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NORMS OF SPHERICAL AVERAGING OPERATORS

FOR SOME GEOMETRIC GROUP ACTIONS

BOGDAN NICA

Abstract. We obtain asymptotic estimates for the ℓp-operator norm of
spherical averaging operators associated to certain geometric group ac-
tions. The motivating example is the case of Gromov hyperbolic groups,
for which we obtain asymptotically sharp estimates. We deduce asymp-
totic lower bounds for the combinatorial expansion of spheres.

1. Averaging operators

Let Γ be a countable discrete group, and let S ⊆ Γ be a non-empty finite
subset. The averaging operator λS is given by

λS =
1

|S|

∑

g∈S

λ(g)

where λ is the left regular representation of Γ. More explicitly, λS acts on
complex-valued functions defined on Γ, sending a function φ : Γ → C to the
function λS(φ) : Γ → C given by

λS(φ)(h) =
1

|S|

∑

g∈S

φ(g−1h).

The averaging operator λS is a natural and fundamental operator, which
appears under several guises. In the terminology of random walks, it is
the transition operator for the simple random walk defined by S. In graph
theory, λS is closely related to the discrete Laplacian. Averaging operators
also appear in harmonic analysis, and in ergodic theory.

Let p ∈ [1,∞). The averaging operator λS is a bounded operator on
ℓpΓ, and the broad problem we are interested in is that of computing or
estimating the p-operator norm ‖λS‖p→p.

There are four general facts that frame this broad problem.
Firstly,

‖λS‖p→p ≤ 1,(1)

with equality for p = 1. We will therefore restrict to p ∈ (1,∞) in what
follows. More interestingly, equality in (1) also holds when Γ is an amenable
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2 BOGDAN NICA

group. Kesten [10] originally proved this fact in the case p = 2; the same
argument, a nice application of Følner sets, works in fact for each p ∈ (1,∞).
The upshot is that our problem is interesting only when Γ is non-amenable.

Secondly, we have the trivial lower bound

‖λS‖p→p ≥ |S|−1/p′(2)

where p′ is the conjugate exponent of p ∈ (1,∞), given by 1/p + 1/p′ = 1.
Indeed, λS maps 1e, the characteristic function of the identity of Γ, to
|S|−1 · 1S, the normalized characteristic function of the subset S. It follows

that ‖λS‖p→p ≥ ‖|S|−1 · 1S‖p = |S|−1+1/p = |S|−1/p′ , as claimed.
Thirdly, we have the duality formula

‖λS‖p→p = ‖λS−1‖p′→p′.(3)

This can be deduced from the identity 〈λS(φ), ψ〉 = 〈φ, λS−1(ψ)〉, for φ ∈ ℓpΓ

and ψ ∈ ℓp
′

Γ, where 〈·, ·〉 : ℓpΓ × ℓp
′

Γ → C is the duality pairing given by

〈φ,ψ〉 =
∑

h∈Γ φ(h) ψ(h). The duality formula (3) allows a back-and-forth
between the two ranges of exponents, p ∈ (1, 2] and p ∈ [2,∞). From
now on, we focus on the range p ∈ (1, 2]. Our preference for the lower
range stems from a circle of ideas, results and open questions addressing
the Banach algebra completions of the group algebra CΓ under the left
regular representation λ, for varying exponents p. The classical completions
occur at p = 1, yielding the Banach algebra ℓ1Γ, respectively at p = 2,
yielding the reduced C∗-algebra C∗

rΓ. The group Banach algebras indexed
by p ∈ (1, 2) interpolate between the ‘easy’ ℓ1Γ and the ‘hard’ C∗

rΓ. First
introduced by Carl Herz in the early 1970’s, this interpolating family is
currently enjoying some renewed interest, see Liao–Yu [12], Phillips [16],
Samei–Wiersma [19, 20], Gardella–Thiel [7].

Fourthly, for p ∈ (1, 2) we have the interpolation bound

‖λS‖p→p ≤ ‖λS‖
2/p′

2→2.(4)

Indeed, Riesz-Thorin interpolation yields ‖λS‖p→p ≤ ‖λS‖
1−θ
1→1 ‖λS‖

θ
2→2,

where θ is given by 1/p = (1 − θ) + θ/2. Thus θ = 2/p′, and we recall
that ‖λS‖1→1 = 1. The interpolation bound (4) is promising–it implies that
an upper bound for the 2-operator norm ‖λS‖2→2 leads to upper bounds
for p-operator norm ‖λS‖p→p in the range p ∈ (1, 2). It turns out, however,
that the interpolation approach may not provide optimal upper bounds for
p-operator norms; this is one takeaway from the results described in the next
section.

We close this introductory section with the remark that, in certain geo-
metric situations, it may be more natural to consider the right averaging
operator ρS; this acts by sending a function φ : Γ → C to the function
ρS(φ) : Γ → C given by

ρS(φ)(h) =
1

|S|

∑

g∈S

φ(hg).
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The left averaging operator λS and the right averaging operator ρS are
conjugate on ℓpΓ via the isometric isomorphism J : ℓpΓ → ℓpΓ, Jφ(h) =
φ(h−1). In particular, λS and ρS have the same p-operator norm.

2. Spherical averaging operators on hyperbolic groups

Nearly all results on p-operator norms of averaging operators that can be
found in the literature address the case when p = 2. The 2-operator norm
of λS , ‖λS‖2→2, is often referred to as a spectral radius for S. A classical
direction is that of taking S to be a symmetric generating set of Γ. The
seminal result of Kesten [9] settles the case when Γ is a free group and S is
the standard symmetric generating set. Kesten-type formulas or estimates
have been pursued for a number of other finitely generated groups, and
natural symmetric generating sets. A very interesting study case is that of
surface groups, see [2, 13, 23, 1, 8].

It is natural to consider the averaging operator λS over ‘geometric’ subsets
S. Our main focus is on the case when S is a ‘sphere’ in Γ. Let l : Γ → [0,∞)
be a proper length function; for instance, l could be the word-length defined
by a finite symmetric generating subset of Γ. The sphere of radius n is the
(symmetric) subset of Γ given by

S(n) = {g ∈ Γ : l(g) = n}.

