closure over F has Galois

group Sm. We also obtain an analogue of this result for any primitive permutation
group G of degree m and the associated subset FG

m,F ; see Corollary 7.4 below.
As another sample application to class groups, we have the following variant of a

well known result of Bach [Bac90] on the generation of the ideal class group assuming
the generalized Riemann hypothesis.

Theorem 1.15. Let F be a number field, m ≥ 2 an integer, Q ≥ 3, ε > 0, and ℓ > m
be prime. Then with at most OF,m,ℓ,ε(Q

ε) exceptions, each L ∈ F
prim
m,F (Q) is such that

Cl(L)/ℓCl(L) is generated by primes in L of norm at most (logQ)3ℓ
2m(m!)2/ε.

Under GRH, Bach’s work [Bac90, Theorem 4] implies that the class group Cl(L) of
any number field L is generated by primes of norm at most 12(log∆L)

2. Thus, the
conclusion of Theorem 1.15 is weaker than this both in terms of the size of the primes
required and in that it only concerns the co-ℓ part of the class group (though of course
its conclusion is unconditional). However, we note that the ℓ-torsion conjecture on class
groups (that for a fixed ℓ ≥ 2, |Cl(L)[ℓ]| ≪[L:Q],ℓ,ε ∆

ε
L for every ε > 0 and every number

field L) is equivalent to asserting that the rank of Cl(L)[ℓ] (which equals the rank of
Cl(L)/ℓCl(L)) is o[L:Q],ℓ(log∆L). Theorem 1.15 does not provide an improvement even
over the trivial bound on the rank of Cl(L)/ℓCl(L), but we nevertheless consider it an
interesting result in its own right that is reflective of what is currently possible toward
this line of attack on the ℓ-torsion conjecture.

Finally, returning to Artin L-functions themselves, we also provide essentially GRH
quality bounds on the values L(1, χ) for almost all Artin L-functions L(s, χ).



6 ROBERT J. LEMKE OLIVER AND ALEXANDER SMITH

Corollary 1.16. Let F be a number field and let G be a finite group. Let Q ≥ 1
and ε > 0. Then, apart from at most OF,G,ε(Q

ε) exceptional fields K, each faithful,
irreducible Artin L-function L(s, χ) attached to Gal(K/F ) for a Galois G-extension K
with ∆K ≤ Q satisfies

(log logQ)min{ℜ(χ(g)):g∈G} ≪F,G,ε L(1, χ) ≪F,G,ε (log logQ)
χ(1).

Bounds of the same quality (though with sharper implied constants) follow from
GRH, and in many cases are known to be close to optimal. See, for example, [Duk03,
Theorem 2].

1.4. An overview of our methods.

1.4.1. Faithful Artin induction. As in the partial result [LTZ24, Theorem 5.6], our
proof of hypothesis T (G,N) and the related stronger hypothesis T0(G,N) introduced
below in Definition 2.2 is by induction on the order of G. This approach lets us assume
that that hypotheses T0(H,N ∩H) hold for all proper subgroups H of G. The proof
of hypothesis T0(G,N) then reduces to proving that the elements in a given coset of
N are connected by chains of proper subgroups of G; see Proposition 2.5 for details.

In our proof of Proposition 2.5 in Section 2.2, we explicitly construct such chains of
proper subgroups. Our construction is p-local for some prime p dividing [G : N ], with
the involved groups being normalizers of p-subgroups.

The proof of this hypothesis establishes Theorem 1.3 in the case that G has a unique
minimal normal subgroup. More generally, we establish this theorem by considering
the socle of G, which is the subgroup of G generated by its minimal normal subgroups.
The socle is known to be a direct product of characteristically simple groups, and we
take advantage of this decomposition to prove the general case of Theorem 1.3.

1.4.2. The Chebotarev density theorem in families. Once Theorem 1.3 is proved, we
may turn to number theory. Our first result here is Theorem 5.2, which is a bilinear
character sum estimate for the coefficients of Artin L-functions corresponding to direct
sums of monomial characters. The proof of this result uses standard techniques; we
first prove a smoothed character sum estimate for such coefficients using the convexity
bounds for these L-functions, then derive a large sieve from this in the typical way.

The novelty of our approach instead comes in Theorem 5.6, where we use this large
sieve to prove bilinear estimates for shorter character sums using Hölder’s inequality.
This technique originates in work of Friedlander and Iwaniec [FI98, (21.9)], but it has
not previously been used in this context. The Hölder trick sidesteps the consideration
of zero free regions in families of [PTBW20] and [LTZ24] and leads to results of a
similar quality to [LTZ24] in greater generality. The disadvantage of this approach is
that we are left with no results about zero free regions in families.

With an eye to future applications where such concreteness may matter, we have
made an effort to keep the constants appearing in this paper explicit. At the same
time, we have made no effort to optimize these constants.
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1.4.3. Layout. In Section 2, we define the hypothesis T0(G,N) and show that it holds
for all (G,N). We then use this fact to prove Theorem 1.3 in Section 3.

In Section 4, we prove a smooth character sum estimate for certain L-functions. We
use this to prove bilinear character sum estimates in Section 5. In Section 6, we combine
these estimates with Theorem 1.3 and the unconditional Chebotarev density theorem
to prove Theorem 1.9. Finally, in Section 7, we give some arithmetic applications of
our work.
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2. The hypothesis T0(G,N)

Rather than working with irreducible characters as in the statement of Theorem 1.3,
it is convenient to focus on class functions, leading to the following definition.

Definition 2.1. Choose a finite group G and a set {N1, . . . , Nk} of normal subgroups
of G. We take

R(G; {N1, . . . , Nk})
to be the C-vector space of complex class functions f : G→ C of G whose push forward
to any G/Ni is 0. That is, a class function f : G→ C lies in this space if and only if

∑

g∈σNi

f(g) = 0 for all σ ∈ G and each 1 ≤ i ≤ k.

We take I(G; {N1, . . . , Nk}) to be the subspace of this vector space spanned by the
characters of the form IndG

Hψ, where H ranges over the nilpotent subgroups of G and
ψ ranges over the linear characters of H satisfying

H ∩Ni 6≤ kerψ for i ≤ k.

To simplify notation, we will alternatively write these spaces in the formR(G; N1, . . . , Nk)
and I(G; N1, . . . , Nk).

Definition 2.2. Given a finite group G and a normal subgroup N of G, we write that
Hypothesis T0(G,N) holds if

R(G;N) = I(G;N).

This is stronger than the hypothesis T (G,N) because of our restriction to nilpotent
subgroups in Definition 2.1. The aim of this section is to prove the following:

Theorem 2.3. Hypothesis T0(G,N) holds for all finite groups G and all normal sub-
groups N of G.
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2.1. First reductions for Theorem 2.3. Given two class functions f1, f2 on G, we
will define an inner product 〈f1, f2〉 using the standard formula

〈f1, f2〉 =
1

|G|
∑

σ∈G
f1(σ)f2(σ).

As in [LTZ24], we will reframe hypothesis T0(G,N) in terms of the orthogonal com-
plement of I(G;N) with respect to this product.

Lemma 2.4. Hypothesis T0(G,N) holds if and only if every class function f : G→ C
in I(G;N)⊥ is constant on each coset of N .

Proof. Since the inner product on class functions is a perfect pairing, hypothesis
T0(G,N) is equivalent to the claim

I(G;N)⊥ ⊆ R(G;N)⊥.

But the condition for a class function f to lie in R(G;N) can be expressed in the form

(2.1)
1

|G|
∑

σ∈G
f(σ)g(σ) = 0 for all g : G/N → C.

If we take g̃ to be the class function on G given by the formula

g̃(σ) =
1

|G|
∑

τ∈G
g(τστ−1),

we see that the left hand side of (2.1) equals 〈f, g̃〉. So (2.1) gives that R(G;N)⊥ is
the set of class functions on G coming from class functions on G/N . This gives the
lemma. �

Our proof of Theorem 2.3 is by induction, with the induction step handled by the
following proposition. This reduction can be seen in the proof of [LTZ24, Theorem
5.6].

Proposition 2.5. Let G be a finite group with trivial center, and let N be a normal
subgroup such that G/N is cyclic and such that

T0(H,H ∩N) holds for all proper subgroups H < G.

Then, given any class function f of in I(G;N)⊥ and any two elements x, y of G in
the same coset of N , we have f(x) = f(y).

Proof that Proposition 2.5 implies Theorem 2.3. Suppose hypothesis T0(G,N) did not
hold for some G and N , and choose (G,N) with G of minimal order and, given G,
with N of minimal order so this hypothesis is not satisfied. Following [LTZ24, Lemma
5.7(i)], we see that we may assume that G/N is cyclic.

Suppose first that Z(G) is nontrivial. By observing that nilpotent subgroups of
G/Z(G) have nilpotent preimage in G, the argument for [LTZ24, Lemma 5.7 (ii)]
shows that

T0(G/(N ∩ Z(G)), N/(N ∩ Z(G)) and T0(G,N ∩ Z(G))
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together imply T0(G,N). By the induction hypothesis, we must either have N∩Z(G) =
1 or N ∩ Z(G) = N . We can rule out the former case using the argument of [LTZ24,
Theorem 3.7].

In the latter case, G is a cyclic extension of a central subgroup and is hence nilpotent,
so T0(G,N) is equivalent to T (G,N), and we reach a contradiction by [LTZ24, Theorem
5.6]. So we must have Z(G) = 1.

By Lemma 2.4, there are some f in I(G;N)⊥ and some x, y ∈ G in the same coset
of N such that

f(x) 6= f(y).

At the same time, by the minimality of the order of G, we know that T0(H,H ∩ N)
holds for every proper subgroup H of G, so Proposition 2.5 gives

f(x) = f(y).

This is a contradiction, so T0(G,N) holds for all (G,N). �

The power of reframing Theorem 2.3 in this way comes from the following lemma.

Lemma 2.6. Suppose (G,N) satisfies the hypotheses of Proposition 2.5. Then, for
any proper subgroup H of G, any class function f in I(G;N)⊥, and any x, y ∈ H in
the same coset of H ∩N , we have

f(x) = f(y).

Proof. Since T0(H,H ∩N) holds by assumption, this follows from Lemma 2.4. �

The following technical lemma reduces the proof of Proposition 2.5 to a case where
the pair x, y obeys a weak niceness property.

Lemma 2.7. Choose (G,N) satisfying the hypotheses of Proposition 2.5. Take F (G)
to be the Fitting subgroup of G.

Suppose that, given any f , x, y as in Proposition 2.5, we have f(x) = f(y) whenever
there is some prime p | [G : N ] dividing the orders of x and y in G/F (G). Then the
conclusion of Proposition 2.5 holds for (G,N).

Proof. Choose f , x, and y as in Proposition 2.5. Our aim is to show that f(x) = f(y).
We may assume that x and y generate G, i.e. G = 〈x, y〉, since Lemma 2.6 would
otherwise imply that f(x) = f(y). Since x and y lie in the same coset of N , we also
find that G/N is generated by xN .

By the argument of [LTZ24, Theorem 5.6], we find there is m ≥ 1 coprime to [G : N ]
such that f(x) = f(xm) and f(y) = f(ym) and such that xm and ym have orders
divisible only by primes dividing [G : N ]. So we may assume x and y have orders
divisible only by primes dividing [G : N ].

Now suppose that F (G) ∩ xN is empty, so x maps to a nontrivial element of G/N ·
F (G). Choose a prime p dividing the order of [G : N ·F (G)]. Since xN = yN generates
G/N , we see that the images of x and y generate G/N · F (G), so the images of x and
y in this quotient, and hence also in the quotient G/F (G), have order divisible by p.
By the assumptions of the lemma, we thus have f(x) = f(y).
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So we may assume that F (G) meets xN . This implies that F (G) surjects onto the
quotient G/N .

If F (G) = G, then G must be nilpotent since F (G) is. In this case, the condition
that Z(G) = 1 implies that G = 1, and the conclusion follows. Hence, we may assume
that the index [G : F (G)] is not 1. We may further reduce to the case that the indices
[G : F (G)] and [G : N ] are not coprime. Otherwise, both x and y would have trivial
image in the quotient G/F (G) by our assumption on their orders. This would imply
that x and y both lie in F (G), so Lemma 2.6 would give f(x) = f(y).

So we may assume that there is some prime p dividing both [G : F (G)] and [G : N ].
In this case, we claim that [G : F (G)] is not a power of p, or, equivalently, that G/F (G)
is not a p-group. To prove this, we note that p | |F (G)| since F (G) surjects onto G/N .
Because F (G) is nilpotent, it follows that its center Z(F (G)) has order divisible by p
as well. Take P to be the Sylow p-subgroup of Z(F (G)).

Then G/F (G) acts on P via conjugation. Since we assumed Z(G) = 1, the only
fixed point of this action can be 1. This implies that G/F (G) cannot be a p-group, as
a p-group acting on a finite nontrivial p-group always fixes some element besides 1. So
[G : F (G)] is not a power of p.

Recall that we have assumed F (G)∩ xN is non-empty, so we may fix some z in this
intersection. We now claim that we must have f(x) = f(z). Applying this claim to y
will show that f(y) = f(z) = f(x), so this claim suffices to prove the lemma.

Consider the order of x in G/F (G). If this order is a power of the prime p chosen
above, then 〈x, F (G)〉 must be a proper subgroup of G since [G : F (G)] is not a power
of p. As this subgroup contains both x and z, we conclude that f(x) = f(z) by Lemma
2.6.

Thus, we may assume that there is some prime q 6= p dividing the order of x in
G/F (G). Choose m ≥ 1 so that xm has order q in G/F (G), and take w = z(xz−1)m.
Since z lies in xN and F (G), we have

wN = zN = xN and wF (G) = xmF (G).

From the hypotheses of the lemma, we therefore find that f(x) = f(w). But since w
has order q in G/F (G) and the index [G : F (G)] is divisible by p 6= q, the subgroup
〈w, F (G)〉 is proper and contains both w and z, so we find f(w) = f(z) by Lemma 2.6,
and hence f(x) = f(z). This gives the claim, and the lemma follows. �

2.2. The proof of Proposition 2.5. Our proof of the general case of Proposition
2.5 takes advantage of the p-local subgroup structure of G. This approach requires the
following two lemmas.

