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ASYMPTOTIC DIRECTIONS IN THE MODULI SPACE OF CURVES

E. COLOMBO, P. FREDIANI, AND G.P. PIROLA

Abstract. In this paper we study asymptotic directions in the tangent bundle of the

moduli space Mg of curves of genus g, namely those tangent directions that are an-

nihilated by the second fundamental form of the Torelli map. We give examples of

asymptotic directions for any g ≥ 4. We prove that if the rank d of a tangent direction

ζ ∈ H1(TC) (with respect to the infinitesimal deformation map) is less than the Clifford

index of the curve C, then ζ is not asymptotic. If the rank of ζ is equal to the Clifford

index of the curve, we give sufficient conditions ensuring that the infinitesimal deforma-

tion ζ is not asymptotic. Then we determine all asymptotic directions of rank 1 and we

give an almost complete description of asymptotic directions of rank 2.

1. Introduction

In this paper we study the local geometry of the Torelli locus in Ag. Following the

philosophy of Griffiths, the local geometry of the period map often contains information

about the global geometry (see [16], [17], [18], [28]). We consider Ag endowed with the

Siegel metric, that is the orbifold metric induced by the symmetric metric on the Siegel

space Hg = Sp(2g,R)/U(g) of which Ag is a quotient by the action of Sp(2g,Z). Denote

by j : Mg → Ag the Torelli map. The Torelli locus is the closure of the image of j. The

local geometry of the map j is governed by the second fundamental form, which at a non

hyperelliptic curve C of genus g, is a linear map

II : I2 → Sym2H0(K⊗2
C ),

where I2 is the vector space of quadrics containing the canonical curve.

One of the leading problems in the area is to study totally geodesic subvarieties of Ag

generically contained in the Torelli locus.

This problem is related to the Coleman-Oort conjecture according to which for g suf-

ficiently high there should not exist special (or Shimura) subvarieties of Ag generically

contained in the Torelli locus. We recall that special subvarieties of Ag are totally geo-

desic, hence in the last years the study of the second fundamental form has been used

to attack this problem. In particular estimates on the maximal dimension of a totally

geodesic subvariety of Ag generically contained in the Torelli locus have been given in [3],

[12], [11].

In this paper we take a different point of view. The image of II in Sym2H1(TC)
∨ is

a linear system of quadrics in PH1(TC) ∼= P3g−4. This paper is devoted to the study of
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the base locus of this linear system of quadrics. Following the terminology of differential

geometry we call asymptotic direction a nonzero tangent direction ζ ∈ H1(TC) such that

II(Q)(ζ⊙ ζ) = 0 for all Q ∈ I2. So asymptotic directions correpond to points in the base

locus.

Clearly a tangent direction to a totally geodesic subvariety is asymptotic. But the

locus of asymptotic directions in the projective tangent bundle of the moduli space of

curves Mg is a natural locus, that is worthwhile investigating. For example we believe

that asymptotic directions could also be useful in the study of fibred surfaces in relation

with Xiao conjecture ([29], [13]).

Since II is injective (see [4, Corollary 3.4]), its image in Sym2H1(TC)
∨ is a linear

system of quadrics in PH1(TC) ∼= P3g−4 of dimension (g−2)(g−3)
2

. Hence for every curve C

of genus g ≤ 9, dim(II(I2)) < 3g − 4, so the intersections of the quadrics in II(I2) is

non empty, thus there exist asymptotic directions. In fact for g ≤ 7 there are examples

of special subvarieties of Ag generically contained in the Torelli locus for g ≤ 7 (see [7],

[8], [9], [10], [22], [23], [24], [26], [27]).

On the other hand, for high values of g one would expect that the intersection of a

space of quadrics of dimension (g−2)(g−3)
2

in P
3g−4 would be empty.

One main result of this paper is to show that this is not always the case. Indeed,

for all g there are examples of asymptotic directions given by the Schiffer variations at

the ramifications points of the g13’s for trigonal curves and by linear combinations of two

Schiffer variations on bielliptic curves (see Lemma 8.2 and Theorem 9.2).

This is rather unexpected and intriguing and indicates that understanding the geometry

of the locus of asymptotic directions is important. Especially finding new examples of

curves admitting asymptotic directions would be very interesting.

In this paper, using the Hodge Gaussian maps introduced in [5], we develop a new

technique to calculate the second fundamental form II(Q)(ζ ⊙ ζ) on certain tangent

directions ζ different from Schiffer variations, computing some residues of meromorphic

forms (see Proposition 4.3).

This technique works for those tangent directions ζ whose rank is less than g, where

the rank of an infinitesimal deformation ζ is the rank of the linear map

∪ζ : H0(KC) → H1(OC)

given by the cup product.

One of the main results we obtain by application of these ideas is the following

Theorem 1.1. (Theorem 5.5, Theorem 5.1) Let C be a smooth curve of genus g, take

an integer d < Cliff(C) and an infinitesimal deformation ζ ∈ H1(TC) of rank d. Then

we have:

(1) ζ is a linear combination of (possibly higher) Schiffer variations supported on an

effective divisor D of degree d.

(2) ζ is not asymptotic.
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For a definition of nth-Schiffer variations see section 2.

Notice that the first part of the above result can be seen as a generalisation of the

generic Torelli theorem of Griffiths. In fact, denoting by Cd the symmetric product of C,

under the assumption Cliff(C) > d, we characterise the image of the natural map

PTCd
→ P(H1(TC))

as the locus of deformations of rank d. When d = 1 it is the bicanonical curve.

Since the Clifford index of the general curve of genus g is ⌊g−1
2
⌋, this gives a character-

isation of the image of the natural map PTCd
→ P(H1(TC)) as the locus of deformations

of rank d, for all d < ⌊g−1
2
⌋. Moreover, for such values of d, Theorem 1.1(2) says that

for the general curve of genus g the base locus of the linear system of quadrics II(I2) in

PH1(TC), does not contain any point [ζ ] with with Rank(ζ) = d.

In the case where the rank of ζ is equal to the Clifford index of the curve, we give

sufficient conditions ensuring that the infinitesimal deformation ζ is not asymptotic (see

Theorem 7.2).

This result allows us to determine all asymptotic directions of rank 1. Notice that by

Theorem 1.1, there can be asymptotic directions of rank 1 only for curves with Clifford

index 1, namely trigonal curves or plane quintics. We have the following

Theorem 1.2. (Theorem 8.4 and Theorem 8.5)

(1) If C is trigonal (non hyperelliptic) of genus g ≥ 8, or of genus g = 6, 7 and Maroni

degree 2, then rank one asymptotic directions are exactly the Schiffer variations

in the ramification points of the g13.

(2) On a smooth plane quintic there are no rank one asymptotic directions.

We recall that the general trigonal curve of genus g ≥ 6 has Maroni degree 2. For

trigonal curves of genus g = 5 or g = 6, 7 and Maroni degree 1, we show that there can

exist asymptotic directions that are not Schiffer variations in the ramification points of

the g13. We describe these asymptotic directions and we give the explicit equations of the

trigonal curves admitting such asymptotic directions (see Section 10).

Finally we consider infinitesimal deformations of rank 2 and we prove the following

Theorem 1.3. (Theorem 9.1, Theorem 9.6)

(1) Assume C is tetragonal, of genus at least 16 and C is not a double cover of a

curve of genus 1 or 2. If a deformation ζ of rank 2 is not a linear combination

of Schiffer variations supported on an effective degree 2 divisor, then ζ is not

asymptotic.

(2) On a smooth plane sextic there are no asymptotic directions of rank 2.

For bielliptic curves we show the following

Theorem 1.4. (see Theorem 9.2) On any bielliptic curve of genus at least 5 there exist

linear combinations of two Schiffer variations that are asymptotic of rank 2.
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More precisely, the linear combinations of Schiffer variations which are asymptotic in

the above Theorem are ξp±iξσ(p), where σ is the bielliptic involution and (p, σ(p)) ∈ C×C

is in the zero locus of the meromorphic form η̂ ∈ H0(KC×C(2∆)) which determines the

second fundamental form II (see [3, Theorem 3.7]).

The structure of the paper is as follows.

In section 2 we describe in Dolbeault cohomology those infinitesimal deformations ζ

whose kernel contains a given nonzero form ω ∈ H0(KC). We define a split deformation ζ

as an infinitesimal deformation such that the rank 2 vector bundle of the extension corre-

sponding to ζ splits as the sum of two line bundles, and we give a Dolbeault cohomology

description of it. We also recall the definition of (higher order) Schiffer variations.

Section 3 contains some technical results that will be useful to make explicit computa-

tions on the second fundamental form of the Torelli map.

In Section 4 we recall the definition of the second fundamental form, we define asymp-

totic directions and we use the results in Section 3 to give a formula that computes the

second fundamental form II(Q)(ζ ⊙ ζ) on some ζ with non trivial kernel, in terms or

residues of meromorphic forms (see Proposition 4.3).

In Section 5 we consider infinitesimal deformations of rank d less than the Clifford index

of the curve, and we analyse the extension corresponding to ζ and the rank 2 vector bundle

E of the extension. First we show that if either d < Cliff(C), or d = Cliff(C) < g−1
2

and E is not globally generated, then ζ is a linear combination of Schiffer variations

supported on a divisor D of degree d (see Theorem 5.1). One of the main technical tool

is a Theorem of Segre-Nagata and Ghione (see [19] p. 84) on the existence of a subline

bundle A of E such that deg(A) ≥ g−1
2

. Then we show that if d < Cliff(C), no linear

combinations of Schiffer variations of rank d is asymptotic (see Theorem 5.4). Here we use

a result of Green and Lazarsfeld ([15, Theorem 1]) that allows us to find some quadrics

where our technique to compute the second fundamental form works well. Finally we

prove Theorem 5.5.

In Section 6 we define some special split deformations that we call double-split, where

we can compute explicitly the second fundamental form, showing that they are not as-

ymptotic.

In Section 7 we treat the case where the rank of ζ is equal to the Clifford index of the

curve and we give sufficient conditions ensuring that ζ is not asymptotic (see Theorem

7.2).

In Section 8 we determine all asymptotic directions of rank 1 and we show Theorem

1.2 (Theorem 8.4 and Theorem 8.5).

In Section 9 we concentrate on deformations of rank 2. We show Theorem 1.3 (Theorem

9.1, Theorem 9.6) and we give the example of asymptotic directions on bielliptic curves

proving Theorem 1.4 (Theorem 9.2).

In section 10 we consider trigonal curves of genus g = 6, 7 and Maroni degree 1 and

trigonal curves of genus g = 5, showing that there can exist asymptotic directions that
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are not Schiffer variations in the ramification points of the g13. We also describe these

asymptotic directions and we give the equation of the trigonal curves admitting such

asymptotic directions.

2. Preliminaries on deformations

Recall that an infinitesimal deformation ζ ∈ H1(TC) corresponds to a class of an

extension

(1) 0 → OC → E → KC → 0

Taking gobal sections we have:

0 → H0(C,OC) → H0(C,E) → H0(C,KC)
∪ζ
→ H1(C,OC) → ...

Definition 2.1. We define the rank of ζ as the rank of the map ∪ζ.

We shall now describe in Dolbeault cohomology those deformations ζ having a given

form ω ∈ H0(KC) in the kernel of ∪ζ .

Let ω ∈ H0(KC), ω 6= 0 be a holomorphic 1-form, Z =
∑

nipi its divisor, consider the

sequence

0 → TC
ω
→ OC → OZ → 0,

and the corresponding exact sequence in cohomology:

(2) 0 → H0(OC)
i
→ H0(OZ)

δ
→ H1(TC)

ω
→ H1(OC) → 0.

By the above exact sequence, the elements in ζ ∈ H1(TC) such that ω ∈ ker(∪ζ) are

exactly those belonging to the image of δ.

Let {Ui, zi} be open pairwise disjoint coordinate neighbourhoods centred on pi and

pi ∈ Di ⊂ ∆i ⊂ Ui and Di and ∆i are two closed disks where Di is in the interior of ∆i.