Similarly, the ball of radius n is the (symmetric) subset of Γ given by B(n) =
{g ∈ Γ : l(g) ≤ n}. Averaging operators over balls are also considered in
this paper, though they only play a supporting role.

In the case when Γ is a free group endowed with the standard word-length,
the p-operator norm of λS(n) has been explicitly computed by Cohen [5] for
p = 2, respectively by Pytlik [17, 18] for arbitrary p ∈ (1,∞).

Theorem 2.1 (Cohen–Pytlik). Let Γ be a free group on k ≥ 2 generators,
endowed with the standard word-length. Then

∥

∥λS(n)
∥

∥

2→2
=
(

(1 − 1/k)n + 1
)

· (2k − 1)−n/2,(5)

and, for p ∈ (1, 2),
∥

∥λS(n)
∥

∥

p→p
= C(1/p) · (2k − 1)−n/p′ + C(1/p′) · (2k − 1)−n/p(6)

where C(t) is an explicit rational expression in terms of k and t.

Kesten’s formula, mentioned above, is the case n = 1 of Cohen’s formula
(5). Pytlik’s approach in [17] also recovers Cohen’s formula (5). But the key
outcome of Pytlik’s approach is formula (6); this is the only result known to
us that addresses the p-operator norm of an averaging operator for p 6= 2.

The Cohen–Pytlik formulas are undoubtedly remarkable. It has to be ac-
knowledged, however, that such exact computations are extremely rare, and
they owe to very special circumstances–free group, standard word-length.
(There is one more exact computation we know of, due to Cartwright and
M lotkowski [3]; it addresses groups acting on triangle buildings, for p = 2.)
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It is not at all clear how to extend the Cohen–Pytlik formulas to other
groups. The fragility of the formulas (5) and (6) is apparent, even over a
free group, as soon as we consider changing the word-length, or replacing
the sphere S(n) by the ball B(n).

Our contention is that the Cohen–Pytlik exact formulas become more
meaningful when viewed in a simplified, asymptotic form. Let us explain
what asymptotic equivalence means, for we will use it throughout the paper.
Given two functions f1, f2 : N → (0,∞), we write f1 ≍ f2 if there are positive
constants c, C so that cf1(n) ≤ f2(n) ≤ Cf1(n) for all n ∈ N. The asymp-
totic viewpoint on the Cohen–Pytlik exact formulas is in agreement with
the general philosophy of geometric group theory; after all, word-lengths on
finitely generated groups are asymptotically equivalent in an analogous way.

Theorem 2.2 (Cohen–Pytlik, asymptotic form). Let Γ be a non-abelian
free group, endowed with the standard word-length. Then

∥

∥λS(n)
∥

∥

2→2
≍ (n+ 1) |S(n)|−1/2,(7)

and, for p ∈ (1, 2),
∥

∥λS(n)
∥

∥

p→p
≍ |S(n)|−1/p′ .(8)

To clarify, formulas (7) and (8) describe the behavior of the p-operator
norms ‖λS(n)‖p→p as n increases; the implied multiplicative constants de-
pend on the rank of Γ and on p, but not on n.

We highlight three aspects of the formulas (7) and (8). Firstly, they
exhibit an interesting discrepancy: the case p = 2 has an additional radial
factor. We do not have a conceptual explanation for this discontinuity at
p = 2. Secondly, they witness that interpolation may not yield optimal
bounds, for the estimate (8) is better than what (4) and (7) would predict.
Thirdly, we see that, for p ∈ (1, 2), the estimate (8) asymptotically matches
the trivial lower bound (2).

In turns out that the Cohen–Pytlik asymptotic formulas (7) and (8) hold,
much more generally, for Gromov hyperbolic groups equipped with any
word-length function. The case p = 2 is an instance of a more general
result from [15].

Theorem 2.3 ([15]). Let Γ be a non-elementary hyperbolic group, endowed
with a word-length. Then:

∥

∥λS(n)
∥

∥

2→2
≍ (n+ 1) |S(n)|−1/2.

In this paper we handle the case p ∈ (1, 2).

Theorem 2.4. Let Γ be a non-elementary hyperbolic group, endowed with
a word-length, and let p ∈ (1, 2). Then:

∥

∥λS(n)
∥

∥

p→p
≍ |S(n)|−1/p′ .
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The strategy towards Theorem 2.4 is very different from the one used in
[15] in order to obtain Theorem 2.3. In the case p = 2, the upper bound is
granted by property RD, and the issue is to obtain a matching lower bound;
this is achieved by using the boundary of Γ. For the range p ∈ (1, 2), it is the
lower bound that is known–namely, it is the trivial lower bound (2)–and we
are aiming for a matching upper bound. It is unclear whether the boundary
of Γ could be used to this end. Instead, we adapt Pytlik’s approach to (6).
Although the proof of Theorem 2.4 is ultimately carried out in a different
way, our use of the Busemann cocyle (a group cocycle on Γ) is inspired by
Pytlik’s use of the Poisson kernel (a group cocycle on the boundary of Γ).
By avoiding the boundary, we are actually able to formulate a much more
general result–see Theorem 5.3.

Estimates for p-operator norms of an averaging operator λS have an inter-
esting by-product: estimates for the combinatorial expansion of the subset
S. Here is an informal description of what this means; we refer to Section 6
for the precise definition. Consider a product set SX = {sx : s ∈ S, x ∈
X} ⊆ Γ, where X is an arbitrary finite subset of Γ; trivially, we have the
upper bound |SX| ≤ |S||X|. The combinatorial expansion of S encodes
lower bounds for |SX| relative to |X|, uniformly in X.

Informally, the next result says that the sequence of spheres in a hyper-
bolic group forms an asymptotic expander.

Theorem 2.5. Let Γ be a non-elementary hyperbolic group, endowed with
a word-length. Then there exists a constant c ∈ (0, 1) such that, for each n,
we have

|S(n)X| ≥ c|S(n)||X|

for any finite subset X ⊆ Γ.

The proofs of Theorems 2.4 and 2.5 are completed in Section 7.