Lemma 2.8. Let G be a finite group and let P ≤ G be a p-group. Then either P is a
Sylow p-subgroup of G or NG(P ) contains a p-group properly containing P .

Proof. Take S ⊆ G to be a Sylow p-subgroup of G containing P . Since all subgroups
of nilpotent groups are subnormal [Isa08, Lemma 2.1], NS(P ) either strictly contains
P or S = P . �
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Lemma 2.9. Choose a finite group G and a normal subgroup N of G such that G/N
is cyclic. Then, given a prime p and a Sylow p-subgroup S of G, we have

NG(S)/(NG(S) ∩N) ≃ G/N.

Proof. Observe that S ∩N is a Sylow p-subgroup of N . The Frattini argument [Isa08,
Lemma 1.13] shows that G = N ·NG(S ∩N). So we may choose x in NG(S ∩N) that
maps to a generator of G/N .

Taking 〈x〉p to be the maximal p-subgroup of 〈x〉, we thus see that 〈x〉p · (S ∩N) is
a Sylow p-subgroup of G and is normalized by x. This subgroup is conjugate to S, so
we find that some conjugate of x normalizes S. �

Proof of Proposition 2.5. By Lemma 2.7, it suffices to assume that there is a prime
p | [G : N ] such that the images of x and y in G/F (G) have orders divisible by p. Take
F (G)p to be the maximal p-subgroup of F (G).

With this p fixed, take 〈x〉p to be the maximal p-subgroup of 〈x〉, and take

P0(x) = 〈x〉p · F (G)p.
Supposing Pi(x) has been defined for a given i ≥ 0, we then define

Gi(x) = NG(Pi(x)),

and we take Pi+1(x) to be a Sylow p-subgroup of Gi(x) containing Pi(x). This defines
sequences of groups

G0(x), G1(x), . . . and P0(x), P1(x), . . . .

We note that x is contained in G0(x).
By Lemma 2.8, we have

Pi(x) ≤ Pi+1(x) for i ≥ 0,

with equality only if Pi(x) is a Sylow p-subgroup of G. So we may fix k ≥ 0 such that
Pk(x) is a Sylow p-subgroup of G.

We also have
F (G)p < P0(x) ≤ Pi(x),

so no Pi(x) is a normal subgroup of G. This means that Gi(x) is a proper subgroup of
G for all i ≥ 0.

We claim that the projection from Gi(x) to G/N is surjective for all i ≥ 0. It is true
for i = 0. Now suppose it is true for Gi(x), and that we wish to prove it for Gi+1(x). By
applying Lemma 2.9 to the extension Gi(x)/N ∩ Gi(x) with Sylow subgroup Pi+1(x),
we find that the intersection

Gi(x) ∩Gi+1(x) ∩ xN
is nonempty. This gives the claim by induction, and we may take xi to be some element
in this intersection for any i ≥ 0.

Applying Lemma 2.6 to G0(x), G1(x), . . . gives

f(x) = f(x0) = f(x1) = · · · = f(xk).

Note that the element xk lies in NG(S) for some Sylow p-subgroup S of G.



12 ROBERT J. LEMKE OLIVER AND ALEXANDER SMITH

Applying the same argument for y shows that there is y′ ∈ G so y′ lies in some
conjugate of NG(S) and f(y) = f(y′). Take z to be a conjugate of y′ in NG(S). Then

f(x) = f(xk) = f(z) by Lemma 2.6 for NG(S)

= f(y′) = f(y) since f is a class function,

giving the proposition. �

Remark 2.10. Given a nilpotent group G and a normal subgroup N of G, we claim
that R(G;N) is spanned by the collection of subspaces R(H ;H ∩N), where H varies
over the elementary subgroups of G of rank at most 2. (Recall that the rank of a group
is the minimal number of generators.) Following the argument after Proposition 2.5,
we find that this claim reduces to showing that, given a cyclic extension G/N with G
nilpotent, given an element f in R(G; N) orthogonal to the sum of such R(H ;H∩N),
and given x, y ∈ G in the same coset of N , we have f(x) = f(y).

To prove this claim, take w = yx−1, and choose a sequence of integers b0 =
0, b1, . . . , bk−1, bk = 1 such that wbi+1−bi has prime power order for each i < k. Then

〈
wbix, wbi+1−bi

〉

is an elementary group of rank at 2 for i < k, so the orthogonality assumption gives

f(wbix) = f(wbi+1−biwbix) = f(wbi+1x) for i < k.

So
f(x) = f(w0x) = f(wkx) = f(y),

giving the claim.
As a consequence, we find that T0(G,N) still holds for all (G,N) even if we replace

the nilpotent groups H in the definition of I(G;N) with elementary subgroups of rank
≤ 2.

3. The proof of Theorem 1.3

The proof of Theorem 1.3 reduces to showing

R(G;N1, . . . , Nk) = I(G;N1, . . . , Nk)

for any group G, where N1, . . . , Nk enumerates the minimal normal subgroups of G.
To do this, we will give a sequence of lemmas that reduce what we need to show to
cases we have already dealt with in Section 2.

Lemma 3.1. Take G/N to be an extension of finite groups, and take N1, . . . , Nk to be
normal subgroups of G contained in N . Then

R(G; N1, . . . , Nk) =
∑

H

IndG
H (R(H ; N1, . . . , Nk)) ,

where the sum is over all subgroups H of G containing N such that H/N is cyclic.
In particular, if

R(H ; N1, . . . , Nk) = I(H ; N1, . . . , Nk)

for all such H, then

R(G; N1, . . . , Nk) = I(G; N1, . . . , Nk).
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Proof. Take C to be the set of subgroups H of G containing N such that H/N is cyclic.
By inclusion-exclusion, for each H ∈ C, there is an integer aH such that

∑

H∈C
aHδg∈H = 1 for all g ∈ G,

where δg∈H denotes the Kronecker delta.
As a result, given f ∈ R(H ; N1, . . . , Nk), we have

f =
∑

H∈C
aHfH ,

where fH denotes the restriction of f to H . This implies

f =
∑

H∈C
aH

|H|
|G| Ind

G
HfH .

Since fH lies in R(H ; N1, . . . , Nk), the first claim follows. The second then follows
from the simple observation

I(G; N1, . . . , Nk) ⊇
∑

H∈C
IndG

H (I(H ; N1, . . . , Nk)) .

�

Definition 3.2. Take G/N to be a cyclic extension of finite groups, and choose σ ∈ G.
Take N to be a set of normal subgroups of G contained in N . We then define

R(σN ; N )

to be the subspace of R(G; N ) of functions that are 0 outside the coset σN .

Suppose σ generates G/N . Given j ≥ 0, take gj to be the function on G that is 1 on
σjN and 0 outside σjN . Then f · gj lies in R(σjN ; N ) for any f ∈ R(G; N ). Since

1 =

[G:N ]∑

j=1

gj,

we thus have

R(G; N ) =

[G:N ]⊕

j=1

R(σjN ; N ).

Given a subgroup H of G containing N , we have

IndG
H (R(H ; N )) =

⊕

j≤[G:N ]
σj∈H

R(σjN ; N ),

so we find

(3.1) R(G; N ) =
⊕

j⊥ [G:N ]

R(σjN ; N )⊕
∑

H

IndG
H (R(H ; N )) ,

where the direct sum is over positive integers j ≤ [G : N ] coprime to [G : N ] and the
second sum is over proper subgroups of G that contain N .
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Lemma 3.3. Choose finite groups M,N , take S =M ×N , and choose a finite cyclic
extension G/S of groups such that M and N are both normal in G. Choose σ ∈ G
generating G/S.

Take M to be a set of normal subgroups of G contained in M , and take N to be a
set of normal subgroups of G contained in N . We may view M also as a set of normal
subgroups of G/N , and N as a set of normal subgroups of G/M .

Then multiplication of class functions defines an isomorphism

(3.2) R(σ(S/M); N )⊗R(σ(S/N); M )
∼−−→ R (σS; M ∪ N )

Proof. Take

C to be the conjugacy classes of G contained in σS,

CN to be the conjugacy classes of G/N contained in σ(S/N), and

CM to be the conjugacy classes of G/M contained in σ(S/M).

We claim that the natural map

C → CN × CM

is a bijection. It is clearly surjective since M and N have trivial intersection.
Now suppose we have chosen τ1 and τ2 in σS which have equal image in CN × CM .

Then there is m ∈ G so mτ1m
−1 and τ2 have equal image in G/N . Multiplying m on

the right by a power of τ1 as necessary, we may assume that m lies in S. Discarding
the component in N , we may further assume m lies in M . We similarly may find n in
N so nτ1n

−1 and τ2 have equal image in G/M . Since N ∩M = 1, we conclude that

nmτ1(nm)−1 = τ2,

establishing injectivity of this map. So multiplication of class functions defines an
isomorphism

(3.3) R(σ(S/M); ∅)⊗R(σ(S/N); ∅) ∼−−→ R(σS; ∅).
Given a subgroup N1 in N , define

λ : R(σ(S/M); ∅) → R(σ(S/M); ∅)
by

λ(f)(x) =
∑

y∈N1

f(xy) for all x ∈ σ(S/M).

The kernel of this map is R(σ(S/M); N1). Furthermore, given v =
∑

i fi ⊗ gi in the
domain of the map (3.3), we see that v maps into R(σS; N1) if and only if

∑

i

λ(fi)(x) · gi(x) = 0 for all x ∈ σS.

Since (3.3) is an isomorphism, this condition is equivalent to v lying in the kernel of
the map

R(σ(S/M); ∅)⊗R(σ(S/N); ∅) λ⊗ Id−−−−→ R(σ(S/M); ∅)⊗R(σ(S/N); ∅).
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The kernel of this map is R(σ(S/M); N1) ⊗ R(σ(S/N); ∅) since finite-dimensional
vector spaces are flat.

Repeating this argument for the other subgroups in M and N shows we have
isomorphisms

R(σ(S/M); N )⊗R(σ(S/N); ∅) ∼−−→ R(σS; N ) and

R(σ(S/M); ∅) ⊗R(σ(S/N); M )
∼−−→ R(σS; M ),

that agree on the intersection of their domain. The intersection of these maps has
domain and codomain equaling (3.2), giving the result. �

Lemma 3.4 (Mackey’s formula). Choose finite groups M,N , take S = M × N , and
choose a finite extension G/S of groups such that M and N are both normal in G.
Take M to be a set of normal subgroups of G contained in M , and take N to be a set
of normal subgroups of G contained in N .

Then multiplication of class functions defines a homomorphism

(3.4) I(G/M ; N )⊗ I(G/N ; M ) −→ I (G; M ∪ N ) .

Proof. Choose nilpotent subgroups

H1 ≤ G/M and H2 ≤ G/N,

and take ψ1 : H1 → C and ψ2 : H2 → C. We assume that

H1 ∩N0 6≤ kerψ1 and H2 ∩M0 6≤ kerψ2 for all N0 ∈ N , M0 ∈ M .

To prove the lemma, it suffices to show that

Ind
G/M
H1

ψ1 · IndG/N
H2

ψ2 ∈ I(G; M ∪ N ).

Call this character χ. Viewing ψ1 as a character on H1M and ψ2 as a character on
H2N , we may use Frobenius reciprocity and Mackey’s formula [Hup98, 17.3, 17.4] to
rewrite χ in the form

IndG
H1M

(
ψ1 · resH1M

(
IndG

H2N
ψ2

))
=
∑

τ∈B
IndG

Hτ
(ψτ ) ,

where B is some subset of G and where we have taken

Hτ = H1M ∩ τ−1H2Nτ and ψτ = resHτ (ψ1) · resHτ (ψ
τ
2 ),

where ψτ
2 denotes the linear character on τ−1H2Nτ defined by

x 7→ ψ2(τxτ
−1).

Since M ∩N = 1, the natural projection

Hτ → H1N/N × τ−1H2Mτ/M

is injective, so Hτ is nilpotent, and χ lies in I(G; ∅).
We have

Hτ ∩ S = H1 × τ−1H2τ ≤ N ×M.
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The kernel of resHτ∩S ψ
τ
2 in this group is H1 × kerψτ

2 , and the kernel of resHτ∩S ψ1 is
kerψ1 × τ−1H2τ . For any N0 in N , we see that the former kernel contains N0 ∩Hτ ,
while the latter kernel does not. So ψτ has kenrel not containing N0 ∩Hτ , giving

χ ∈ I(G; N0).

Repeating this argument for the other subgroups in N and M gives the result. �

The following proposition will be needed to handle the abelian part of the socle of
G in the proof of Theorem 1.3.

Proposition 3.5. Take G/N to be a finite cyclic extension of a finite abelian group
N , and take N to be a set of normal subgroups of G contained in N . Then

R(G; N ) = I(G; N ).

Proof. Suppose the proposition were not true, and choose a counterexample (G,N,N )
where |G| is minimized. Without loss of generality, we will assume that the center of
G is contained in N . Take σ to be an element in G generating G/N .

Take χ to be an irreducible character of G whose kernel contains no subgroup in N .
Such χ generate R(G; N ) by the orthogonality of irreducible characters, so we will
establish a contradiction if we can prove that χ lies in I(G; N ).

Since N is abelian, its irreducible characters are all linear. Thus, since G/N is
cyclic, χ must be induced from a 1-dimensional character ψ of some subgroup H of
G containing N [Isa76, Theorem 6.22]. By induction, ψ must lie in I(H ; N ) unless
H = G. So we may assume that χ is a linear character of G

Take K to be kernel of χ in G, and take Z to be the center of G. Taking H = K∩Z,
we first suppose that H is nontrivial. Note that the preimage of a nilpotent subgroup
of G/H in G is nilpotent. So the projection G→ G/H defines a map

I(G/H ; N1) → I(G; N2),

where N1 is the set of normal subgroups of G/H not contained in K/H , and N2 is the
set of normal subgroups N of G such that N is not contained in K. We have N2 ⊇ N ,
so the induction step shows that χ lies in I(G; N ).

So we may assume K ∩ Z is trivial. Since G/N is generated by σ and N is abelian,
the map τ : N → N defined by τ(x) = [σ, x] fits in an exact sequence

0 → Z → N
τ−→ G0 → 0,

where G0 is the derived subgroup of G. Since K ∩ Z is trivial, this sequence splits, so
N = Z × G0. Furthermore, since any normal subgroup M of G contained in N will
also contain τ(M), we find that normal subgroups of G in N may be written in the
form

Z1 ×G01 with Z1 ≤ Z and G01 ≤ G0.