Let s ∈ H0(OZ) be a holomorphic section and assume that fi(zi) =
∑ni

j=0 βj,iz
j
i is its

polynomial expression in Ui. Let ρ̃ be a C∞ function on C which is equal to 1 on Di and

equal to 0 on C \ ∪i∆i.

Denote by ρ the C∞ function on C given by
∑

i ρ̃fi. Let us introduce the following

notation: writing in a local coordinate z, ω := g(z)dz, we set 1
ω
= 1

g(z)
∂
∂z

. Hence 1
ω

defines

a meromorphic section of TC .

Then we set in Dolbeault cohomology ζ := [∂̄( ρ
ω
)] = δ(s). One clearly has ω ∪ ζ = 0

and conversely any ζ such that ω ∪ ζ = 0 has a Dolbeault representative as above.

Definition 2.2. We say that an infinitesimal deformation ζ ∈ H1(TC) is split if the

vector bundle E in (1) splits as a direct sum of line bundles E = (KC ⊗ L∨)⊕ L.

We will now give a description in Dolbeault cohomology of split deformations.
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Take a form ω ∈ H0(KC) and choose a decomposition of its zero divisor Z = D + F ,

where the supports of D and F are disjoint. Set [σD] ∈ H0(OZ), where σD ≡ 1 on

∪pi∈Supp(D)∆i and σD ≡ 0 on ∪pi∈Supp(F )∆i.

With the above notation set ρD := ρ̃σD. Setting Θ = ∂̄(ρD
ω
), we have in the exact

sequence (2), in Dolbeault cohomology δ(σD) = ζ = [∂̄(ρD
ω
)] ∈ H1(C, TC). One has

Θω = ∂̄ρD, which is ∂̄-exact, hence ω ∪ ζ = 0 in H1(C,OC).

Proposition 2.3. An infinitesimal deformation ζ ∈ H1(TC) is split if and only if ζ =

δ(σD) = [∂̄(ρD
ω
)] for some form ω = sτ , with zero divisor Z = D + F , where D = div(s),

F = div(τ), L = OC(D) and D and F have disjoint supports. In particular, if D has

degree d and h0(OC(D)) = r + 1, then rank(ζ) = d− 2r.

Proof. Notice that if ζ is split, there exist τ ∈ H0(KC ⊗L∨), s ∈ H0(L) non zero sections

with disjoint zero loci such that the extension (1) is given by:

(3) 0 → OC
(−τ,s)
−→ (KC ⊗ L∨)⊕ L

s+τ
−→ KC → 0

hence ω := sτ ∈ ker(∪ζ). More precisely ker(∪ζ) = s ·H0(KC ⊗ L∨) + τ ·H0(L). So, if

h0(L) = r + 1 and deg(L) = d, dim(ker(∪ζ)) = h0(L) + h0(KC ⊗ L∨)− 1 = 2r + g − d,

hence ζ has rank equal to d− 2r.

Setting D = div(s), F = div(τ), we have Z = D + F , where the supports of D and

F are disjoint. Setting [σD] ∈ H0(OZ) as above then δ(σD) = ζ ′ = [∂̄(ρD
ω
)] ∈ H1(C, TC).

One has ∂̄(ρD
ω
)ω = ∂̄ρD, which is ∂̄-exact, hence ζ ′ω = 0 in H1(C,OC).

We claim that ζ ′ = ζ . In fact, consider the extension (3) given by ζ and tensor it by

TC . We get

(4) 0 → TC
(−τ,s)
−→ L∨ ⊕ (TC ⊗ L)

s+τ
−→ OC → 0.

Then ζ = δ(1), where δ : H0(OC) → H1(TC) is the coboundary morphism. We have

s (1−ρD)
s

+ τ ρD
τ

= 1, hence the element Y := (1−ρD
s
, ρD

τ
) ∈ C∞(L∨ ⊕ (TC ⊗ L)) is mapped

to 1 under the map (s + τ). Then (s + τ)∂̄(Y ) = ∂̄((s + τ)(Y )) = ∂̄(1) = 0 ∈ A0,1
C , so

there exists an element X ∈ A0,1
C (TC) such that (−τX, sX) = ∂̄(Y ) = (∂̄(1−ρD

s
), ∂̄(ρD

τ
)) ∈

A0,1
C (L∨)⊕A0,1

C (TC ⊗ L)) and ζ = [X ] ∈ H1(TC). Thus if we take X = ∂̄(ρD
ω
), we get

(−τ ∂̄(
ρD
ω

), s∂̄(
ρD
ω
)) = (−∂̄(

ρD
s
), ∂̄(

ρD
τ
)) = (∂̄(

1− ρD
s

), ∂̄(
ρD
τ
)),

since ∂̄(1
s
) = 0, as s is holomorphic. So we have shown that ζ = [∂̄(ρD

ω
)] = ζ ′.

Viceversa, assume that in the exact sequence (2) the divisor Z of ω has a splitting

Z = D + F , where D and F have disjoint support. Then ω = sτ where s ∈ H0(OC(D)),

τ ∈ H0(OC(F )), with div(s) = D and div(τ) = F . Define ρD as above and ζ := [∂̄(ρD
ω
)],

then clearly ω ∈ ker(∪ζ).

We claim that the deformation ζ is split. In fact taking L = OC(D), the extension (3)

has a class given by ζ .
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�

Let C be a smooth complex projective curve of genus g ≥ 2. Let p be a point in C and

z a local coordinate centred in p. For 1 ≤ n ≤ 3g− 3, we define the nth Schiffer variation

at p to be the element ξnp ∈ H1(C, TC) ∼= H0,1

∂̄
(TC) whose Dolbeault representative is

∂̄ρp
zn

∂
∂z

, where ρp is a bump function in p which is equal to one in a small neighborhood

U containing p, ξnp = [ ∂̄ρp
zn

∂
∂z
]. Clearly ξnp depends on the choice of the local coordinate z.

Take 1 ≤ n ≤ 3g − 3. Take the exact sequence

0 → TC → TC(np) → TC(np)|np → 0,

and the induced exact sequence in cohomology:

0 → H0(TC(np)) → H0(TC(np)|np)
δnp
→ H1(TC).

By Riemann Roch, if n < 2g − 2 we have:

h0(TC(np)) = 0,

hence we have an inclusion

δnp : H0(TC(np)|np) ∼= C
n →֒ H1(TC)

and the image of δnp in H1(C, TC) is the n-dimensional subspace 〈ξ1p, ..., ξ
n
p 〉.

Clearly H0(KC(−np)) ⊂ Ker(∪ξnp ), for n ≤ g, hence ξnp has rank ≤ n. For n = 1 the

first Schiffer variations ξ1p are the usual Schiffer variations, that we denote simply by ξp,

and they have rank 1 (see Section 7).

In particular, any linear combination ζ =
∑k

i=1

∑mi

j=1 bj,iξ
j
pi

, with
∑k

i=1mi ≤ g has

rank ≤
∑k

i=1mi, since H0(KC(−
∑k

i=1mipi)) ⊂ ker(∪ζ).

3. Some computations

We will now show some technical results that will be useful in the sequel to make

explicit computations on the second fundamental form of the Torelli map.

Consider two holomorphic one forms ω1 and ω2. With the notation introduced in section

2, take an infinitesimal deformation ζ having a form ω 6= 0 in its kernel and denote by

Z =
∑

nipi its zero divisor . Then ζ = [Θ] ∈ H1(TC) with Θ := ∂̄( ρ
ω
), and ρ =

∑

i ρ̃fi.

We have Θωi = γi + ∂̄hi, where hi is a C∞ function on C, so ζ ∪ ωi = [γi] ∈ H1(OC).

Consider the two meromorphic functions g1 =
ω1

ω
and g2 =

ω2

ω
. Then clearly, by the above

construction we have

Θωi = γi + ∂̄hi = ∂̄(ρgi).

Note that if ρg1 is C∞, up to a constant we have h1 = ρg1, γ1 = 0, hence ω1 ∈ ker(∪ζ).

Set

(5) w(ζ, ω1, ω2) := 2πi
∑

pi∈Supp(Z)

Respi(fig1d(fig2)).
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In the next section we will show that this expression will be very useful in the compu-

tation of the second fundamental form of the Torelli map.

Remark 3.1. For any C∞ functions h1, h2, we have

∫

C

∂h1 ∧ ∂h2 =

∫

C

∂h2 ∧ ∂h1.

Proof.
∫

C

∂h1 ∧ ∂h2 =

∫

C

d(h1∂h2)−

∫

C

h1∂∂h2 =

∫

C

h1∂∂h2 =

=

∫

C

d(h1∂h2)−

∫

C

∂h1 ∧ ∂h2 =

∫

C

∂h2 ∧ ∂h1.

�

Lemma 3.2. Assume that ρg1 is C∞, then we have have
∫

C

∂h1 ∧ ∂̄h2 =

∫

C

∂(ρg1) ∧ ∂̄(ρg2) =

=

∫

C

∂(ρg2) ∧ ∂̄(ρg1) + w(ζ, ω1, ω2) =

∫

C

∂h2 ∧ ∂h1.

In particular, if both ρg1 and ρg2 are C∞, we have w(ζ, ω1, ω2) = 0.

Proof. Since
∫

C
∂h1 ∧ γ2 =

∫

C
d(h1γ2) = 0, we get

∫

C

∂h1 ∧ ∂̄h2 =

∫

C

∂h1 ∧ (Θω2 − γ2) =

∫

C

∂h1 ∧Θω2 =

=

∫

C

∂(ρg1) ∧ ∂̄(ρg2) =

∫

C

d(ρg1) ∧ ∂̄(ρg2) =

∫

C

d(ρg1∂̄(ρg2))−

∫

C

ρg1∂(∂̄(ρg2)).

Now,
∫

C

d(ρg1∂̄(ρg2)) =
∑

lim
ǫ→0

∫

∂Di,ǫ

ρg1g2∂̄ρ = 0

since ∂̄ρ = 0 near the points pi. Here Di,ǫ is a small disc around pi. It follows then

∫

C

∂h1∧ ∂̄h2 = −

∫

C

ρg1∂∂̄(ρg2) =

∫

C

ρg1∂̄∂(ρg2) =

∫

C

d(ρg1∂ρg2)−

∫

C

∂̄(ρg1)∧∂(ρg2) =

=

∫

C

d(ρg1∂(ρg2)) +

∫

C

∂(ρg2) ∧ ∂̄(ρg1).

We have
∫

C

d(ρg1∂(ρg2)) =
∑

lim
ǫ→0

∫

∂Di,ǫ

ρg1d(ρg2) = 2πi
∑

pi∈Z

Respi(fig1d(fig2)) = w(ζ, ω1, ω2).

The last sentence follows since if ρgi are both C∞, clearly fig1d(fig2) has no poles on

Z.

�
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Remark 3.3. Notice that if ζ = [∂̄(ρD
ω
)] is split, in formula (5) we have

w(ζ, ω1, ω2) = 2πi
∑

pi∈Supp(D)

Respi(g1d(g2)).

4. Second fundamental form and Hodge Gaussian map

Denote by Mg the moduli space of smooth complex projective curves of genus g ≥ 4

and let Ag be the moduli space of principally polarised abelian varieties of dimension g.

The space Ag is a quotient of the Siegel space Hg = Sp(2g,R)/U(g) by the action of

the symplectic group Sp(2g,Z). The space Hg is a Hermitain symmetric domain and it

is endowed with a canonical symmetric metric. We consider the induced orbifold metric

(called the Siegel metric) on the quotient Ag.

Denote by

j : Mg → Ag, [C] 7→ [j(C),ΘC ]

the Torelli map, where j(C) is the Jacobian of C and ΘC is the principal polarisation

induced by cup product. It is an orbifold embedding outside the hyperelliptic locus ([25]).

Consider the complement M0
g of the hyperelliptic locus in Mg and the cotangent exact

sequence of the Torelli map:

0 → N∗
M0

g/Ag
→ Ω1

Ag |M0
g

q
→ Ω1

M0
g
→ 0,

where q = dj∗ is the dual of the differential of the Torelli map. Call ∇ the Chern

connection on Ω1
Ag |M0

g
with respect to the Siegel metric and let

II : N∗
M0

g/Ag
→ Sym2Ω1

M0
g
, II = (q ⊗ IdΩ1

M0
g

) ◦ ∇|N∗

M0
g/Ag

be the second fundamental form of the above exact sequence.