3. The cocycle bound

Let Γ be a discrete countable group, and p ∈ (1,∞). The left regular
representation λ of Γ on ℓpΓ is the isometric representation given by λ(g)φ =
g.φ, where g.φ(h) = φ(g−1h). We extend λ by linearity to the group algebra
CΓ, setting

λ(a) =
∑

g∈Γ

a(g)λ(g)

for any finitely supported function a : Γ → C.
The main result of this section is an upper bound on the p-operator norm

‖λ(a)‖p→p, in terms of an additional ingredient.
Let κ : Γ → ℓ∞Γ be a cocycle. This means that the identity

κ(g1g2) = κ(g1) + g1.κ(g2)(9)
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holds for all g1, g2 ∈ Γ. The cocycle identity implies that κ(1) = 0, and that

κ(g−1) = −g−1.κ(g)(10)

for all g ∈ Γ.
Let the κ-norm of a finitely supported function a : Γ → C be given as

follows:

Nκ(a) = sup
h∈Γ

∑

g∈Γ

∣

∣a(g)
∣

∣ eκ(g)(h) =

∥

∥

∥

∥

∑

g∈Γ

∣

∣a(g)
∣

∣ eκ(g)
∥

∥

∥

∥

∞

.(11)

Evidently, Nκ is a (C-vector space) norm on CΓ; this holds for any map
κ : Γ → ℓ∞Γ. When κ is a cocycle, it can be checked that Nκ is also
submultiplicative. Therefore the κ-norm Nκ is an algebra norm on CΓ.

For the trivial cocycle κ = 0 we have Nκ(a) = ‖a‖1. For a general cocycle
κ, we might think of the κ-norm Nκ as a twisted ℓ1-norm on CΓ.

Lemma 3.1. Let p ∈ (1,∞), with conjugate exponent p′. For any finitely
supported function a : Γ → C, we have

‖λ(a)‖p→p ≤ Npκ(a∗)1/p Np′κ(a)1/p
′

.(12)

Here a∗ : Γ → C is the function given by a∗(g) = a(g−1). For the
trivial cocycle κ = 0, the bound (12) is simply the trivial upper bound
‖λ(a)‖p→p ≤ ‖a‖1. Thus (12) could be thought of as a twisting of the trivial
upper bound.

Proof. Let φ ∈ ℓpΓ. Then

λ(a)φ(h) =
∑

g∈Γ

a(g)φ(g−1h).

Using Hölder’s inequality, we have:
∣

∣λ(a)φ(h)
∣

∣ ≤
∑

g∈Γ

∣

∣a(g)
∣

∣

∣

∣φ(g−1h)
∣

∣

=
∑

g∈Γ

∣

∣a(g)
∣

∣

1/p′
eκ(g)(h)

∣

∣a(g)
∣

∣

1/p∣
∣φ(g−1h)

∣

∣ e−κ(g)(h)

≤
(

∑

g∈Γ

∣

∣a(g)
∣

∣ ep
′κ(g)(h)

)1/p′(∑

g∈Γ

∣

∣a(g)
∣

∣

∣

∣φ(g−1h)
∣

∣

p
e−pκ(g)(h)

)1/p

≤ Np′κ(a)1/p
′

(

∑

g∈Γ

∣

∣a(g)
∣

∣

∣

∣φ(g−1h)
∣

∣

p
e−pκ(g)(h)

)1/p
.

We deduce that

‖λ(a)φ‖p =
(

∑

h∈Γ

∣

∣λ(a)φ(h)
∣

∣

p
)1/p

≤ Np′κ(a)1/p
′

(

∑

h∈Γ

∑

g∈Γ

∣

∣a(g)
∣

∣

∣

∣φ(g−1h)
∣

∣

p
e−pκ(g)(h)

)1/p
.



NORMS OF SPHERICAL AVERAGES 7

Next, we estimate the latter double sum. We write
∑

h∈Γ

∑

g∈Γ

∣

∣a(g)
∣

∣

∣

∣φ(g−1h)
∣

∣

p
e−pκ(g)(h) =

∑

g∈Γ

∣

∣a(g)
∣

∣

∑

h∈Γ

∣

∣φ(g−1h)
∣

∣

p
e−pκ(g)(h)

=
∑

g∈Γ

∣

∣a(g)
∣

∣

∑

h∈Γ

∣

∣φ(h)
∣

∣

p
e−pκ(g)(gh)

=
∑

h∈Γ

(

∑

g∈Γ

∣

∣a(g)
∣

∣ e−pκ(g)(gh)
)

∣

∣φ(h)
∣

∣

p
.

In the second step of the above computation, we have made the change
of variable h := gh for each g ∈ Γ. Now, by (10), we have −κ(g)(gh) =
κ(g−1)(h) and so

∑

g∈Γ

∣

∣a(g)
∣

∣ e−pκ(g)(gh) =
∑

g∈Γ

∣

∣a(g)
∣

∣ epκ(g
−1)(h)

=
∑

g∈Γ

∣

∣a∗(g)
∣

∣ epκ(g)(h) ≤ Npκ(a∗).

We have made another change of variable along the way, namely g := g−1.
We infer that

∑

h∈Γ

∑

g∈Γ

∣

∣a(g)
∣

∣

∣

∣φ(g−1h)
∣

∣

p
e−pκ(g)(h) ≤ Npκ(a∗)

∑

h∈Γ

∣

∣φ(h)
∣

∣

p

and, consequently, that

‖λ(a)φ‖p ≤ Np′κ(a)1/p
′

Npκ(a∗)1/p ‖φ‖p.

The desired bound (12) follows. �

The above proof only used the relation (10), not the full power of the
cocycle identity (9). We find it natural to work with cocycles, however,
since they are the main source for the relation (10). Additionally, as we have
noted, the κ-norm is an algebra norm on the group algebra CΓ whenever κ
is a cocycle.

In keeping with our asymptotic viewpoint, we should consider the stability
of the cocycle bound (12). Here are two remarks. Firstly, if κ̃ is a cocycle
which is a uniformly bounded perturbation of κ, meaning that supg∈Γ ‖κ̃(g)−
κ(g)‖∞ < ∞, then the upper bound in (12) for the two cocycles, κ̃ and
κ, is asymptotically the same. Secondly, the cocycle bound (12) can be
extended without difficulty to quasi-cocycles. Recall, this means that κ :
Γ → ℓ∞Γ satisfies the cocycle identity (9) up to a uniformly bounded error:
supg,h∈Γ ‖κ(gh) − κ(g) − g.κ(h)‖∞ <∞.

