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CONFORMAL PRODUCT STRUCTURES ON COMPACT KÄHLER

MANIFOLDS

ANDREI MOROIANU, MIHAELA PILCA

Abstract. A conformal product structure on a Riemannian manifold is a Weyl connection
with reducible holonomy. We give the geometric description of all compact Kähler manifolds
admitting conformal product structures.

1. Introduction

Every Riemannian manifold (M, g) carries a unique torsion-free linear connection ∇ com-
patible with the Riemannian metric, called the Levi-Civita connection. More generally, one
can consider torsion-free linear connections on M , compatible with the conformal structure
defined by the metric g. These are the so-called Weyl connections [21] and they are in one-
to-one correspondence with 1-forms on M (see [10]). The corresponding 1-form is called the
Lee form of the Weyl connection with respect to g.

Weyl connections can be exact (Levi-Civita connections of metrics conformal to g), closed
(locally exact) or non-closed. In the first two cases their restricted holonomy group is compact,
whereas in the latter case, it is always non-compact. A classification of the possible restricted
holonomy groups of Weyl connections can be obtained by the Berger-Simons Holonomy The-
orem in the exact and closed cases, and by results of Merkulov and Schwachhöfer [16] in the
non-closed, irreducible case.

Weyl connections with reducible holonomy define so-called conformal product structures
[4]. The tangent bundle of a Riemannian manifold with conformal product structure can be
written as the orthogonal direct sum of two integrable distributions, defining two conformal
submersions in the neighborhood of each point. The rank of a conformal product structure is
defined to be the smallest of the two dimensions of these distributions.

When the Weyl connection defining a conformal product structure is closed but not exact,
the structure is called locally conformally product (in short, LCP) [8]. The theory of LCP
manifolds started with a first construction by Matveev and Nikolayevsky [14] giving a coun-
terexample to a conjecture by Belgun and the first author [5]. A structure theorem was then
obtained by Matveev and Nikolayevsky [15] in the analytic case and by Kourganoff [11] in
the general, smooth case. The study of compact LCP manifolds is currently a very active
research topic (cf. [1], [3], [7], [9], [19]).
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A manifold with conformal product structure can be written locally as a product M1 ×M2

and its Riemannian metric is of the form e2f1g1 + e2f2g2, with g1, g2 Riemannian metrics on
M1, M2 respectively, and f1, f2 ∈ C∞(M1 × M2) (cf. [4], see also Proposition 2.3 below).
We thus see that warped product metrics (when f1 ∈ C∞(M2) and f2 = 0) or doubly warped
product metrics (when f1 ∈ C∞(M2) and f2 ∈ C∞(M1)) are in fact very special cases of
conformal product structures.

In this paper we study conformal product structures on compact Kähler manifolds. This
problem can be understood as a part of a wider program which intends to classify all compact
Riemannian manifolds (M, g) with special holonomy carrying a Weyl connection D (different
from the Levi-Civita connection) having special holonomy as well. Some parts of this program
have been already carried out in [18] when D is exact, in [3] and [12] when D is closed but
non-exact, and in [20] when D is non-closed and reducible and (M, g) is Einstein.

The situation in real dimension 2 is very simple. We prove in Proposition 3.1 that a compact
2-dimensional Kähler manifold (i.e., an oriented Riemannian surface) carries a conformal
product structure if and only if it is topologically a two-torus (i.e., there is no restriction on
the metric).

In our first main result (Theorem 4.1) we show that every conformal product structure
on a compact Kähler manifold, different from the Levi-Civita connection, has rank 1. The
argument goes roughly as follows: ifD is a Weyl connection on (M, g) with reducible holonomy
and TM = T1 ⊕ T2 is a D-parallel orthogonal direct sum, then the orthogonal symmetry S
with respect to T2 is D-parallel, so the curvature tensor of D vanishes on S. This gives an
expression for the Riemannian curvature tensor applied to S in terms of the Lee form of D
and its covariant derivative. Using the symmetries of the Kähler curvature, taking suitable
traces, and using the Cauchy-Schwarz inequality and Stokes’ Theorem, we conclude that if
the dimensions of T1 and T2 are at least 2, then the Lee form of D with respect to g vanishes.

By similar arguments, we next show in Theorem 4.3 that if T2 has dimension 1 and the
dimension of M is n ≥ 4, then the Lee form vanishes on T2 (note that this result does not
hold for n = 2).

Finally, in Theorem 4.4 we give two equivalent geometric characterizations of rank 1 confor-
mal product structures on compact Kähler manifolds: one by providing an explicit expression
of the pullback metric on the universal cover, and the second by the existence of a closed
1-form of unit length vanishing on a ∇-parallel complex subbundle of TM of codimension
1. Roughly speaking, we show that a compact Kähler manifold of real dimension at least 4
admits a conformal product structure other than the Levi-Civita connection if and only if it
is locally isometric to a Riemannian product of a Kähler manifold of dimension n− 2 and a
two-torus carrying a geodesic foliation.

Acknowledgments. This work was partly supported by the PNRR-III-C9-2023-I8 grant
CF 149/31.07.2023Conformal Aspects of Geometry and Dynamics and by the Procope Project
No. 57650868 (Germany) / 48959TL (France). We warmly thank Vladimir Matveev for the
example of a metric on the two-torus without geodesic foliation used in Proposition 4.7 below
and to Thibault Lefeuvre for useful discussions.
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2. Preliminaries

2.1. Weyl connections. Let (M, g) be a Riemannian manifold with Levi-Civita connection
denoted ∇. We denote by ♯ : T∗M → TM and ♭ : TM → T∗M the musical isomorphisms
defined by the metric, which are ∇-parallel and inverse to each other. In order to simplify
notation, we will denote the metric g by 〈·, ·〉 and the associated norm by ‖ · ‖, when is no
risk of confusion.

Definition 2.1. A Weyl connection on (M, g) is a torsion-free linear connection D satisfying
Dg = −2θ ⊗ g for some 1-form θ ∈ Ω1(M), called the Lee form of D with respect to g.

The conformal analogue of the Koszul formula reads [10]:

(1) DXY = ∇XY + θ(Y )X + θ(X)Y − 〈X, Y 〉θ♯, ∀X, Y ∈ Γ(TM).