If we take a point [C] ∈ M0
g, we have:

N∗
M0

g/Ag ,[C] = I2, Ω
1
Ag |M0

g,[C] = Sym2H0(C,KC), Ω
1
M0

g,[C] = H0(C,K⊗2
C ),

where I2 := I2(KC) is the vector space of quadrics containing the canonical curve and the

dual of the differential of the Torelli map q is the multiplication map of global sections.

Then, at the point [C], the second fundamental form is a linear map

II : I2 → Sym2H0(K⊗2
C ).

Definition 4.1. A nonzero element ζ ∈ H1(TC) is an asymptotic direction if

II(Q)(ζ ⊙ ζ) = 0

for every Q ∈ I2.

In [5, Theorem 2.1] it is proven that II is equal (up to a constant) to the Hodge-

Gaussian map ρ of [5, Proposition-Definition 1.3]. We briefly recall its definition.

Let Q =
∑

i,j ai,jωi ⊙ ωj ∈ I2, where ωi ∈ H0(KC), and Θ ∈ A0,1(TC), [Θ] =: ζ.
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We write Θωi = γi+∂̄hi where γi is a harmonic (0, 1)-form. Now, identifying Sym2H0(K⊗2
C )

with the symmetric homomorphisms H1(TC) → H0(K⊗2
C ), we have (see [5]):

(6) II(
∑

i,j

aijωi ⊙ ωj)(ζ) =
∑

i,j

aijωi∂hj .

In [5, Theorem 3.1] (see also [3, Theorem 2.2]) it is proven that if C is a non-hyperelliptic

curve of genus g ≥ 4 and p, q are two distinct points in C, we have

(7) II(Q)(ξp, ξp) = −2πi · µ2(Q)(p),

where µ2 : I2 → H0(K⊗4
C ) is the second Gaussian map of the canonical bundle (see [5],

or [3] for more details).

Remark 4.2. Since II is injective (see [4, Corollary 3.4]), II(I2) ⊂ Sym2H1(TC)
∨ is a

linear system of quadrics in PH1(TC) ∼= P3g−4 of dimension (g−2)(g−3)
2

. Hence for every

curve C of genus g ≤ 9, dim(II(I2)) < 3g − 4, so the intersections of the quadrics in

II(I2) is non empty, thus there exist asymptotic directions.

Examples of asymptotic directions.

(1) Using equation (7) one can see that Schiffer variations ξp at ramification points of

a g13 on any trigonal curve of genus g ≥ 4 are asymptotic directions (see Lemma

8.2). Moving a branch point in P1, one can see that there exist algebraic curves in

the trigonal locus having these Schiffer variations as tangent directions (see [13]).

(2) Other examples of asymptotic directions of rank 1 different from Shiffer variations

at ramification points of a g13 on trigonal curves of genus 5, or of genus 6,7 with

Maroni degree k = 1 are given in the last sections. We will give an explicit

description of these loci of trigonal curves admitting such asymptotic directions.

(3) In Theorem 9.2 we prove that on any bielliptic curve of genus at least 5 there

exist linear combinations of two Schiffer variations that are asymptotic directions

of rank 2.

(4) Other examples of asymptotic directions are given by tangent vectors to special

(hence totally geodesic) subvarieties of Ag generically contained in the Torelli

locus (see [7], [8], [9], [10], [22], [23], [24], [26], [27]). In all these examples, g ≤ 7.

Now consider a quadric Q ∈ I2. Notice that we can always assume that Q has the

following expression:

Q =
s

∑

i=1

ω2i−1 ⊙ ω2i.

Fix a holomorphic form ω ∈ H0(KC), ω 6= 0, with zero locus Z. With the notation of

section 2, we set ζ = [∂̄( ρ
ω
)]. So we have ζω = 0 and Θωj = γj + ∂̄hj , γj harmonic. Let

gi be the meromorphic function given by ωi

ω
. We would like compute II(Q)(ζ ⊙ ζ).
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Proposition 4.3. Assume ρg2i−1 is C∞, ∀i = 1, ..., s. Using the notation of (5) we have:

II(Q)(ζ ⊙ ζ) = −
s

∑

i=1

w(ζ, ω2i−1, ω2i).

Proof. From the Hodge Gaussian computation (6), we get

II(Q)(ζ) =

s
∑

i=1

(ω2i−1∂h2i + ω2i∂h2i−1).

We have

II(Q)(ζ ⊙ ζ) = ζ(II(Q)(ζ)) = ∂̄(
ρ

ω
)(

s
∑

i=1

(ω2i−1∂h2i + ω2i∂h2i−1)) =

=

s
∑

i=1

∫

C

((γ2i−1 + ∂̄h2i−1) ∧ ∂h2i + (γ2i + ∂̄h2i) ∧ ∂h2i−1) =

s
∑

i=1

∫

C

(∂̄h2i−1 ∧ ∂h2i + ∂̄h2i ∧ ∂h2i−1) = −
s

∑

i=1

∫

C

(∂h2i ∧ ∂̄h2i−1 + ∂h2i−1 ∧ ∂̄h2i),

since γk ∧ ∂hl is exact for any k, l.

So, using Lemma (3.2) we get

II(Q)(ζ ⊙ ζ) = −
s

∑

i=1

∫

C

(∂h2i ∧ ∂̄h2i−1 + ∂h2i−1 ∧ ∂̄h2i) =

−
s

∑

i=1

[(w(ζ, ω2i−1, ω2i) +

∫

C

∂(ρg2i) ∧ ∂̄(ρg2i−1)) +

∫

C

∂(ρg2i−1) ∧ ∂̄(ρg2i)].

Now the result follows since

Ω :=
∑

(∂(ρg2i) ∧ ∂̄(ρg2i−1) + ∂(ρg2i−1) ∧ ∂̄(ρg2i)) = 0.

In fact we have ∂̄(ρgj) = gj∂̄ρ so that

Ω =
∑

(∂(ρg2i)g2i−1 + ∂(ρg2i−1)g2i) ∧ ∂̄ρ =
∑

(g2ig2i−1 + g2i−1g2i)∂ρ ∧ ∂̄ρ+

+
∑

((∂g2i)g2i−1 + (∂g2i−1)g2i) ∧ ρ∂̄ρ = 0,

sinceQ ∈ I2, hence
∑

(g2i−1g2i+g2i−1g2i) = 0, and hence also its derivative
∑

((∂g2i)g2i−1+

(∂g2i−1)g2i) = 0.

�
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5. Deformations of rank d < Cliff(C)

Recall that if C is a smooth projective curve of genus g and L is a line bundle on C

then the Clifford index of L is

Cliff(L) = deg(L)− 2h0(L) + 2,

and the Clifford index of C is

Cliff(C) = minL∈Pic(C){deg(L)− 2h0(L) + 2 : h0(L) ≥ 2, h1(L) ≥ 2}.

We say that a line bundle L contributes to the Clifford index if h0(L) ≥ 2, h1(L) ≥ 2.

One always has Cliff(C) ≥ 0, and Cliff(C) = 0 if and only if C is hyperelliptic;

Cliff(C) = 1 if and only if C is trigonal or isomorphic to a plane quintic, and Cliff(C) =

2 if and only if C is tetragonal, or isomorphic to a plane sextic (see [21]). We have the

following relation between the Clifford index and the gonality gon(C) of a curve C ([6]):

Cliff(C) + 2 ≤ gon(C) ≤ Cliff(C) + 3.

Consider an infinitesimal deformation ζ ∈ H1(TC) and a corresponding extension

(8) 0 → OC → E → KC → 0.

Theorem 5.1. Let C be a smooth algebraic curve of genus g and ζ ∈ H1(TC) a defor-

mation of rank d. Suppose one of the following assumptions is satisfied:

(1) d < Cliff(C),

(2) d = Cliff(C) < g−1
2

and E not globally generated.

Then ζ is a linear combination of Schiffer variations supported on an effective divisor

D of degree d.

Proof. Taking gobal sections in the extension (8) corresponding to the rank d deformation

ζ , we have:

0 → H0(C,OC) → H0(C,E) → H0(C,KC)
∪ζ
→ H1(C,OC) → ...

Since ζ has rank d, we get h0(E) = g − d + 1. By a Theorem of Segre-Nagata and

Ghione (see [19] p. 84) there exists a subline bundle A of E such that deg(A) ≥ g−1
2

. So,

up to saturation we have a diagram
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0

��

A

ι
��

f

%%❏
❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

0 // OC
//

h

$$❏
❏

❏

❏

❏

❏

❏

❏

❏

E

��

// KC
// 0

KC ⊗A∨

��

0

Both the maps f and h are nonzero, since deg(A) > 0. In fact, if f were zero, then ι

would factor through OC . So f is nonzero and hence also h is nonzero.

So, we have h0(KC ⊗ A∨) ≥ 1. We claim that h0(A) ≥ 2. In fact, if h0(A) ≤ 1, we

would have h0(KC ⊗ A∨) ≥ h0(E) − 1 = g − d and by Riemann Roch, we would get

deg(A) ≤ d < g−1
2

, a contradiction. So h0(A) ≥ 2, and if h0(KC ⊗A∨) ≥ 2, A contributes

to the Clifford index and we have:

h0(A)− h0(KC ⊗ A∨) = deg(A)− g + 1,

h0(A) + h0(KC ⊗A∨) ≥ g − d+ 1.

So summing up we get

2h0(A) ≥ deg(A)− d+ 2,

hence Cliff(A) ≤ d. If d < Cliff(C), this is a contradiction . If d = Cliff(C), then

Cliff(A) = d, h0(A) + h0(KC ⊗ A∨) = g − d+ 1, and we have an exact sequence

0 → H0(A) → H0(E) → H0(KC ⊗ A∨) → 0.

Moreover A andKC⊗A
∨ are both base point free (since they compute the Clifford index).

Thus E is globally generated, a contradiction.

So h0(KC ⊗ A∨) = 1, hence there exists an effective divisor D such that KC ⊗ A∨ =

OC(D), and h0(OC(D)) = 1. So we have h0(A) = h0(KC(−D)) = g − d, hence by

Riemann Roch, deg(A) = deg(KC(−D)) = 2g − 2 − d. Thus the image of the map

H0(E) → H0(KC) is H0(KC(−D)) and we get a commutative diagram of extensions

(9)

0 O E ′ KC(−D) 0

0 O E KC 0

=
ι

f
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where the upper extension splits, since the image of ι is contained in E ′ by construction.

Hence it corresponds to 0 ∈ H1(TC(D)) and the element ζ ∈ H1(TC) belongs to the kernel

of the mapH1(TC) → H1(TC(D)) which is the image of the injective mapH0(TC(D)|D) →

H1(TC), that is the space of Schiffer variations supported on D.

�

Remark 5.2. Notice that Theorem 5.1 is a generalisation of the generic Torelli theorem of

Griffiths. In fact, denote by Cd the symmetric product of C. Then, under the assumption

Cliff(C) > d, we characterise the image of the natural map

PTCd
→ P(H1(TC))

as the locus of deformations of rank d. When d = 1 it is the bicanonical curve.

We will now consider linear combination of Schiffer variations supported on a divisor

of degree less than the Clifford index of C. First recall the following

Lemma 5.3. Let C be a smooth curve of genus g, take an integer d < Cliff(C) and an

effective divisor D of degree d. Then KC(−D) is projectively normal, so the multiplication

map

(10) m : Sym2H0(C,KC(−D)) → H0(K⊗2
C (−2D))

is surjective.

Proof. Notice that h0(D) = 1 since Cliff(C) > d. Moreover KC(−D) is very ample by

Riemann Roch and by the assumption Cliff(C) > d. So by [15, Theorem 1], KC(−D)

is projectively normal. �

We have the following

Theorem 5.4. Let C be a smooth curve of genus g, take an integer d < Cliff(C), an

effective divisor D =
∑k

i=1mipi of degree d. Then any linear combination of all Schiffer

variations ξni
pi

, with ni ≤ mi is not an asymptotic direction.

