
ar
X

iv
:2

40
5.

09
33

8v
1 

 [
cs

.D
S]

  1
5 

M
ay

 2
02

4

Interval Selection in Sliding Windows

Cezar-Mihail Alexandru∗

School of Computer Science, University of Bristol, Bristol, UK
ca17021@bristol.ac.uk

Christian Konrad†

School of Computer Science, University of Bristol, Bristol, UK
christian.konrad@bristol.ac.uk

Abstract

We initiate the study of the Interval Selection problem in the (streaming) sliding window model of
computation. In this problem, an algorithm receives a potentially infinite stream of intervals on the
line, and the objective is to maintain at every moment an approximation to a largest possible subset of
disjoint intervals among the L most recent intervals, for some integer L.

We give the following results:

1. In the unit-length intervals case, we give a 2-approximation sliding window algorithm with space
Õ(|OPT |), and we show that any sliding window algorithm that computes a (2− ε)-approximation
requires space Ω(L), for any ε > 0.

2. In the arbitrary-length case, we give a ( 11
3
+ ε)-approximation sliding window algorithm with space

Õ(|OPT |), for any constant ε > 0, which constitutes our main result.1 We also show that space
Ω(L) is needed for algorithms that compute a (2.5− ε)-approximation, for any ε > 0.

Our main technical contribution is an improvement over the smooth histogram technique, which
consists of running independent copies of a traditional streaming algorithm with different start times.
By employing the one-pass 2-approximation streaming algorithm by Cabello and Pérez-Lantero [Theor.
Comput. Sci. ’17] for Interval Selection on arbitrary-length intervals as the underlying algorithm, the
smooth histogram technique immediately yields a (4+ε)-approximation in this setting. Our improvement
is obtained by forwarding the structure of the intervals identified in a run to the subsequent run, which
constrains the shape of an optimal solution and allows us to target optimal intervals differently.

∗Supported by EPSRC Doctoral Training Studentship EP/T517872/1.
†Supported by EPSRC New Investigator Award EP/V010611/1.
1We use the notation Õ(.) to mean O(.) where polylog factors and dependencies on ε are suppressed.

http://arxiv.org/abs/2405.09338v1


1 Introduction

Sliding Window Model The sliding window model of computation introduced by Datar et al. [9]

captures many of the challenges that arise when processing infinite data streams. In this model, an algorithm

receives an infinite stream of data items and is required to maintain, at every moment, a solution to a given

problem on the current sliding window, i.e., on the L most recent data items, for an integer L. The objective

is to design algorithms that use much less space than the size of the sliding window L.

Many modern data sources are best modelled as infinite data streams rather than as data sets of large

but finite sizes. For example, the sequence of Tweets on X (formerly Twitter), the sequence of IP packages

passing through a network router, and continuous sensor measurements for monitoring the physical world

are a priori unending. Such data sets typically constitute time-series data, where the resulting data stream

is ordered with respect to the data items’ creation times. When processing such streams, it is reasonable to

focus on the most recent data items (as it is modelled in the sliding window model by the sliding window

size L) since the near past usually affects the present more strongly than older data.

The sliding window model should be contrasted with the more traditional one-pass data streaming model.

In the data streaming model, an algorithm processes a finite stream of n data items and is tasked with

producing a single output once all items have been processed. Similar to the sliding window model, the

objective is to design algorithms that use as little space as possible, in particular, sublinear in the length

of the stream. Since sliding window algorithms with L = n can immediately be used in the data streaming

model, problems are generally harder to solve in the sliding window model.

Interval Selection Problem In this work, we initiate the study of the Interval Selection problem in the

sliding window model. Given a set S of n intervals on the real line, the objective is to find a subset I ⊆ S

of pairwise non-overlapping intervals of maximum cardinality. The problem can also be regarded as the

Maximum Independent Set problem in the interval graph associated with the intervals S. We consider both

the unit-length case, where all intervals are of length 1, and the arbitrary-length case, where no restriction

on the lengths of the intervals is imposed.

Interval Selection is fully understood in the one-pass streaming model. Emek et al. [10] gave a 3
2 -

approximation streaming algorithm for unit-length intervals and a 2-approximation streaming algorithm for

arbitrary-length intervals. Both algorithms use space O(|OPT |), where OPT denotes an optimal solution,

assuming that the space required for storing an interval is O(1). Emek et al. also gave matching lower

bounds, showing that, for both the unit-length and the arbitrary-length case, slightly better approximations

require space Ω(n). Subsequently, Cabello and Pérez-Lantero [5] also gave algorithms for the unit-length and

the arbitrary-length cases that match the guarantees of those by Emek et al. but are significantly simpler.

We will reuse one of the algorithms by Cabello and Pérez-Lantero in this paper. Last, weighted intervals

as well as the insertion-deletion setting, where previously inserted intervals can be deleted again, have also

been considered [8, 2], where [2] addresses the challenge of outputting the size or weight of a largest/heaviest

independent set rather than outputting the intervals themselves.

The Smooth Histogram Technique Braverman and Ostrovsky [4] introduced the smooth histogram

technique, which allows deriving sliding window algorithms from traditional streaming algorithms at the

expense of slightly increased space requirements and approximation guarantees. The method works as

follows. Given a streaming algorithm A for a specific problem P that fulfills certain smoothness properties

(see [4] for details), multiple copies of A are run with different starting positions in the stream. The runs

are such that consecutive runs differ only slightly in solution quality, and, thus, when a run expires due to

the fact that its starting position fell out of the current sliding window, the subsequent run can be used to

still yield an acceptable solution. The smooth histogram technique can be applied to the Interval Selection

1



algorithms by Emek et al. [10] and by Cabello and Pérez-Lantero [5], and we immediately obtain sliding

window algorithms for both the unit-length and the arbitrary-length cases using space Õ(|OPT |)2. For unit-

length intervals, the resulting approximation factor is 3+ ε, for any ε > 0, and for arbitrary-length intervals,

the approximation factor is 4 + ε, for any ε > 0. We will provide the analysis of the (4 + ε)-approximation

for arbitrary-length intervals in this paper (Theorem 5) since it forms the basis of the analysis of one of

our algorithms.