4. A geometric application of the cocycle bound

As before, let Γ be a discrete countable group, and p ∈ (1,∞). We pursue
the following instance of the cocycle setup, discussed in the previous section:
the finitely supported function a : Γ → C is 1S, the characteristic function
of the subset S, while the cocycle is a classical one, of geometric origin.



8 BOGDAN NICA

Let X be a metric space on which Γ acts properly by isometries. The
distance between two points x and y in X is denoted by d(x, y). The Buse-
mann cocycle β : Γ → ℓ∞Γ with respect to a basepoint o ∈ X is defined as
follows: for each g ∈ Γ, β(g) : Γ → C is the map

h 7→ d(o, ho) − d(go, ho).

We have, indeed, that β(g) ∈ ℓ∞Γ; in fact, ‖β(g)‖∞ = d(o, go). The cocycle
identity, β(g1g2) = β(g1) + g1.β(g2) for all g1, g2 ∈ Γ, is easily checked.
Note also that a change of the basepoint o entails a uniformly bounded
perturbation of the Busemann cocycle β. So, for the purposes of the cocycle
bound (12), the dependence of the Busemann cocycle on the basepoint is
harmless.

We will actually work with scalings of the Busemann cocycle, that is,
cocycles of the form εβ where ε is some positive parameter. This flexibility
will allow us to optimize the cocycle bound (12). Recall that we take a = 1S,
so a∗ = 1S−1 . For these choices, Lemma 3.1 implies the following.

Lemma 4.1. Let β : Γ → ℓ∞Γ be the Busemann cocycle with respect to a
basepoint o ∈ X, and let ε > 0. Then for any finite subset S ⊆ Γ we have

∥

∥λ(1S)
∥

∥

p→p
≤

∥

∥

∥

∥

∑

g∈S−1

epεβ(g)
∥

∥

∥

∥

1/p

∞

∥

∥

∥

∥

∑

g∈S

ep
′εβ(g)

∥

∥

∥

∥

1/p′

∞

.(13)

Our next concern is, of course, that of upper bounding the norms appear-
ing on the right-hand side of (13). We are mainly interested in S being a
sphere or a ball in Γ, with respect to the length function l(g) = d(o, go)
induced by some fixed basepoint o ∈ X. That is to say, we are interested in
S being one of the following:

So(n) = {g ∈ Γ : d(o, go) = n}, Bo(n) = {g ∈ Γ : d(o, go) ≤ n}.

We now introduce some key geometric hypotheses on the metric space X.
We start with a notation. Given two points x, y ∈ X and ρ ≥ 0, we consider
the rough geodesic segment

[x, y]ρ =
{

z ∈ X : d(x, z) + d(z, y) ≤ d(x, y) + ρ
}

.

Definition 4.2. A metric space X is roughly modular if there is some con-
stant ρ ≥ 0 so that the following holds: for any three points x, y, z ∈ X,
there exists a point

m ∈ [x, y]ρ ∩ [y, z]ρ ∩ [z, x]ρ.

Such a point m is said to be a rough median of x, y, z.

Modularity, corresponding to the case ρ = 0, is an already established
terminology in graph theory. The adjective ‘rough’ is the functor which
relaxes metric equalities by allowing an additive bounded error.

For the remainder of this section, the following standing assumptions

on X are in place:
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mod: X is a roughly modular graph, with rough modularity constant ρ;
pol(d): there exists a non-negative integer d and C ′ > 0 such that, for each

x, y ∈ X and n ∈ N we have
∣

∣{z ∈ [x, y]ρ : d(x, z) = n}
∣

∣ ≤ C ′(n+ 1)d.

Coincidentally, these geometric assumptions also feature in Lafforgue’s proof
that cocompact lattices in SL3(R) and SL3(C) satisfy property RD [11,
Defn.2.2]; cf. the Chatterji–Ruane criterion [4, Prop.1.7].

Lemma 4.3. Assume that the isometric action of Γ on X satisfies the
condition

exp(δ): there exist δ > 0 and C > 0 such that, for each x, y ∈ X and
n ∈ N, we have

∣

∣{g ∈ Γ : d(x, gy) ≤ n}
∣

∣ ≤ Ceδn.

Let β be the Busemann cocycle with respect to a basepoint o ∈ X, and let
ε > 0. Then for any subset S ⊆ Bo(n) we have:

∥

∥

∥

∥

∑

g∈S

epεβ(g)
∥

∥

∥

∥

∞

4















(n+ 1)d epεn if pε > δ/2,

(n+ 1)d+1 epεn if pε = δ/2,

e(δ−pε)n if pε < δ/2.

(14)

Proof. Assume first that S ⊆ So(n). Fix h ∈ Γ.
Note that β(g)(h) = d(o, ho) − d(go, ho) is an integer, as the distance on

X is integer-valued. For each g ∈ S, we have |β(g)(h)| ≤ d(o, go) = n. Thus,
if we consider the horospherical set

H(j) = {g ∈ Γ : β(g)(h) = j},

then we can write

∑

g∈S

epεβ(g)(h) =

n
∑

j=−n

|S ∩H(j)| epεj.

Let g ∈ S ∩ H(j), where j ∈ {−n, . . . , n}. Let m = m(g, h) ∈ X be a
rough median point for the triple o, go, ho. For x ∈ {o, go, ho}, we introduce
the shorthand δ(x) = d(m,x). See the sketch below.

o
δ(o)

❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖

m
δ(ho)

ho

go

δ(go)

⑦
⑦
⑦
⑦
⑦
⑦
⑦
⑦
⑦
⑦
⑦
⑦
⑦
⑦
⑦
⑦
⑦
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We have

d(o, ho) ≤ δ(o) + δ(ho) ≤ d(o, ho) + ρ,

d(go, ho) ≤ δ(go) + δ(ho) ≤ d(go, ho) + ρ.