Proof. We will prove the statement by induction on d. The case d = 1 is already known

(see Lemma 8.2).

By induction assume that no linear combination of all {ξlipi | li ≤ mi, i < k, lk ≤

mk − 1}i=1,...,k is asymptotic.

So take a linear combination ζ :=
∑k

i=1

∑mi

j=1 bj,iξ
j
pi

. To prove the result, we will show

that there exists a quadric Q ∈ I2 such that II(Q)(ζ ⊙ ζ) = 0 if and only if bmk ,k = 0.

Then if ζ were asymptotic, bmk ,k = 0, and by induction we get a contradiction.

Notice that h0(D) = 1 since Cliff(C) > d. Set Fd := D, Fd−1 := Fd − pk. By Lemma

5.3 the following multiplication maps

µFd−1
: Sym2H0(KC(−Fd−1)) → H0(K⊗2

C (−2Fd−1)),

µFd
: Sym2H0(KC(−Fd)) → H0(K⊗2

C (−2Fd))
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are surjective.

Set

Id−1 = ker µFd−1

and

Id = ker µFd
.

We have and inclusion Id ⊂ Id−1 and

dim(Id−1/Id) = g − d− 1.

We would like to fix a basis of H0(KC(−Fd−1)). Recall that by Riemann Roch and

the assumption Cliff(C) > d, both KC(−Fd) and KC(−Fd−1) are very ample. We

first take a form ω1 ∈ H0(KC(−Fd−1)) \ H
0(KC(−Fd)), ω2 ∈ H0(KC(−Fd)) such that

ordpiω2 = mi, ∀i = 1, ..., k, and ω3 ∈ H0(KC(−Fd)) such that ordpkω3 = mk + 1. Finally

ω4, . . . , ωg−d+1 ∈ H0(KC(−Fd)) such that ordpkωi > mk + 1, ∀i = 4, ..., g − d+ 1.

Then any Q ∈ Id−1 can be written as follows:

Q =

g−d+1
∑

j=1

αjω1 ⊙ ωj +K,

where K ∈ Sym2(H0(KC(−Fd))).

Notice that µFd−1
(Q) = 0, α1ω

2
1 is the only term whose vanishing order in pk is 2mk−2,

and α2ω1ω2 is the only term whose vanishing order in pk is 2mk − 1. So we must have

α1 = α2 = 0. Since dim(Id−1/Id) = g − d− 1, there exists a quadric Q ∈ Id−1 such that

α3 6= 0. But then since ordpk(ω1ω3) = 2mk = ordpk(ω
2
2) and all the other terms have

higher vanishing order in pk, the quadric Q has the form

Q = α3ω1 ⊙ ω3 + βω2 ⊙ ω2 +K′,

where K′ =
∑

j≥4 αjω1 ⊙ ωj +K′′, with K′′ ∈ Sym2(H0(KC(−Fd))) and α3 6= 0, β 6= 0.

Observe now that we have ζ =
∑k

i=1

∑mi

j=1 bj,iξ
j
pi

= [∂̄(
∑k

i=1

∑mi

j=1 bj,i
z
mi−j
i ρpi

ω2

)], where

ρpi are bump functions which are equal to 1 in a neighbourhood of pi and zi is a local

coordinate around pi. In the notation of section 2, ρ =
∑k

i=1

∑mi

j=1 bj,iz
mi−j
i ρpi .

Using the formula in Proposition 4.3 we get

II(Q)(ζ ⊙ ζ) = α3bmk ,kRespk
ω3

ω2

d(
ω1

ω2

) = c · bmk ,kRes0(zkd(
1

zk
)) = −cbmk ,k,

where c 6= 0 is a nonzero constant.

Then II(Q)(ζ ⊙ ζ) = 0 if and only if bmk ,k = 0, and this concludes the proof. �

Theorem 5.5. Let C be a smooth curve of genus g, take an integer d < Cliff(C). Then

there are no asymptotic directions ζ ∈ H1(TC) of rank d.

Proof. Take an element ζ ∈ H1(TC) of rank d. By Theorem 5.1, ζ is a linear combination

of Schiffer variations supported on a divisor D of degree d, so we conclude by Theorem

5.4. �
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Notice that, since the Clifford index of the general curve of genus g is ⌊g−1
2
⌋, Theorem

5.1(1), and Theorem 5.5 imply the following

Corollary 5.6. Let C be a general curve in Mg. Then

(1) all tangent directions ζ of rank d < ⌊g−1
2
⌋ are linear combinations of Schiffer

variations supported on an effective divisor of degree d.

(2) There are no asymptotic directions of rank d < ⌊g−1
2
⌋.

Remark 5.7. For the general curve of genus g we characterise the image of the natural

map PTCd
→ P(H1(TC)) as the locus of deformations of rank d, for all d < ⌊g−1

2
⌋.

Moreover for such values of d the base locus of the linear system of quadrics II(I2) in

PH1(TC), does not contain any point [ζ ] with with Rank(ζ) = d.

6. Double-split deformations

We will give some computation of the second fundamental form along some tangent

directions. Let C be a curve of genus g we assume C non hyperelliptic. Let L be a line

bundle on C and M = KC ⊗L∨. We assume that h0(L) > 1 and h0(M) > 1. We consider

the map

φ :

2
∧

H0(L)⊗
2
∧

H0(M) → I2,

(11) φ((s1 ∧ s2)⊗ (τ1 ∧ τ2)) = (s1τ1)⊙ (s2τ2)− (s1τ2)⊙ (s2τ1).

Set N := KC ⊗L−2 and assume |L| is base point free, that h0(L) ≥ 2, and h0(N) ≥ 1.

Fix a nonzero section t ∈ H0(N), a base point free pencil 〈s1, s2〉 in H0(L), such that s1,

and s2 have zeros disjoint from the zeros of t. Consider the quadric

Q = (s21t)⊙ (s22t)− (s1s2t)⊙ (s1s2t) ∈ I2,

set ω := s1s2t, denote by D the zero locus of s1, and take ζ := [∂̄(ρD
ω
)] ∈ H1(TC).

Definition 6.1. A deformation ζ ∈ H1(TC) is said to be double-split if it is split with ω =

s1τ , s1 ∈ H0(L), τ ∈ H0(KC ⊗L∨) and τ = s2t with s2 ∈ H0(L) and t ∈ H0(KC ⊗L−2).

Proposition 6.2. With the above notation, if ζ is double-split, we have

II(Q)(ζ ⊙ ζ) = deg(L) 6= 0.

So ζ is not an asymptotic direction.

Proof. We set ω1 := s21t, ω2 := s22t, ω3 = ω4 := ω = s1s2t, x := s1
s2

. Then with the

notation of Proposition 4.3, we have g3 = g4 = 1, ρDg1 = ρD
s1
s2

= ρDx is C∞, since ρD is

identically zero on the zeros of s2. Then we can apply Proposition 4.3 and we get

II(Q)(ζ ⊙ ζ) = −
∑

p∈Supp(D)

Resp(g1dg2 − g3dg4) = −
∑

p∈Supp(D)

Resp(g1dg2) =
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= −
∑

p∈Supp(D)

Resp(xd(
1

x
)) =

∑

p∈Supp(D)

Resp(
dx

x
) = deg(D) = deg(L).

�

7. Rank d = Cliff(C) deformations

In this section we will consider infinitesimal deformations of rank d = Cliff(C) and

we will give sufficient conditions under which ζ is not asymptotic.

Take a smooth non hyperelliptic curve C of genus g ≥ 4 and an element ζ ∈ H1(TC),

corresponding to the class of an extension as in (1).

Taking gobal sections in (1), if we ζ has rank d, we get h0(E) = g − d+ 1.

Remark 7.1. Recall that if ζ ∈ H1(TC) is a deformation of rank d = Cliff(C) < g−1
2

and E is not globally generated, then by Theorem 5.1, ζ is a linear combination of Schiffer

variations supported on a degree d effective divisor.

Theorem 7.2. Assume ζ ∈ H1(TC) is an infinitesimal deformation of rank d on a curve

C of Clifford index d 6= g−1
2

and g ≥ 5. Assume moreover that Cliff(C) = Cliff(L) =

gon(C)−2, where L is a g1d+2 on C. Assume that ζ is not a linear combination of Schiffer

variations supported on a degree d effective divisor.

• If for every such L, h0(L⊗2) = 3, then ζ is split.

• If for every such L, h0(L⊗2) = 3 and h0(L⊗3) = 4, then ζ is double split and it is

not an asymptotic direction.

Proof. By the assumptions and by Remark 7.1, we know that E is globally generated.

Take to generic points p, q ∈ C, then since g ≥ 5, there exists a nontrivial holomorphic

section σ ∈ H0(E(−p− q)).

Tensoring (1) by OC(−p− q), we obtain an extension

(12) 0 → OC(−p− q) → E ′ → KC(−p− q) → 0,

where E ′ = E⊗OC(−p− q), so h0(E ′) ≥ g− d− 3 > 0. By the theorem of Segre-Nagata

and Ghione, ([19] p. 84), there exists a subline bundle A of E ′ such that deg(A) ≥ g−5
2

.

We claim that h0(A) ≥ 1. In fact, if h0(A) = 0, by Riemann Roch we would have

h0(KC ⊗ A∨) = g − 1 − deg(A) ≤ g+3
2

. So, since p, q are generic points, h0(KC ⊗

A∨(−2p− 2q)) ≤ g−5
2

. On the other hand, up to saturation we have the exact sequence

0 → A→ E ′ → KC ⊗ A∨(−2p− 2q) → 0,

and h0(KC⊗A
∨(−2p−2q)) ≥ h0(E ′) ≥ g−d−3. So we get d ≥ g−1

2
, which contradicts

our assumption. So h0(A) ≥ 1. We have the following diagram:
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0

��

A(p+ q)

��

0 // OC
// E

��

// KC
// 0

KC ⊗ A∨(−p− q)

��

0

We have h0(A(p + q)) ≥ 1 and deg(A(p+ q)) ≥ g−1
2

. If h0(A(p+ q)) = 1, then h0(KC ⊗

A∨(−p − q)) = g − 2 − deg(A) ≤ g+1
2

, but h0(KC ⊗ A∨(−p − q)) ≥ h0(E) − 1 ≥ g − d,

so we get d ≥ g−1
2

, a contradiction. So h0(A(p+ q)) ≥ 2 and h0(KC ⊗ A∨(−p− q)) ≥ 2,

since E is globally generated. So A(p+ q) contributes to the Clifford index and we have:

h0(A(p+ q))− h0(KC ⊗A∨(−p− q)) = deg(A)− g + 3,

h0(A(p+ q)) + h0(KC ⊗ A∨(−p− q)) ≥ g − d+ 1.

So summing up we get

2h0(A(p+ q)) ≥ deg(A)− d+ 4,

hence d ≤ Cliff(A(p+ q)) ≤ d, and either A(p+ q) = L, or A(p+ q) = KC ⊗L∨, where

L is any line bundle as in the statement. But A(p + q) 6= L, since p, q are general and

A is effective. So A(p+ q) = KC ⊗ L∨, and the vertical exact sequence induces an exact

sequence on global sections. So it corresponds to a class of an extension ǫ ∈ H1(KC⊗L
−2)

that induces the zero map H0(L) → H1(KC ⊗ L∨). If h0(L⊗2) = 3, the multiplication

map Sym2H0(L) → H0(L⊗2) is surjective, so ǫ must be zero. So E = (KC ⊗ L∨) ⊕ L

and ζ is split.

By Proposition 2.3, the diagram becomes:
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(13) 0

��

KC ⊗ L∨

��

0 // OC

(τ,s)
// (KC ⊗ L∨)⊕ L

��

s−τ
// KC

// 0

L

��

0

where s ∈ H0(L) and τ ∈ H0(KC ⊗ L∨) have disjoint zero loci. Then ker(∪ζ) =

s ·H0(KC ⊗ L∨) + τ ·H0(L), which has dimension g − d.