We thus see that there is a one-to-one correspondence between Weyl connections on (M, g)
and 1-forms on M : to each Weyl connection one associates its Lee form with respect to g and
to each 1-form one associates a Weyl connection by the formula (1).

A Weyl connection is called closed (resp. exact) if its Lee form is closed (resp. exact). If
θ = dϕ is exact,

D(e2ϕg) = e2ϕ(2dϕ⊗ g +Dg) = e2ϕ(2θ ⊗ g − 2θ ⊗ g) = 0,

so D is the Levi-Civita connection of e2ϕg. Thus exact Weyl connections are Levi-Civita
connections of metrics in the conformal class of g, and closed Weyl connections are locally
(but in general not globally) Levi-Civita connections of metrics conformal to g.

2.2. Conformal product structures. Let (M, g) be a Riemannian manifold of dimension
n ≥ 2.

Definition 2.2. A conformal product structure of rank r ≥ 1 on (M, g) is a Weyl connection
D together with an orthogonal D-parallel direct sum decomposition of the tangent bundle of
M as TM = T1 ⊕ T2, with dim(T1) ≥ dim(T2) = r. A conformal product structure D on
(M, g) is orientable if the D-parallel distributions T1 and T2 are orientable.

Clearly, every conformal product structure induces by pull-back an orientable conformal
product structure on some finite cover of (M, g), with covering group contained in (Z/2Z)2.

Note that in [4] a different definition was given for conformal product structures, in terms
of orthogonal conformal submersions (see also [6]). However, the two definitions are equiva-
lent, by [4, Theorem 4.3]. Moreover, a more concrete local characterization of the underlying
Riemannian metrics on conformal products was indicated in [4, §6.1]. For the sake of com-
pleteness, we restate it here:

Proposition 2.3. Let (M1, g1) and (M2, g2) be Riemannian manifolds, and denote by M :=
M1 × M2 their product. For every f1, f2 ∈ C∞(M), consider the Riemannian metric g :=
e2f1g1 + e2f2g2 on M . Then there exists a unique Weyl connection which together with the
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decomposition TM = TM1 ⊕ TM2 defines a conformal product structure on (M, g). The Lee
form of this Weyl connection with respect to g is θ := −dM1f1 − dM2f2.

Conversely, a conformal product structure on (M, g) is obtained by this construction in the
neighborhood of each point.

Proof. Assume first that (M, g) = (M1 ×M2, e
2f1g1 + e2f2g2). For i ∈ {1, 2} we will consider

arbitrary vector fields Xi, Yi, Zi on Mi, identified with their canonical extension to M . The
Koszul formula immediately gives g(∇X1

Y1, Z2) = −1
2
Z2(g(X1, Y1)) = −Z2(f1)g(X1, Y1). Let

θ be any 1-form on M and let D be the Weyl connection with Lee form θ with respect to g.
By the previous formula together with (1) we obtain

g(DX1
Y1, Z2) = g(∇X1

Y1, Z2) + g(θ(Y1)X1, Z2) + g(θ(X1)Y1, Z2)− g(X1, Y1)θ(Z2)

= −(Z2(f1) + θ(Z2))g(X1, Y1).

Similarly, we also get g(DX2
Y2, Z1) = −(Z1(f2) + θ(Z1))g(X2, Y2). This shows that TM1 and

TM2 are D-parallel if and only if θ(Z2) = −Z2(f1) and θ(Z1) = −Z1(f2) for every Z1 ∈ TM1

and Z2 ∈ TM2, which is equivalent to θ := −dM1f1 − dM2f2.

Conversely, assume that D is a Weyl connection on (M, g) with Lee form θ, preserving an
orthogonal decomposition TM = T1 ⊕ T2 of the tangent bundle. Since D is torsion-free, T1

and T2 are integrable, so by the Frobenius Theorem, every point x of M has a connected
neighborhood U diffeomorphic to a product U1 × U2, such that TU1 = T1 and TU2 = T2 at
each point of U . We write x = (x1, x2), identify U1 with U1 × {x2} and U2 with {x1} × U2

and denote by g1 the Riemannian metric on U1 obtained by restricting the metric g to the
submanifold U1 × {x2} of U and by g2 the Riemannian metric on U2 obtained by restricting
the metric g to {x1} × U2.

Consider like before arbitrary vector fields Xi, Yi, Zi on Ui, identified with their canonical
extension to U = U1 × U2. Using again the Koszul formula and (1) we get

0 = g(DX1
Y1, Z2) = g(∇X1

Y1, Z2) + g(θ(Y1)X1, Z2) + g(θ(X1)Y1, Z2)− g(X1, Y1)θ(Z2)

= −1

2
Z2(g(X1, Y1))− θ(Z2)g(X1, Y1),

showing that

(2) Z2(g(X1, Y1)) = −2θ(Z2)g(X1, Y1), ∀X1, Y1 ∈ Γ(TU1), ∀Z2 ∈ Γ(TU2).

For every point y2 ∈ U2, let γ : [0, 1] → U2 be a smooth curve with γ(0) = x2 and γ(1) = y2.
We pick any y1 ∈ U1 and denote by f(t) := g(X1, Y1)(y1,γ(t)). By definition we have f(0) =
g1(X1, Y1)y1 and by (2) applied to Z2 = γ̇ we get

f ′(t) = −2θ(γ̇(t))f(t).

Solving this differential equation gives

g(X1, Y1)(y1,y2) = f(1) = e
∫
1

0
−2θ(γ̇(t))dtf(0) = e

∫
1

0
−2θ(γ̇(t))dtg1(X1, Y1)y1.

Since this formula holds for arbitrary vector fields X1, Y1 on U1 and the function e
∫
1

0
−2θ(γ̇(t))dt

is independent of X1, Y1, we deduce that g|T1
is proportional to g1 at every point (y1, y2) ∈ U ,
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i.e., there exists a function f1 ∈ C∞(U) such that g|T1
= e2f1g1. Similarly, there exists a

function f2 ∈ C∞(U) such that g|T2
= e2f2g2, and since moreover T1 and T2 are orthogonal

with respect to g, we finally obtain that g = e2f1g1 + e2f2g2. �

2.3. Metric characterization of conformal product structures. Let (M, g) be a Rie-
mannian manifold. Recall that for any two vectors X, Y ∈ TM , one can define a symmetric
endomorphism X ⊙ Y as follows:

(X ⊙ Y )(Z) := 〈X,Z〉Y + 〈Y, Z〉X, ∀Z ∈ TM.