By subtracting the two inequalities, we see that

δ(o) − δ(go) ≈ρ d(o, ho) − d(go, ho) = b(g)(h) = j,

where ≈ρ denotes the relation of being within ρ of each other. On the other
hand

δ(o) + δ(go) ≈ρ d(o, go) = n.

The two near equalities combine to give

δ(o) ≈ρ (n+ j)/2, δ(go) ≈ρ (n− j)/2.

In view of the hypothesis pol(d) on the graph X, the number of possi-
bilities for m is at most a constant multiple of ((n + j)/2 + 1)d. Next, by
using the hypothesis exp(δ) on the action of Γ on X, we deduce that, for
each such m, the number of possibilities for g is at most a constant multiple
of eδ(n−j)/2. Overall, we find that

|S ∩H(j)| 4
(

(n+ j)/2 + 1
)d
eδ(n−j)/2 ≍ (n+ j + 1)d eδ(n−j)/2.

Therefore

∑

g∈S

epεβ(g)(h) 4
n
∑

j=−n

(n+ j + 1)d eδ(n−j)/2 epεj

=

2n
∑

j=0

(j + 1)d eδ(2n−j)/2 epε(j−n)

= e(δ−pε)n
2n
∑

j=0

(j + 1)d e(pε−δ/2)j .

Since the above estimate is uniform in h ∈ Γ, we have

∥

∥

∥

∥

∑

g∈S

epεβ(g)
∥

∥

∥

∥

∞

4 e(δ−pε)n
2n
∑

j=0

(j + 1)d e(pε−δ/2)j .(15)

To estimate the latter sum, we use the following elementary asymptotics:

N
∑

j=0

(j + 1)d eτj ≍















(N + 1)d eτN if τ > 0

(N + 1)d+1 if τ = 0

1 if τ < 0

(16)
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where the implicit multiplicative constants depend on d and τ , but not on N .
We deduce that the right-hand side of (15) has the following asymptotics:















e(δ−pε)n (2n + 1)d e(pε−δ/2)2n ≍ (n+ 1)d epεn if pε > δ/2,

e(δ−pε)n (2n + 1)d+1 ≍ (n+ 1)d+1 epεn if pε = δ/2,

e(δ−pε)n if pε < δ/2.

To summarize: we have shown that, for a subset S ⊆ So(n), we have

∥

∥

∥

∥

∑

g∈S

epεβ(g)
∥

∥

∥

∥

∞

4















(n+ 1)d epεn if pε > δ/2,

(n+ 1)d+1 epεn if pε = δ/2,

e(δ−pε)n if pε < δ/2.

(17)

We now address the general case when S ⊆ Bo(n). By partitioning S into
spherical pieces, we can upper-bound

∥

∥

∥

∥

∑

g∈S

epεβ(g)
∥

∥

∥

∥

∞

≤
n
∑

k=0

∥

∥

∥

∥

∑

g∈S∩So(k)

epεβ(g)
∥

∥

∥

∥

∞

.(18)

Using (17), and then (16) once again, we see that the right-hand side of (18)
can be asymptotically bounded from above by















∑n
k=0 (k + 1)d epεk ≍ (n+ 1)d epεn if pε > δ/2,

∑n
k=0 (k + 1)d+1 epεk ≍ (n+ 1)d+1 epεn if pε = δ/2,

∑n
k=0 e

(δ−pε)k ≍ e(δ−pε)n if pε < δ/2.

All in all, we reach (14). �

By combining Lemma 4.3 with Lemma 4.1, we derive the following asymp-
totic upper bounds. Note that the Busemann cocycle β no longer appears
in the statement!

Theorem 4.4. Assume that the isometric action of Γ on X satisfies the
condition

exp(δ): there exist δ > 0 and C > 0 such that, for each x, y ∈ X and
n ∈ N, we have

∣

∣{g ∈ Γ : d(x, gy) ≤ n}
∣

∣ ≤ Ceδn.

Then, for any subset S ⊆ Bo(n), we have
{
∥

∥λ(1S)
∥

∥

p→p
4 (n+ 1)d/p

′

eδn/p if p ∈ (1, 2),
∥

∥λ(1S)
∥

∥

2→2
4 (n+ 1)d+1 eδn/2 if p = 2.

(19)

Proof. For p ∈ (1, 2), we set ε = δ/(pp′). Then pε = δ/p′ < δ/2 and
p′ε = δ/p > δ/2. According to (14), we have

∥

∥

∥

∥

∑

g∈S−1

epεβ(g)
∥

∥

∥

∥

∞

4 e(δ−pε)n,

∥

∥

∥

∥

∑

g∈S

ep
′εβ(g)

∥

∥

∥

∥

∞

4 (n + 1)d ep
′εn.
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Hence, by (13)
∥

∥λ(1S)
∥

∥

p→p
4
(

e(δ−pε)n
)1/p

·
(

(n+ 1)d ep
′εn
)1/p′

= (n+ 1)d/p
′

eδn/p.

When p = 2, we set ε = δ/4. Then pε = δ/2 = p′ε, and (14) yields
∥

∥

∥

∥

∑

g∈S−1

epεβ(g)
∥

∥

∥

∥

∞

,

∥

∥

∥

∥

∑

g∈S

ep
′εβ(g)

∥

∥

∥

∥

∞

4 (n+ 1)d+1 eδn/2.

Now (13) says, quite simply, that
∥

∥λ(1S)
∥

∥

2→2
4 (n+ 1)d+1 eδn/2

as well. �

The p-operator norm
∥

∥λ(1S)
∥

∥

p→p
is non-decreasing as a function of S.

Therefore (19) is at its strongest when S is the whole ball Bo(n). But this
is not the only case of interest–we will also apply Theorem 4.4 to S being
the sphere So(n), or even an annulus contained in Bo(n).

5. Geometric actions and pure growth

We maintain the standing assumptions on X. But we now place a stronger
requirement on the proper isometric action of Γ on X–namely, that the
action be cocompact. A proper and cocompact isometric action is said to
be a geometric action. When the action of Γ on X is geometric, the condition
exp(δ) is equivalent to

e(δ): for some exponent δ > 0 we have |Bo(n)| 4 eδn.