Assume now h0(3L) = 4, then the multiplication map

m : H0(L)⊗H0(KC ⊗ L−2) → H0(KC ⊗ L∨)

is surjective, since ker(m) = H0(KC ⊗ L−3) by the base point free pencil trick. So

τ = st + s′t′, with s′ ∈ H0(L), t, t′ ∈ H0(KC ⊗ L−2). We claim that if we take ω′ = sτ ′,

with τ ′ = s′t′, then [∂̄(ρD
ω′ )] = [∂̄(ρD

ω
)] = ζ , where D is the zero divisor of s and ω = sτ .

In fact [∂̄(ρD
ω
) − ∂̄(ρD

ω′ )] = [∂̄(ρD(
−t

s′t′(st+s′t′)
))] = 0, since ρD(

−t
s′t′(st+s′t′)

) is a C∞ vector

field, as −t
s′t′(st+s′t′)

has no poles on D by construction.

So ζ is double-split and we apply Proposition 6.2 to conclude.

�

8. Rank one deformations

In this section we consider infinitesimal deformations ζ of rank 1 on a non hyperelliptic

curve C of genus g ≥ 4, and we ask whether these can be asymptotic. In Theorem 5.5

we proved that if Cliff(C) > 1, there are no asymptotic directions of rank 1. So we

will assume Cliff(C) = 1, hence C is either trigonal or isomorphic to a smooth plane

quintic.

We will show that if C is trigonal of genus g ≥ 8, or g = 6, 7 with Maroni degree 2,

then there do not exist asymptotic directions of rank 1, except for the Schiffer variations

at a ramification point of the g13, which are asymptotic.

We will also prove that on a smooth plane quintic there are no rank one asymptotic

directions.
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In section 10 we will show that if g = 5, or g = 6, 7 and Maroni degree 1, there are

examples of curves admitting asymptotic directions different from Schiffer variations at

ramification points, and we will describe these loci.

Take a smooth non hyperelliptic curve C of genus g ≥ 4 and an element ζ ∈ H1(TC).

The cup product ∪ζ : H0(KC) → H1(OC), corresponds to an element γζ in S2H1(OC).

We have the following exact sequence given by the differential of the period map (dual

to the multiplication map):

0 → H1(TC)
γ
→ S2H1(OC) → I∨2 → 0,

where γ(ζ) = γζ.

Remark 8.1. The rank of ζ is equal to the rank of the quadric γζ.

So an element ζ ∈ H1(TC) has rank one if and only if [γζ ] ∈ P(S2H1(OC)) lies in the

image the Veronese map

P(H1(OC)) → P(S2H1(OC)).

Recall that by [18] if C is non hyperelliptic, non trigonal and not isomorphic to a

smooth plane quintic, the only rank one elements [ζ ] ∈ P(H1(TC)) are given by the

classes of the Schiffer variations [ξp], that are the points of the bicanonical curve. If C

is trigonal the rank one elements correspond to the Veronese image of the ruled surface

containing the canonical curve, and if C is a smooth plane quintic they correspond to the

points of the Veronese image of the Veronese surface in P(H1(OC)) ∼= P5.

Since ζ has rank 1, in the extension (1) corresponding to ζ , we get h0(E) = g.

Lemma 8.2. Assume C is not hyperelliptic, ζ ∈ H1(TC) a rank one deformation. If E

is not globally generated, then ζ = ξp is a Schiffer at a point p. If C non trigonal, then

∀p ∈ C, ξp is not an asymptotic direction. If C is trigonal and g ≥ 6, then ξp is an

asymptotic direction if and only if p is a ramification point of the g13.

Proof. Assume E is not globally generated, we conclude by Theorem 5.1 that ζ = ξp is a

Schiffer at a point p.

If g ≥ 5, C is not hyperelliptic, and not trigonal, then by ∀p ∈ C, ξp is not an

asymptotic direction.

In fact, in [5] (see also [3, Theorem 2.2]) it is proven that for any Q ∈ I2(KC), we have

II(Q)(ξp ⊙ ξp) = −2πiµ2(Q)(p),

and by [2, Theorem 6.1] we know that if C is not hyperelliptic, and not trigonal of genus

g ≥ 5, for any p ∈ C, there exists a quadric Q ∈ I2(KC) such that µ2(Q)(p) 6= 0.

Assume that C is trigonal not hyperelliptic and g ≥ 5, then a basis for I2(KC) is given

by the quadrics of rank at most 4 defined as in (11) where L is the g13. For such quadrics

we have

II(Q)(ξp ⊙ ξp) = −2πiµ2(Q)(p) = −2πiµ1,L(s1 ∧ s2)(p)µ1,KC(−L)(τ1 ∧ τ2)(p),
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(see [5] for the first equality, and [2, Lemma 2.2] for the second one).

If C is trigonal and p is a ramification point of the g13, ρ(Q)(ξp ⊙ ξp) = 0, since

µ1,L(s1 ∧ s2)(p) = 0.

Assume C trigonal and p not a ramification point of the g13, then h0(KC ⊗ L∨(−p)) =

h0(KC ⊗L∨)− 1, otherwise |L(p)| is a g24 and C would be hyperelliptic. We claim that if

g ≥ 6, h0(KC ⊗L∨(−2p)) = h0(KC ⊗L∨(−p))− 1. In fact, otherwise |L(2p)| would be a

g25, so it would give a map C → P2 of degree 1, hence g ≤ 6. So g = 6 and C would be

a smooth plane quintic, hence not trigonal. So if we take τ1, τ2 6∈ H0(KC ⊗ L∨(−2p)) ⊂

H0(KC ⊗ L∨), we get

II(Q)(ξp ⊙ ξp) = 2πiµ2(Q)(p) = 2πiµ1,L(s1 ∧ s2)(p)µ1,KC(−L)(τ1 ∧ τ2)(p) 6= 0,

since p is not a ramification point for |L|, nor for the pencil 〈τ1, τ2〉 ⊂ H0(KC ⊗ L∨).

�

The case Cliff(C) > 1 has already been considered in Theorem 5.5 where we proved, in

particular, that there are no asymptotic directions of rank 1. So we assume Cliff(C) = 1.

Hence either C is trigonal, or it is a smooth plane quintic. Assume first C is trigonal.

Definition 8.3. Let C be a trigonal (non hyperelliptic) curve of genus g ≥ 5 and let L

be the line bundle of degree 3 computing the unique trigonal series. The Maroni degree

k ∈ N of C can be characterised as the unique number such that

h0(C,L⊗k+1) = k + 2, h0(C,L⊗k+2) > k + 3.

The following bounds on k have been established by Maroni ([20])

g − 4

3
≤ k ≤

g − 2

2
.

Hence if g ≥ 5, we can have trigonal curves with k = 1 only if g = 5, 6, 7. This means

that h0(L⊗2) = 3, and h0(L⊗3) = 5. For g = 5, we have k = 1, while for g = 6, 7 the

general curve has k = 2. We will say that a trigonal curve of genus g = 6, 7 is Maroni

special if k = 1.

Notice that if g ≥ 8, we always have k ≥ 2.

Theorem 8.4. If C is trigonal (non hyperelliptic) of genus of genus g ≥ 8, or C is

trigonal (non hyperelliptic) of genus g = 6, 7 and k = 2, then the rank one asymptotic

directions are exactly the Schiffer variations in the ramification points of the g13.

Proof. Take ζ a rank 1 infinitesimal deformation and E the rank 2 vector bundle in the

corresponding extension (1). If E is not globally generated, then by Lemma 8.2, ζ = ξp is

a Schiffer at a point p, and it is an asymptotic direction if and only if p is a ramification

point of the g13.

So assume E is globally generated and take L the g13. Then, since C is not hyperelliptic,

h0(L⊗2) = 3 and by assumption h0(L⊗3) = 4. So by the proof of Theorem 7.2, ζ is not

asymptotic.
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�

Let us now assume that C is a smooth plane quintic and take L = OC(1) the g25, then

L⊗2 = KC .

By the discussion following Remark 8.1, the deformations of rank one correspond to

the points of P2, hence they are the intersections of two lines.

Theorem 8.5. On a smooth plane quintic there are no rank one asymptotic directions.

Proof. Since the Schiffer variations are not asymptotic directions (see Lemma 8.2), we

consider only rank one deformations corresponding to points p ∈ P2 \ C.

Choose two lines l1, l2 in P2 passing through p that intersect C transversally. Denote

by s1, s2 the corresponding sections in H0(L).

Since L⊗2 = KC , we have H0(KC ⊗ L−2) = H0(OC), and we choose t = 1 ∈ H0(OC).

Choose ω = s1s2, set D = div(s1). Then the element ζ = [∂̄(ρD
ω
)] is double-split of a rank

one, by Proposition 2.3. Hence by Proposition 6.2, we have ρ(Q)(ζ ⊙ ζ) = deg(L) = 5,

so ζ is not asymptotic.

�

9. Rank 2 deformations

In this section we will study rank 2 deformations and the condition to be asymptotic.

Let ζ ∈ H1(TC) be a rank 2 deformation. If Cliff(C) > 2, by Theorem 5.5, we know

that ζ is not asymptotic.

So assume Cliff(C) = 2, hence either C is tetragonal, or it is a smooth plane sextic.

Theorem 9.1. Assume C is a tetragonal curve of genus at least 16 and not a double

cover of a curve of genus 1 or 2. If a deformation ζ of rank 2 is not a linear combination

of Schiffer variations supported on a degree 2 effective divisor, then ζ is not asymptotic.

Proof. Under our assumptions, the rank 2 bundle E in the extension (1) associated with

the rank 2 deformation ζ is globally generated (see Remark 7.1). We claim that for

every g14, L, we have h0(L⊗2) = 3, h0(L⊗3) = 4, hence we conclude applying the proof of

Theorem 7.2.

In fact, if h0(L⊗2) > 4, C has a g38. This can’t give a birational map, by the Castelnuovo

bound. So the map has degree 2 and it gives a double cover of genus 1 curve, which

contradicts our assumptions. Hence h0(L⊗2) = 3.

If h0(L⊗3) > 4, C has a g412. Again the induced map can’t be birational by the

Castelnuovo bound. If it has degree 3, the curve C would be trigonal, which contradicts

our assumption on Cliff(C). If the map has degree 2, it gives a double cover of a genus

1 or 2 curve, a contradiction.

�

We will now consider the case where ζ is a linear combination of two Schiffer variations.

We have the following
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Theorem 9.2. On any bielliptic curve of genus at least 5 there exist linear combinations

of two Schiffer variations that are asymptotic of rank 2.

Proof. Assume the curve C is bielliptic of genus at least 5, and let π : C → E be the 2 : 1

map to a genus 1 curve E. By the Castelnuovo inequality a bielliptic curve of genus at

least 5 is not hyperelliptic, nor trigonal. Denote by σ the bielliptic involution. Consider

the curve Γ in the surface S = C × C given by the graph of σ, Γ := {(p, σ(p)) | p ∈ C}.

Consider the form η̂ ∈ H0(KS(2∆)) introduced in [3]. Denote by Z(η̂) its zero locus.

Clearly Z(η̂) intersects the curve Γ outside the diagonal. Take a point (p, σ(p)) ∈ Z(η̂)∩Γ,

p 6= σ(p). Thus, for any quadric Q ∈ I2, by [3] we have

II(Q)(ξp ⊙ ξσ(p)) = −4πiQ(p, σ(p))η̂(p, σ(p)) = 0.

Take ζ = aξp + bξσ(p), then by [3] we have

II(Q)(ζ ⊙ ζ) = a2II(Q)(ξp ⊙ ξp) + b2II(Q)(ξσ(p) ⊙ ξσ(p)).

Notice that any quadric Q ∈ I2, Q is σ-invariant. In fact, H0(C,KC) ∼= H0(E,KE) ⊕

H0(C,KC)
−, where H0(C,KC)

− denotes the anti-invariant subspace by the action of σ

andH0(E,KE) ∼= H0(C,KC)
+ is the invariant subspace. Hence dim

(

Sym2H0(C,KC)
)−

=

g − 1. Moreover we have dimH0(C,K⊗2
C )+ = 2g − 2, thus dimH0(C,K⊗2

C )− = g − 1.