We show the following metric characterization of conformal product structures:

Lemma 2.4. Let (M, g) be a Riemannian manifold with Levi-Civita connection ∇. The
following assertions are equivalent:

(i) There exists a conformal product structure on (M, g).
(ii) There exists a symmetric involution S of TM different from ±idTM and a 1-form θ

on M , such that

(3) ∇XS = SX ⊙ θ♯ − Sθ♯ ⊙X, ∀X ∈ Γ(TM).

Proof. (i) =⇒ (ii) Assume that (M, g) is endowed with a conformal product structure D
whose orthogonalD-parallel decomposition is TM = T1⊕T2. We define S to be the symmetric
involution of TM given by:

(4) S|T1
= idT1

, S|T2
= −idT2

.

Denoting by θ the Lee form of D with respect to g, we compute for all X, Y ∈ Γ(TM):

(DXS)(Y ) =DX(SY )− S(DXY )

(1)
=∇X(SY ) + θ(SY )X + θ(X)SY − 〈X,SY 〉θ♯

− S(∇XY + θ(Y )X + θ(X)Y − 〈X, Y 〉θ♯)
=(∇XS)(Y ) + θ(SY )X − 〈X,SY 〉θ♯ − θ(Y )SX + 〈X, Y 〉Sθ♯.

(5)

Since the endomorphism S is D-parallel and S is symmetric, (5) gives:

(∇XS)(Y ) = 〈SX, Y 〉θ♯ + θ(Y )SX − g(Sθ♯, Y )X − 〈X, Y 〉Sθ♯, ∀X, Y ∈ Γ(TM).(6)

Using the notation introduced above for the symmetric product, (6) is equivalent to (3).

(ii) =⇒ (i) Conversely, let S be a symmetric involution of TM different from ±idTM and
let θ be a 1-form, such that the covariant derivative of S is given by the formula (3). If
T1 denotes the (+1)-eigenbundle of S and T2 the (−1)-eigenbundle of S, then we have the
direct sum decomposition TM = T1⊕T2. Note that this decomposition is non-trivial because
S 6= ±idTM and it is orthogonal, because S is a symmetric involution, so in particular an
orthogonal endomorphism. Let D be the Weyl connection whose Lee 1-form with respect to g
is θ. Performing the above computations backwards shows that (3) implies DXS = 0, for all
X ∈ Γ(TM), so that the eigenbundles T1 and T2 are D-parallel. Hence, the Weyl connection
D together with the orthogonal D-parallel decomposition TM = T1 ⊕ T2 define a conformal
product structure on (M, g). �
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3. Conformal product structures on Riemannian surfaces

A Kähler manifold of real dimension 2 is just an oriented Riemannian surface. In this
section we characterize compact oriented Riemannian surfaces admitting conformal product
structures (which by definition are necessarily of rank 1). The result is very simple:

Proposition 3.1. A compact oriented Riemannian surface (M, g) carries a conformal product
structure if and only if its genus is equal to 1.

Proof. If (M, g) has a conformal product structure, its tangent bundle carries a 1-dimensional
distribution. This shows that M has vanishing Euler characteristic, so its genus is 1, i.e., M
is a two-torus.

Conversely, if M has genus 1, then it carries a nowhere vanishing vector field, so there exists
a vector field ξ which has unit length with respect to g. Let J denote the Kähler structure
of (M, g) (which is well defined since M is oriented). Then ∇Xξ is orthogonal to ξ for every
X ∈ TM , so there exists α ∈ Ω1(M) such that ∇Xξ = α(X)Jξ for every X ∈ TM .

We claim that the Weyl connection on (M, g) with Lee form θ := Jα preserves the two
orthogonal distributions T1 := Rξ and T2 := RJξ. Indeed, for every X ∈ TM we can write
using (1)

〈DXξ, Jξ〉 = 〈∇Xξ, Jξ〉+ θ(X)〈ξ, Jξ〉+ θ(ξ)〈X, Jξ〉 − 〈X, ξ〉θ(Jξ)
= α(X)− α(Jξ)〈X, Jξ〉 − α(ξ)〈X, ξ〉 = 0,

since {ξ, Jξ} is an orthonormal basis of (TM, g) at any point. Thus D preserves the distribu-
tion T1 and since every Weyl connection preserves orthogonality, D also preserves T2, showing
that (M, g) has a conformal product structure of rank 1. �

4. Conformal product structures on higher dimensional Kähler manifolds

In this section we describe compact Kähler manifolds (M, g, J) of real dimension n ≥ 4
carrying conformal product structures. By definition, a Riemannian manifold (M, g) carries
a conformal product structure with vanishing Lee form if and only if (M, g) has reducible
holonomy representation. We will thus restrict ourselves to Weyl connections different from
the Levi-Civita connection of g, i.e., with non-identically zero Lee form. Our first main result
can be stated as follows:

Theorem 4.1. Let (M, g, J) be a compact Kähler manifold. Then every conformal product
structure on (M, g) with non-identically zero Lee form has rank 1.

Proof. Let (M,J, g) be a compact Kähler manifold of real dimension n endowed with a con-
formal product structure of rank r with non-identically zero Lee form. Note that for n = 2
we have automatically r = 1, so the result is non-empty only for n ≥ 4.