If Z1 ×G01 lies in N , then Z1 must be nontrivial since χ lies in R(G; N ). So, taking
N3 to be the set of minimal subgroups of Z, we have

I(G; N3) ⊆ I(G; N ) and χ ∈ R(G; N3),

with the second claim following from K ∩ Z = 1. So we may assume that N3 = N .



FAITHFUL ARTIN INDUCTION AND THE CHEBOTAREV DENSITY THEOREM 17

If Z = 1, the claim follows from Artin’s induction theorem. If |Z| is a prime power,
it follows from Theorem 2.3. So suppose |Z| is divisible by at least two distinct primes.
Taking p1, . . . , pr to be the disinct primes dividing |Z|, we take A to be the subgroup
of Z of order p1 and B to be the subgroup of order p2 . . . pr. We take A to consist of
the minimal subgroups of A and B to consist of the minimal subgroups of B. There
are then integers a, b with a + b = 1 such that χa is in the image of R(G/A,B) and
χb is in the image of R(G/B,A ). The claim then follows from the induction step and
Lemma 3.4. �

Proposition 3.6. Choose a finite group G, an abelian normal subgroup A of G, and
normal subgroups N1, . . . , Nk of G such that the natural map

A×N1 × · · · ×Nk → G

is an injective homomorphism. Take A to be a set of normal subgroups of G contained
in A.

Then

R(G; A ∪ {N1, . . . , Nk}) = I(G; A ∪ {N1, . . . , Nk}).
Proof. Working inductively, we may assume that the proposition has been shown for
all groups of order less than |G|.

Take N = A × N1 × · · · × Nk. By Lemma 3.1, we may assume that G/N is cyclic.
Choose σ ∈ G. From (3.1) and the induction step, we see that it suffices to prove that

R(σN ; A ∪ {N1, . . . , Nk}) ⊆ I(G; A ∪ {N1, . . . , Nk}).
Take M0 = N1 × · · · ×Nk. For 1 ≤ i ≤ k, take

Mi = A×
∏

j 6=i

Nj .

By repeatedly applying Lemma 3.3, we have

R(σN ; A ∪ {N1, . . . , Nk}) ∼= R(σ(N/M0); A )⊗
⊗

i≤k

R(σ(N/Mi); Ni).

By Proposition 3.5 and Theorem 2.3, this right hand side is a subspace of

I(G/M0; A )⊗
⊗

i≤k

I(G/Mi; Ni).

By Lemma 3.4, multiplication of class functions takes this last space into

I(G; A ∪ {N1, . . . , Nk}),
giving the result. �

Proof of Theorem 1.3. Choose a finite group G, and take N to be the collection of
distinct minimal normal subgroups of G. We claim that

(3.5) R(G;N ) = I(G; N ).
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This will imply Theorem 1.3. To see this, take RQ(G; N ) to be the Q-linear combi-
nations of irreducible faithful characters of G, and take IQ(G; N ) to be the Q-vector
subspace of this spanned by the characters considered in Definition 2.1. Then we have

RQ(G; N )⊗ C ∼= RQ(G; N ) and IQ(G; N ) ⊆ RQ(G; N ).

The relation (3.5) implies R(G; N ) and I(G; N ) have the same dimension as complex
vector spaces. The above relations then show

dimQ RQ(G; N ) = dimQ IQ(G; N ),

implying that these vector spaces are equal and giving the theorem.
To prove (3.5),we consider the socle soc(G) of the group G, which is the minimal

normal subgroup of G containing all minimal normal subgroups of G. This group takes
the form

soc(G) ∼= A×N1 × · · · ×Nk,

where the Ni are the nonabelian minimal normal subgroups of G, and where A is an
abelian normal subgroup containing all of the abelian minimal normal subgroups of G
[Hup98, Lemma 42.9]. Taking A to be the set of abelian minimal normal subgroups
of G, we see that the result follows from Proposition 3.6. �

4. Bounding smoothed character sums

In this section, we begin by recalling the definition of Artin L-functions L(s, χ) and
some of their basic analytic properties (e.g., the convexity bound). The main result of
this section, Proposition 4.10, uses these properties to give an approximation for the
sum of the coefficients of L(s, χ) and related series over squarefree ideals.

4.1. Artin L-functions. We begin by recalling the definition of Artin L-functions, in
part to demonstrate the notation we shall use. Let F be a number field with absolute
Galois group GF and degree n over Q, and let χ : GF → C be a character of GF with
degree d. That is, there is a representation ρ : GF → GLd(C) such that χ = trρ. Let

K/F be the extension corresponding to χ, i.e. the kernel field F
ker ρ

. For any prime
p of F , let Dp and Ip denote the decomposition and inertia groups associated with a
fixed prime P of K lying over p. Let V be the space underlying ρ, and observe that
Dp/Ip acts on V

Ip , the subspace of V fixed by the inertia subgroup. Letting σp denote
the Frobenius element in Dp/Ip, we define the local Euler factor Lp(s, χ) by

Lp(s, χ) := det
(
1− (Np)−sρ(σp)|V Ip

)−1
.

We then define L(s, χ) to be the product over prime ideals of the local factors, that is

L(s, χ) :=
∏

p

Lp(s, χ).

Note that for every prime p of F , there exist “local roots” α1(p), . . . , αd(p) ∈ C of
absolute value at most 1 such that

(4.1) Lp(s, χ) =

d∏

i=1

(1− αi(p)(Np)
−s)−1.
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For primes p that are unramified in K, each αi(p) is a root of unity and α1(p) + · · ·+
αd(p) = χ(Frobp). For primes p that are ramified in K, there is some dp ≤ d such
that (reordering if necessary) α1(p), . . . , αdp(p) are roots of unity and αi(p) = 0 for
dp + 1 ≤ i ≤ d.

With χ as above, we define the number r = r(χ) by means of the expression

(4.2) r := 〈χ, 1〉G =
1

|G|
∑

g∈G
χ(g),

where G = Gal(K/F ) and we regard χ as a character of G. Since χ is a character and
r is the multiplicity of the trivial representation inside the representation ρ associated
with χ, we have that r is an integer satisfying 0 ≤ r ≤ d and that r = ords=1L(s, χ).

Let fχ be the Artin conductor associated with χ, for example following [Neu99, p.
533], and define the quantity Qχ by Qχ := ∆d

FNfχ. So doing, the Artin L-function
L(s, χ) satisfies a functional equation of the form

(4.3) L(s, χ) = w ·πnd(s−1) ·Q
1−2s

2
χ ·2nds ·Γ(1−s)nd ·sin

(πs
2

)r1
·cos

(πs
2

)r2
·L (1− s, χ)

where r1, and r2 are non-negative integers satisfying r1 + r2 = nd and where w ∈ C
has modulus 1 [Neu99, Theorem 12.6].

We now record an explicit form of the convexity bound for L(s, χ). We will take the
notation

Qχ(t) = Qχ · (1 + |t|)nd.
Lemma 4.1. Let L(s, χ) be an Artin L-function of degree d over a number field F of
degree n, and suppose that (s− 1)rL(s, χ) is entire for some 0 ≤ r ≤ d. There for all
0 < δ < 1/2 and all complex s = σ + it with −δ ≤ σ ≤ 1 + δ, we have

∣∣∣∣
(
s− 1

s+ 1

)r

L(s, χ)

∣∣∣∣ ≤ 32dendδ−d ·Qχ(t)
1+δ−σ

2 ·
(
3 +

log∆F

2n

)nd

.

Proof. First, for any positive δ < 1/2 and any t ∈ R, we have that

|L(1 + δ + it, χ)| ≤ ζF (1 + δ)d,

where ζF (s) is the Dedekind zeta function of F , as follows from (4.1). The same bound
holds for L(1 + δ − it, χ), which implies via the functional equation (4.3) that

|L(−δ + it, χ)| ≤ π−nd(1+δ) · 2−ndδ ·Q
1+2δ

2
χ · |Γ(1 + δ + it)|ndeπnd|t|

2 · ζF (1 + δ)d.

Applying the explicit error estimate for Stirling’s approximation [Boy94, (3.11)] in
the case N = 1 at s = 1 + δ + it gives

|Γ(s)| ≤
√
2π ·

∣∣∣ss− 1
2

∣∣∣ · e−1−δ ·
(
1 +

6

(2π)2

)
.

Note that ∣∣∣ss− 1
2

∣∣∣ = |s| 12+δ · e−arg(s)·t,

where the argument arg(s) lies in (−π/2, π/2). Assuming this argument is nonnegative,
we then have

t−1(1 + δ) = tan
(
1
2
π − arg(s)

)
≥ 1

2
π − arg(s).
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Together with a symmetric argument when arg(s) is negative, we may conclude∣∣∣ss− 1
2

∣∣∣ ≤ |s| 12+δ · exp
(
1 + δ − 1

2
π|t|
)
,

and a computation gives

|Γ(1 + δ + it)| ≤ π · (1+δ+ |t|) 1
2
+δ ·exp

(
−1

2
π|t|
)
≤ π · (1+δ) · (1+ |t|) 1

2
+δ ·exp

(
−1

2
π|t|
)

So
|L(−δ + it, χ)| ≤ Qχ(t)

1+2δ
2 · ζF (1 + δ)d.

Thus, by the Phragmen–Lindelöf convexity principle [IK04, Theorem 5.53], for any σ
satisfying −δ < σ < 1 + δ and s = σ + it, we find

(4.4)

∣∣∣∣
(
s− 1

s+ 1

)r

L(s, χ)

∣∣∣∣ ≤ 3
r(1+δ−σ)

1+2δ ·Qχ(t)
1+δ−σ

2 · ζF (1 + δ)d.

It remains to bound ζF (1 + δ). We claim that

(4.5) |ζF (1 + δ)| ≤ δ−1 · 2 · 31/4 · en ·max

(
1 +

log∆F

2n
, 3

)n

for δ ∈ (0, 1/2).

If F = Q, this is clear from the relationship ζ(1 + δ) ≤ (1 + δ−1). Otherwise, take χ0

to be the trivial character on GF . Applying (4.4) with δ0 = min(1
2
, 2n
log∆F

) gives

ζF (1 + δ) ≤ δ−1 · 2 · 31/4 · en · ζF (1 + δ0) for δ ∈ (0, δ0).

For δ ∈ (δ0, 1/2), we instead use the inequality

ζF (1 + δ) < ζF (1 + δ0) < δ−1 · ζF (1 + δ0).

In either case, we fnd that (4.5) follows from the inequality

ζF (1 + δ0) ≤ ζ(1 + δ0)
n ≤ (1 + δ−1

0 )n = max

(
1 +

log∆F

2n
, 3

)n

.

Combining (4.5) with (4.4) then gives the lemma. �

Remark 4.2. The hypothesis that (s− 1)rL(s, χ) is entire is expected to hold for all
characters χ, but at present this is known only for characters expressible as a sums
of monomial characters by class field theory and for a few scattered other classes of χ
that will not be relevant for our purposes. Here, a monomial character is defined as a
character induced from a one dimensional character of some open subgroup.

4.2. Acceptable multiplicative functions. An Artin L-function L(s, χ) defined

over a number field F may be written in the form
∑

a
f(a)
Nas

, where f is a multiplicative
function on the integral ideals of F . If f1, f2 are the multiplicative functions defined
this way from characters χ1, χ2, and if f is the multiplicative function defined from
the product character χ1 · χ2, we find that

(4.6) f(a) = f1(a) · f2(a)
for all squarefree integral ideals a of F that are divisible by no prime where both χ1

and χ2 ramify.
For our applications, we would like (4.6) to hold for all integral ideals. This requires

us to modify our approach for defining a multiplicative function from a Galois character.



FAITHFUL ARTIN INDUCTION AND THE CHEBOTAREV DENSITY THEOREM 21

Definition 4.3. Let F be a number field, let χ : GF → C be a character of degree d,
and let K/F be a Galois extension containing the kernel field of χ. We will assume
that L(s, χ) is entire except potentially for a pole at s = 1.

An acceptable multiplicative function associated with the tuple (K/F, χ, S) is a mul-
tiplicative function f on the ideals a of F that is supported on squarefree ideals, and
which satisfies f(p) = χ(Frobp) for primes p 6∈ S and |f(p)| ≤ d for primes p ∈ S.

Given an acceptable multiplicative function f , we let L(s, f) denote its Dirichlet
series, that is,

L(s, f) :=
∑

a

f(a)

(Na)s
=
∏

p

(
1 +

f(p)

Nps

)
,

which is absolutely convergent in the region ℜ(s) > 1.

We need to show that L(s, f) is not too much larger than L(s, χ).

Lemma 4.4. Let f be an acceptable multiplicative function associated with a tuple
(K/F, χ, S). Then for any s = σ + it with σ ≥ σ0 for some σ0 ∈ (1/2, 1), we have

log

∣∣∣∣
L(s, f)

L(s, χ)

∣∣∣∣ ≤
3n · d4−4σ

2σ − 1
+ 2dn · (2d

2 +#S)1−σ0 − 1

1− σ0

Proof. For any prime p of F , take

ap = log |1 + f(p) · (Np)−s| − log |Lp(s, χ)|,
where Lp denotes the Euler factor of L(s, χ) at p. By (4.1) and the surrounding
discussion, we may write the second term above in the form

− logLp(χ, s) = log(1− α1(p)(Np)
−s) + · · ·+ log(1− αdp(p)(Np)

−s),

where dp ≤ d and the αi(p) are all roots of unity. From these formulae and the simple
inequality log |1 + x| ≤ |x| we may conclude

(4.7) ap ≤ 2d(Np)−σ

for all primes p. If p is outside S and Np ≥ 2d2, we have a stronger inequality: the
Taylor series for log(1 + x) gives

(4.8) ap ≤
∑

k≥2

dk + d

k
(Np)−kσ ≤ d2 · (Np)−2σ ·

∑

k≥2

22−k/2

k
< 3d2 · (Np)−2σ.