Since the multiplication map is σ-equivariant, I2(KC)
− = (0), so I2(KC) = I2(KC)

+.

Then we have

II(Q)(ζ ⊙ ζ) = (a2 + b2)II(Q)(ξp ⊙ ξp),

since Q is σ-invariant, II is σ-equivariant and σ∗(ξp) = ξσ(p). Hence, if a2 + b2 = 0, ζ is

asymptotic. On the other hand, notice that if a2 + b2 6= 0, there exists a quadric Q such

that II(Q)(ξp ⊙ ξp) 6= 0, so ζ is not asymptotic (see Lemma 8.2).

�

Remark 9.3. The asymptotic directions found in Theorem 9.2 are linear combination of

Schiffer variations supported on a divisor D = 2p+ 2q of a g14 on the bielliptic curve C.

Proof. For any point (p, σ(p)) of the curve Γ in the proof of Theorem 9.2, the line bundle

OC(2p+ 2σ(p)) is a g14 on C. In fact, for p ∈ C, denote by y = π(p) = π(σ(p)) ∈ E, and

take a 2 : 1 cover φ : E → P1 such that y is a ramification point of φ. Then φ(y) is a

critical value for the degree 4 map ψ := φ ◦ π, such that ψ∗(φ(y)) = 2p+ 2σ(p). �

Assume now that C is a smooth plane sextic. We will describe the rank 2 deformations

on C. Set V := H0(OP2(3)) ∼= H0(C,KC) and consider the Grassmannian G(8, V ) of

linear subspaces of V of codimension 2. Denote by Yk = {[ζ ] ∈ PH1(TC) | rank(ζ) ≤ k}

and consider the map

χ : Y2 \ Y1 → G(8, V ),

[ζ ] 7→ ker(ζ).
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Denote by Sec(C) ⊂ Y2 the linear combination of Schiffer variations at two points in C.

Let Z ∈ Hilb2(P2) be a length 2 scheme and denote by IZ the ideal sheaf of Z. Then

WZ := H0(IZ(3)) ⊂ V has codimension 2. If Z = p + q, p 6= q, then WZ is the space of

cubics passing through p and q, while if Z = (p, v), where v 6= 0 is a tangent vector at

p, the elements in WZ are the cubics passing through p and tangent at v. Consider the

injective map

γ : Hilb2(P2) → G(8, V ), Z 7→ WZ .

Denote by Hilb2(P2)(C) the divisor of schemes having support intersecting C and UC :=

Hilb2(P2) \Hilb2(P2)(C). We have the following

Proposition 9.4. We have

(1) χ(Y2 \ Y1) ⊂ γ(Hilb2(P2)),

(2) χ induces a bijection between Y2 \ Sec(C) and UC .

Proof. Take [ζ ] ∈ Y2 \ Y1, and W = χ([ζ ]) = ker(ζ) ⊂ V . Denote by

ev :W ⊗OP2 → OP2(3)

the evaluation map and tensor it by OP2(−3). Then the cokernel of this map is a sheaf

OZ and we claim that it has length 2.

In fact, denote by mi : W ⊗H0(OP2(i)) → H0(OP2(3 + i)) the multiplication map and

by ci := codim(Im(mi)), H
0(OP2(3 + i)).

Then by a Theorem of Macaulay (see [14, Theorem 2]), we have c1 ≤ 2. Gotzmann’s

Persistence Theorem (see [14]) says that if c1 = 2, then ci = 2 for all i ≥ 1. From this

one easily proves that OZ has length 2.

This shows that χ([ζ ]) = γ(Z) and (1) is proven. Since γ is injective, we can consider

the composition

β := γ−1 ◦ χ : Y2 \ Y1 → Hilb2(P2).

We claim that β−1(Hilb2(P2)(C)) ⊂ Sec(C).

Assume by contradiction that there exists [ζ ] 6∈ Sec(C) such that β([ζ ]) ∈ Hilb2(P2)(C).

Then β([ζ ]) = p+q, where p ∈ C and q 6∈ C and χ([ζ ]) = ker(ζ) ∼= {s ∈ H0(OP2(3)) | s(p) =

s(q) = 0}.

The image of m3 is given by the sextics vanishing at p and q. So, restricting to C, we

obtain that the image of the map µ : W ⊗ H0(C,KC) → H0(C,K⊗2
C ) is H0(K⊗2

C (−p)).

Hence we get ζ = ξp ∈ Y1.

So we can consider the restriction β ′ of β to Y2 \ Sec(C). This gives a map

β ′ : Y2 \ Sec(C) → UC .

We want to show that β ′ is bijective.

Assume β ′([η]) = β ′([ζ ]) = Z. So W = ker(η) = ker(ζ), hence W ⊂ ker(aη + bζ),

for every linear combination. Note that the rank of aη + bζ cannot be 1, otherwise

W ⊂ H0(KC(−p)) for some p ∈ C, and so p ∈ Supp(Z), a contradiction since Z ∈ UC .
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On the other hand, letting L = H0(KC)/W , then aη + bζ define symmetric forms on L,

which has dimension 2, so there exists a linear combination aη+ bζ for which the rank of

the corresponding quadric drops. Hence it is zero and [ζ ] = [η] ∈ Y2, thus β ′ is injective.

To prove that β ′ is surjective, fix Z ∈ UC and realise Z as a complete intersection of

a line l and a conic Γ (tangent if Z is not reduced). Using the equations of l and Γ we

obtain the exact sequence

0 → OP2(−3) → OP2(−1)⊕OP2(−2) → IZ → 0

and tensoring by OP2(3) we have

0 → OP2 → OP2(2)⊕OP2(1) → IZ(3) → 0.

Restricting to C and using the fact that Z ∩ C = ∅, we get the exact sequence

0 → OC → OC(2)⊕OC(1) → KC → 0,

and its extension class gives a non trivial class ζ such that ker(ζ) = H0(IZ(3)|C). So

β ′([ζ ]) = Z. �

Remark 9.5. Notice that from Proposition 9.4 (2), it follows that the restriction of χ to

Y2 \ Sec(C) is injective. Hence for these infinitesimal deformations ζ, ker(ζ) determines

ζ.

We show the following

Theorem 9.6. On a smooth plane sextic there are no asymptotic directions of rank 2.

Proof. By Proposition 9.4 we have shown that a rank 2 deformations ζ that is not a linear

combinations of Schiffer variations corresponds to a point Z ∈ Hilb2(P2) whose support

does not intersect C. We have ker(ζ) ∼= H0(OP2(3) ⊗ IZ) and ζ is determined by its

kernel.

The deformation ζ corresponds to such a length 2 scheme Z, that is the intersection

of a line l1 and a conic Γ, which are tangent in a point if Z is not reduced. So ker(ζ) ∼=

H0(OP2(3)⊗IZ) = l·H0(OP2(2))+Γ·H0(OP2(1)). The scheme Z is either supported in two

distinct points p, q, or it is given by p and a tangent direction v. So the line l1 is uniquely

determined by Z, while we can choose Γ as the union of two lines l2, l3 passing through

p and q, or passing through p if Z is not reduced. Denote by li|C =: si ∈ H0(OC(1)), set

ω = s1s2s3 ∈ H0(KC) and D := div(s1). Then a Dolbeault representative for ζ is ∂(ρD
ω
),

where ρD is as in Proposition 2.3. This can be easily seen, observing that ker([∂(ρD
ω
)]) is

equal to ker(ζ). So ζ is double split, hence it is not asymptotic by Proposition 6.2.

Assume ζ is a linear combination of two Schiffer variations, ζ = aξp+ bξq, with p, q two

distinct points in C and not lying on a bitangent of C.

Consider s1 ∈ H0(OC(1)(−p − q)), s2 ∈ H0(OC(1)) such that 〈s1, s2〉 is base point

free and such that p is not a ramification point of this pencil. Let s3 ∈ H0(OC(1)), with
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s3(q) = 0, s3(p) 6= 0. Set Q = s21s3⊙s
2
2s3−s1s2s3⊙s1s2s3 ∈ I2(KC). Then by [2, Lemma

2.2] we have

µ2(Q) = s23(µ1,OC(1)(s1 ∧ s2))
2 ∈ H0(K⊗4

C ),

so µ2(Q)(p) 6= 0, while µ2(Q)(q) = 0 and Q(p, q) = 0. So by [3, Thm. 2.2], we have

II(Q)(ζ) = πia2µ2(Q)(p) = 0 if and only if a = 0 and ζ is a Schiffer variation at q, so it

is not asymptotic.

If the line through p and q is bitangent, take s2 the section of H0(OC(1)) given by a line

passing through p and not through q, s3, s4 the sections given by distinct lines passing

through q and not through p. Then the quadric Q = s22s4⊙s
2
3s4−s2s3s4⊙s2s3s4 ∈ I2(KC),

is such that Q(p, q) = 0, since s2s4(p) = s2s4(q) = 0. By [2, Lemma 2.2], we have

µ2(Q) = s24(µ1,OC(1)(s2 ∧ s3))
2 ∈ H0(K⊗4

C ).

Hence µ2(Q)(p) 6= 0, while µ2(Q)(q) = 0. So by [3, Thm. 2.2], we have II(Q)(ζ ⊙ ζ) =

−2πia2µ2(Q)(p) = 0 if and only if a = 0 and ζ is a Schiffer variation at q, so it is not

asymptotic.

If p = q, ζ = aξp + bξ2p , take the tangent line of C at p and denote by s1 the given

section of H0(OC(1)). Take s2, s3 two other sections of H0(OC(1)) given by two lines not

passing through p. Then consider the quadric Q = s21s3⊙s
2
2s3−s1s2s3⊙s1s2s3 ∈ I2(KC).

Set ω = s1s2s3 ∈ H0(KC), then ζ = [∂̄(ρp(
az+b
ω

))] and the computation in Proposition

4.3 gives II(Q)(ζ ⊙ ζ) = b2Resp(
s1
s2
d( s2

s1
)) = 0 if and only if b = 0, hence ζ is a Schiffer

variation at p, so it is not asymptotic.

�

10. Maroni special trigonal curves of genus 6, 7 and trigonal curves of

genus 5

10.1. g = 6 Maroni special. Let C be a (non hyperelliptic) trigonal curve of genus

6 and Maroni degree k = 1. We will show that in this case there can exist asymptotic

directions that are not Schiffer variations in the ramification points of the g13. We will

describe these asymptotic directions. Moreover we give a parametrisation of the locus of

the trigonal curves of genus 6 with Maroni degree 1 giving an explicit equation. We also

describe the sublocus of those trigonal curves admitting such asymptotic directions.

Denote by L the trigonal linear series. Recall that by the definition 8.3 of the Maroni

degree, we have h0(L⊗2) = 3 and h0(L⊗3) = 5. Then, KC ⊗ L−3 has degree 1 and by

Riemann Roch h0(KC ⊗ L−3) = 1, so KC = L⊗3 ⊗ OC(q) for a point q ∈ C. Hence

M = K ⊗ L∨ = L⊗2(q), by Riemann Roch h0(M) = 4 and the map φ : C → |M | ∼= P3

is an embedding. In fact φ(C) is a curve of degree 7 and it is smooth since otherwise

C would have a g25.We fix a basis {s1, s2} of H0(L) where we assume that s2(q) = 0.

Consider the inclusion L⊗2 ⊂ L⊗2(q), then we can fix now an ordered basis of M given

by {σs21, σs1s2, σs
2
2, t} where σ ∈ H0(OC(q)), σ 6= 0, and t(q) 6= 0.
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Consider the rational functions

x =
s1
s2
, g =

σs22
t
, y =

1

g
=

t

σs22
.

Remark 10.1. Assume there exists a deformation ζ of rank 1 = Cliff(C) = gon(C)−2,

that is asymptotic and it is not a Schiffer variation. Let L be the g13. Then we can assume

ζ = [∂̄(ρD
ω
)], where D is the zero divisor of s1 and ω = s1t.