Our Results In this work, we show that it is possible to improve upon the guarantees obtained from

the smooth histogram technique. We give deterministic sliding window algorithms and lower bounds that

also apply to randomized algorithms for Interval Selection for both the unit-length and arbitrary-length cases.

Our algorithms use space Õ(|OPT |) at any moment during the processing of the stream, where OPT denotes

an optimal solution in the current sliding window. Observe that OPT may vary throughout the processing

of the stream, and, thus, the space used by our algorithms may therefore also change accordingly.

Regarding unit-length intervals, we give a 2-approximation sliding window algorithm using O(|OPT |)

space, and we prove that any sliding window algorithm with an approximation guarantee of 2 − ε, for

any ε > 0, requires space Ω(L). Recall that, in the streaming model, a 3
2 -approximation can be achieved

with space O(|OPT |). Our lower bound thus establishes a separation between the sliding window and the

streaming models for unit-length intervals.

In the arbitrary-length case, we give a (113 + ε)-approximation sliding window algorithm with space

Õ(|OPT |), improving over the smooth histogram technique, which constitutes our main and most technical

result. We also prove that any (52 − ε)-approximation algorithm, for any ε > 0, requires space Ω(L). Since,

in the streaming model, a 2-approximation can be achieved with space O(|OPT |), our lower bound also

establishes a separation between the sliding window and the streaming models in the arbitrary-length case.

We summarize and contrast our results with results from the streaming model in Figure 1.

Streaming model [10, 5] Sliding window model (this paper)
Algorithm LB Algorithm LB

Unit-length Intervals 3
2

3
2 − ε 2 (Thm 3) 2− ε (Thm 4)

Arbitrary-length Intervals 2 2− ε 11
3 (Thm 6) 5

2 − ε (Thm 7)

Figure 1: Approximation factors achievable in the streaming and sliding window models. All algorithms use
space Õ(|OPT |), while all lower bound results are to be interpreted in that achieving the stated approxima-
tion guarantee requires space Ω(n) (streaming) or Ω(L) (sliding window model). The lower bound results
hold for any ε > 0.

A Lack of Lower Bounds in the Sliding Window Model Interestingly, to the best of our knowl-

edge, for graph problems (recall that the interval selection problem is a independent set problem on interval

graphs) no separation result between the one-pass streaming and the sliding window models are known.

In particular, we are not aware of any space lower bounds for graph problems specifically designed for the

sliding window setting, and the only lower bounds that apply are those that carry over from the one-pass

streaming setting. Our work is thus the first to establish such a separation. While our results for arbitrary-

length intervals are not tight, we stress that for most problems considered, including Maximum Matching and

Minimum Vertex Cover, no tight bounds are known. It is unclear whether this is due to a lack of techniques

for improved algorithms or for stronger lower bounds.

2We use the notation Õ(.) to mean O(.) where polylog factors and dependencies on ε are suppressed.

2



Techniques We will first discuss the key ideas behind our results for unit-length intervals, and then

discuss our results for arbitrary-length intervals.

Unit-length Intervals. Our algorithm for unit-length intervals is surprisingly simple yet optimal, as

established by our lower bound result. For each integer r, maintain the latest interval within the current

sliding window whose left endpoint lies in the interval [r, r + 1) if there is one. We argue that, if at any

moment, the algorithm stores D intervals, then we can extract an independent set of size at least D/2 by

considering either only the intervals [r, r + 1) where r is odd or where r is even, while OPT is bounded by

D/2 ≤ OPT ≤ D, which establishes both the approximation factor of 2 and the space requirements. We

note that the idea of considering either only the odd or even intervals for obtaining a 2-approximation was

previously used by [2].

Our lower bound for unit-length intervals is obtained by a reduction to the Indexn problem in the one-way

two-party communication setting. In this setting, there are two parties, denoted Alice and Bob. Each party

holds a portion of the input data. Alice sends a single message to Bob, who then outputs the result of the

computation. The objective is to solve a problem using a message of smallest possible size. In Indexn, Alice

holds a bit-string X ∈ {0, 1}n, and Bob holds an index J ∈ [n], where [n] = {1, 2, 3, ..., n} . and the objective

for Bob is to report the bit X [J ]. It is well-known that a message of size Ω(n) is needed to solve the problem.

We argue that a sliding window algorithm A for Interval Selection on unit-length intervals with approxi-

mation guarantee slightly below 2 can be used to solve IndexΘ(L). To this end, Alice translates the bit-string

X into a clique gadget, i.e., a stack of overlapping Θ(L) interval slots that are slightly shifted from left-to-

right, where interval i is present in the stack if and only if X [i] = 1. Clique gadgets have been used in all

previous space lower bound constructions for intervals [10, 2, 8]. Alice then runs A on these intervals and

sends the memory state of A to Bob. Bob subsequently feeds an interval located slightly to the right of the

slot of interval J into the execution of A such that Bob’s interval overlaps with all interval slots at positions

≥ J + 1 and does not overlap with all interval slots at positions ≤ J . The key idea of this reduction is that,

since A is a sliding window algorithm, it must be able to report a valid solution even if any prefix of intervals

of the stack are deleted/have expired. Consider thus the situation when the intervals that are located in the

first J − 1 slots have expired. Then, the resulting instance has an independent set of size 2 if and only if

X [J ] = 1, otherwise a largest independent set is of size 1. Since the approximation factor of A is below 2,

A can thus distinguish between the two cases and solve IndexΘ(L). Since Alice only sent the memory state

of A to Bob, we also obtain a space lower bound for A. While this description covers the key idea of our

lower bound, we note that our actual construction is slightly more involved due to an additional technical

challenge. See proof of Theorem 4 for details.

Our lower bound construction shares similarities with the lower bounds by [2] and [10], as both of these

lower bounds also work with clique gadgets and special intervals that render a specific interval in the clique

gadget important. In [2], a reduction to the Augmented-Index problem is given in order to obtain a space

lower bound for the dynamic streaming setting, where previously inserted intervals can be deleted again at

any moment. In Augmented-Index, besides the index J , Bob also holds the prefix X [1, . . . , J − 1]. While

in our setting, intervals are deleted due to the shifting sliding window, in their lower bound, intervals are

explicitly deleted by Bob.