Now, given an integerm > 1, there are at most n primes in F with normm. Applying
this fact with (4.7), we find

∑

p∈S
ap +

∑

Np≤2d2

ap ≤ 2dn ·
ˆ 2d2+#S

1

x−σdx ≤ 2dn · (2d
2 +#S)1−σ0 − 1

1− σ0
,

while by invoking (4.8), we find

∑

p6∈S
Np>2d2

ap ≤ 3d2n

ˆ ∞

2d2
x−2σdx ≤ 3n · d4−4σ

2σ − 1
.
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Since

log

∣∣∣∣
L(s, f)

L(s, χ)

∣∣∣∣ =
∑

p

ap,

the lemma follows. �

We will apply Lemma 4.4 in two special cases.

Lemma 4.5. Choose δ in (0, 1/4]. If we take s = 1/2 + δ + it with t real, we have

|L(s, f)| ≤
(
log e3Qχ(t)

)d ·
(
log e3∆F

)nd ·Qχ(t)
1−2δ

4 ·exp
(
6nd+ 3nd2δ−1 + 4dn(#S)1/2

)
.

If s is instead a complex number satisfying |s− 1| = δ, we have

|L(s, f)| ≤ δ−d−r ·Qδ
χ ·
(
log e3∆F

)nd · exp
(
11nd+ 2dn · (2d

2 +#S)δ − 1

δ

)
.

Proof. Start with s = 1/2+ δ+ it as in the first part. Applying Lemma 4.1 with (δ, σ)
set to ((

log e3Qχ(t)
)−1

, 1/2 + δ
)

gives

|L(s, χ)| ≤ 7r · 32d · end ·
(
log e3Qχ(t)

)d · e1/2 ·Qχ(t)
1−2δ

4 ·
(
3 +

log∆F

2n

)nd

≤ e6nd ·
(
log e3Qχ(t)

)d ·
(
log e3∆F

)nd ·Qχ(t)
1−2δ

4 .

Applying Lemma 4.4 gives

log

∣∣∣∣
L(s, f)

L(s, χ)

∣∣∣∣ ≤
3nd2

2δ
+ 2dn

(2d2 +#S)1/2 − 1

1/2
≤
(
3

2
+
√
2

)
nd2δ−1 + 4dn(#S)1/2,

and the first part of the lemma follows.
For the second part, applying Lemma 4.1 with (δ, σ) set to (δ,ℜ(s)) gives

|L(s, χ)| ≤
(
9

4

)r

· 32d · end · δ−d−r ·Qχ(ℑ(s))δ ·
(
log e3∆F

)nd

≤ δ−d−r ·Qδ
χ · e5nd ·

(
log e3∆F

)nd
,

and the lemma follows since Lemma 4.4 gives

log

∣∣∣∣
L(s, f)

L(s, χ)

∣∣∣∣ ≤ 6nd+ 2dn · (2d
2 +#S)δ − 1

δ
.

�
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4.3. Smoothed character sums. Our bounds for bilinear character sums are proved
using bounds on smoothed character sums, which we prove from bounds on L-functions
in the critical strip in a manner similar to Weiss [Wei83, Lemma 3.5]. This work requires
a smoothing function. The specific choice of this function will not matter much, so we
choose one whose Fourier transform is easy to calculate.

Definition 4.6. Given H ≥ 3, we will define a holomorphic function ηH by the formula

ηH(z) =

ˆ logH

− logH

e1−(z−t)2dt.

In other words, ηH is the convolution of the indicator function on [− logH, logH ] with

e1−z2 . The Fourier transform of this function has the explicit form

η̂H(s) =

ˆ

R

ηH(x)e
−isxdx = 2e

√
π · sin(s · logH)

s
· e−s2/4.

For x in [− logH, logH ], we have the (crude) lower bound

(4.9) ηH(x) ≥
ˆ 1

0

e1−t2dt ≥ 1.

Building on Lemma 4.5, the following two lemmas collect the bounds we need in-
volving η̂H(−is) · L(s, f) in the proof of Proposition 4.10.

Notation 4.7. We take f to be an acceptable multiplicative function associated to
the tuple (K/F, χ, S). We take d to be a positive integer no smaller than degree of χ
and we take Q to be a real number no smaller than Qχ. We will assume that

Q ≥ max
(
2n, exp

(
4d1/2

)
, exp

(
1
2
d1/2|S|

))
.

As above, we take n to be the degree of F over Q, and we will write r for the degree
of the pole for L(s, χ) at s = 1, with r = 0 if there is no pole.

Lemma 4.8. Take all notation as above, and suppose r ≥ 1. Take H ≥ e4. Then∣∣∣∣
1

2π

˛

Z

η̂H(−is) · L(s, f)ds
∣∣∣∣ ≤ H(logH)r−1 · (logQ)50nd,

where Z is the counterclockwise circular path centered at s = 1 of radius 1/4.

Proof. Given δ in (0, 1/4] and s ∈ C satisfying |s− 1| ≤ δ, we have

|η̂H(−is)| ≤ 2e
√
π ·H1+δ · e

(1+δ)2/4

1− δ
≤ 20H1+δ,

so Cauchy’s integral formula gives
∣∣∣∣
1

k!

dk

dsk
η̂H(−is)

∣∣∣
s=1

∣∣∣∣ ≤ δ−k · 20H1+δ for k ≥ 0.

Taking δ = (logH)−1 gives
∣∣∣∣
1

k!

dk

dsk
η̂H(−is)

∣∣∣
s=1

∣∣∣∣ ≤ H · 20e · (logH)k ≤ 55H(logH)k.
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We next will apply Lemma 4.5 with

δ = (2d2 +#S)−1 · (logQ)−1,

which gives

|L(s, f)| ≤ (logQ)4nd · exp
(
12nd+ 2dn

(2d2 +#S)δ − 1

δ

)
· (2d2 +#S)2d

for s satisfying |s− 1| = δ. Applying the mean value theorem to the function g(x) =
(2d2 +#S)x, we find that

(2d2 +#S)δ − 1

δ
≤ g′(δ) < e · log(2d2 +#S).

So, on this circle, we have

|L(s, f)| ≤ (logQ)4nd · e12nd · (2d2 +#S)(2e+2)nd ≤ (logQ)46nd,

and it follows that ∣∣ress=1(s− 1)kL(s, f)
∣∣ ≤ (logQ)46nd

for 0 ≤ k ≤ r − 1. From the residue theorem, we thus have
∣∣∣∣
1

2π

˛

Z

η̂H(−is) · L(s, f)ds
∣∣∣∣ ≤

r−1∑

k=0

55H(logH)k · (logQ)46nd

≤ H(logH)r−1 · (logQ)50nd.
�

Lemma 4.9. Take all notation as in Notation 4.7, and choose H ≥ Q1/2 such that

16nd2 ≤ logQ−1/2H.

Then, for any δ in (0, 1/4], we have
∣∣∣∣∣
1

2π

ˆ 1/2+δ+i∞

1/2+δ−i∞
η̂H(−is) · L(s, f)ds

∣∣∣∣∣

≤ H · (Q−1/2H)−1/2 · (logQ)26nd · exp
(
4n1/2d

√
logQ−1/2H + 4

√
2nd3/4

√
logQ

)
.

Proof. We start by estimating

(4.10)

ˆ ∞

0

e−t2/4 ·Qχ(t)
1−2δ

4 · (log e3Qχ(t))
ddt.

Writing the integrand as F (t), we have

d

dt
logF (t) =

−t
2

+
(1− 2δ)nd

4(1 + t)
+

d2n

(1 + t) · log e3Qχ(t)
.

So long as t ≥ e− 1, this is at most

−t
2

+
nd

4t
+
d

t
,



FAITHFUL ARTIN INDUCTION AND THE CHEBOTAREV DENSITY THEOREM 25

which is no greater than −1 if t ≥ 3
√
nd. Since Qχ is increasing with t and e−t2/4 is

no greater than 1, (4.10) is at most
(
3
√
nd+ 1

)
·Qχ

(
3
√
nd
) 1−2δ

4 ·
(
log e3Qχ

(
3
√
nd
))d

≤ Q
1−2δ

4
χ ·

(
4
√
nd
)nd

4
+1

·
(
nd log

(
4
√
nd
)
+ log e3Qχ

)d
≤ Q

1−2δ
4 · (logQ)16nd,

where we have used the fact that logQ is at least 4 and (logQ)3 is at least max(n, d).
By Lemma 4.5, the integral of the lemma is then bounded by

Q
1−2δ

4 · (logQ)16nd · 2 · 5e
√
π

2π
H1/2+δ ·

(
log e3∆F

)nd · exp
(
6nd+ 3nd2δ−1 + 4dn(#S)1/2

)
,

which is at most

H · (logQ)26nd · (Q−1/2H)−1/2+δ · exp
(
3nd2δ−1 + 4nd · (#S)1/2

)
.

By Cauchy’s residue theorem, we may shift δ to any value in the interval (0, 1/4]
without changing the value of the integral. We will take

δ = n1/2d(logQ−1/2H)−1/2;

note that this is at most 1/4 by the conditions of the lemma. The result follows. �

Proposition 4.10. Take all notation as in Notation 4.7, and choose H ≥ Q1/2 satis-
fying the condition of Lemma 4.9. We then have∣∣∣∣∣
∑

a

f(a) · ηH(logNa)

∣∣∣∣∣
≤ κ ·H(logH)r−1 · (logQ)50nd

+H · (Q−1/2H)−1/2 · (logQ)26nd · exp
(
4n1/2d

√
logQ−1/2H + 4

√
2nd3/4

√
logQ

)
,

where κ = 1 if r is positive and κ = 0 otherwise.

Proof. Applying the inverse Fourier transform and Cauchy’s integral theorem gives

ηH(x) =
1

2πi

ˆ 2+i∞

2−i∞
η̂H(−is)esxds

for any real x. So

(4.11)
∑

a

f(a) · ηH (logNa) =
∑

a

1

2πi

ˆ 2+i∞

2−i∞
η̂H(−is)Na−sds.

There is some C > 0 such that, for all positive H0, we have∣∣∣∣∣
∑

Na≥H0

1

2πi

ˆ 2+i∞

2−i∞
η̂H(−is)f(a)Na−sds

∣∣∣∣∣ ≤ CH
−1/2
0 and

∣∣∣∣∣
1

2πi

ˆ 2+i∞

2−i∞

∑

Na≥H0

η̂H(−is)f(a)Na−sds

∣∣∣∣∣ ≤ CH
−1/2
0 .



26 ROBERT J. LEMKE OLIVER AND ALEXANDER SMITH

This allows us to swap the order of the sum and integral in (4.11), so

∑

a

f(a) · ηH (logNa) =
1

2πi

ˆ 2+i∞

2−i∞
η̂H(−is)L(s, f)ds.

But now Cauchy’s theorem gives
ˆ 2+i∞

2−i∞
η̂H(−is)L(s, f)ds =

˛

Z

η̂H(−is)L(s, f)ds +

ˆ 1/2+δ+i∞

1/2+δ−i∞
η̂H(−is)L(s, f)ds,

where Z is the path from Lemma 4.8 and δ is taken from (0, 1/4]. The result follows
from Lemmas 4.8 and 4.9. �

5. Bilinear character sums

5.1. The theorem for large H.

Definition 5.1. Given a Galois extension of number fields K1/F and a nontrivial
character χ1 of Gal(K1/F ), we say that χ1 is a monomial positive if χ1 is a positive
rational combination of monomial characters on Gal(K1/F ), i.e. characters induced
from a linear character of some subgroup.

Given another Galois extension K2 of F and a choice of character χ2 : Gal(K2/F ) →
C, we define an inner product via the standard formula

〈χ1, χ2〉 =
1

|G|
∑

σ∈G
χ1(σ)χ2(σ) with G = Gal(K1K2/F ).

Theorem 5.2. Choose a number field F of degree n, and fix a positive integer d.
Choose integers Q,M > 100, and choose M acceptable multiplicative functions

f1, . . . , fM over F . Take (Ki/F, χi, Si) to be a tuple associated to fi for i ≤ M . For
each i ≤ M , we will assume that χi is monomial positive, has degree at most d, and
satisfies Qχi

≤ Q. We will also assume that Si has cardinality at most logQ/ log 2.
Take E to be the set of pairs (i, j) with i, j ≤M such that 〈χi, χj〉 6= 0. Take r to be

the maximum value attained by this pairing as (i, j) varies.

Then, for H ≥ Qde16nd
4
, we have

∑

Na<H

∣∣∣∣∣
M∑

i=1

aifi(a)

∣∣∣∣∣

2

≤ H · (logH)r−1 · (2d logQ)50d2n ·


 ∑

(i,j)∈E
|aiaj|




+ AH · (Q−dH)−1/2 ·
(∑

i≤M

|ai|
)2

,

where the sum on the left is over all integral ideals of F of norm at most H, and where

A = (2d logQ)26d
2n · exp

(
4n1/2d2

√
logQ−dH + 8nd2

√
logQ

)
.

We will need the following basic lemma.
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Lemma 5.3. Take f1, . . . , fM and their associated tuples as in Theorem 5.2. Given
i, j ≤ M , the function fi · fj is an acceptable multiplicative function with associated
character χ = χi · χj and associated set of places contained in Si ∪ Sj. Furthermore, χ
is monomial positive and satisfies

Qχ ≤ Q2d.

Proof. From the theory of products of characters, the function χi · χj is a character.
Since χi and χj are monomial positive, χj is monomial positive, and Mackey’s formula

gives that χi · χj is monomial positive. The claims about fi · fj are then clear. The
bound on Qχ then follows from [LTZ24, Lemma 6.6]. �

Proof of Theorem 5.2. From (4.9), we have

∑

Na<H

∣∣∣∣∣
M∑

i=1

aifi(a)

∣∣∣∣∣

2

≤
∑

a

ηH (logNa)

∣∣∣∣∣
M∑

i=1

aifi(a)

∣∣∣∣∣

2

=
∑

i,j≤M

aiaj
∑

a

ηH (logNa) · (fi · fj)(a).(5.1)

By the Minkowski bound and the assumption Q ≥ 100, it follows that Q is at least 2n.
Furthermore, for i, j ≤M

#(Si ∪ Sj) ≤ 2 logQ/ log 2 ≤ 2d−1 logQ2d.