Our main goal is that of obtaining asymptotic upper bounds for ‖λS‖p→p,
the p-norm of the averaging operator λS = |S|−1 · λ(1S). We therefore

recast (19), which takes the form ‖λ(1S)‖p→p 4 f(n)eδn/p, into ‖λS‖p→p 4

f(n)eδn/p|S|−1. Now eδn/p|S|−1 ≍ |S|−1/p′ provided that |S| ≍ eδn. In

summary, we can deduce that ‖λS‖p→p 4 f(n)|S|−1/p′ under the exponential

growth assumption |S| ≍ eδn.
This leads us to the next two results, our main applications of Theo-

rem 4.4.

Theorem 5.1. Assume that Γ acts geometrically on X, and that

b(δ): for some exponent δ > 0 we have |Bo(n)| ≍ eδn.

Then
{
∥

∥λBo(n)

∥

∥

p→p
4 (n+ 1)d/p

′

|Bo(n)|−1/p′ if p ∈ (1, 2),
∥

∥λBo(n)

∥

∥

2→2
4 (n+ 1)d+1 |Bo(n)|−1/2 if p = 2.

(20)

Theorem 5.2. Assume that Γ acts geometrically on X, and that

a(δ): for some exponent δ > 0 and thickness θ ≥ 0, the annuli Aθ(n) =
{g ∈ Γ : n− θ ≤ d(o, go) ≤ n+ θ} satisfy |Aθ(n)| ≍ eδn.
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Then
{
∥

∥λAθ(n)

∥

∥

p→p
4 (n+ 1)d/p

′

|Aθ(n)|−1/p′ if p ∈ (1, 2),
∥

∥λAθ(n)

∥

∥

2→2
4 (n+ 1)d+1 |Aθ(n)|−1/2 if p = 2.

(21)

We note that the annular pure growth condition a(δ) implies the ball
pure growth condition b(δ) which, in turn, obviously implies the exponential
growth condition e(δ). Let us also note that, owing to the cocompactness
of the action, each one of the conditions a(δ), b(δ), and e(δ), is actually
independent of the basepoint o ∈ X: if it holds for some basepoint, then it
holds for any other basepoint.

In the next theorem, we highlight a significant instance of annular pure
growth, namely the case of spherical pure growth. This special case has an
additional feature: it yields asymptotic upper bounds for p-operator norms
of radial functions, that is to say finitely supported functions a : Γ → C with
the property that the value a(g) only depends on d(o, go).

Theorem 5.3. Assume that Γ acts geometrically on X, and that

s(δ): for some exponent δ > 0 we have |So(n)| ≍ eδn.

Then
{
∥

∥λSo(n)

∥

∥

p→p
4 (n + 1)d/p

′

|So(n)|−1/p′ if p ∈ (1, 2),
∥

∥λSo(n)

∥

∥

2→2
4 (n+ 1)d+1 |So(n)|−1/2 if p = 2.

(22)

Furthermore, if a : Γ → C is a radial function supported in the ball Bo(n),
then

{

‖λ(a)‖p→p 4 (n+ 1)(d+1)/p′‖a‖p if p ∈ (1, 2),

‖λ(a)‖2→2 4 (n + 1)d+3/2 ‖a‖2 if p = 2.
(23)

There is a small price to pay for the generality of the radial bounds (23):
compared to the spherical bounds (22) and the ball bounds (20), there is a
slight degree loss in (23).

Proof. The bounds (22) are an instance of the bounds (21), in the case when
θ = 0. We only need to argue the radial bounds (23). We detail the case
p ∈ (1, 2); the case p = 2 is very similar, and we leave it to the reader.

Let a : Γ → C be a radial function supported in the ball Bo(n). We write

a =

n
∑

k=0

ak 1So(k).

By (22), we have
∥

∥λ(1So(k))
∥

∥

p→p
4 (k+1)d/p

′
∥

∥1So(k)

∥

∥

p
for each k. Therefore

‖λ(a)‖p→p ≤
n
∑

k=0

|ak|
∥

∥λ(1So(k))
∥

∥

p→p
4

n
∑

k=0

|ak| (k + 1)d/p
′
∥

∥1So(k)

∥

∥

p
.
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Next, by means of Hölder’s inequality, we can estimate

n
∑

k=0

|ak| (k + 1)d/p
′
∥

∥1So(k)

∥

∥

p
≤

(

n
∑

k=0

(k + 1)d

)1/p′( n
∑

k=0

|ak|
p
∥

∥1So(k)

∥

∥

p

p

)1/p

.

Since
n
∑

k=0

(k + 1)d ≍ (n+ 1)d+1,

and
n
∑

k=0

|ak|
p
∥

∥1So(k)

∥

∥

p

p
=

n
∑

k=0

|ak|
p|So(k)| = ‖a‖pp,

we obtain ‖λ(a)‖p→p 4 (n+ 1)(d+1)/p′‖a‖p, as claimed. �

In comparing the two upper bounds in (22), we might reiterate a point
we made while discussing the Cohen–Pytlik asymptotic formulas (7) and
(8): somewhat strikingly, the upper bounds in the range p ∈ (1, 2) are
significantly better than those obtained by interpolation from the endpoint
p = 2. Indeed, using (22) at p = 2, and (4), we would get

∥

∥λSo(n)

∥

∥

p→p
≤
∥

∥λSo(n)

∥

∥

2/p′

2→2
4 (n+ 1)2(d+1)/p′ |So(n)|−1/p′ .

By comparison, (22) at p ∈ (1, 2) has a polynomial factor of (n+ 1)d/p
′

.
The main novelty in Theorems 5.1, 5.2, and 5.3 is the asymptotic upper

bounds in the range p ∈ (1, 2). The bounds at p = 2 are not exactly novel;
they fall under the bigger scope of property RD (for Rapid Decay), which
is known in the geometric situation exploited in this paper (cf. [4, 21]).
Our cocycle-based approach to these bounds is, however, novel. The other
distinguishing feature has to do with the ‘degree of decay’. Most works
dealing with property RD are content with some polynomial factor (n+1)D,
whose degree D often remains unspecified. Here we are very much interested
in optimal degrees–an idea first put forth in [14], and pursued further in [15].