Arbitrary-length Intervals. Our algorithm and our lower bound for arbitrary-length intervals are substan-

tially more involved, and our (113 + ε)-approximation algorithm constitutes the main technical result of this

paper.

Our algorithm constitutes an improvement over the smooth histogram method. Using the one-pass 2-

approximation streaming algorithm for arbitrary-length intervals by Cabello and Pérez-Lantero [5], which

we abbreviate by CP, as the base algorithm of the smooth histogram method, we immediately obtain a

(4 + ε)-approximation sliding window algorithm using Õ(|OPT |) space. The key idea of the method is to

maintain various runs of CP with different starting times that are sufficiently spaced out so that only a

3



logarithmic number of runs are needed, yet adjacent runs still have similar output sizes. Then, when a run

expires, the subsequent run can still be used to report a good enough solution.

We observe that the executions of CP in the smooth histogram method are independent. Our key

contribution that gives rise to our improvement is to forward the structure identified in a run of CP to the

subsequent run. The CP algorithm, which we will discuss in detail in Section 4.1.1, maintains a partition of

the real line that restrains the possible locations of optimal intervals that are yet to arrive in the stream. We

target these locations individually in the subsequent run by initiating additional runs of CP on restricted

domains where we expect to find many of these optimal intervals.

Our approach relies on a property of the CP algorithm that, at first glance, seems relatively insignificant.

As proved by Cabello and Pérez-Lantero, the CP algorithm produces a solution of size at least (|OPT |+1)/2,

and thus only has an approximation factor of 2 in an asymptotic sense. Consequently, if OPT is a small

constant then the algorithm achieves an approximation factor strictly below 2. We exploit this property in

that we execute the additional runs of CP on small domains where we expect to find only a small constant

number of optimal intervals, see Section 4.1.3 for further details.

Our (2.5 − ε)-approximation lower bound for arbitrary-length intervals is also achieved via a reduction

to a hard problem in one-way communication complexity. However, instead of exploiting the hardness of

the two-party problem Index as in the unit-lengths case, we use the three-party problem Chain3 introduced

by Cormode et al. [6] instead. In Chain3, the first two parties and the last two parties hold separate Index

instances (X1, J1), (X2, J2) ∈ {0, 1}n × [n] that are correlated in that they have the same answer bit, i.e.,

X1[J1] = X2[J2] =: x, and the objective for the third party is to determine the bit x. Chain3 also requires

a message of size Ω(n) to be solved. Similar to the unit-length case, the first two parties introduce clique

gadgets based on the bit-strings X1 and X2, and the third party introduces additional crucial intervals. The

strength of using Chain3 is that, if the answer bit is zero, then the crucial intervals corresponding to X1[J1]

and X2[J2] of all clique gadgets are missing, while if the answer bit is one then all of these intervals are

present. The method thus allows us to work with multiple clique gadgets instead of only a single one, which

we exploit to obtain a stronger lower bound. See Section 4.2 for details.

Despite the gap between the upper bound and the lower bound approximation factors, the result for

arbitray-length interval selection is very significant. For problems related to graphs, no lower bounds in the

sliding window model that are stronger than in the insertion-only model are known (e.g., for matchings, a

sliding window algorithm with approximation factor 3+eps is known [7], while only the 1.69-approximation

impossibility result from insertion-only streaming applies and no better impossibility results are known [13]).

Further Related Work Crouch et al. [7] initiated the study of graph problems in the sliding window

model (recall that Interval Selection is an independent set problem on interval graphs). They showed that,

similar to the streaming model, there exist sliding window algorithms that use space Õ(n) for deciding

Connectivity and Bipartiteness, where n is the number of vertices in the input graph. They also gave positive

results for the computation of cut-sparsifiers, spanners and minimum spanning trees, and they initiated the

study of the Maximum Matching problem in the sliding window model (see below).

The smooth histogram technique has been successfully applied for designing sliding window algorithms

for graph problems, and the state-of-the-art sliding window algorithms for Maximum Matching and Minimum

Vertex Cover rely on the smooth histogram technique.

For Maximum Matching, a 2-approximation with space Õ(n) can easily be achieved in the streaming

model by running the Greedy matching algorithm, and the smooth histogram method immediately yields a

(4+ ε)-approximation sliding-window algorithm when built on Greedy. Crouch et al. [7] observed that the

resulting algorithm can be analyzed more precisely and showed that it actually yields a (3+ε)-approximation

sliding window algorithm. Regarding the weighted version of the Maximum Matching problem, the smooth

histogram technique immediately yields a (4 + ε)-approximation using the (2 + ε)-approximation streaming

4



algorithm by [16], and, again, as proved by Biabani et al. [3], the analysis can be tailored to the Maximum

Matching problem to establish an approximation factor of 3.5+ε without changing the algorithm. Alexandru

et al. [1] then improved the approximation factor to 3 + ε by running the smooth histogram algorithm with

a slightly different objective function.

Regarding the Minimum Vertex Cover problem, a smooth histogram-based algorithm is known to yield an

approximation factor of (3 + ε) [17], improving over previous work [14].

Outline In Section 2, we give notation, provide some clarification on the sliding window model, and

introduce hard communication problems that we rely on for proving our lower bound results. Then, in

Section 3, we give our algorithm and lower bound for the case of unit-length intervals, and in Section 4, we

give our algorithm and lower bound for arbitrary-length intervals. Finally, we conclude in Section 5 with

open problems.

2 Preliminaries

For a set of intervals I, we denote by OPT (I) an independent subset of I of maximum size. We also apply

OPT (.) to substreams of intervals and to data structures that store intervals.

Sliding Window Algorithms Throughout the document, we denote by L the size of the sliding

window, and we assume that L is large enough, i.e., larger than a suitably large constant. For two streams

of intervals A,B we denote the stream that is obtained by concatenating A and B simply by AB, i.e., we

omit a concatenation symbol. Furthermore, for simplicity, we assume that the space required to store an

interval is O(1). However, if instead k bits are accounted for storing an interval then the space complexities

of our algorithms need to be multiplied by k.