Finally, χi ·χj has degree at most d2. Applying Lemma 5.3, we find that we may apply
Proposition 4.10 with (d,Q) set to (d2, Q2d) to show that (5.1) is at most

∑

i,j≤M

|aiaj |
(
κij ·H(logH)r−1 · (2d logQ)50nd2 + AH · (Q−dH)−1/2

)
,

where κij = 1 if (i, j) lies in E and is otherwise 0. The result follows. �

Remark 5.4. Suppose H ≤ Qde16nd
4
, so the theorem does not apply as written. In

this case, we will still need to bound this bilinear sum, but a trivial bound will suffice.
Specifically, we will choose δ in (0, 1/2) and use

∑

Na<H

∣∣∣∣∣
M∑

i=1

aifi(a)

∣∣∣∣∣

2

≤
∑

i,j≤M

|ai| · |aj| ·H1+δζF (1 + δ)d
2 ≤

(∑

i≤M

|ai|
)2

·H1+δ(1 + δ−1)nd
2

.

Taking δ = (log e3H)−1 then gives

(5.2)
∑

Na<H

∣∣∣∣∣
M∑

i=1

aifi(a)

∣∣∣∣∣

2

≤ (log e4H)nd
2+1 ·H ·

(∑

i≤M

|ai|
)2

The minimal choice of H obeying the conditions of the theorem is Qde16nd
4
. In this

case, the theorem gives

∑

Na<H

∣∣∣∣∣
M∑

i=1

aifi(a)

∣∣∣∣∣

2

≤ Qd · (2d logQ)54d2n exp
(
16nd4 + 8nd2

√
logQ

)
·
(∑

i≤M

|ai|
)2

.
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5.2. Applying Hölder’s inequality for small H. We can adapt Theorem 5.2 to
handle smaller H by applying Hölder’s inequality. This approach was first used in
work of Friedlander and Iwaniec [FI98, (21.9)]. As in that original application, this
method is something of a shortcut around the deeper consideration of the involved
L-functions as appears in [LTZ24].

We start with a weak estimate for the number of squarefull ideals.

Lemma 5.5. Take F to be a number field of degree n. Given H ≥ 100, we have
∑

r sqfull
Nr≤H

Nr−1/2 ≤ (log e3∆F )
4n · logH,

where the sum is over squarefull integral ideals of F of norm at most H. We also have
∑

r sqfull

Nr−1 ≤ ζ(2)n · ζ(3)n ≤ 2n

Proof. For any δ ∈ (0, 1/2), the sum being estimated is at most

Hδ ·
∑

r sqfull

Nr−1/2−δ.

Since every squarefull ideal may be written in the form a2b3 for some integral ideals
a, b, we also have

∑

r sqfull

Nr−1/2−δ ≤ ζF
(
2(1/2 + δ)

)
· ζF
(
3(1/2 + δ)

)

Applying (4.5) and the bound

ζF (3(1/2 + δ)) ≤ ζ(3/2)n ≤ en

shows this is no greater than

1
2
δ−1 · e2n · 2 · 31/4 ·

(
log e3∆F

)n
.

Taking δ = (logH)−1 then suffices to prove the first result. The proof of the second
inequality is analogous but simpler. �

Theorem 5.6. Choose a positive integer t. Fix F , Q, M , d, and f1, . . . , fM as in
Theorem 5.2. We define r and n as in that theorem. Choose H ≥ 100.

Take f to be the totally multiplicative function defined over F so f(p) = d for each
prime p of F . For each integral ideal a, choose a complex coefficient ba. We assume
that ba = 0 if a has rational norm greater than H or is not squarefree.

Choose a positive integer t such that

H t ≥ Qde16nd
4

Given coprime integral ideals b, r of F with b squarefree and r squarefull, take

G(r, b) =
∑

a1...at=br

f(r) · |ba1 . . . bat |
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and take

A0t =

(
H−t ·

∑

r,b

G(r, b)2

)1/2t

.

Then
M∑

i=1

∣∣∣∣∣
∑

a

bafi(a)

∣∣∣∣∣

≤ A0t · (logH t)max(r−1,1)/2t · (2d logQ)26d2n/t ·HM ·
(
(#E/M2)1/2t +H−1/4A1/2tQd/4t

)

with

A = exp
(
4n1/2d2

√
logQ−dH t + 8nd2

√
logQ

)
.

Proof. By Hölder’s inequality, we have

(5.3)
M∑

i=1

∣∣∣∣∣
∑

Na≤H

bafi(a)

∣∣∣∣∣ ≤M
t−1
t ·
(

M∑

i=1

∣∣∣∣∣
∑

Na≤H

bafi(a)

∣∣∣∣∣

t)1/t

.

There are complex numbers c1, . . . , cM of magnitude 1 such that

(5.4)
M∑

i=1

∣∣∣∣∣
∑

Na≤H

bafi(a)

∣∣∣∣∣

t

=
M∑

i=1

∑

a1,...,at

ci · ba1 · · · · · bat · fi(a1) · · · · · fi(at).

Take f ∗
i to be the totally multiplicative function on integral ideals of F that equals fi

on squarefree ideals. Then the right hand side of (5.4) equals

∑

r,b

(
f(r)

∑

a1...at=br

ba1 . . . bat

)(
M∑

i=1

cifi(b)f
∗
i (r)f

−1(r)

)
,

where the sum is over pairs of coprime ideals (b, r) satisfying Nb · Nr ≤ H t with b

squarefree and r squarefull. By Cauchy–Schwarz, this has magnitude at most

(5.5)

(∑

r,b

G(r, b)2

)1/2

·


∑

r,b

∣∣∣∣∣
M∑

i=1

cifi(b)f
∗
i (r)f

−1(r)

∣∣∣∣∣

2



1/2

.

Take

A1 = (#E) ·H t(logH t)r−1 · (2d logQ)50d2n,
A2 =M2H t/2Qd/2(2d logQ)26d

2n · exp
(
4n1/2d2

√
logQ−dH t + 8nd2

√
logQ

)
, and

A3 =M2H t/2Qd/2e8nd
4 ·
(
log e20nd

4

Qd
)2nd2

.

By Theorem 5.2, we have

∑

b
Nb·Nr≤Ht

∣∣∣∣∣
M∑

i=1

cifi(b)f
∗
i (r)f

−1(r)

∣∣∣∣∣

2

≤ A1/Nr+ A2/Nr1/2
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unless H t/Nr is smaller than Qde16nd
4
. In this case, we may instead apply Remark 5.4

to bound this sum by A3/Nr1/2. So Lemma 5.5 gives

(5.6)
∑

r,b

∣∣∣∣∣
M∑

i=1

cifi(b)f
∗
i (r)f

−1(r)

∣∣∣∣∣

2

≤ 2n · A1 +max(A2, A3) · (logQ)8n · logH t.

We note that

e8nd
4 ≤ exp

(
2n1/2d2

√
logQ−dH t

)
, and

log e20nd
4

Qd ≤ (2d logQ)4.

So A3 ≤ A2, and the left hand side of (5.6) is at most

(#E) ·H t · (logH t)r−1 · (2d logQ)51d2n

+M2Qd/2H t/2 · logH t · (2d logQ)34d2n · exp
(
4n1/2d2

√
logQ−dH t + 8nd2

√
logQ

)
.

This gives us an upper bound for (5.5), which in turn allows us to bound the left hand
side of (5.3). �

Assuming the values A0t do not grow too quickly with t, the following corollary gives
a nearly optimal choice of t.

Corollary 5.7. Take f1, . . . , fM , Q, d, n, and H as in Theorem 5.6. Take

t =

⌈
log(QdM2) + 100nd4

√
logQM

logH

⌉
and M0 =M2/

(
#E · (logHMQ2d)60nd

2
)
.

Suppose that M0 > 1. Then
M∑

i=1

∣∣∣∣∣
∑

a

bafi(a)

∣∣∣∣∣

≤ 2A0tHM · exp
( − logM0 · logH
2d logQ+ 4 logM + 200nd4

√
logQM + 2 logH

)
,

where A0t is defined as in Theorem 5.6.

Proof. Choose a real number a such that

H t = QdM2 exp
(
and4

√
logQM

)
,

so a ≥ 100. We have the inequality

exp
(
4n1/2d2

√
logQ−dH t

)
= exp

(
4n1/2d2

√
and4

√
logQM + logM2

)

≤ exp
(
4nd4

√
a+ 2 ·

√
logQM

)
,

so

(Q−dH t)−1/2 · exp
(
4n1/2d2

√
logQ−dH t + 8nd2

√
logQ

)

≤M−1 · exp
((

−1
2
and4 + 4

√
a + 2 · nd4 + 8nd4

)
·
√
logQM

)
≤M−1.
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The sum over E in Theorem 5.6 is thus no smaller than the sum off E, so we have

(5.7)
M∑

i=1

∣∣∣∣∣
∑

a

bafi(a)

∣∣∣∣∣ ≤ 2A0t ·HM · (M2/#E)−1/2t · (logH t)d
2/2t · (2d logQ)26d2n/t.

We also have the inequalities

logH t ≤ logH + log
(
QdM2

)
+ 100nd4

√
logQM ≤ 1

2
logH · (logQ2dM)6

and

t ≤ logH + log
(
QdM2

)
+ 100nd4

√
logQM

logH
.

We now may apply (5.7) to prove the desired inequality. �

Remark 5.8. In this corollary, suppose the coefficient ba is nonzero only when a is
prime, and that its magnitude at primes is bounded by 1. Choose primes p1, . . . , pt
of F of norm at most H , and write p1 . . . pt as br, where b and r are coprime, b is
squarefree, and r is squarefull. . Then

G(r, b) ≤ t!

#Aut((p1, . . . , pt))
· f(r) ≤ t! · dt,

where #Aut((p1, . . . , pt)) is the number of permutations in St that fix (p1, . . . , pt).
We have ∑

Multiset {p1,...,pt}
Npi≤H for i≤t

1

#Aut((p1, . . . , pt))
≤ 1

t!
(πF (H))t ,

where πF is the prime counting function for F . We thus find

(5.8) A0t ≤
(
t! · d2t · πF (H)t

H t

)1/2t

≤ dt1/2 · πF (H)1/2

H1/2
≤ 3dt1/2n1/2

(logH)1/2
,

where the last inequality follows from [Ros41, Theorem 26A] and the bound H ≥ 100.

6. The averaged Chebotarev density theorem

Given a finite group G, we call a character χ : G→ C a faithful monomial character
if it is induced from a 1-dimensional representation of a subgroup of G and is a sum
of irreducible faithful characters of G. With this codified, the following lemma is an
application of Theorem 1.3.

Lemma 6.1. Choose a nontrivial Galois extension K/F of number fields, take d =
[K : F ], and take ∆ to be the magnitude of the absolute discriminant of K. Take
χ to be a faithful irreducible character of Gal(K/F ). Then there is an integer m ≤
d, a sequence φ1, . . . , φm of faithful monomial characters of Gal(K/F ), and rational

numbers a1, . . . , am of magnitude at most d
3
2
(d−1) such that

(6.1) χ = a1φ1 + · · ·+ amφm

Furthermore, the degree of each φi is at most d/2, and Qφi
is at most ∆.
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Proof. Take χ1, . . . , χm to be the distinct faithful irredcuible characters of Gal(K/F ).
From Theorem 1.3, there are faithful monomial characters φ1, . . . , φm spanning the Q
vector space generated by χ1, . . . , χm. As a result, if we define an m×m integer matrix
A = (aij) so that

φi =
∑

j≤m

aijχj for i ≤ m,

we find that A is invertible, and so has nonzero integer determinant. Since each φi

corresponds to a subrepresentation of the regular representation of Gal(K/F ), we find

that each aij is at most
√
d. From the theory of adjugate matrices, we see that the

entries in the inverse matrix A−1 have magnitude bounded by

d
1
2
m−1 · (m− 1)! ≤ d

3
2
(d−1).

This gives the bound on the coefficients in (6.1).
Since Gal(K/F ) is nontrivial and each φi is faithful monomial, we see that each

φi must be induced from a subgroup of order at least 2, and hence has degree at
most d/2. Finally, the bound on Qφi

follows from the fact that φi corresponds to a
subrepresentation of the regular representation of Gal(K/F ). �

Theorem 6.2. Choose positive numbers Q,H ≥ 100 and an integer M ≥ 100, choose
a number field F , and choose a positive integer d. Finally, for each prime p of F ,
choose a complex number bp of magnitude at most 1.

Then there is a list K1, . . . , KM−1 of number fields so that, if K/F is a Galois
extension of relative degree d such that K has discriminant at most Q, and if K is not
in the list K1, . . . , KM−1, we have

∣∣∣∣∣
∑

Np≤H

bp · χ(p)
∣∣∣∣∣ ≤

cH

logH

with

c = 10nd
3
2
(d+2)

√
logQMH · exp

(
(− logM + 15nd2 log logQdMH) · logH

d logQ+ 4 logM + 2 logH + 13nd4
√
logQM

)

for any irreducible faithful character χ of Gal(K/F ).
With the same number of exceptions, we have

(6.2)

∣∣∣∣∣
∑

Np≤H

bp · χ(p)
∣∣∣∣∣ ≤

c(H)H

logH

for any H ≥ 100, where c(H) is defined as

11nd
3
2
(d+2)

√
logQMH·exp



− log

(
M(logQdMH)−27nd2

)
· logH ·

(
1− logH

logQdM4H3

)

d logQ+ 4 logM + 2 logH + 13nd4
√
logQM


 .

Proof. Take K to be the set of Galois degree d extensions of F whose absolute discrim-
inant is at most Q. For each K in K, choose an irreduciblle faithful character χK for
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which

(6.3)

∣∣∣∣∣
∑

Np≤H

bp · χK(p)

∣∣∣∣∣

is maximized.
If K does not contain M entries, the result is vacuous. Otherwise, we choose the M

fields K1, . . . , KM in K for which the sum (6.3) is maximized. To prove the first part,
it suffices to show

∑

i≤M

∣∣∣∣∣
∑

Np≤H

bp · χKi
(p)

∣∣∣∣∣ ≤
cMH

logH
.

By Lemma 6.1, this will follow if we have

∑

i≤M

∣∣∣∣∣
∑

Np≤H

bp · φi(p)

∣∣∣∣∣ ≤
d−

3
2
(d−1)−1cMH

logH
,

for any sequence of faithful monomial characters φ1, . . . , φM , where φi is defined on
Gal(Ki/F ).