6. Expansion

We begin with a general setup: Γ is a countable discrete group, and S ⊆ Γ
is a fixed, non-empty, finite subset. For any non-empty finite subset X ⊆ Γ,
we consider the product set SX = {sx : s ∈ S, x ∈ X} ⊆ Γ. We are
interested in measuring the size of SX, relative to the size of X. Clearly,
|SX| ≤ |S||X| and |SX| ≥ |X|.

Definition 6.1. The expansion of a finite subset S ⊆ Γ is defined as

e(S) = inf

{

|SX|

|X|
: X non-empty finite subset of Γ

}

.
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To put it differently, e(S) is the largest constant with the property that
|SX| ≥ e(S)|X| for each finite subset X ⊆ Γ. The generic estimate for the
expansion of S is that

1 ≤ e(S) ≤ |S|.

The notion of subset expansion, defined above, is a relative of well-known
graph theoretical notions such as vertex expansion, and Cheeger constant.
Despite its simple-minded formulation, we have not been able to locate it in
the literature. Subset expansion, as defined above, is implicit in [21, Sec.4];
Sapir’s considerations therein are the starting point for this section.

Expansion is of topical interest in light of the following fact: p-operator
norms for the averaging operator λS serve as lower bounds for the expansion
of S.

Lemma 6.2. Let p ∈ (1,∞). Then

e(S) ≥
∥

∥λS
∥

∥

−p′

p→p
.(24)

Proof. Recall the duality pairing 〈·, ·〉 : ℓpΓ × ℓp
′

Γ → C, defined by 〈φ,ψ〉 =
∑

h∈Γ φ(h) ψ(h). By Hölder’s inequality, we have
∣

∣〈λS(φ), ψ〉
∣

∣ ≤ ‖λS(φ)‖p · ‖ψ‖p′ ≤
∥

∥λS
∥

∥

p→p
‖φ‖p‖ψ‖p′ .

Let X ⊆ Γ be a non-empty finite subset. By applying the above bound
to φ = 1X and ψ = 1SX , we find that

∣

∣〈λS(1X),1SX〉
∣

∣ ≤
∥

∥λS
∥

∥

p→p
|X|1/p|SX|1/p

′

.

Now

λS(1X) =
1

|S|

∑

g∈S

1gX

and so

〈λS(1X),1SX〉 =
1

|S|

∑

g∈S

〈1gX ,1SX〉 = |X|

since, for each g ∈ S, we have 〈1gX ,1SX〉 = |gX ∩ SX| = |gX| = |X|. Thus

|X| ≤
∥

∥λS
∥

∥

p→p
|X|1/p|SX|1/p

′

,

which can be rearranged as

∥

∥λS
∥

∥

−p′

p→p
≤

|SX|

|X|
.

By taking the infimum over X, we obtain (24). �

The interpolation bound (4) says that
∥

∥λS
∥

∥

−p′

p→p
≥
∥

∥λS
∥

∥

−2

2→2

whenever p ∈ (1, 2). We therefore expect better lower bounds for e(S) by
using (24) in the range p ∈ (1, 2) rather than at the endpoint p = 2.
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By combining the above lemma with the results obtained in the previous
section, we can deduce asymptotic lower bounds for the expansion of spheres,
balls, or annuli. For the sake of simplicity, we only state the outcome in the
case of spheres.

Theorem 6.3. Keep the notations and the assumptions of Theorem 5.3.
Then

e(So(n)) <
|So(n)|

(n+ 1)d
.

In agreement with a point made above, it is critical to work with some p
in the range (1, 2) in order to deduce Theorem 6.3. The bounds (22) give

∥

∥λSo(n)

∥

∥

−p′

p→p
<

|So(n)|

(n+ 1)d

for any p ∈ (1, 2), yet at p = 2 we only have the much weaker bound

∥

∥λSo(n)

∥

∥

−2

2→2
<

|So(n)|

(n+ 1)2(d+1)
.

7. Hyperbolic groups

The foremost example for us is the case when Γ is a non-elementary
hyperbolic group. A choice of a finite, symmetric generating set for Γ defines
a word length on Γ, as well as a Cayley graph X of Γ, on which Γ acts
geometrically.

The first favorable fact is that the graph X is roughly modular, and
satisfies pol(d) for d = 0. We detail this fact in the following simple lemma.

Lemma 7.1. Let X be a connected, uniformly finite, hyperbolic graph. Then

(i) for ρ = 2δ + 2, where δ ≥ 0 is a hyperbolicity constant in the sense
of Rips’s thin triangle condition, we have [x, y]ρ ∩ [y, z]ρ ∩ [z, x]ρ 6= ∅
for all x, y, z ∈ X;

(ii) for each ρ ≥ 0 there exists C ′ > 0 so that |{z ∈ [x, y]ρ : d(x, z) =
n}| ≤ C ′ for each x, y ∈ X and n ∈ N.

Proof. We will use several times the following observation: if γxy is a (dis-
crete) geodesic joining x to y, and dist(m,γxy) ≤ c, then d(x,m)+d(m, y) ≤
d(x, y) + 2c.

(i) Let x, y, z ∈ X, and consider (discrete) geodesics γxy, γyz, γzx joining
x to y, y to z, respectively z to x. Rips’s thin triangle condition says that
dist(v, γyz) ≤ δ or dist(v, γzx) ≤ δ for every vertex v on γxy. It follows that
there exists v on γxy such that dist(v, γyz) ≤ δ + 1 and dist(v, γzx) ≤ δ + 1.
By the above observation, we have

{

d(y, v) + d(v, z) ≤ d(y, z) + 2(δ + 1),

d(z, v) + d(v, x) ≤ d(z, x) + 2(δ + 1).
(25)

In other words, v ∈ [y, z]2δ+2 and v ∈ [z, x]2δ+2; obviously, v ∈ [x, y]2δ+2 as
well.
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(ii) Let ρ ≥ 0, and fix x, y ∈ X as well as a (discrete) geodesic γxy joining
x to y. Pick z ∈ [x, y]ρ. Consider again a point v on γxy satisfying (25). By
adding the two inequalities we deduce that

d(x, y) + 2d(z, v) ≤ d(x, z) + d(z, y) + 4(δ + 1);

as d(x, z)+d(z, y) ≤ d(x, y)+ρ, it follows that d(z, v) ≤ 2(δ+1)+ρ/2 =: ρ′.
Now, if z ∈ [x, y]ρ also satisfies d(x, z) = n, then n−ρ′ ≤ d(x, v) ≤ n+ρ′.