Communication Complexity As it is standard in the data streaming literature, our space lower

bounds are proved via reductions to problems in the one-way communication setting. In this setting, multiple

parties P1, P2, . . . , Pk each hold a portion of the input data and communicate in order to solve a problem.

Communication is one-way, i.e., party P1 sends a message to P2, who in turn sends a message to P3.

This continues until party Pk has received a message from party Pk−1 and then outputs the result of the

computation. The parties can make use of public and private randomness and need to report a correct

solution with probability 2/3. We refer the reader to [15] for an introduction to communication complexity.

We will exploit the hardness of the two-party communication problem Indexn, where we denote the first

party by Alice and the second party by Bob, and the k-party communication problem Chaink, which was

recently introduced by Cormode et al. [6].

Indexn:

• Input: Alice holds a bit-string X ∈ {0, 1}n, and Bob holds an index J ∈ [n].

• Output: Bob outputs X [J ].

It is well-known that solving Indexn requires Alice to send a message of size Ω(n).

Theorem 1 (e.g. [12]). Every randomized constant-error one-way communication protocol for Indexn re-

quires a message of size Ω(n).

The problem Chaink(n) can be regarded as chaining together k−1 instances of Indexn, where the instances

are correlated in that they are guaranteed to have the same output.

5



Chaink(n):

• Input: For 1 ≤ i < k, player Pi receives a bitvector Xi ∈ {0, 1}
n. Additionally, for any 2 ≤ i ≤ k

player Pi receives an index Ji−1 ∈ [n]. The inputs are correlated such that

X1[J1] = X2[J2] = · · · = Xk−1[Jk−1] = x ∈ {0, 1} .

• Output: Player Pk outputs x.

Sundaresan [18] recently settled the communication complexity of Chaink(n), improving over the previous

lower bounds by Cormode et al. [6] and Feldman et al. [11]:

Theorem 2 ([18]). Every constant-error one-way communication protocol that solves Chaink(n) requires at

least one message of size Ω(n).

3 Unit-length Intervals

In this section, we give our sliding window algorithm (Subsection 3.1) and our lower bound (Subsection 3.2)

for unit length intervals.

3.1 Sliding Window Algorithm for Unit-length Intervals

We now describe our algorithm for unit length intervals.

Algorithm 1 Sliding window algorithm for Interval Selection on unit-length intervals

Input: Stream S of unit-length intervals, window length L

Initialization:

1: latest← ∅ the indexed set of stored intervals

Streaming:

1: while an interval I = [r, r + 1] is revealed, for some real number r do

2: latest(⌊r⌋)← I
3: if ∃ J ′ = [r′, r′ + 1] ∈ latest that has expired then

4: latest(⌊r′⌋)← ∅

Post-processing:

1: Return OPT (latest)

Our algorithm is simple: For each integer r, the algorithm maintains in latest(r) the latest interval of

the current sliding window with its left boundary in [r, r + 1). The key observation, which was also used in

[2], is that the intervals {latest(r) : r even} and {latest(r) : r odd} form independent sets, and one of

these sets constitutes a 2-approximation.

Theorem 3. Algorithm 1 is a deterministic 2-approximation sliding window algorithm for Interval Selection

on unit-length intervals that, at any moment, uses O(|OPT |) space, where OPT is a maximum independent

set of intervals in the current sliding window.

Proof. We will first prove that Algorithm 1 indeed computes a 2-approximation, and then argue that the

algorithm satisfies the memory requirements.

6



We call a unit-length interval I active if it is included in the current sliding window (one of the L most

recent intervals of the stream). Otherwise, we say that I is expired.

Let OPT be a maximum independent set in the current sliding window and let ALG be the independent

set reported by Algorithm 1. Define the indexed set latest as in the algorithm.

Approximation We will show that

|OPT | ≤ |latest| ≤ 2 · |ALG| (1)

holds, which then establishes the approximation factor of the sliding window algorithm.

First, we will prove |OPT | ≤ |latest| holds. To this end, we will show that the function f : OPT →

latest defined as f([x, x+ 1]) = latest(⌊x⌋) is injective.

We will first argue that f is well-defined in that latest(⌊x⌋) exists, for every [x, x+ 1] ∈ OPT . Indeed,

by inspecting the algorithm, when I := [x, x+1] ∈ OPT arrives in the stream, latest(⌊x⌋) is set to I, and,

in particular, while I is active, latest(⌊x⌋) is never set to ∅. It may, however, happen that it is replaced

with an interval which appeared after I. In both cases, f is well-defined.

To see that f is injective, observe that for any two intervals in OPT , since these intervals are independent

and of unit length, the integer parts of their left endpoints are distinct. Hence, f(I1) 6= f(I2), for any two

distinct intervals I1, I2 ∈ OPT .

Since f is well-defined and injective, we obtain that |OPT | ≤ |latest|, which thus proves the first

inequality of Inequality 1. It remains to prove the second, i.e., that |latest| ≤ 2 · |ALG| also holds.

To see this, observe that, for two integers x 6= y of the same parity, latest(x) and latest(y) (if they

exist) are independent. This is because |y − x| ≥ 2 and the intervals have unit length. By the pigeonhole

principle, there are at least |latest|
2 intervals where their indices inside latest have the same parity, which

implies that |ALG| ≥ |latest|
2 .

Space The algorithm stores |latest| intervals in the current sliding window. Then, as proved above,

we have |latest| ≤ 2|ALG| ≤ 2|OPT |, which implies that the space used by the algorithm is O(|OPT |).

3.2 Space Lower Bound

We now show that sliding window algorithms that use space o(L) cannot compute a (2 − ε)-approximation

to Interval Selection on unit-length intervals, for any ε > 0. Recall that, in the streaming model, a 3
2 -

approximation can be computed with space O(|OPT |).

Theorem 4. Let ε > 0 be any small constant. Then, any algorithm in the sliding window model that

computes a (2 − ε)-approximate solution to Interval Selection on unit length intervals requires a memory of

size Ω(L).