Proof. Since ζ is not a Schiffer variation and h0(L⊗2) = 3, by Theorem 7.2 we know that

ζ is split and by Proposition 2.3, so we can write ω = s1τ , where τ ∈ H0(KC ⊗ L∨) and

s1 ∈ H0(L) have disjoint support. Thus τ does not belong to 〈σs21, σs1s2〉. Moreover if

τ = σs22, then ζ is double split, so, by Theorem 7.2, it is not asymptotic. Hence we can

take ω = s1t. �

Assume D = div(s1) = p1 + p2 + p3 is reduced.

Theorem 10.2. With the above notation, let ζ = [∂̄(ρD
ω
)] be a deformation of rank 1 that

is not a Schiffer variation. Then ζ is asymptotic if and only if the following conditions

are satisfied:

(14) g(p1) + g(p2) + g(p3) = 0

(15) g2(p1) + g2(p2) + g2(p3) = 0

(16) Resp1
dg

x
+Resp2

dg

x
+Resp3

dg

x
= 0.

Proof. The space W of quadrics that contain the canonical curve is spanned by the

rank ≤ 4 quadrics corresponding to all the pencils of H0(M). Using the chosen basis and

computing the second fundamental form as in Proposition 4.3, we easily see II(Q)(ζ⊙ζ) =

0, for all the quadrics constructed as above, except for (possibly) the ones corresponding

to the three pencils in the subspace 〈σs22, σs1s2, t〉 ⊂ H0(M). Denote by

Γ1 = ts1 ⊙ σs32 − σs1s
2
2 ⊙ ts2

the quadric corresponding to the pencil 〈σs22, t〉,

Γ2 = ts1 ⊙ σs1s
2
2 − σs21s2 ⊙ ts2,

corresponding to the pencil 〈σs1s2, t〉 and

Γ3 = σs21s2 ⊙ σs32 − (σs1s
2
2)

⊙2,

corresponding to the pencil 〈σs22, σs1s2〉.

Then, using Proposition 4.3, we obtain:

II(Γ3)(ζ ⊙ ζ) = −2πi
∑

i

Respi(
σs21s2
s1t

d(
σs32
s1t

)) + 2πi
∑

i

Respi(
σs1s

2
2

s1t
d(
σs1s

2
2

s1t
)) =
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= −2πi
∑

i

Respi(
σs1s2
t

d(
σs32
s1t

)) =

= −2πi
∑

i

Respi(xgd(
g

x
)) = 2πi

∑

i

Respi(g
2dx

x
) = 2πi

∑

g2(pi),

II(Γ2)(ζ ⊙ ζ) = −2πi
∑

i

Respi(
ts1
s1t

d(
σs1s

2
2

s1t
)) + 2πi

∑

i

Respi(
σs21s2
s1t

d(
ts2
s1t

)) =

= 2πi
∑

i

Respi(xgd(
1

x
)) = −2πi

∑

i

Respi(g(
dx

x
)) = −2πi

∑

g(pi),

II(Γ1)(ζ ⊙ ζ) = −2πi
∑

i

Respi(
ts1
s1t

d(
σs32
s1t

)) + 2πi
∑

i

Respi(
σs1s

2
2

s1t
d(
ts2
s1t

)) =

= −2πi
∑

i

Respi(d(
g

x
)) + 2πi

∑

i

Respi(gd(
1

x
)) = −2πi

∑

i

Respi(
dg

x
).

Hence ζ is asymptotic if and only if equations (14), (15), (16) are satisfied.

�

Remark 10.3. If D = div(s1) is not reduced, the computation is the same, one only has

to consider the multiplicity of the points pi and take the sum over the support of D.

Now, by Riemann Roch, h0(M⊗3 ⊗ L) = 24 − 5 = 19. Note that M⊗3 ⊗ L ∼= L⊗7(3q).

Set V = H0(L), then si1 · s
n−i
2 is a basis of Symn(V ) the space of symmetric tensor of V.

Consider the space

t3 · V + t2 · Sym3(V )σ + t · Sym5(V )σ2 + Sym7(V )σ3 ⊂ H0(M⊗3 ⊗ L),

in fact t3−iSym2i+1(V ) ⊂ H0(M⊗3⊗L(−iq)). Since dimSymk(V ) = k+1, and h0(M⊗3⊗

L) = 19, counting dimensions, we see that we must have an equation

φ1(s1, s2) · t
3 + σφ3(s1, s2)t

2 + σ2φ5(s1, s2)t+ σ3φ7(s1, s2) = 0.

Since the curve is trigonal (non hyperelliptic) φ1(s1, s2) 6= 0 and since σφ3(s1, s2)t
2 +

σ2φ5(s1, s2) + σ3φ7(s1, s2) vanishes on q we may take φ1(s1, s2) = s2 then we get the

relation:

(17) s2t
3 + σφ3(s1, s2)t

2 + σ2φ5(s1, s2)t+ σ3φ7(s1, s2) = 0.

Remark 10.4. Looking at the order of vanishing of the terms of the above equation in

q, since s2(q) = σ(q) = 0, we see that φ3(s1, s2) must contain the term s31.

Setting t′ := t+ ασs21 + βσs1s2, we can assume that φ3(s1, s2) = as31 + bs32, with a 6= 0.

Dividing by σ3s72, we get the equation:

y3 +
y2

s32
φ3(s1, s2) +

y

s52
φ5(s1, s2) +

1

s72
φ7(s1, s2) = y3 + y2ψ3(x) + yψ5(x) + ψ7(x) =
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= y3 + y2(ax3 + b) + yψ5(x) + ψ7(x),

where ψk(x) is the polynomial in x obtained by φk(s1, s2) dividing by sk2 and a 6= 0.

So we have proven the following

Proposition 10.5. Trigonal curves of genus 6 with Maroni degree k = 1 are described

by the following equation:

(18) y3 + y2(ax3 + b) + yψ5(x) + ψ7(x) = 0,

where a, b ∈ C, a 6= 0, ψ5, ψ7 polynomials of degree ≤ 5, 7.

We will now describe the locus of trigonal curves of genus 6 with Maroni degree k =

1 admitting an asymptotic direction of rank 1 different from a Schiffer variation at a

ramification point of the g13. We have the following

Theorem 10.6. Trigonal curves of genus 6 with Maroni degree k = 1 admitting an

asymptotic direction of rank 1 different from a Schiffer variation at a ramification point

of the g13 satisfy the following equation:

(19) y3 + y2x3 + yx2ψ3(x) + ψ7(x) = 0,

where ψ3, ψ7 are polynomials of degree ≤ 3, 7 such that ψ7(0) 6= 0.

Proof. Recalling that y = 1
g
, equations (14) and (15) easily give:

∑3
i=1 y(pi) = 0,

∑3
i=1(y(pi))

2 = 0, and
∑

i<j y(pi)y(pj) = 0.

Set yi := y(pi), since x(pi) = 0, equation (18) gives

y3i + by2i + yiψ5(0) + ψ7(0) = 0, ∀i = 1, 2, 3.

Hence the equation

z3 + bz2 + ψ5(0)z + ψ7(0) has the elements yi as roots, so b = −
∑3

i=1 yi = 0 and

ψ5(0) =
∑

i<j yiyj = 0.

Moreover, since a 6= 0, changing y by a non zero multiple, we can assume that a = 1.

So the equation (18) becomes

P (x, y) = y3 + y2x3 + yxψ4(x) + ψ7(x) = 0.

Notice that y3i = −ψ7(0) 6= 0, since s1 and t have no common zeros.

Consider now equation (16). We have dg
x
= 1

x
d( 1

y
) = − 1

x
dy
y2

, and Pxdx + Pydy = 0, so

dy = −Pxdx
Py

. Hence

Px = 3x2y2 + ψ4(x)y + xyψ′
4(x) + ψ′

7(x), Py = 3y2 + 2yx3 + xψ4(x).

So equation (16) is

0 =

3
∑

i=1

Respi(
dg

x
) = −

3
∑

i=1

Respi(
Px

y2Py

dx

x
) = −

3
∑

i=1

Px

y2Py
(pi) = −

3
∑

i=1

ψ4(0)yi + ψ′
7(0)

3y4i
=
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= −
1

3

3
∑

i=1

ψ4(0)

y3i
−

1

3

3
∑

i=1

ψ′
7(0)

y4i
=
ψ4(0)

ψ7(0)
−

1

3

ψ′
7(0)

ψ7(0)

3
∑

i=1

1

yi
=
ψ4(0)

ψ7(0)
,

hence ψ4(0) = 0 and the equation (18) is

P (x, y) = y3 + y2x3 + yx2ψ3(x) + ψ7(x) = 0.

�

Remark 10.7. We observe that equation (18) depends on 11 parameters, while the di-

mension of the locus of trigonal curves of genus 6 with Maroni degree 1 has dimension

12.

By [1, Lemma 3.3], the tangent space to the trigonal locus is:

(20) Ttri,[C] = {ζ ∈ H1(TC) | ζ · Ω = 0 ∈ H1(L⊗2)},

where Ω = µ1,L(s1∧ s2) = s22d(
s1
s2
), while the tangent space to the locus of trigonal curves

with Maroni degree k = 1 is

TMaroni,[C] = {ζ ∈ Ttri,[C] | ζ ·
µ1,M(t ∧ σs22)

s2
= 0}.

Notice that µ1,M(t ∧ σs22) = t2d(g) and clearly s2 divides t2d(g), hence the element
µ1,M (t∧σs2

2
)

s2
∈ H0(K⊗2

C ).

Assume ζ = [∂̄(ρD
ω
)], with ω = s1t as above. We have the following

Proposition 10.8. (1) ζ ∈ Ttri,[C] if and only if equation (14) is satisfied.

(2) ζ ∈ TMaroni,[C] and it is asymptotic if and only if it satisfies equation (19) with

ψ7(0) 6= 0, ψ′
7(0) = 0.

Proof. Notice that ζ · Ω = 0 ∈ H1(L⊗2) if and only if ζ · Ω · si = 0, for i = 1, 2. We have

ζ · Ω · s1 =

∫

C

Ωs1
∂ρD
s1t

= 0,

since ρD ≡ 0 on the zero locus of t, while

ζ · Ω · s2 =

∫

C

Ωs2
∂ρ

s1t
=

∫

C

s22d(
s1
s2
)s2

∂ρ

s1t
=

∫

C

s22
t
∂ρ
dx

x
=

3
∑

i=1

g(pi),

hence the first statement follows.

We have
∫

C

µ1,M(t ∧ σs22)

s2
∧
∂ρ

s1t
=

∫

C

t2

s2
d(
σs22
t

) ∧
∂ρ

s1t
=

∫

C

d(
σs22
t

) ∧
∂(ρt)

s1s2
= −

∫

C

d(
ρt

s1s2
d(
σs22
t

)) =

∫

∪∂Di

t

s1s2
d(
σs22
t

) =

=

3
∑

i=1

Respi(
t

s1s2
dg) =

3
∑

i=1

Respi(
f

g
dg).
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Now we have:
f
g
dg = y

x
d( 1

y
) = − 1

xy
dy, dy = −Pxdx

Py
, so

3
∑

i=1

Respi(
f

g
dg) = −

3
∑

i=1

Respi(
Px

yPy
)
dx

x
= −

3
∑

i=1

Px

yPy
(pi) =

3
∑

i=1

ψ′
7(0)

3y3i
=
ψ′
7(0)

ψ7(0)
.

So ζ asymptotic is in TMaroni,[C] if and only if ψ′
7(0) = 0.

�

10.2. Genus 7 Maroni special. Assume C is a (non hyperelliptic) trigonal curve of

genus 7 with Maroni degree k = 1. We will show that also in this case there can exist

asymptotic directions that are not Schiffer variations in the ramification points of the g13
and we will describe them. Moreover we give a parametrisation of the locus of the trigonal

curves of genus 7 with Maroni degree 1 giving an explicit equation and we describe the

sublocus of those trigonal curves admitting such asymptotic directions.

Take a deformation ζ of rank 1 = Cliff(C) = gon(C) − 2 and let L be the g13.

The assumption on the Maroni degree gives h0(L⊗3) = 5. By Riemann Roch we have

h0(KC⊗L
−3) = 2, so KC⊗L

−3 is the g13, soKC = L⊗4. Set as usual V = H0(L) = 〈s1, s2〉,

then H0(L⊗3) = 〈s31, s
3
2, s

2
1s2, s1s

2
2, t〉.