As before, we denote by D the associated Weyl connection, by θ its Lee form with respect
to g and consider the orthogonal D-parallel decomposition TM = T1 ⊕ T2 with dim(T1) ≥
dim(T2) = r. Let S be the D-parallel symmetric involution defined by Lemma 2.4. We
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first compute RX,Y S, where R is the Riemannian curvature tensor of g. In order to simplify
notation, we identify in the computations below vectors and 1-forms using the metric g and
denote by T := ∇θ the endomorphism defined by the covariant derivative of the Lee form θ.
For any vector fields X and Y which are parallel at the point where the computation is done,
we obtain:

∇2
X,Y S

(3)
=∇X(SY ⊙ θ − Sθ ⊙ Y )

=(∇XS)Y ⊙ θ + SY ⊙ TX − (∇XS)θ ⊙ Y − STX ⊙ Y

(3)
=(SX ⊙ θ − Sθ ⊙X)(Y )⊙ θ + SY ⊙ TX

− (SX ⊙ θ − Sθ ⊙X)(θ)⊙ Y − STX ⊙ Y

=〈SX, Y 〉θ ⊙ θ + 〈θ, Y 〉SX ⊙ θ − 〈Sθ, Y 〉X ⊙ θ − 〈X, Y 〉Sθ ⊙ θ + SY ⊙ TX

− 〈SX, θ〉θ ⊙ Y − ‖θ‖2SX ⊙ Y + 〈Sθ, θ〉X ⊙ Y + 〈X, θ〉Sθ ⊙ Y − STX ⊙ Y.

Since RX,Y S = ∇2
X,Y S − ∇2

Y,XS, exchanging X and Y in the above formula, and using the
symmetry of S yields after some simplifications:

RX,Y S =SY ⊙ TX − SX ⊙ TY + STY ⊙X − STX ⊙ Y

+ 〈θ, Y 〉SX ⊙ θ − 〈θ, Y 〉Sθ ⊙X + 〈θ,X〉Sθ ⊙ Y

− 〈θ,X〉SY ⊙ θ − ‖θ‖2(SX ⊙ Y − SY ⊙X).

(7)

Applying this formula to JX and JY , we also obtain:

RJX,JY S =SJY ⊙ TJX − SJX ⊙ TJY + STJY ⊙ JX − STJX ⊙ JY

+ 〈θ, JY 〉SJX ⊙ θ − 〈θ, JY 〉Sθ ⊙ JX + 〈θ, JX〉Sθ ⊙ JY

− 〈θ, JX〉SJY ⊙ θ − ‖θ‖2(SJX ⊙ JY − SJY ⊙ JX).

(8)

Since R is the curvature of a Kähler metric, we have that RX,Y S = RJX,JY S for every
X, Y ∈ TM . Let {ei}i=1,n be a local orthonormal basis of TM . For every Y ∈ TM we have
n∑

i=1

(Rei,Y S)(ei) =
n∑

i=1

(RJei,JY S)(ei), which according to (7) and (8) yields:

TSY + tr(T )SY − tr(S)TY − STY + (n + 1)STY − tr(ST )Y − STY

+ 〈θ, Y 〉(tr(S)θ + Sθ)− (n+ 1)〈θ, Y 〉Sθ + 〈Sθ, θ〉Y + 〈θ, Y 〉Sθ − 〈SY, θ〉θ − ‖θ‖2SY
− ‖θ‖2(tr(S)Y + SY − (n + 1)SY )

=TJSJY + tr(TJ)SJY − tr(SJ)TJY − SJTJY + JSTJY − tr(STJ)JY + STY

+ 〈θ, JY 〉(tr(SJ)θ + SJθ)− 〈θ, JY 〉JSθ − 〈Sθ, Jθ〉JY − 〈θ, Y 〉Sθ + 〈Jθ, SJY 〉θ
− ‖θ‖2(tr(SJ)JY − SY − JSJY ).
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Using the fact that tr(SJ) = 0, the above equality reads after simplification:

TSY + tr(T )SY − tr(S)TY + (n− 1)STY − tr(ST )Y

+ 〈θ, Y 〉(tr(S)θ + (1− n)Sθ) + 〈Sθ, θ〉Y − 〈SY, θ〉θ
+ ‖θ‖2((n− 1)SY − tr(S)Y )

=TJSJY + tr(TJ)SJY − SJTJY + JSTJY − tr(STJ)JY + STY

− 〈Jθ, Y 〉SJθ + 〈Jθ, Y 〉JSθ − 〈Sθ, Jθ〉JY − 〈θ, Y 〉Sθ − 〈JSJθ, Y 〉θ
+ ‖θ‖2(SY + JSJY )

(9)

Taking the scalar product with SY in this formula, and summing over a local orthonormal
basis Y = ei yields:

tr(T ) + ntr(T )− tr(S)tr(ST ) + (n− 1)tr(T )− tr(ST )tr(S)

+ 〈θ, Sθ〉tr(S) + (1− n)‖θ‖2 + 〈Sθ, θ〉tr(S)− ‖θ‖2 + ‖θ‖2(n(n− 1)− (tr(S))2)

=tr(STJSJ) + tr(T ) + tr(SJSTJ) + tr(T )− ‖θ‖2 − 〈SJSJθ, θ〉 − ‖θ‖2 − 〈SJSJθ, θ〉
+ ‖θ‖2(n+ tr(SJSJ)),

which further simplifies to

0 =2(n− 1)tr(T )− 2tr(S)tr(ST )− 2tr(JSJST ) + 2tr(S)〈θ, Sθ〉
+ 2〈θ, JSJSθ〉+ ‖θ‖2

(
n2 − 3n+ 2− (tr(S))2 − tr(JSJS)

)
.

(10)

We will now interpret the traces occurring in (10) in terms of codifferentials of 1-forms on
(M, g).

Lemma 4.2. The traces of the endomorphisms T , ST and JSJST of TM can be expressed
as follows:

(i) tr(T ) = −δθ.
(ii) tr(ST ) = −δ(Sθ)− tr(S)‖θ‖2 + n〈θ, Sθ〉.
(iii) tr(JSJST ) = −δ(JSJSθ) + 〈θ, JSJSθ〉+ ‖θ‖2 − ‖θ‖2tr(JSJS)− tr(S)〈θ, Sθ〉.

Proof. (i) By the definition of T := ∇θ, it follows that tr(T ) = −δθ.