Proof. Let A be a sliding window algorithm for Interval Selection on unit-length intervals with approximation

factor 2− ε, for some ε > 0.

We will show how A can be used in order to obtain a communication protocol for IndexL−2.

To this end, let (X, J) ∈ {0, 1}L−2 × [L − 2] be Alice and Bob’s input to IndexL−2. The two players

proceed as follows:

• Alice: Alice feeds the intervals I1, I2, . . . , IL−2 into A (in the given order), where

Ii =

{

[ i
2L−1 , 1 +

i
2L−1 ], if X [i] = 1 ,

[1− i
L2 , 2−

i
L2 ], if X [i] = 0 .

7



Alice then sends the memory state of A to Bob.

• Bob: Using Alice’s message, Bob continues the execution of A and feeds the interval

IL−1 =

[

1 +
J

2L− 1
+

1

(2L− 1)2
, 2 +

J

2L− 1
+

1

(2L− 1)2

]

into A. Bob also adds the intervals Ii = [ i
2L−1 , 1+

i
2L−1 ] to A, for L ≤ i ≤ L+ J − 1 in order to make

the sliding window of the algorithm A advance. Bob computes A’s output in the latest sliding window

consisting of the intervals defined as S = {Ii|J ≤ i ≤ L+ J − 1}.

This construction is illustrated in Figure 2.

I1

I2

IJ IL−1

IJ+1

IL−2

IL

IL+J−2

IL+J−1

Figure 2: This figure illustrates the instances created by Alice and Bob in the proof of Theorem 4 for an
instance of IndexL−2 with X [J ] = 1. The dashed intervals on the upper part correspond to the zero elements
of the bitvector X . The red intervals I1, I2 correspond to expired intervals. IJ is the only non-expired
interval disjoint with the special interval IL−1. Since X [J ] = 1, the optimal solution is of size 2. If X [J ] was
equal to 0 then the interval IJ would not be disjoint with IL−1, and, thus, an optimal solution would be of
size 1.

We observe that if X [J ] = 1 then |OPT (S)| = |{IJ , IL−1}| = 2, while if X [J ] = 0 then |OPT (S)| = 1.

Since A has an approximation factor of 2 − ε, A needs to report the unique solution of size 2 if X [J ] = 1,

and a solution of size 1 when X [J ] = 0. Bob can thus distinguish between the two cases and solve IndexL−2.

Since the protocol solves IndexL−2, by Theorem 1, the protocol must use a message of size Ω(L). The

protocol’s message is A’s memory state, and, hence, A must use space Ω(L).

4 Arbitrary-length Intervals

In this section, we give our (113 + ε)-approximation sliding window algorithm and our (52 − ε)-approximation

lower bound for Interval Selection on arbitrary-length intervals.

4.1 (11
3
+ ε)-approximation Sliding Window Algorithm

Our algorithm is obtained by running multiple instances of the Cabello and Pérez-Lantero streaming algo-

rithm for Interval Selection on arbitrary-length intervals [5]. In the following, we abbreviate the algorithm

8



by CP . Since we employ various properties of the CP algorithm, we discuss the CP algorithm in Subsec-

tion 4.1.1. We use the CP algorithm in the context of the smooth histogram technique, which we discuss in

Subsection 4.1.2. Finally, we give our sliding window algorithm and its analysis in Subsection 4.1.3.

4.1.1 Cabello and Pérez-Lantero Algorithm

For an interval I = [a, b], we define left(I) = a and right(I) = b.

The Cabello and Pérez-Lantero algorithm is depicted in Algorithm 2.

The listing of the algorithm uses the auxiliary functions left(.) and right(.), which return the left and

right delimiters of an interval, respectively.

Algorithm 2 Cabello and Pérez-Lantero Algorithm (CP)

Input: A stream S of intervals

Initialization:

1: W ← {R} a window partition
2: leftmost(R) = rightmost(R) = R

Streaming:

1: while an interval I is revealed do

2: if there exists W = [a, b) ∈ W such that I ⊆W then

3: if I ∩ leftmost(W ) ∩ rightmost(W ) 6= ∅ then
4: if right(I) ≤ right(leftmost(W )) then leftmost(W )← I
5: if left(I) ≥ left(rightmost(W )) then rightmost(W )← I
6: else

7: if right(I) ≤ left(rightmost(W )) then
8: Let W1 ← (a, right(I)]
9: Let W2 ← (right(I)), b]

10: leftmost(W1)← I, rightmost(W1)← I
11: leftmost(W2)← rightmost(W ), rightmost(W2)← rightmost(W )
12: else

13: Let W1 ← [a, left(I))
14: Let W2 ← [left(I)), b)
15: leftmost(W2)← I, rightmost(W2)← I
16: leftmost(W1)← leftmost(W ),rightmost(W1)← leftmost(W )

17: Insert W1,W2 into W
18: Remove W from W

Post-processing:

1: Return {leftmost(W )|W ∈ W}

The key idea behind the algorithm is to maintain a partition W of the real line R that we refer to as

a window partition. Initially, the algorithm starts with the single window W = {R}, and as the algorithm

proceeds, the real line is partitioned into half-open intervals. This is achieved as follows. Arriving intervals

that cross a window boundary are ignored. Consider thus an arriving interval I that lies entirely within a

window. In each window, the algorithm stores the left-most (the interval with the left-most right delimiter)

and right-most (the interval with the right-most left delimiter) intervals within the window that it has

observed thus far. If the interval I together with either the left-most or the right-most interval of the

window forms an independent set of size two then the window is split into two windows and the left-most

9



and right-most intervals are updated accordingly. Otherwise, if I intersects with both the left-most and

right-most intervals of the window then I is only used to potentially replace the left-most and/or right-most

intervals of the window.

Some key properties of the algorithm that we will reuse in this work are summarized in Figure 3 (see [5]

for proofs).

C1 For each window W ∈ W , the CP algorithm stores at least one (and at most two) intervals and
the input instance is such that there are no two disjoint intervals that lie within window W .