As in the case g = 6, we can use Remark 10.1 and assume ζ = [∂̄(ρD
ω
)], where D is the

zero divisor of s1 and ω = s1t.

Set x = s1
s2

, g =
s3
2

t
, y = 1

g
= t

s3
2

, D = div(s1) = p1+ p2+ p3. In the case D not reduced,

the computation is the same, one only has to consider the multiplicity of the points pi

and take the sum over the support of D.

Theorem 10.9. With the above notation, let ζ = [∂̄(ρD
ω
)] be a deformation of rank 1 that

is not a Schiffer variation. Then ζ is asymptotic if and only if equations (14), (15), (16)

are satisfied, where x = s1
s2

, g =
s3
2

t
.

Proof. A basis of I2(KC) is given by the rank ≤ 4 quadrics determined by the pencils in

H0(KC⊗L
∨) = H0(L⊗3) = 〈s31, s

3
2, s

2
1s2, s1s

2
2, t〉. Computing the second fundamental form

as in Proposition 4.3, we easily see II(Q)(ζ ⊙ ζ) = 0 for all the quadrics constructed as

above, except for (possibly) the three pencils in the subspace 〈s32, s1s
2
2, t〉 ⊂ H0(KC⊗L

∨).

Denote by

Γ1 = ts1 ⊙ s42 − ts2 ⊙ s1s
3
2, Γ2 = ts1 ⊙ s1s

3
2 − ts2 ⊙ s21s

2
2, Γ3 = s21s

2
2 ⊙ s42 − (s1s

3
2)

⊙2

the corresponding three quadrics.

A similar computation as in the case g = 6 shows that ζ is asymptotic if and only if

equations (14), (15), (16) are satisfied. �

Observe that

(21) t3 + t2Sym3(V ) + tSym6(V ) + Sym9(V ) ⊂ H0(L⊗9) = H0(M⊗3).
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Since dim(Symk(V )) = k + 1 and h0(L⊗9) = 21, we have an equation

(22) t3 + t2φ3(s1, s2) + tφ6(s1, s2) + φ9(s1, s2) = 0.

Dividing by s92, we get the equation:

(23) P (x, y) = y3 + y2ψ3(x) + yψ6(x) + ψ9(x) = 0.

So we have proven the following

Proposition 10.10. Trigonal curves of genus 7 with Maroni degree k = 1 are described

by the following equation:

(24) y3 + y2ψ3(x) + yψ6(x) + ψ9(x) = 0,

where ψ3, ψ6, ψ9 are polynomials of degree ≤ 3, 6, 9.

We will now describe the locus of trigonal curves of genus 7 with Maroni degree k =

1 admitting an asymptotic direction of rank 1 different from a Schiffer variation at a

ramification point of the g13.

Theorem 10.11. Trigonal curves of genus 7 with Maroni degree k = 1 admitting an

asymptotic direction of rank 1 different from a Schiffer variation at a ramification point

of the g13 satisfy the following equation:

(25) y3 + y2xψ2(x) + yx2ψ4(x) + ψ9(x),

where ψ2, ψ4, ψ9 are polynomials of degree ≤ 2, 4, 9 and ψ9(0) 6= 0.

Proof. Set yi := y(pi), then equations (14), (15) imply that
∑3

i=1 yi = 0,
∑3

i=1 y
2
i = 0,

∑

i<j yiyj = 0. Since x(pi) = 0, ∀i = 1, 2, 3, equation (24) gives

y3i + y2iψ3(0) + yiψ6(0) + ψ9(0) = 0, ∀i = 1, 2, 3.

Hence the equation

z3 + z2ψ3(0) + zψ6(0) + ψ9(0) = 0,

has y1, y2, y3 as roots. So we obtain

ψ3(0) = −
3

∑

i=1

yi = 0, ψ6(0) =
∑

i<j

yiyj = 0.

Hence equation (24) is of the form

P (x, y) = y3 + y2xψ2(x) + yxψ5(x) + ψ9(x),

and ψ9(0) 6= 0, since s1 and t do not have common zeros. Now we compute dg = −dy
y2

and Pxdx+ Pydy = 0, so dy = −Pxdx
Py

.
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So equation (16) becomes

0 =
3

∑

i=1

Px

y2Py

(pi) =
3

∑

i=1

y2i ψ2(0) + yiψ5(0) + ψ′
9(0)

3y4i
=

=
1

3

3
∑

i=1

ψ2(0)

y2i
+

1

3

3
∑

i=1

ψ5(0)

y3i
+

1

3

3
∑

i=1

ψ′
9(0)

y4i
= −

ψ5(0)

ψ9(0)
,

since
∑3

i=1
1
yi
=

∑3
i=1

1
y2i

= 0 and y3i = −ψ9(0). So we get ψ5(0) = 0, and equation (24) is

P (x, y) = y3 + y2xψ2(x) + yx2ψ4(x) + ψ9(x) = 0

where ψ9(0) 6= 0. �

Remark 10.12. If ζ is an asymptotic direction, then it is tangent to the trigonal locus.

Proof. By (20), ζ ∈ Ttri,[C] if and only if ζ · Ω · sisj = 0, i, j = 1, 2.

We have:

ζ · Ω · s1sj =

∫

C

Ωs1sj
∂ρ

s1t
= 0,

for j = 1, 2,

ζ · Ω · s22 =

∫

C

Ωs22
∂ρ

s1t
=

∫

C

s22d(
s1
s2
)s22

∂ρ

s1t
=

∫

C

s32
t
∂ρ
dx

x
=

3
∑

i=1

g(pi) = 0,

if and only if it satisfies equation (14).

�

10.3. Genus 5. Assume C is a non hyperelliptic trigonal curve of genus 5, denote by L

the trigonal line bundle.

We will show that also in this case there can exist asymptotic directions that are

not Schiffer variations in the ramification points of the g13 and we will describe them.

Moreover we give a parametrisation of the locus of the trigonal curves of genus 5 and of

the sublocus of those trigonal curves admitting such asymptotic directions.

Then, KC ⊗ L−2 has degree 2 and by Riemann Roch h0(KC ⊗ L−2) = 1, so KC =

L⊗2⊗OC(p+q) for some p, q ∈ C. Then M = KC⊗L∨ = L(p+q). Set H0(L) = 〈s1, s2〉,

H0(KC ⊗ L∨) = 〈σs1, σs2, t〉, where div(σ) = p+ q and t(p) 6= 0, t(q) 6= 0, since C is not

hyperelliptic. So we have H0(KC) = H0(L⊗2(p+ q)) = 〈σs21, σs1s2, σs
2
2, ts1, ts2〉.

Set x = s1
s2

, g = σs2
t

, y = 1
g
, D = div(s1) = p1+p2+p3, and again we can choose ω = s1t.

In the case D not reduced, the computation is the same, considering the multiplicity of

the points pi and taking the sum over the support of D.

We have the following

Theorem 10.13. With the above notation, let ζ = [∂̄(ρD
ω
)] be a deformation of rank 1

that is not a Schiffer variation Then ζ is asymptotic if and only if equations (14), (15),

(16) are satisfied, where x = s1
s2

, g = σs2
t

.
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Proof. The space I2(KC) is three dimensional and it is generated by the following quadrics:

Γ1 = σs22⊙s1t−σs1s2⊙s2t, Γ2 = σs21⊙s2t−σs1s2⊙s1t, Γ3 = σs21⊙σs
2
2−σs1s2⊙σs1s2,

corresponding to the three pencils of |K ⊗ L∨|.

A straightforward computation as in the case g = 6, 7 shows that ζ is asymptotic if

and only equations (14), (15), (16) are satisfied.

�

Now, by Riemann Roch, h0(M⊗3 ⊗ L⊗2) = h0(L⊗5(3p + 3q)) = 21 − 4 = 17. Set

V = H0(L) and consider

t3 · Sym2V + t2 · Sym3(V )σ + t · Sym4(V )σ2 + Sym5(V )σ3 ⊂ H0(M⊗3 ⊗ L⊗2).

Counting dimensions, we see that we have an equation

φ2(s1, s2) · t
3 + σφ3(s1, s2)t

2 + σ2φ4(s1, s2)t+ σ3φ5(s1, s2) = 0.

Since the curve is not hyperelliptic, φ2(s1, s2) 6= 0, moreover, σφ3(s1, s2)t
2+σ2φ4(s1, s2)+

σ3φ5(s1, s2) vanishes on p + q. Thus we can choose s2 such that (s1 + s2)(p) = 0,

(s1 + s2)(q) 6= 0, (s1 − s2)(p) 6= 0, (s1 − s2)(q) = 0 and φ2(s1, s2) = s21 − s22.

Dividing the equation by σ3s52, we get

y3(x2 − 1) + y2ψ3(x) + yψ4(x) + ψ5(x) = 0.

So we have proven the following

Proposition 10.14. Trigonal curves of genus 5 are described by the following equation:

(26) y3(x2 − 1) + y2ψ3(x) + yψ4(x) + ψ5(x) = 0,

where ψ3, ψ4, ψ5 are polynomials of degree ≤ 3, 4, 5.

We will now describe the locus of trigonal curves of genus 5 admitting an asymptotic

direction of rank 1 different from a Schiffer variation at a ramification point of the g13.

Theorem 10.15. Trigonal curves of genus 5 admitting an asymptotic direction of rank

1 different from a Schiffer variation at a ramification point of the g13 satisfy the following

equation:

(27) y3(x2 − 1) + y2xα2(x) + yx2χ2(x) + ψ5(x),

where α2, χ2 are polynomials of degree ≤ 2, ψ5 is a polynomial of degree ≤ 5 and ψ5(0) =

1.

Proof. Equations (14), (15) are equivalent to
∑

i yi = 0,
∑

i y
2
i = 0,

∑

i,j yiyj = 0, where

yi := y(pi). Since x(pi) = 0, equation (26) gives

−y3i + y2i ψ3(0) + yiψ4(0) + ψ5(0) = 0, ∀i = 1, 2, 3.
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Hence the polynomial −z3 + ψ3(0)z
2 + ψ4(0)z + ψ5(0) has the elements yi as roots, so

ψ3(0) =
∑3

i=1 yi = 0 and ψ4(0) = −
∑

i<j yiyj = 0, while ψ5(0) 6= 0.

Writing g as a function of x, dg
x

= g′(x)dx
x

, so condition (16) is 0 =
∑

i g
′(pi) =

−
∑

i
y′

y2
(pi). Since dy = −Px

Py
dx, and

Px = 2xy3 + y2ψ′
3(x) + yψ′

4(x) + ψ′
5(x),

Py = 3y2(x2 − 1) + 2yψ3(x) + ψ4(x),

Then

0 =
∑

i

y′

y2
(pi) = −

∑

i

y2i ψ
′
3(0) + yiψ

′
4(0) + ψ′

5(0)

3y4i
= −

1

3

∑

i

ψ′
4(0)

y3i
= −

ψ′
4(0)

ψ5(0)
.

So, ψ′
4(0) = 0 and equation (26) becomes:

P (x, y) = y3(x2 − 1) + y2xα2(x) + yx2χ2(x) + ψ5(x),

where we can assume ψ5(0) = 1. �

Remark 10.16. Notice that changing t with t+λσs1, the deformation ζ does not change.

Hence we can change y with y + λx in such a way that α2(x) = xα1(x), where α1 is a

polynomial of degree ≤ 1. So the equation depends on 10 parameters, while the trigonal

locus has dimension 11.

Remark 10.17. If ζ is an asymptotic direction, then it is tangent to the trigonal locus.

Proof. By (20), the infinitesimal deformation ζ = [∂̄(ρD
ω
)] is tangent to the trigonal locus

if and only if

ζ · Ω =

∫

C

Ω
∂ρ

s1t
=

∫

C

s22d(
s1
s2
) ∧

∂ρ

s1t
=

∫

C

d(d(
s1
s2
)s22

ρ

s1t
) =

∑

i

Respid(
s1
s2
)s22

1

s1t
=

=
∑

i

Respig
dx

x
=

∑

i

g(pi) = 0,

which is equation (14). �
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