Recall from Lemma 6.1 that the characters φi have degree at most d/2. If we choose
t as in Corollary 5.7, (5.8) gives

A0t ≤
5nd3

√
logQMH

logH
.

For i 6= j, we may view φi and φj as linear combinations of irreducible characters on
Gal(KiKj/F ) with kernel Gal(KiKj/Ki) and Gal(KiKj/Kj), respectively. From this,
we have

〈φi, φj〉Gal(KiKj/F ) = 0.

Corollary 5.7 then gives the first part of the theorem.
For the second part, we first note that it suffices to show that, for any H0 ≥ 100,

we have (6.2) for all H in [H0, 2H0] and all fields in K with at most M/(logH0)
2

exceptions, as we have ∑

k≥0

(log(100 · 2k))−2 < 1.

Given H0, we will choose an integer M1 ≥ 1 and apply the first part of the theorem
with (H,M) set to (

H0(1 + kM−1
1 ),

⌈
M

M1(logH0)2

⌉)

for each integer k in [0,M1). Noting that

πF (H0(1 + (k + 1)M−1
1 ))− πF (H0(1 + kM−1

1 )) ≤ nM−1
1 H0,

we find that we may take c(H) equal to

ndM−1
1 H logH

+ 10nd
3
2
(d+2)

√
logQMH · exp

(
(− logM/M1 + 17nd2 log logQdMH) · logH
d logQ + 4 logM + 2 logH + 13nd4

√
logQM

)
.
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The choice

M1 =

⌊
logH · exp

(− logM · logH
logQdM4H3

)⌋

then gives the part. �

6.1. The transition to the unconditional Chebotarev density theorem. At
some point as H increases, the error term of Theorem 6.2 becomes worse than what
may be proved from the unconditional Chebotarev density theorem. Because of this,
we need some form of the unconditional Chebotarev density theorem to prove Theorem
1.9.

This starts with a consideration of exceptional real zeros of L-functions.

Definition 6.3. Given a nontrivial quadratic extension K/F , we say K is exceptional
if the Hecke L-function L(s,K/F ) corresponding to K/F has a real root β satisfying

1− (32 log |∆K |)−1 ≤ β < 1.

If this root exists, it is necessarily simple [Sta74, Lemma 3]. We take Xexc(F ) to be
the set of exceptional fields, and for an exceptional field K we take β(K) to be the real
root defined as above.

Lemma 6.4. Given ∆ ≥ 3, there is at most one field K ∈ Xexc(F ) such that

∆ ≤ |∆K | ≤ ∆2.

Proof. Suppose otherwise, so there were two distinct fields K1, K2 satisfying these
conditions.

Take K1K2 to be the composite field of K1 and K2. The function

ζK1K2(s)

ζ(s) · L(s,K1/F ) · L(s,K2, F )

is a Hecke L-function and is hence entire. So ζK1K2 has at least two roots counted with
multiplicity in the interval [1− (32 log |∆K |)−1, 1).

But K1K2 has discriminant at most ∆8, so ζK1K2 has at most one necessarily sim-
ple root in the interval [1 − 4 log∆8, 1] by [Sta74, Lemma 3]. This contradicts our
assumption, giving the proposition. �

Lemma 6.5. Take K/F to be a nontrivial Galois extension, and take χ to be a faithful
monomial character on Gal(K/F ). If L(s, χ) has a real zero in the interval [1 −
(32 log |∆K |)−1, 1), then K lies in Xexc(F ).

Proof. Suppose L(s, χ) has a zero β in this interval. Take E/L to be fields such that χ
is induced from a linear surjective character ψ on Gal(E/L). Then β is a simple zero
of ζE, and cannot be a zero of ζL. Since β is also a zero of L(s, χ), we find that E/L
is quadratic.

By [Sta74, Theorem 3], E then contains a field M in Xexc(F ) with β(M) = β such
thatM is not contained in L. It follows that E =ML, implying that ψ is the restriction
of the nontrivial quadratic character on Gal(M/F ). So χ is monomial faithful only if
K =M . �
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Theorem 6.6. There is an absolute C0 > 0 so we have the following:
Take K/F to be a Galois extension of number fields of degree d, and take n to be the

degree of F . Then, for any faithful monomial character χ of Gal(K/F ), we have

∣∣∣∣∣
∑

Np≤H

χ(p)

∣∣∣∣∣ ≤ C0H
β(K) + C0ndH exp

(
− logH

104 log end∆K

)
+ C0H exp

(
−
√

logH

832nd

)

for all H ≥ 1. Here, we take β(K) = 1/2 if K is not in Xexc(F ).

Proof. Define a function ω : R≥0 → R≥0 by

ω(t) =
1

13 log end∆K + 13nd logmax(1, t)
.

By [Lee21, Theorems 1 and 2], if L is a subfield of K and K has sufficiently large
discriminant, the Dedekind zeta function ζL has at most one zero σ+ it with t ≥ 0 and
σ > 1 − ω(t), with this zero necessarily real and simple. From the Artin formalism,
the same statement then also holds for L(s, χ). Take β to be this zero if its exists, and
take β = 3/4 otherwise.

Following [LTZ24, (7.5)], we define η(H) for H ≥ 1 by

η(H) = inft≥0 (ω(t) logH + logmax(1, t))

for x ≥ 1. A calculus exercise shows that this satisfies

(6.4) η(H) ≥ min

(
logH

13 log end∆K
,

√
logH

13nd

)
.

We now apply the proof of [LTZ24, Lemma 7.3]. The only adjustment needed is to
account for the possible exceptional real zero, whose impact we bound using [TZ19,
Lemma 2.2 (iv)]. The lemma then gives

∣∣∣∣∣
∑

Np≤H

χ(p)

∣∣∣∣∣≪ Hβ +
H

logH
e−

1
8
η(H) · log e∆K for H ≥ max(5000, (log∆K)

4),

where the implicit constant is absolute. Applying Lemma 6.5 then gives
∣∣∣∣∣
∑

Np≤H

χ(p)

∣∣∣∣∣≪ Hβ(K) + ndH exp

(
− logH

104 log end∆K

)
+H exp

(
−
√

logH

832nd

)

for H > (log end∆K)
104. For smaller H , we find that the result is trivially true.

For K of small discriminant, Lee’s result does not handle the zeros with imaginary
part lying in [−1, 1]. But only finitely many fields have such a small discriminant, and
each has only finitely many zeros with imaginary part in this range. The impact of
such zeros is then accounted for by the final term of the above inequality. �
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6.2. The proof of Theorem 1.9. Take n to be the degree of F . Note that an ǫ-bad
extension is ǫ′-bad for ǫ′ > ǫ. So if we can prove the theorem with C(F, d) = 150nd2

and

(6.5) ǫ log∆ ≥ 200nd2 log log∆,

it will hold without this assumption for ∆ ≫F,d 1 and C(F, d) = 400nd2.
We will replace ∆ ≫F,d 1 with the explicit assumptions

log log∆ ≥ 106 · (d log d+ log n), and(6.6)

log log∆ ≥ 6 logC0,(6.7)

where C0 > 0 is chosen to satisfy the conditions of Theorem 6.6.
Take K to be the set of degree d ǫ-bad Galois extensions of F whose absolute discrim-

inant is bounded by ∆, and take K0 to be the set of such extensions outside Xexc(F )
By Lemma 6.4, we have

|K\K0| ≤ 1 + 2 log log∆.

So it suffices to bound the size of K0.
Take

Hmax = exp

(
104

3
ǫ
(
log end∆

)2
)
,

and suppose that H ≥ Hmax. Then we have

exp

(√
logH

29
√
nd

)
≤ exp

(√
logH

832nd

)
−

√
logH

6000
√
nd

and

exp

(√
ǫ logH

18

)
≤ logH

18
√

104/3 · log end∆
≤ logH

104 · log end∆ − logH

6000 · log end∆ .

Meanwhile, Theorem 6.6 and Lemma 6.1 give the estimate∣∣∣∣∣
∑

Np≤H

χ(p)

∣∣∣∣∣ ≤ 3C0nd
3/2(d+1)Hmax

(
exp

(
− logH

104 log end∆

)
, exp

(
−
√

logH

832nd

))
.

So (1.2) cannot hold if

min

(
logH

6000 · log end∆ ,

√
logH

6000
√
nd

)
≥ log

(
C0nd

3d logH
)
.

for H ≥ Hmax, and this holds by our explicit assumptions on ∆.

We now will apply Theorem 6.2 to bound the size of K0. Taking Hmin = (log∆)2+
d
2ǫ ,

for each K in K0, we may find an irreducible faithful character χ of Gal(K/F ) and an
H ∈ [Hmin, Hmax] such that (1.2) holds. Taking

M = ∆ǫ(1+δ)(log∆)100nd
2

with δ =
100(d log d+ log n)

log log∆
+

100
√
d√

log log∆
,

we claim that |K0| < M . This is stronger than the claim of the theorem with C(F, d) =
150nd2.
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By Theorem 6.2, we will have proved the claim if we can show that

nd5d
√
log∆MH exp



√
ǫ logH

18
−

log
(
M(log∆dMH)−27nd2

)
· logH ·

(
1− logH

log∆dH3

)

d log∆ + 4 logM + 2 logH + 13nd4
√
log∆M




is at most 1 for all H in the interval I = [Hmin, Hmax]. Calling this expression f0(H),
we will prove this in the following four steps:

(1) Taking H0 = H4
min, we will show that f0(H) ≤ 1 for H in [Hmin, H0].

(2) We will find a second function f1 so that f1(H) ≥ f(H) for allH in [Hmin, Hmax].
(3) We will show that the minimal value attained by f1 on [H0, Hmax] is attained

at either H0 or Hmax.
(4) We will check that f1(H0) ≤ 1 and that f1(Hmax) ≤ 1.

Before proceeding with the first step, we will list a few estimates we will use multiple
times. First, by (6.6), we have δ ≤ 1/6. From (6.5), we also know that (log∆)100nd

2
is

at most ∆ǫ/2. So we find M ≤ ∆2, and (6.6) gives

(6.8) 13nd4
√

log∆M ≤ δ

100
log∆.

We also have logHmax ≤ 200(log∆)2, and so we find

log(∆dMHmax) ≤ 400(log∆)2 ≤ (log∆)
20
9

by (6.6). So

(6.9)
(
M(log ∆dMH)−27nd2

)
≥ ∆ǫ(1+δ)(log∆)40nd

2

for H on the interval I.
With these set, we will prove the first itemized claim. Note that

(6.10) H0 ≤ (log∆)
6d
ǫ ,

so H0 ≤ ∆1/30 by (6.5) and

nd5d
√

log∆MH0 ≤ 2nd5d
√

log∆ ≤ 2
√

log∆ · exp
(
5d log d+ log n

log log∆
· log log∆

)
.

From (6.10), we also have

(6.11)

√
ǫ logH0

18
≤

√
d√

log log∆
log log∆.

These last inequalities imply

nd5d
√

log∆MH exp

(√
ǫ logH

18

)
≤ exp

((
1

2
+

δ

20

)
log log∆

)
.

The first claim will then be shown if we can prove

log
log
(
∆ǫ(1+δ)(log∆)40nd

2
)
· logHmin ·

(
1− logH0

log∆dH3
0

)

d log∆ + 4 logM + 2 logH0 +
δ

100
log∆

≥ log

(
1

2
+

δ

20

)
+log log log∆.
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We will repeatedly use

(6.12) log(1 + x) ≤ x for 0 ≤ x and log(1 + x) ≥ 4

5
x for 0 ≤ x ≤ 1/2.

Since δ ≤ 1/6, (6.12) and (6.5) give

log log
(
∆ǫ(1+δ)(log∆)40nd

2
)
≥ log(ǫ log∆) +

4

5
δ +

32nd2 log log∆

ǫ log∆
.

We also have

log logHmin = log(2 + d/2ǫ) + log log log∆,

log

(
1− logH0

log∆dH3
0

)
≥ − log

log∆dH0

log∆d
≥ − logH0

d log∆
≥ −2nd2 log log∆

ǫ log∆
, and

log

(
d log∆ + 4 logM + 2 logH0 +

δ

100
log∆

)

≤ log ((d+ 4ǫ) log∆) +
4δǫ

d+ 4ǫ
+

400nd2 log log∆

d log∆
+

12 log log∆

ǫ log∆
+

δ

100
.

We note that
400nd2 log log∆

d log∆
≤ δ

100
and

4δǫ

d+ 4ǫ
≤ 2

3
δ,

so summing these estimates for logarithms gives the first claim. We also note that the
estimates for the denominator and the bound δ ≤ 1/6 give

(6.13) 4 logM +
δ

100
log∆ ≤ 4ǫ log∆ + (d+ 4ǫ) · log∆

8
.

We now consider the second step. We will take

f1(H) = (log∆)10/9 · exp
(√

ǫ logH

18
−

2
3
log (∆ǫ) · logH

9
8
(d+ 4ǫ) log∆ + 2 logH

)
.

That this is greater than f(H) on the interval I follows from (6.13) and the estimates

nd5d
√

log∆MHmax ≤ (log∆)10/9 and 1− logH0

log∆dH3
0

≥ 2

3
.

We now move to the third step. Define a function

f2(x) =
x · √ǫ
18

−
2
3
log (∆ǫ) · x2

9
8
(d+ 4ǫ) log∆ + 2x2

.

We claim that the derivative f ′
2(
√
logH0) is negative, that the second derivative f ′′

2 (x)
is zero at for a single choice of x > 0, and that f ′′

2 is negative before this zero and
positive after this zero. These claims taken together will imply that the maximum
value attained by f2 on [

√
logH0,

√
logHmax] is attained at one of its endpoints.

We have

f ′
2(x) =

√
ǫ

18
−

4
3
log (∆ǫ) · 9

8
(d+ 4ǫ) log∆ · x

(
9
8
(d+ 4ǫ) log∆ + 2x2

)2 .
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Since H0 ≤ ∆1/30, this is at most

√
ǫ

18
− ǫ log∆ · d log∆ ·

√
ǫ−1d log log∆

(5d log∆)2

at
√
logH0, and this is negative by (6.6).