C2 The CP algorithm outputs a solution of size |W|, i.e., one interval per window. Furthermore, we

have that |W| ≥ |OPT |+1
2 , i.e., the algorithm has an approximation factor slightly better than 2.

C3 The algorithm uses space O(|OPT |).

Figure 3: Key Properties of the CP Algorithm.

Besides these properties, we require another property that allows us to employ the algorithm in the

context of the smooth histogram technique:

Lemma 1. The CP algorithm is monotonic, i.e., for any two streams of intervals A,B we have that

|CP(A)| ≤ |CP(AB)| .

Proof. The output produced by the CP algorithm consists of one interval per window. The lemma then

follows since, by construction, the number of windows cannot decrease.

4.1.2 The Smooth Histogram Technique

The CP algorithm can be employed in the context of the smooth histogram method to yield a (4 + ε)-

approximation sliding window algorithm for Interval Selection for arbitrary-length intervals that uses space

Õ(|OPT |). This is achieved as follows (see Algorithm 3):

Algorithm 3 Smooth Histogram Technique applied to the CP algorithm

1: while an Interval I is revealed do

2: Create new instance of the CP algorithm
3: Feed I into all CP instances that are currently running
4: Clean-up:

5: Remove oldest run of CP if it has expired
6: Denote by CP1, CP2, . . . the runs sorted in increasing order with respect to their
7: starting positions. Then, repeatedly remove a run CPi if maintained solutions of
8: the adjacent runs CPi−1 and CPi+1 are within a factor of 1 + ε in size
9: output solution of oldest run

Upon the arrival of a new interval, Algorithm 3 first creates a new run of the CP algorithm and feeds

the new interval into all currently running copies of CP. The method relies on a clever way of deleting

unnecessary runs: A run is deleted if it is expired (i.e it contains an interval which appeared before the start

of the current window) and if the closest run with earlier start time and the closest run with later start time

are such that their solutions differ in size by less than a 1 + ε factor. Consider the moment after a clean-up

took place, and let us denote the stored runs by CP1, . . . , CPℓ. The clean-up rule implies that the stored

runs have the properties depicted in Figure 4.

10



S1 For every i ≤ ℓ− 2: |CPi| ≥ (1 + ε)|CP i+2|, and

S2 Either |CP i| ≤ (1 + ε)|CPi+1| holds, or, if |CPi| ≥ (1 + ε)|CPi+1| then the starting positions of
run i and i+ 1 differ by only a single interval.

Figure 4: Key Properties of the Smooth Histogram Technique.

Property S1 implies that there are at most O(log1+ε(L)) active runs of CP and thus the space of Algo-

rithm 3 is at most a factor O(log1+ε(L)) larger than the space used by CP.

Property S2 implies that either consecutive runs differ by at most a 1 + ε factor in solution size or are

such that their starting times differ by only a single interval.

We now provide a proof that allows us to see that Algorithm 3 is a (4 + 2 · ε)-approximation algorithm

for Interval Selection for arbitrary-length intervals. This proof will establish insight into how the analysis of

our more involved (113 + ε)-approximation algorithm is conducted and thus serves as a warm-up.

Theorem 5. Algorithm 3 is a (4 + 2 · ε)-approximation sliding window algorithm for Interval Selection on

arbitrary-length intervals that uses space Õ(|OPT |), where OPT denotes an optimal solution in the current

sliding window.

Proof. Recall that the output of Algorithm 3 is the output of the oldest run of an instance of CP, and let us

denote this run by CP1. First, if the start position of CP1 coincides with the oldest interval of the current

sliding window then CP1 was run on the entire window and we immediately obtain an approximation factor

of 2 (Property C2 of the CP algorithm). Hence, suppose that this is not the case, and denote the run

that has expired most recently by CP0. Observe that, prior to CP0 expiring, the runs CP0 and CP1 were

adjacent. Furthermore, the two runs differ by more than one interval since otherwise the starting position of

CP1 would coincide with the oldest interval of the current sliding window. We now consider the suffix S of

intervals in the stream starting at the start position of run CP0. This suffix S is partitioned into three parts

S = ABC, where A are the intervals that arrived prior to the starting position of CP1, C are the intervals

that arrived from the moment onward when the runs CP0 and CP1 became adjacent (either after a clean-up

or they may have been adjacent from the moment onward when CP1 was created), and B are the intervals

between A and C (if there are any).

We will prove that |CP1| = |CP(BC)| ≥ |OPT (ABC)|/(4 + 2 · ε), which proves the result since the

current sliding window is a suffix of ABC. Indeed, we have the following:

|OPT (ABC)| = |OPT (ABC) ∩ A|

+ |OPT (ABC) ∩ (B ∪ C)|

≤ |OPT (A)|+ |OPT (BC)|

≤ 2 · |CP(A)| + 2 · |CP(BC)| Approx. factor of CP (Property C2)

≤ 2 · |CP(AB)| + 2 · |CP(BC)| Monotonicity, Lemma 1

≤ 2 · (1 + ε) · |CP(B)| + 2 · |CP(BC)| Property S2

≤ 2 · (1 + ε) · |CP(BC)| + 2 · |CP(BC)| Monotonicity, Lemma 1

≤ (4 + 2ε) · |CP(BC)| = (4 + 2ε) · |CP1| .

4.1.3 Sliding Window Algorithm

We will expand upon the smooth histogram method as described in Algorithm 4. The key idea is to exploit

the structure of the windows created by the runs of CP in the smooth histogram algorithm. Based on these

11



windows, we instantiate additional runs that target areas in which we expect to find many optimal intervals.

Algorithm 4 (113 + ε)-approximation Algorithm for Interval Selection on arbitrary-length intervals

Whenever two runs CPi and CPi+1 in Algorithm 3 become adjacent (either because of the clean-up operation
or because a new run was created), proceed as follows:

Denote by W1, . . . ,Wℓ the windows created by CPi thus far.

1. For each window Wi, we initiate a new run of CP , i.e., this run only considers subsequent arriving
intervals that lie within Wi.