(ii) If {ei}i=1,n is a local orthonormal basis of TM , we compute:

tr(ST ) =
n∑

i=1

〈STei, ei〉 =
n∑

i=1

〈S∇eiθ, ei〉 =
n∑

i=1

〈∇ei(Sθ), ei〉 −
n∑

i=1

〈(∇eiS)θ, ei〉

(3)
= −δ(Sθ)−

n∑

i=1

〈(Sei ⊙ θ − Sθ ⊙ ei)(θ), ei〉

= −δ(Sθ)−
n∑

i=1

(
〈Sei, θ〉〈θ, ei〉+ ‖θ‖2〈Sei, ei〉 − 〈Sθ, θ〉〈ei, ei〉 − 〈ei, θ〉〈Sθ, ei〉

)

= −δ(Sθ)− tr(S)‖θ‖2 + n〈θ, Sθ〉.
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(iii) In order to obtain the formula for the trace of JSJST we start by computing sepa-
rately:

〈∇ei(SJS)θ, Jei〉 =〈(∇eiS)(JSθ) + SJ(∇eiS)θ, Jei〉
(3)
=〈(Sei ⊙ θ − Sθ ⊙ ei)(JSθ) + SJ(Sei ⊙ θ − Sθ ⊙ ei)(θ), Jei〉
=〈Sei, JSθ〉〈θ, Jei〉 − 〈θ, JSθ〉〈Sei, Jei〉 − 〈JSθ, ei〉〈Sθ, Jei〉
+ 〈Sei, θ〉〈SJθ, Jei〉+ ‖θ‖2〈SJSei, Jei〉
− 〈θ, Sθ〉〈SJei, Jei〉 − 〈ei, θ〉〈SJSθ, Jei〉.

Summing up over i and taking into account that tr(SJ) = 0 we obtain:

n∑

i=1

〈∇ei(SJS)θ, Jei〉 = 〈θ, JSJSθ〉+ ‖θ‖2 − ‖θ‖2tr(JSJS)− tr(S)〈θ, Sθ〉.

Using this, we then get:

tr(JSJST ) =
n∑

i=1

〈JSJSTei, ei〉 =
n∑

i=1

〈JSJS∇eiθ, ei〉

=

n∑

i=1

〈∇ei(JSJSθ), ei〉 −
n∑

i=1

〈(∇eiJSJS)θ, ei〉

= −δ(JSJSθ) +

n∑

i=1

〈∇ei(SJS)θ, Jei〉

= −δ(JSJSθ) + 〈θ, JSJSθ〉+ ‖θ‖2 − ‖θ‖2tr(JSJS)− tr(S)〈θ, Sθ〉.
�

According to Lemma 4.2, Equality (10) reads

0 =− 2(n− 1)δ(θ)− 2tr(S)
(
−δ(Sθ)− tr(S)‖θ‖2 + n〈θ, Sθ〉

)

− 2
(
−δ(JSJSθ) + 〈θ, JSJSθ〉+ ‖θ‖2 − ‖θ‖2tr(JSJS)− tr(S)〈θ, Sθ〉

)

+ 2tr(S)〈θ, Sθ〉+ 2〈θ, JSJSθ〉+ ‖θ‖2
(
n2 − 3n+ 2− (tr(S))2 − tr(JSJS)

)
,

or, equivalently

0 =‖θ‖2
(
n2 − 3n + (tr(S))2 + tr(JSJS)

)
− 2(n− 2)tr(S)〈θ, Sθ〉

− 2(n− 1)δ(θ) + 2tr(S)δ(Sθ) + 2δ(JSJSθ).
(11)

We now remark that JS and SJ are orthogonal endomorphisms of TM , and thus ‖JS‖ =
‖SJ‖ =

√
n. The Cauchy-Schwarz inequality then yields

(12) tr(JSJS) = 〈JS, (JS)t〉 = −〈JS, SJ〉 ≥ −‖JS‖‖SJ‖ = −n,

Since JS and SJ have the same norm, equality holds in (12) if and only if SJ = JS, in which
case we have JSJS = JSSJ = −IdTM .
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We now integrate (11) over the compact manifold M against the volume form volg. Since
tr(S) = n − 2r is constant, the integral of each of the last three terms vanishes by Stokes’
Theorem. Moreover, n − r ≥ r by assumption, so applying the Cauchy-Schwarz inequality
|〈θ, Sθ〉| ≤ ‖θ‖2 and the inequality (12) yields:

0 =

∫

M

(
‖θ‖2

(
n2 − 3n+ (tr(S))2 + tr(JSJS)

)
− 2(n− 2)tr(S)〈θ, Sθ〉

)
volg

≥
∫

M

(
n2 − 3n+ (n− 2r)2 − n− 2(n− 2)(n− 2r)

)
‖θ‖2volg

=

∫

M

4r(r − 2)‖θ‖2volg.

(13)

We now assume for a contradiction that r ≥ 2 and distinguish the following two cases:

1) If r ≥ 3, then 4r(r − 2) > 0 and (13) implies that ‖θ‖ = 0, so θ vanishes everywhere
on M , contradicting the hypothesis.

2) If r = 2, then equality holds in (13), which implies in particular that tr(JSJS) = −n.
Thus we have equality in (12), showing that JSJS = −IdTM . Replacing this into the formula
for the trace of JSJST = −T in Lemma 4.2(iii), we obtain:

−tr(T ) = δ(θ) + n‖θ‖2 − tr(S)〈θ, Sθ〉.
Since tr(T ) = −δ(θ), it follows that n‖θ‖2−tr(S)〈θ, Sθ〉 = 0. The Cauchy-Schwarz inequality
further yields

0 = n‖θ‖2 − tr(S)〈θ, Sθ〉 ≥ n‖θ‖2 − (n− 2r)‖θ‖2 = 2r‖θ‖2 = 4‖θ‖2,
which implies that θ vanishes everywhere on M , contradicting the hypothesis in this case as
well.

Consequently, the rank of the conformal product structure has to be 1. �

We now obtain a further restriction on the Lee form of conformal product structures on
compact Kähler manifolds when the real dimension is at least 4.

Theorem 4.3. Let (M, g, J) be a compact Kähler manifold of real dimension n ≥ 4 and
let D be a conformal product structure of rank 1 with D-parallel orthogonal decomposition
TM = T1⊕T2, where dim(T2) = 1. Then the Lee form of D with respect to g vanishes on T2.