The claims about the second derivative hold for any function of the shape a0x−a1+
a2

a3+x2 for positive constants a0, a1, a2, a3. This finishes the third step.
So it only remains to show that f1 is at most 1 at H0 and at Hmax. At H0, we use

that H0 ≤ ∆1/30 to write

2
3
log (∆ǫ) · logH0

9
8
(d+ 4ǫ) log∆ + 2 logH0

≥
2
3
ǫ log∆ · 4(2 + d

2ǫ
) · log log∆(

9
8
+ 1

30

)
· (d+ 4ǫ) · log∆ ≥ 1.15 · log log∆.

Together with the bound (6.11), we find that f1(H0) ≤ 1.
We now consider log f1(Hmax). Since 1/(1 + x) is at least 1 − x for x positive, this

is at most

10

9
log log∆ +

√
104
3
ǫ log end∆

18
− 1

3
ǫ log∆ +

3(d+ 4ǫ) log∆

16 · logHmax

≤ nd+ 2 log log∆− 1

170
ǫ log∆ +

d

60ǫ log∆
≤ 0,

with the final inequality following from (6.5). So f1(Hmax) ≤ 1. �

6.3. The averaged Chebotarev density theorem. We will prove the following
strengthened form of Proposition 1.10.

Theorem 6.7. Given a number field F of degree n, and given a positive integer d,
there is some C(n, d) > 0 depending just on n and d so we have the following

Choose any ǫ > 0 and a Galois extension K/F of degree d. Choose H > (log∆)2+
d
2ǫ .

For every ǫ-bad extension L/F contained in K, we assume that

logH ≥ C(n, d) · (log 3∆L)
2 .

If this bad L lies in Xexc(F ), we also assume that

1− β(L) ≥ 1

40
√
logH

.

Then, for any conjugacy class C of G = Gal(K/F ), we have

∣∣∣∣πC(H ;K/F ) − |C|
|G| · πF (H)

∣∣∣∣ ≤
H

logH
· exp

(
−c(ǫ) ·

√
logH

)
.

The most difficult aspect of the proof of this theorem is that its right hand side
exactly matches the right hand side of Definition 1.8, necessitating the following lemma.
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Lemma 6.8. Take C to be a conjugacy class of a finite group G, and take χ : G→ C
to equal 1 on C and 0 outside C. Take χ1, . . . , χm to be the irreducible characters of
G. Then there are coefficients a1, . . . , am ∈ C such that

χ =
∑

i

aiχi and
∑

|ai| ≤ 1.

Proof. Since the χi give a basis for the set of class functions of G, we have χ =
∑

i aiχi

for a unique choice of a1, . . . , am. We now need to show that
∑ |ai| ≤ 1.

Define the inner product 〈 , 〉 on class functions of G as in Section 2.1. Take b =
|G|/|C|. Then

b−1 = 〈χ, χ〉 = |a1|2 + · · ·+ |am|2.
Take S to be the set of nonzero ai. The numbers bai are algebraic integers, and the
multiset {bai : i ∈ S} must be the set of roots of some monic integer polynomial P
satisfying P (0) 6= 0. So the AM-GM inequality gives

b =
∑

i∈S
|bai|2 ≥ |S| ·

∏

i∈S
|bai|2/|S| = |S| · |P (0)|2/|S| ≥ |S|.

The result now follows from the Cauchy–Schwarz inequality. �

Proof of Theorem 6.7. By Lemma 6.8, it suffices to show that

(6.14)

∣∣∣∣∣
∑

Np≤H

χ(p)

∣∣∣∣∣ ≤
H

logH
· exp

(
−c(ǫ) ·

√
logH

)

for every irreducible character χ of G. For a given χ, this claim is clear unless the
subfield L of K fixed by the kernel of χ is ǫ-bad.

Now suppose L is ǫ-bad. If L lies in Xexc(F ), we have

Hβ(L) ≤ H · exp
(
−
√
logH

40

)

by the assumptions on β(L). Note that c(ǫ) < 1/41, so

C0H
β(L) ≤ H

2 logH
exp

(
−c(ǫ)

√
logH

)

so long as H is larger than some absolute constant, where C0 is defined as in Theorem
6.6. The inequality (6.14) then follows from Theorem 6.6 for a proper choice of C(n, d).

�

We now turn to the proof of Proposition 1.12, which, like Theorem 6.7, we prove in
a slightly strengthened form.

Theorem 6.9. Let F be a number field of degree n and let m ≥ 2 be an integer. Let
ǫ > 0, let L/F be an extension of degree m, let K be the normal closure of L/F , and

assume that ∆K ≤ ∆, where ∆ is as above. Let G = Gal(K/F ). Let H > (log∆)2+
|G|
2ǫ

be such that for every ǫ-bad extension M/F not linearly disjoint from L over F , we
have

logH ≥ C(n, |G|) · (log 3∆M)2,
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where C(n, |G|) is as in Theorem 6.7. If this bad M lies in Xexc(F ), we also assume
that

1− β(L) ≥ 1

40
√
logH

.

Then we have

|πL(H)− πF (H)| ≤ H

logH
· (m− 1) · exp

(
−c(ǫ)

√
logH

)
.

Proof. Let H = Gal(K/L) and let χH = IndG
H1− 1. We then have that

πL(H)− πF (H) =
∑

Np≤H

χH(p).

Since χH(1) = m− 1, it follows that χH admits at most m− 1 irreducible constituents
χ. The result therefore follows if we show for each of these constituents χ that

∣∣∣∣∣
∑

Np≤H

χ(p)

∣∣∣∣∣ ≤
H

logH
· exp

(
−c(ǫ) ·

√
logH

)
.

As in the proof of Theorem 6.7, this is straightforward unless the kernel field of χ is
ǫ-bad. Let M = Kkerχ be this kernel field, and observe that M and L are not lin-
early disjoint (for example, this follows from [LTZ24, Lemma 3.9]). Hence, proceeding
exactly as in the proof of Theorem 6.7, the result follows. �

To obtain Proposition 1.12 in the form stated in the introduction, we require the
following lemma, after which the proof of Proposition 1.12 is routine.

Lemma 6.10. Let F be a number field, let L/F be a finite extension, and let K/F be its

normal closure. Let G = Gal(K/F ) and m = [L : F ]. Then ∆K ≤ ∆
|G|/2
L ∆

−|G|(m−2)/2
F .

Proof. This is [LTZ24, Lemma 3.10]. �

7. Arithmetic applications

In this section, we provide the proofs of the arithmetic applications of the averaged
Chebotarev density theorem. The following result makes clear the role that primitivity
will play in these applications.

Lemma 7.1. Let F be a number field, let L/F be a primitive extension, and let K/F
be its normal closure. Suppose for some ǫ > 0 that K is not ǫ-bad. Then L is linearly
disjoint from every extension in Xbad(F, ǫ) contained in K. In particular, L is subject
to Proposition 1.12.

Proof. This is immediate from the definition of a primitive extension. �
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7.1. Bounds and moments for ℓ-torsion subgroups: Proof of Corollary 1.13

and Corollary 1.14. We begin by recalling a lemma of Ellenberg and Venkatesh
[EV07, Lemma 2.3] that will, together with Proposition 1.12, readily imply Corol-
lary 1.13.

Lemma 7.2 (Ellenberg–Venkatesh). Let L/F be a degree m extension of number fields,
let ℓ be a positive integer, and let δ < 1

2ℓ(m−1)
. Let M be the number of prime ideals p

of L with norm at most ∆δ
L/F that are not extensions of prime ideals from any proper

subextension of L/F , where ∆L/F denotes the norm of the relative discriminant of
L/F . Then for any ε > 0, there holds

|Cl(L)[ℓ]| ≪F,m,ℓ,δ,ε ∆
1
2
+ε

L /M.

Using this, we now prove Corollary 1.13.

Proof of Corollary 1.13. Let ℓ,m ≥ 2 be integers as in the statement of the corol-
lary and let F be a number field. Let Q0 be the least real number such that: Q0 ≥
∆2m

F exp (4096ℓ2n4(m− 1)2 · (m!)6); we may take C(F,m!) = 400n(m!)2 in Theorem 1.9
for every ∆ ≥ Qm!

0 ; and

πF (H)− πF (H
1/m) ≥ 99

100

H

logH

for every H ≥ Q
1

8ℓ(m−1)

0 . Since Q0 ≪F,m,ℓ 1, the statement of the theorem is trivial if
Q ≤ Q0. Thus, we may assume Q > Q0, and we may similarly restrict our attention
to those extensions L such that ∆L > Q0. Now, for each positive integer j ≤ logQ −
logQ0 + 1, let Qj := ej−1Q0, ǫj := 16ℓ(m − 1) ·m! · log logQj

logQj
, and Ej be the subset of

F
prim
m,F (Q) consisting of those L with Qj < ∆L ≤ e · Qj that are not linearly disjoint

from every field in Xbad(F, ǫj).

Fix some L ∈ F
prim
m,F (Q) with ∆L > Q0. Then there is a unique j such that Qj <

∆L ≤ eQj , and we suppose that L 6∈ Ej, i.e. that L is linearly disjoint from every field
in Xbad(F, ǫj). We aim to show in this case that Proposition 1.12 applies meaningfully
in the range required by Lemma 7.2. To this end, we first observe that by our choice

of Q0, we have that |G|
2
log∆L ≤ (logQj)

2, and hence that

( |G|
2

log∆L

)2+
|G|
2ǫj ≤ (logQj)

4+m!
ǫj = Q

1
16ℓ(m−1)

+
4 log logQj

logQj

j < Q
1

8ℓ(m−1)

j ,

since
log logQj

logQj
≤ (logQj)

−1/2 ≤ (logQ0)
−1/2 ≤ (64ℓn2(m− 1) · (m!)3)

−1
. In particular,

we may apply Proposition 1.12 with any H ≥ Q
1

8ℓ(m−1)

j . Since c(ǫj) =
√
ǫj

18
, we find for

any H ≥ Q
1

8ℓ(m−1)

j that

m exp
(
−c(ǫj)

√
logH

)
< m exp

(
−(m− 1) ·

√
2

18

√
log logQ0

)
<

49

50
,
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since our assumptions imply that logQ0 ≥ 220. In particular, we conclude for any

H ≥ Q
1

8ℓ(m−1)

j that

(7.1) |πL(H)− πF (H)| < 49

50

H

logH
.

Now, since the extension L/F is primitive, the only prime ideals of L that are the
extension of an ideal from a proper subfield are those that are inert in the extension
L/F . There are at most πF (H

1/m) such prime ideals of norm at most H , and by our
assumptions on Q0, we find from (7.1) that

(7.2) πL(H)− πF (H
1/m) >

1

100

H

logH

for any H ≥ Q
1

8ℓ(m−1)

j . Finally, since we have assumed that Q0 ≥ ∆2m
F , we find that

∆L/F ≥ ∆
1/2
L > Q

1/2
j . Thus, for any fixed δ such that 1

4ℓ(m−1)
≤ δ < 1

2ℓ(m−1)
, we find

from Lemma 7.2 and (7.2) that

|Cl(L)[ℓ]| ≪F,m,ℓ,δ,ε ∆
1
2
−δ+ε

L .

Letting δ tend to 1
2ℓ(m−1)

from below, we conclude that the bound

|Cl(L)[ℓ]| ≪F,m,ℓ,ε ∆
1
2
− 1

2ℓ(m−1)
+ε

L

must hold provided that L 6∈ Ej.
We therefore aim to bound the sizes of the sets Ej . If Qj < ∆L ≤ eQj , then by

Lemma 6.10, we find that ∆K ≤ ∆
m!/2
L < Qm!

j , where K denotes the normal closure of

L/F . Hence, appealing to Theorem 1.9 with ∆ = Qm!
j and d = m!, we see that the

number of possible extensions K in Xbad(F, ǫj) is at most

(logQj)
16ℓ(m−1)·(m!)2+ 6400nℓ(m−1)(m!)4

(log logQj )
1/2

+800n(m!)2

< (logQ)2188nℓ(m−1)·(m!)4 ,

where we have once again used that logQ0 > 220. The number of extensions L with
the same normal closure K is at most the number of subgroups of the symmetric
group Sm, which we may bound trivially by 2m! < (logQ)m!. Accounting for the
logQ− logQ0 + 1 < logQ different values j, we conclude in sum that∣∣∣∣∣

⋃

j≤logQ−logQ0+1

Ej
∣∣∣∣∣ < (logQ)2200nℓ(m−1)·(m!)4 ,

which yields the corollary with the explicit value A = 2200 · nℓ(m− 1) · (m!)4. �

Turning to Corollary 1.14, the following proposition summarizes the methods of
Koymans and Thorner [KT23].

Proposition 7.3 (Koymans–Thorner). Let F be a number field and let S be any
set of extensions L/F , all of which have the same degree m. For any Q ≥ 1, let
S(Q) := {L ∈ S : ∆L ≤ Q}. Suppose for any ε > 0, there are constants c1, c2 > 0
(depending on F , S, and ε) such that for any Q ≥ 1, there is a subset E(Q) ⊆ S(Q)
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satisfying |E(Q)| = OF,S,ε(Q
ε) such that whenever L ∈ S(Q) \ E(Q), we have for any

x ≥ (logQ)c1 that

πL(x) ≥ c2
x

log x
.

Then for any integers ℓ ≥ 2, r ≥ 1, and any Q ≥ 1 and ε > 0, there holds
∑

L∈S(Q)

|Cl(L)[ℓ]|r ≪F,S,ℓ,r,ε Q
r
2
+ε
(
1 + |S(Q)|1− r

ℓ(m−1)+1

)
.

Proof. No proposition of this form is stated explicitly in the work of Koymans and
Thorner [KT23], but it is implicit and easily obtained from their work, as we now

explain. First, if we let π
(1)
L (x) denote the number of degree 1 prime ideals of L with

norm at most x, then we have

π
(1)
L (x) ≥ πL(x)−m[F : Q]π(x1/2) ≥ πL(x)−m[F : Q]x1/2.