2. For each pair of consecutive windowsWi,Wi+1, we initiate a new run of CP that considers all subsequent
intervals that lie within the merged window WiWi+1 (the window consisting of the left boundary of
Wi and the right boundary of Wi+1).

3. Clean-up: The additional runs established in Steps 1 and 2 are associated with the run CPi+1, and
whenever CPi+1 is deleted then all associated runs are also deleted.

4. Output: The output is generated from the oldest active run of CP together with its associated runs
as in steps 1 and 2 (see the proofs of Lemmas 3 and 4).

We will now proceed and analyse Algorithm 4. To this end, we consider any fixed current sliding window.

First, similar to the analysis of Algorithm 3, we note that if the starting position of the oldest run of

CP, denoted CP1, coincides with the left delimiter of the sliding window then we immediately obtain a

2-approximation (by Property C2). Suppose thus that this is not the case. Again, we consider the run CP0,

which is the latest run that has expired and was previously adjacent to CP1. We also consider the suffix of

intervals S = ABC, where A are the intervals starting at the starting position of CP0 and ending before

the starting position of CP1, C are the intervals that occurred after CP0 and CP1 became adjacent, and B

are the remaining intervals. Let OPT = OPT (ABC), let OPTA = OPT ∩A, and define OPTB and OPTC

similarly. Since the current sliding window is a subset of ABC, we have that an optimal solution in the

current sliding window is of size at most OPT .

In Algorithm 4, we run the smooth histogram algorithm, Algorithm 3, with respect to a parameter β > 0

(i.e., replace parameter ε in the listing with β). Then, as proved in Theorem 5, we always have at least a

(4 + 2β)-approximation at our disposal, i.e.,

|CP1| = |CP(BC)| ≤
|OPT |

4 + 2β
.

We define ε ≥ 0 such that

|CP(BC)| =
|OPT |

4 + 2β − ε
. (2)

In the following, we will argue that if ε is close to 0 then we can find a better solution using the runs

associated with CP1.

Let W be the windows created by CP0 at the moment when CP0 and CP1 became adjacent, i.e., the

windows created by the run CP(AB). By Property C2, we have ℓ := |W| = |CP(AB)|. For each window

Wi ∈ W , let xi = |OPTC ∩Wi|, i.e., the number of optimal intervals in C that lie within the window Wi.

Furthermore, we define X :=
∑ℓ

i=1 xi.

In the next lemma, we prove that, provided ε is small, the quantity X is necessarily large, i.e., there are

many optimal intervals in C that lie within the windows Wi. We will later argue that the associated runs

with CP1 can then be used to find many of these.

12



Lemma 2.

X ≥
2− ε

1 + β
· ℓ .

Proof. Observe that |OPT | ≤ X+2ℓ, since at most ℓ intervals of OPT can intersect the window boundaries

W , another ℓ intervals of OPTA ∪ OPTB can lie within the ℓ windows, and the remaining ones are the X

intervals of OPTC .

Then, using Property S2, Lemma 1, and Inequality 2, we obtain:

ℓ = |CP(AB)| ≤ (1 + β)|CP(B)| ≤ (1 + β)|CP(BC)| =
(1 + β)|OPT |

4 + 2β − ε
≤

(1 + β)(X + 2ℓ)

4 + 2β − ε
,

which implies the result.

Consider now the run CP(B), which coincides with the run CP1 until CP0 and CP1 became adjacent.

Let B1 be the intervals computed by this run that do not intersect the boundaries of W and let B2 be the

intervals computed by this run that intersect the boundaries of W . Then, since |B1| + |B2| = |CP(B)|, we

have that either |B1| ≥
1
3 |CP(B)| or |B2| ≥

2
3 |CP(B)|. We treat both cases separately in Lemmas 3 and 4:

Lemma 3. Suppose that |B1| ≥
1
3 |CP(B)|. Then, using the associated runs of CP1, we can output a solution

of size at least 7−3ε
6(1+β)ℓ .

Proof. We call a window Wi good if it contains an interval from B1. We output the solution obtained from

the runs of CP on Wi, for all i, and if such a run on a good window leads to no intervals (i.e. xi = 0), then

we output the interval from B1 instead. Recall that CP outputs a solution of size xi+1
2 if xi 6= 0 (Property

C2), and we stress here that the additive +1 is key for our analysis. We thus obtain a solution of size at

least:

S =
∑

Wi good

max

{

xi + 1

2
, 1

}

+
∑

Wi bad,xi 6=0

xi + 1

2
.

Recall that
∑ℓ

i=1 xi = X ≥ 2−ǫ
1+β
· ℓ. Hence,

S ≥
∑

Wi good

xi + 1

2
+

∑

Wi bad,xi 6=0

xi + 1

2

≥
X + |B1|

2
|B1| is the number of good windows

≥
2− ε

2(1 + β)
ℓ+

1

6
|CP(B)| By Lemma 2

≥
2− ε

2(1 + β)
ℓ+

ℓ

6(1 + β)
|CP(B)| ≥

|CP(AB)|

1 + β
=

ℓ

1 + β
by Prop. S2

≥
7− 3ε

6(1 + β)
ℓ .

Lemma 4. Suppose that |B2| ≥
2
3 |CP(B)|. Then, using the associated runs of CP1, we can output a solution

of size at least 7−3ε
6(1+β)ℓ .

Proof. Let B1
2 ⊆ be the intervals of B2 that lie on the boundary of two windows WiWi+1 where i is even,

and let B2
2 = B2 \B1

2 . Then, either |B
1
2 | ≥

1
2 |B2| or |B2

2 | ≥
1
2 |B2|.

Suppose that |B1
2 | ≥

1
2 |B2|. We only analyse this case since the other case is similar.

13



We call an even index i good if there is an interval in B1
2 that lies on WiWi+1. We consider the runs of

A on pairs of windows WiWi+1 where i is even. Then, we find a solution of size:

S =
∑

2k good

max

{

x2k + x2k+1 + 1

2
, 1

}

+
∑

2k bad
x2k+x2k+1 6=0

x2k + x2k+1 + 1

2

≥
∑

2k good

x2k + x2k+1 + 1

2
+

∑

2k bad
x2k+x2k+1 6=0

x2k + x2k+1 + 1

2
.