At most 2ρ′+1 = ρ+4δ+5 vertices v satisfy this bound since, we recall, v lies
on a geodesic γxy. For each such v there are at most Nρ possibilities for z,
where Nρ = supx∈X |Bρ′(x)|; the finiteness of Nρ reflects the hypothesis that
X is uniformly finite. All in all, |{z ∈ [x, y]ρ : d(x, z) = n}| ≤ (ρ+4δ+5)Nρ,
uniformly in x, y ∈ X and n ∈ N. �

The second favorable fact is that the Cayley graph X enjoys pure spherical
growth: |S(n)| ≍ eδn for some δ > 0. This is a result due to Coornaert [6].
We are therefore in position to apply Theorem 5.3.

Theorem 7.2. Let Γ be a non-elementary hyperbolic group, endowed with
a word-length, and let p ∈ (1, 2). Then

∥

∥λS(n)
∥

∥

p→p
4 |S(n)|−1/p′ .(26)

Furthermore, if a : Γ → C is a radial function supported in the ball B(n),
then

‖λ(a)‖p→p 4 (n+ 1)1/p
′

‖a‖p.(27)

The third favorable fact is that the asymptotic upper bound (26) exactly
complements the trivial lower bound (2), thereby implying Theorem 2.4.

As for expansion, Theorem 6.3 implies the following result–a restatement
of which is Theorem 2.5.

Theorem 7.3. Let Γ be a non-elementary hyperbolic group, endowed with
a word-length. Then

e(S(n)) < |S(n)|.

Once again, this exactly complements the trivial upper bound e(S(n)) ≤
|S(n)|.

8. Final remarks

Remark 8.1. Our motivating example in estimating p-operator norms for
spherical averaging operators was the case of hyperbolic groups. The end
result, Theorem 5.3, is quite a bit more general, and hyperbolic groups
appear–in retrospect–as the simplest case. Pure exponential growth for
balls, spheres, or annuli of radius n, of the form eδn, can be generalized
to mixed growth–that is, growth of the form (n+ 1)α eδn. The techniques of
this paper clearly go through. This should lead to estimates of p-operator
norms for spherical averaging operators on cocompact lattices in SL3(R) and
SL3(C) (cf. Lafforgue [11]).
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Remark 8.2. Other contexts in which our results seem applicable include
groups acting on finite dimensional CAT(0) cube complexes, and groups
that are hyperbolic relative to a family of subgroups of polynomial growth
(cf. Chatterji–Ruane [4]). Under additional hypotheses, one also has pure
annular growth for these families of groups by results of Yang [22].

Yet another context is that of groups which are cocompact lattices in
products of hyperbolic graphs. The Cartesian product X1�X2 of two graphs
X1 and X2 is the graph with vertex set X1 × X2, and edges defined as
follows: (x1, x2) is adjacent to (y1, y2) if x1 = y1 and x2 is adjacent to
y2, or if x1 is adjacent to y1 and x2 = y2. The combinatorial distance in
X1�X2 is the sum metric d

(

(x1, x2), (y1, y2)
)

= dX1
(x1, y1) + dX2

(x2, y2).

As a metric space, X1�X2 is often referred to as the ℓ1-product of X1

and X2. The main point is that our standing assumptions are stable under
taking Cartesian products. Specifically, we have the following fact: if X1 and
X2 are roughly modular graphs, satisfying pol(d1) respectively pol(d2),
then their Cartesian product X1�X2 is a roughly modular graph satisfying
pol(d1 + d2 + 1). In particular, the Cartesian product of d − 1 uniformly
finite, hyperbolic graphs is roughly modular and satisfies pol(d).

Remark 8.3. Liao and Yu [12, Defn.4.1] have introduced the following
definition: a group Γ endowed with a length function has property RDp,
where 1 < p ≤ 2, if there exist constants C > 0 and D ≥ 0 such that

‖λ(a)‖p→p ≤ C(n+ 1)D‖a‖p

for all functions a : Γ → C supported in the ball B(n).
For p = 2, this is the usual property RD; furthermore, it can be shown [12,

Thm.4.4] that property RD implies property RDp for all p ∈ (1, 2]. This has
implications for the K-theory of Banach algebra completions of the group
algebra CΓ for varying exponents p ∈ (1, 2].

From an analytic standpoint, it is interesting to find the optimal degree
D in the RDp bound, and to understand its dependence on p. Theorem 5.3
gives RDp-type bounds for constant spherical functions and, more generally,
for radial functions, though the approach of this paper does not seem well-
suited for the full RDp bound. Nonetheless, the radial RDp bounds suggest
that the optimal degree D in the range p ∈ (1, 2) is below what interpolation
from the endpoint p = 2 would predict.

Specifically, it seems likely that, for a non-elementary hyperbolic group Γ
and p ∈ (1, 2), the optimal degree is D = 1/p′; namely, the following should
hold: there exists a constant C > 0 such that

‖λ(a)‖p→p ≤ C(n+ 1)1/p
′

‖a‖p

for all functions a : Γ → C supported in the ball B(n). This is what we
establish in (27) for radial functions. For comparison, we note that at the
endpoint p = 2 the optimal degree is D = 3/2, and it is attained by radial
functions [15].
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Remark 8.4. Asymptotic lower bounds for expansion, as in Theorem 6.3,
appear fairly naturally in connection with asymptotic upper bounds for p-
operator norms of averaging operators. It would be interesting, however, to
derive the bound of Theorem 6.3–as well as improvements and variations
thereof–in a direct, combinatorial way, without appealing to functional-
analytic detours. The case of hyperbolic groups (Theorem 7.3) seems par-
ticularly appealing in this respect.
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