As a result, we obtain for ε > 0 and Q sufficiently large that any L ∈ S(Q) \ E(Q)
satisfies

(7.3) π
(1)
L (x) ≥ c2

2

x

log x

provided that x ≥ (logQ)c1. The claim then follows as in the proof of [KT23, Theorem
1.1]. More specifically, the proof of their Theorem 1.1 relies on their Theorem 3.3,
Lemma 4.1, and Corollary 5.2. Of these, only Corollary 5.2 makes use of the specific
families that Koymans and Thorner study. The statement of their Corollary 5.2 is es-
sentially equation (7.3) but for the specific families of interest to them. Thus, replacing
Corollary 5.2 by (7.3) in their proof, the result follows. �

Appealing to Proposition 1.12 and Theorem 1.9, we see that the hypothesis of Propo-
sition 7.3 is satisfied for the family S = F

prim
m,F . This immediately implies Corollary 1.14.

However, we note that it also implies that the hypothesis of Proposition 7.3 is satisfied
for finer sets of primitive extensions. In particular, let G be a primitive permutation
group of degree n. (Recall that a permutation group is called primitive if it preserves

no nontrivial partition of the underlying set.) Given any L ∈ F
prim
m,F , the Galois group

Gal(L̃/F ) of its normal closure over F acts on the m embeddings of L into L̃, or,

essentially equivalently, on the m cosets of Gal(L̃/L). We let FG
m,F be the subset of

F
prim
m,F for which this permutation action is isomorphic to G. (Note that Gal(L̃/F )

must act primitively since the subgroup Gal(L̃/L) is maximal for any L ∈ F
prim
n,F .)

We then have the following slight refinement of Corollary 1.14.

Corollary 7.4. Let G be a primitive permutation group of degree m and let F be a
number field. Then for any integers ℓ ≥ 2 and r ≥ 1, any Q ≥ 1, and any ε > 0, there
holds ∑

L∈FG
m,F (Q)

|Cl(L)[ℓ]|r ≪F,m,ℓ,r,ε Q
r
2
+ε ·

(
1 + |FG

m,F (Q)|1−
r

ℓ(m−1)+1

)
.

Proof. This follows immediately from Theorem 1.9, Proposition 1.12 and Proposi-
tion 7.3 as described above. �
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7.2. Generation of the class group: Proof of Theorem 1.15. We begin with a
general lemma that will be used to show that characters of the class group with order ℓ
are typically irreducible and faithful when regarded as characters of the Galois group.

Lemma 7.5. Let G be a finite group, H a maximal subgroup of G, and N the maximal
normal subgroup of G contained in H. Let χ be an irreducible primitive character of
H (i.e., an irreducible character not induced from any proper subgroup of H). Suppose
χ
∣∣
N

is not the restriction of some character of G to N and that |N | and [G : N ] are

coprime. Then IndG
Hχ is an irreducible character.

Proof. Suppose IndG
Hχ was not irreducible. By Mackey’s criterion [Hup98, Theorem

17.4c], we have
〈χτ , χ〉H∩τ−1Hτ 6= 0

for some τ in G\H , where χτ denotes the conjugate representation to χ.
Since χ is primitive, its restriction to N is a multiple of some irreducible character of

N [Isa76, Corollary 6.12]. So this expression can be nonzero only if the restriction of χ
and χτ to N are equal. In this case χ is preserved under conjugation by 〈τ,H〉, which
is G since H is maximal. But then [Isa76, Corollary 8.16] and the assumption that
|N | and [G : N ] are coprime imply that χ

∣∣
N
equals the restriction of some character of

G. �

We are now ready to prove Theorem 1.15.

Proof of Theorem 1.15. Choosem, ℓ, andQ as in the theorem statement. Fix a positive
ε < 1

4n2ℓmm!
. Let H ≥ 1, and suppose that the prime ideals of some L ∈ F

prim
m,F (Q)

with norm at most H generate a proper subgroup of Cl(L)/ℓCl(L). If so, then there is
some class group character χ : Cl(L) → C× of order ℓ that is trivial on this subgroup.
For this character χ, we would then find that χ(P) = 1 for every prime P of L with
norm at most H , and hence

(7.4)
∑

NmL/QP≤H

χ(P) = πL(H).

Our goal is therefore to show that (7.4) does not hold for H = (logQ)A and any

character χ of order ℓ and all but OF,n,ℓ,ε(Q
ε) fields L ∈ F

prim
n,F (Q), where A is taken

to be 3(m!)2ℓ2m/ε.
As in the proof of Corollary 1.13, we may assume thatQ ≥ Q0 for some Q0 depending

only on F , n, ℓ, and ε. In fact, let Q0 be the least real number such that: Q0 ≥
exp(ε−2 exp(160000n2ℓ4mm!4)); we may take C(F,m!) = 400n(m!)2 and C(F, ℓmm!) =

400nℓ2m(m!)2 for every ∆ ≥ Q0 in Theorem 1.9; and, for every H ≥ (logQ0)
3(m!)2ℓ2m

ε ,
we have both πF (H) ≥ 1

2
H

logH
and
∣∣∣∣∣
∑

Np≤H

χ(p)

∣∣∣∣∣ ≤
H

4 logH

for every class group character of F with order ℓ. Such a Q0 exists, and depends only
on F , m, ℓ, and ε. There are therefore at most OF,m,ℓ,ε(1) fields in F

prim
m,F (Q0), all of
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which we may include in the exceptional set, so we may assume henceforth that all
L ∈ F

prim
m,F (Q) under consideration have ∆L ≥ Q0.

We begin by setting ǫ1 = ε/2m! and letting E1 be the subset of those L ∈ F
prim
m,F (Q)

that are not linearly disjoint from the set Xbad(F, ǫ1). We begin by claiming that

|E1| ≪m Qε. Indeed, there are Om(1) extensions L ∈ F
prim
m,F not linearly disjoint from

a fixed K ∈ Xbad(F, ǫ1), and Theorem 1.9 with ∆ = Qm!/2 and d = m! shows that the
number of bad K is at most

Q
ε
4
+ 100n(m!)2 ·ε√

log logQ0 (logQ)800n(m!)2 ≤ Q
ε
2
+800n(m!)2 log logQ

logQ ≤ Qε,

where we have used in the first inequality that
√
log logQ0 ≥ 400n(m!)2 and in the

second that (say) log logQ
logQ

≤ 1√
logQ0

≤ ε · (1600n(m!)2)
−1
, both of which readily follow

from our assumptions on Q0. Note that
(
m!

2
logQ

)2+ m!
2ǫ1

≤ (logQ)
3(m!)2

ε .

Since we have assumed ε < 1
4n2ℓmm!

, one computes that c(ǫ1) = ǫ
1/2
1 /18, and we find

for any H ≥ (logQ)3(m!)2/ε that

(m− 1) exp(−c(ǫ1)
√
logH) ≤ (m− 1) exp

(
−

√
3

18
√
2

1√
m!

√
log logQ0

)
(7.5)

≤ (m− 1) exp

(
−400

√
3

18
√
2
(m!)3/2

)

< 10−33.

We thus find from Proposition 1.12 and our assumptions on Q0 that for L 6∈ E1, we
have

(7.6) πL(H) >

(
1

2
− 10−33

)
H

logH

for every H ≥ (logQ)
3(m!)2ℓ2m

ε . As stated above, we now wish to contradict this lower
bound for every class group character χ of L with order ℓ.

Thus, suppose that χ is a nontrivial class group character of order ℓ associated with
some extension L ∈ F

prim
m,F (Q)\E1. LetM/L be the associated cyclic degree ℓ extension,

and let M̃ denote the normal closure ofM over F . Note that [M̃ : F ] ≤ ℓmm! and that

∆M̃ ≤ ∆
ℓmm!/2
F . Thus, let ǫ2 =

ε
2ℓmm!

and let E2 be the subset of L ∈ F
prim
m,F (Q) \ E1 for

which any of these associated extensions M̃ lie in Xbad(F, ǫ2). As in our treatment of
E1, we observe that |E2| ≪m,ℓ Q

ε.

Thus, suppose that L ∈ F
prim
m,F (Q) \ (E1 ∪ E2). Let χ and M be as above. Let

GM = Gal(M̃/F ) and HM = Gal(M̃/L). Then by class field theory, we may regard
χ as a nontrivial linear character of HM , so in particular χ is a primitive character of
HM . Moreover, the maximal normal subgroup of GM contained in HM (i.e., the core
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of HM) is Gal(M̃/K) =: NM , where K is the normal closure of L/F . In particular,
NM ≃ Cr

ℓ for some r ≤ m, and thus |NM | and [GM : HM ] are relatively prime.
Finally, to apply Lemma 7.5 (as is our goal), we must consider two possibilities. In

particular, either M is not the extension to L of a cyclic degree ℓ extension M0/F
(in which χ |NM

is not the restriction to NM from a character of G), or M is such
an extension (in which case χ is such a restriction). If M is not the extension to L
of a cyclic extension M0/F , Lemma 7.5 implies that the induction χ∗ := IndGM

HM
χ is

irreducible, and it is a faithful character by construction. Thus, exactly as in (7.5) and

the surrounding discussion, we conclude for any H ≥ (logQ)3ℓ
2m(m!)2/ε that

∣∣∣∣∣
∑

NP≤H

χ(P)

∣∣∣∣∣ < 10−33 H

logH
.

This contradicts (7.6), so it remains to consider those M that are the extension to L
of a cyclic extension M0/F .

In this situation, it will never be the case that the induction χ∗ of χ to GM ≃ Cℓ×G
will be irreducible, since χ∗ will simply be the twist of the permutation character π of G
by a nontrivial cyclic character of Cℓ, and the permutation character is not irreducible.
However, by [LTZ24, Lemma 3.9], each nontrivial irreducible constituent of π is a
faithful character of G, whence their twists are faithful irreducible characters of GM .
For L ∈ F

prim
m,F (Q) \ (E1 ∪ E2), these constituents may therefore be treated as before.

The twist of the trivial character, meanwhile, may be regarded as a nontrivial character
associated with the cyclic extension M0/F . Because we have assumed that ℓ ∤ |G| and
that the extension M/L is unramified, the extension M0/F must be unramified as well.
In particular, any nontrivial character of the extension M0/F is a class group character
of F of order ℓ, so by our assumptions on Q0, and analysis analogous to (7.5), we find

in this case that whenever H ≥ (logQ)3ℓ
2m(m!)2/ε that

∣∣∣∣∣
∑

NP≤H

χ(P)

∣∣∣∣∣ <
(
1

4
+ 10−33

)
H

logH
.

This is again sufficient to contradict (7.6), completing the proof of the theorem. �

7.3. Bounds on Artin L-functions: Proof of Corollary 1.16. In this section, we
prove Corollary 1.16 concerning bounds on L(1, χ).

Lemma 7.6. Let ǫ > 0 and let K/F be a nontrivial Galois extension of number
fields such that K is not in Xbad(F, ǫ). Let χ be a faithful, irreducible character of
Gal(K/F ) =: G, and let L(s, χ) denote the associated Artin L-function. Then

logL(1, χ) =
∑

Np≤(log |Disc(K)|)2+
2|G|
ǫ

logLp(1, χ)

+OF,G,ǫ

(
exp

(
−c(ǫ)

(
2 +

2|G|
ǫ

)1/2√
log log∆K

))
,

where c(ǫ) is as in (1.3)



48 ROBERT J. LEMKE OLIVER AND ALEXANDER SMITH

Proof. For convenience, set cǫ = 2 + 2|G|
ǫ
. For any σ > 1, we may write

logLp(σ, χ) = − log
(
1− ρ(σp)|V Ip(Np)−σ

)
=
χ(Frobp)

Npσ
+OG((Np)

−2σ).

For primes p such that Np > (log |Disc(K)|)cǫ, we find by the definition of ǫ-bad fields
and partial summation that

∣∣∣∣∣∣
∑

Np>(log∆K)cǫ

χ(Frobp)

Npσ

∣∣∣∣∣∣
≤

exp
(
−c(ǫ)c1/2ǫ

√
log log∆K

)

1− exp
(
−c(ǫ)c1/2ǫ

√
log log∆K

)

≪F,G,ǫ exp
(
−c(ǫ)c1/2ǫ

√
log log∆K

)
,

where the last inequality follows on observing that the quantity c(ǫ)c
1/2
ǫ

√
log log∆K

may be bounded away from 0 solely in terms of F , G, and ǫ. We also find that
∑

Np>(log∆K)cǫ

1

Np2σ
≪F,G

1

(log∆K)cǫ
,

which is smaller than the claimed bound. Upon taking the limit as σ → 1, the result
follows. �

Using this, we are able to provide a proof of Corollary 1.16.

Proof of Corllary 1.16. Let ǫ = ε
2
, and assume that K does not lie in Xbad(F, ǫ) and

that χ is a faithful, irreducible character of Gal(K/F ) =: G. By a slight abuse of
notation, for any prime p, we write χ(σp) for the sum of the local roots of Lp(s, χ).
(We caution that if p is ramified in K/F , χ(σp) does not have to be a literal character

value of χ.) As in the proof of Lemma 7.6, let cǫ = 2 + 2|G|
ǫ
. By Lemma 7.6, we then

find

log |L(1, χ)| =
∑

Np≤(logQ)cǫ

log |Lp(1, χ)|+OF,G,ε(exp
(
−c(ǫ)c1/2ǫ

√
log log∆K

)
)

=
∑

Np≤(logQ)cǫ

ℜ(χ(σp))
Np

+OF,G,ε(1)

≤ χ(1) log log logQ +OF,G,ε(1),

where in the last line we have used the prime ideal theorem (or really Mertens’ theorem)
for F . The upper bound L(1, χ) ≪F,G,ε (log logQ)χ(1) follows. For the lower bound,
we find it convenient to define a(χ) = min{ℜ(χ(g)) : g ∈ G}. Proceeding analogously
to the above, we obtain

log |L(1, χ)| ≥ a(χ) log log logQ+
∑

p|DK/F

ℜ(χ(σp)− a(χ))

Np
+OF,G,ε(1).

For ramified primes, we note that χ(σp) is by definition the trace of σp acting on V Ip .
This is equal to the average of χ(g) over g ∈ σpIp, so ℜ(χ(σp)− a(χ)) ≥ 0. Thus, we
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may omit the sum over ramified primes above, and the lower bound follows. Thus, we
have proven the claim for all K 6∈ Xbad(F, ǫ), and as Theorem 1.9 shows that

#{K ∈ Xbad(F, ǫ) : ∆K ≤ Q} ≤ Qǫ(1+δ)(logQ)C(F,|G|) ≪F,G,ε Q
ε,

the result follows. �
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