Proof. Let S be the symmetric endomorphism defined by (4). Then tr(S) = n − 2. By
replacing M with a double cover if necessary, one can assume that T2 is orientable. Let ξ be
a vector spanning T2. Then Jξ is orthogonal on ξ and since dim(T2) = 1 and T1 and T2 are
orthogonal, it follows that Jξ ∈ T1, so S(Jξ) = Jξ. We then compute:

JSJS(ξ) = JSJ(−ξ) = −JS(Jξ) = −J(Jξ) = ξ.

JSJS(Jξ) = JSJ(Jξ) = −JS(ξ) = Jξ.

For each X ∈ T1 which is orthogonal to Jξ, it follows that JX ∈ T1 and we obtain:

JSJS(X) = JSJ(X) = J(JX) = −X.
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We conclude that JSJS is an involution of TM with (+1)-eigenspace of dimension 2 and
(−1)-eigenspace of dimension n− 2, so tr(JSJS) = 4−n. If θ denotes as above the Lee form
of D with respect to g, Equality (11) reads in this case:

0 =2(n− 2)2(‖θ‖2 − 〈θ, Sθ〉)− 2(n− 1)δ(θ) + 2(n− 2)δ(Sθ) + 2δ(JSJSθ).(14)

Let us decompose θ = θ1 + θ2, where θi := θ|Ti
, for i ∈ {1, 2}. Then S(θ1) = θ1 and

S(θ2) = −θ2 and thus we have:

‖θ‖2 − 〈θ, Sθ〉 = (‖θ1‖2 + ‖θ2‖2)− (‖θ1‖2 − ‖θ2‖2) = 2‖θ2‖2.

Replacing this into (14) and integrating over M yields 0 =

∫

M

4(n − 2)2‖θ2‖2volg. Since

n ≥ 4, we conclude that θ2 = 0, which means that the Lee form θ vanishes on T2. �

We are now ready for the geometric characterization of conformal product structures on
compact Kähler manifolds of dimension n ≥ 4. From the previous result, we can restrict to
the rank 1 case.

Theorem 4.4. Let (M, g, J) be a compact Kähler manifold of real dimension n ≥ 4 with
Levi-Civita connection denoted by ∇. Then the following assertions are equivalent:

(i) (M, g) carries an orientable conformal product structure of rank 1.

(ii) The universal cover (M̃, g̃) is isometric to (R2×K, e−2ϕds2+dt2+ gK), where (K, gK)
is a simply connected Kähler manifold, ϕ ∈ C∞(R2), and every element of π1(M) has the
form

(15) γ(s, t, x) = (γ0(s), t+ t0, γK(x)), ∀(s, t) ∈ R
2, ∀x ∈ K,

for some function γ0 ∈ C∞(R), some constant t0 ∈ R and some isometry γK of (K, gK).

(iii) The tangent bundle of M has a ∇-parallel complex subbundle of codimension 1, con-
tained in the kernel of a closed 1-form of unit length.

Proof. (i) =⇒ (ii) Assume that TM = T1 ⊕ T2 is an orthogonal D-parallel decomposition,
with dim(T2) = 1. By the orientability assumption, there exists a unit length vector field ξ
spanning T2. Then DXξ = α(X)ξ for some 1-form α on M . Moreover, θ|T2

= 0 by Theorem
4.3, so θ(ξ) = 0. Using this, together with (1), we get

α(X)ξ = ∇Xξ + θ(ξ)X + θ(X)ξ − 〈ξ,X〉θ♯ = ∇Xξ + θ(X)ξ − 〈X, ξ〉θ♯,
whence ∇Xξ = (α− θ)(X)ξ+ g(X, ξ)θ♯. Since ξ has unit length, g(∇Xξ, ξ) = 0, so α− θ = 0,
thus showing that

(16) ∇Xξ = 〈X, ξ〉θ♯, ∀X ∈ TM.

Denoting as before by T := ∇θ♯ the endomorphism of TM defined by the covariant deriv-
ative of θ♯, we readily obtain from (16):

(17) RX,Y ξ = θ(Y )〈X, ξ〉θ♯ − θ(X)〈Y, ξ〉θ♯ + 〈Y, ξ〉TX − 〈X, ξ〉TY, ∀X, Y ∈ TM.
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Using the fact that RX,Y ξ = RJX,JY ξ since (M, g, J) is Kähler, and applying (17) twice, for
(X, ξ) and (JX, Jξ), we obtain:

(18) −θ(X)θ♯ + TX − 〈X, ξ〉Tξ = θ(Jξ)〈JX, ξ〉θ♯ − 〈JX, ξ〉TJξ, ∀X ∈ TM.

On the other hand, on any Kähler manifold we have dcδ + δdc = 0 and dδc + δcd = 0.
Introducing the notation b := θ(Jξ), we get from (16):

(19) dξ♭ = ξ♭ ∧ θ, dcξ♭ = Jξ♭ ∧ θ, δξ♭ = −θ(ξ) = 0, δcξ♭ = −θ(Jξ) = −b,

whence using a local orthonormal basis {ei}i=1,n of TM we infer:

0 = δdcξ♭ = δ(Jξ♭ ∧ θ) = −
n∑

i=1

eiy(∇ei(Jξ
♭ ∧ θ))

= −
n∑

i=1

eiy(〈ei, ξ〉Jθ ∧ θ + Jξ♭ ∧ (Tei)
♭) = bθ − (TJξ)♭ + tr(T )Jξ♭,

showing that

(20) TJξ = bθ♯ + tr(T )Jξ.

Similarly, we get from (19)

0 = (dδc + δcd)ξ♭ = −db+ δc(ξ♭ ∧ θ) = −db−
n∑

i=1

Jeiy(∇ei(ξ
♭ ∧ θ))

= −db−
n∑

i=1

Jeiy(ξ
♭ ∧ (Tei)

♭) = −db+ (TJξ)♭ − tr(JT )ξ♭,

showing that

(21) db = (TJξ)♭ − tr(JT )ξ♭.

In particular, applying this to ξ and using (20) yields

(22) ξ(b) = −tr(JT ).

From (18) and (20) we obtain

(23) TX = 〈X, ξ〉Tξ + θ(X)θ♯ − 〈JX, ξ〉tr(T )Jξ, ∀X ∈ TM.

Taking the scalar product with θ♯ in (23) yields for every X ∈ TM :

1

2
X(‖θ‖2) = 〈TX, θ♯〉 = 〈X, ξ〉〈Tξ, θ♯〉+ θ(X)‖θ‖2 − 〈JX, ξ〉tr(T )θ(Jξ)

=
1

2
〈X, ξ〉ξ(‖θ‖2) + θ(X)‖θ‖2 − b〈JX, ξ〉tr(T ),

(24)

whence

1

2
d(‖θ‖2) = 1

2
ξ(‖θ‖2)ξ♭ + ‖θ‖2θ + btr(T )Jξ♭.(25)
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Let us now denote by θ0 := θ − bJξ the component of θ vanishing on ξ and Jξ. Using the
previous equations and the fact that ‖θ‖2 = ‖θ0‖2 + b2, we compute:

1

2
d(‖θ0‖2) =

1

2
d(‖θ‖2 − b2)

(25)
=

1

2
ξ(‖θ‖2)ξ♭ + ‖θ‖2θ + btr(T )Jξ♭ − bdb

=
1

2
ξ(‖θ0‖2)ξ♭ + bξ(b)ξ♭ + ‖θ0‖2θ + b2θ + btr(T )Jξ♭ − bdb

(21)
=

1

2
ξ(‖θ0‖2)ξ♭ + bξ(b)ξ♭ + ‖θ0‖2θ + b2θ + btr(T )Jξ♭ − b((TJξ)♭ − tr(JT )ξ♭)

(22)
=

1

2
ξ(‖θ0‖2)ξ + ‖θ0‖2θ + b2θ + btr(T )Jξ♭ − b(TJξ)♭

(20)
=

1

2
ξ(‖θ0‖2)ξ♭ + ‖θ0‖2θ.

This last equation shows that ‖θ0‖2θ vanishes at each critical point of ‖θ0‖2. In particular,
at a point where ‖θ0‖2 attains its maximum we have 0 = ‖‖θ0‖2θ‖2 = ‖θ0‖4(b2 + ‖θ0‖2), thus
showing that θ0 vanishes identically on M .

Consequently, θ♯ = bJξ, so (16) becomes

(26) ∇Xξ = b〈X, ξ〉Jξ, ∀X ∈ TM,

which after composing with J yields

(27) ∇XJξ = −b〈X, ξ〉ξ, ∀X ∈ TM.

Consider the universal cover π : M̃ → M , endowed with the Riemannian metric g̃ := π∗g,

with Levi-Civita connection ∇̃, and denote by ξ̃ and J̃ξ the lifts of ξ and Jξ to M̃ . If b̃ := π∗(b)
denotes the pull-back of b, (26) and (27) become

(28) ∇̃X ξ̃ = b̃g̃(X, ξ̃)J̃ξ, ∇̃X J̃ξ = −b̃g̃(X, ξ̃)ξ̃, ∀X ∈ TM̃.

In particular we obtain that the distribution spanned by ξ̃ and J̃ξ is ∇̃-parallel, J̃ξ is closed

(thus exact) as 1-form on M̃ , and its integral curves are geodesics, so J̃ξ is complete. Since

(M̃, g̃) is complete and simply connected, the de Rham decomposition theorem shows that it
can be written as a Riemannian product (M0, g0)× (K, gK) with (M0, g0) a complete simply

connected Riemannian surface whose tangent bundle in M̃ is spanned by ξ̃ and J̃ξ.

Let a ∈ C∞(M0) be the primitive of g0(J̃ξ, ·) which vanishes at some point of M0. Clearly
a : M0 → R is a submersion. Denote by C := a−1(0) its level set (which is a 1-dimensional

submanifold of M0), and by (ϕt)t∈R the flow of the complete vector field J̃ξ. Since J̃ξ(a) = 1,

we have ϕt(C) = a−1(t) for every t ∈ R. This shows that (ϕt)∗(X) is orthogonal to J̃ξ
for every t ∈ R and for every X ∈ TC. Clearly the map F : C × R → M0 defined by
F (x, t) := ϕt(x) is a smooth bijective immersion, thus a diffeomorphism. In particular C is
connected and simply connected, so diffeomorphic to R, whence M0 is diffeomorphic to R

2.
We choose a diffeomorphism f : R → C and denote by G := F ◦ (f × id) the corresponding
diffeomorphism from R

2 to M0.
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Let (s, t) be the standard coordinates in R
2. By construction, the differential of G at every

point sends the vector ∂
∂s

to a multiple of ξ̃ and the vector ∂
∂t

onto J̃ξ. Consequently, the

pull-back metric G∗g0 takes the form e−2ϕds2 + dt2 for some function ϕ ∈ C∞(R2), so ξ̃ and

J̃ξ can be identified with eϕ ∂
∂s

and ∂
∂t

respectively. Then [ξ̃, J̃ξ] = −∂ϕ
∂t
ξ̃. On the other hand

(28) gives [ξ̃, J̃ξ] = −b̃ξ̃, so the pull-back θ̃ to M̃ of the Lee form of the Weyl connection D

is given by θ̃ = b̃J̃ξ
♯
= ∂ϕ

∂t
dt.

Let now γ be an element of π1(M). Clearly γ∗ preserves ξ̃ = eϕ ∂
∂s
, J̃ξ = ∂

∂t
and the

metric g̃ = e−2ϕds2 + dt2 + gK , so γ has the form γ(s, t, x) = (γ0(s), γ1(t), γK(x)), where
γ0, γ1 ∈ C∞(R) and γK is an isometry of (K, gK). Moreover, the fact that (γ0)∗(

∂
∂t
) = ∂

∂t

shows that γ′
1(t) = 1 for all t ∈ R, so γ1(t) = t + t0 for some t0 ∈ R.

(ii) =⇒ (iii) Let ∇̃ denote the Levi-Civita connection of the metric e−2ϕds2 + dt2 + gK
on R

2 × K. Clearly TK is a ∇̃-parallel complex subbundle of T(R2 × K) of codimension
1 contained in the kernel of the closed 1-form of unit length dt. Moreover, the hypotheses
imply that π1(M) preserves dt, ∇̃ and TK, so dt projects to a closed 1-form of unit length
η ∈ Ω1(M) and TK projects to a ∇-parallel complex subbundle of TM of codimension 1
contained in the kernel of η.

(iii) =⇒ (i) Let η ∈ Ω1(M) be a closed 1-form of unit length vanishing on a complex ∇-
parallel subbundle E ⊂ TM of codimension 1. Denoting by ξ := Jη♯ we clearly have ‖ξ‖ = 1
and E⊥ = span(ξ, Jξ). Since E⊥ is ∇-parallel, there exists a 1-form α ∈ Ω1(M) such that

(29) ∇Xξ = α(X)Jξ, ∇XJξ = −α(X)ξ, ∀X ∈ TM.

Moreover, since η = Jξ♭ is closed, we obtain from (29)

(30) 0 = dη = −α ∧ ξ♭

and in particular, applying this last equality to Jξ:

(31) α(Jξ) = 0.

We claim that the Weyl connection on (M, g) with Lee form θ := Jα preserves the or-
thogonal decomposition TM = ξ⊥ ⊕ Rξ. Indeed, for every X ∈ TM and Y ∈ ξ⊥ we can
write

〈DXξ, Y 〉 (1)
= 〈∇Xξ, Y 〉+ θ(X)〈ξ, Y 〉+ θ(ξ)〈X, Y 〉 − 〈X, ξ〉θ(Y )

= α(X)〈Jξ, Y 〉 − α(Jξ)〈X, Y 〉+ α(JY )〈X, ξ〉
(31)
= (α ∧ ξ♭)(JY,X)

(30)
= 0.

This shows that (M, g) carries an orientable conformal product structure of rank 1, thus
finishing the proof. �

Using Theorem 4.4, we can easily construct orientable conformal product structures with
non-identically zero Lee form on the Riemannian product of certain two-tori with any compact
Kähler manifold:
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Example 4.5. Let ϕ : R2 → R be a doubly periodic function (i.e., satisfying ϕ(s + 1, t) =
ϕ(s, t + 1) = ϕ(s, t) for all (s, t) ∈ R

2) and let (K, gK) be any simply connected manifold
admitting a discrete co-compact group ΓK of holomorphic isometries (i.e., (K, gK) is the
universal cover of a compact Kähler manifold). Then the metric g̃ := e−2ϕds2 + dt2 + gK on

M̃ := R
2 ×K projects to a Kähler metric g on M := M̃/(Z2 × ΓK) = T 2 × (K/ΓK). By the

previous theorem, (M, g) has an orientable conformal product structure of rank 1, whose Lee
form with respect to g is the projection to M of ∂ϕ

∂t
dt.

On the other hand, not every product of a two-torus and a Kähler manifold carries conformal
product structures with non-identically zero Lee form. Indeed, let us first notice the following
consequence of our results above.

Corollary 4.6. If (M, g, J) is a compact Kähler manifold of real dimension n ≥ 4 carrying
an orientable conformal product structure with non-identically zero Lee form, then there exists
a geodesic vector field ζ ( i.e., satisfying ∇ζζ = 0) of unit length, such that the distribution
spanned by ζ and Jζ is ∇-parallel.

Proof. By Theorem 4.1, the conformal product structure has rank 1, and by the proof of
Theorem 4.4, there exists a unit vector field ξ on M satisfying (26) and (27). Then the unit
vector field ζ := Jξ is geodesic and the distribution spanned by ζ and Jζ is ∇-parallel. �

By adding a handle to a round 2-sphere and keeping the round metric outside a small disk,
V. Matveev [13] constructed a metric g0 on the two-torus which carries no geodesic vector
field of unit length. Using this result, we then obtain the following:

Proposition 4.7. Let (K, gK) be any irreducible compact Kähler manifold of real dimension
m ≥ 4. Then the Riemannian product (T 2, g0) × (K, gK) carries no orientable conformal
product structure with non-identically zero Lee form.

Proof. Assume for a contradiction that (M, g) := (T 2, g0) × (K, gK) carries an orientable
conformal product structure D with non-identically zero Lee form. By Corollary 4.6, there
exists a geodesic vector field ζ of unit length on (M, g) such that the distribution spanned
by ζ and Jζ is ∇-parallel. The hypothesis implies that the only ∇-parallel distribution of
dimension 2 on (M, g) is the tangent distribution to T 2. Restricting ζ to any leaf T 2 × {x}
for some x ∈ K, defines a geodesic vector field of unit length on (T 2, g0), which contradicts
the above property of the metric g0. �

Remark 4.8. By [3, Theorem 4.3], there exists no LCP structure on compact Kähler mani-
folds. Thus, a Weyl connection defining a conformal product structure on a compact Kähler
manifold is either exact or non-closed. The former case corresponds in Example 4.5 to the
case where the function ϕ only depends on the variable t. In this case the manifold (M, e2ϕg)
from Example 4.5 is globally conformally Kähler and has a non-trivial parallel vector field
(the projection of ∂

∂s
). It was shown in [17, Theorem 3.5] that all compact conformally Kähler

manifolds carrying a non-trivial parallel vector field are obtained by this construction.
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[16] S. Merkulov, L. Schwachhöfer, Classification of irreducible holonomies of torsion-free affine connections.

Ann. Math. 150 (1), 77–149 (1999).
[17] A. Moroianu, Compact lcK manifolds with parallel vector fields. Complex Manifolds 2 (1), 26–33 (2015).
[18] A. Moroianu, Conformally related Riemannian metrics with non-generic holonomy. J. reine angew. Math.

755, 279–292 (2019).
[19] A. Moroianu, M. Pilca, Adapted metrics on locally conformally product manifolds. Proc. Amer. Math.

Soc. 152, 2221–2228 (2024).
[20] A. Moroianu, M. Pilca, Einstein metrics on conformal products. Ann. Global Anal. Geom. 65, 20 (2024).
[21] H. Weyl, Raum, Zeit, Materie. Vorlesungen über allgemeine Relativitätstheorie. Heidelberger Taschen-
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