Using the identity X =
∑ℓ

i=1 xi and that |B1
2 | is the number of good windows and proceeding as in the proof

of Lemma 3, we obtain:

S ≥
X + |B1

2 |

2
≥

2− ε

2(1 + β)
ℓ+

1

6
|CP(B)| ≥ · · · ≥

7− 3ε

6(1 + β)
ℓ .

Theorem 6. For any constant δ > 0, Algorithm 4 is a (11/3 + δ)-approximation sliding window algorithm

for Interval Selection on arbitrary-length intervals that uses space Õ(|OPT |).

Proof. The naive smooth histogram method gives us a solution of size

|CP(BC)| ≥ |CP(B)| ≥
|CP(AB)|

1 + β
≥

ℓ

1 + β
,

where we used the Monotonicity of CP (Lemma 1) and Property S2. Using the associated runs, by Lemmas 3

and 4, we get a solution of size at least
7− 3ε

6(1 + β)
ℓ .

Since we can output the larger of the two solutions, in the worst case both solutions have the same value,

i.e., when:
ℓ

1 + β
=

7− 3ε

6(1 + β)
ℓ ,

which implies ε = 1
3 . The approximation factor thus is for any δ > 0:

4 + 2 · β − ε+ δ = 11/3 + 2 · β + δ .

Choosing β = 1
2δ, and rescaling δ to 1

2δ gives the result.

As a consequence of Property S1, as previously established, the smooth histogram algorithm uses

Õ(|OPT |) space. It remains to argue that the runs created in Steps 1 and 2 of Algorithm 4 only increase

the space requirements by a constant times |OPT |.

Indeed, for a fixed instance CPi, all the runs created by Step 1 are pairwise disjoint (they do not store

common intervals) so their cumulative space is O(|OPT |) as we assumed the memory required to store an

interval is O(1). Similarly, for the runs created by Step 2, an interval appears in at most two such runs. So,

the cumulative space is again O(|OPT |). Therefore, the total number of intervals stored in the associated

runs is at most O(|OPT |), completing the proof.

The proof of the approximation factor of the algorithm is shown to be tight in Appendix A, meaning

that the algorithm does not beat 11
3 approximation.

14



4.2 Space Lower Bound

We now give our space lower bound for sliding window algorithms for Interval Selection on arbitrary-length

intervals. Our result is established by a reduction to the three-party communication problem Chain3.

Theorem 7. Let ε > 0 be any small constant. Then, any algorithm in the sliding window model that

computes a (2.5−ε)-approximate solution to Interval Selection on arbitrary-length intervals requires a memory

of size Ω(L).

Proof. Let A be a sliding window algorithm with approximation factor 2.5 − ε, for some ε > 0, as in the

statement of the theorem, and let n = L−2
3 , where L is the window length. We will argue how Chain3(n)

can be solved with the help of A.

To this end, denote the three parties in the communication problem Chain3(n) by Alice, Bob, and Charlie.

Let X1 ∈ {0, 1}n be Alice’s input, let X2 ∈ {0, 1}n and J1 ∈ [n] be Bob’s input, and let J2 ∈ [n] be Charlie’s

input. The players proceed as follows:

• Alice: For every i ∈ [n], Alice feeds the following intervals into A:

I1(i) =

{

[

i
3n , 1 +

i
3n

]

, if X [i] = 1 ,

[−10− i, 10 + i], if X [i] = 0 .
I2(i) =

{

[

2− i
3n , 3−

i
3n

]

, if X [i] = 1 ,

[−11− i, 11 + i], if X [i] = 0 .

The order given is I1(1), I2(1), I1(2), I2(2), . . . , I1(n), I2(n). We observe that, for every i ∈ [n], when

X1[i] = 1, the intervals I1(i) and I2(i) are disjoint. Alice sends the memory state of A to Bob.

• Bob: For every i ∈ [n+ 2(J1 − 1)], Bob feeds the following interval into A:

I3(i) =

{

[

1 + J1

3n + 1
6n + i−1

6n2 , 2−
J1

3n −
1
6n + i−1

6n2

]

, if i ≤ n and X [i] = 1 ,

[−10− i, 11 + i], otherwise .

Let k ∈ [n]. Notice that, for every j ∈ [n+ 2(J1 − 1)], when X1[k] = X2[j] = 1, we have that I3(j) is

disjoint with both I1(k) and I2(k) if and only if j ≤ J1. Otherwise, I3(j) intersects with both I1(k)

and I2(k).

Bob sends the memory state of A and J2 to Charlie.

• Charlie: We denote the interval boundaries of I3(i) by aI3(i) and bI3(i), i.e., I3(i) = [aI3(i), bI3(i)].

Charlie feeds the following two intervals into A:

IJ2
=

[

2aI3(J2−1) + aI3(J2)

3
,
aI3(J2−1) + 2aI3(J2)

3

]

, and

I ′J2
=

[

2bI3(J2−1) + bI3(J2)

3
,
bI3(J2−1) + 2bI3(J2)

3

]

.

Notice that IJ2
intersects all intervals of I3(i), for all i < J2, while I ′J2

intersects all intervals of I3(i),

for all i > J2.

Using A, Charlie computes the largest independent set OPT of

I = {I1(k)|J1 ≤ k ≤ n} ∪ {I2(k)|J1 ≤ k ≤ n} ∪ {I3(k)|1 ≤ k ≤ n+ 2(J1 − 1)} ∪ {IJ2
, I ′J2
} ,

which is possible since A is a sliding window algorithm and thus able to solve the situation when the

intervals ∪1≤k<J1
(I1(k) ∪ I2(k)) have expired.

15



Figure 5 provides an illustration of the proof of Theorem 7.

I1(1)

I1(J1 − 1)

I1(J1)

I1(J1 + 1)

I1(n) I2(n)

I1(J1 + 1)

I2(J1)

I2(J1 − 1)

I2(1)

I3(1)

I3(J2 − 1)

I3(J2)IJ2
I ′J2

I3(J2 + 1)

I3(n)

Figure 5: This figure illustrates the intervals created by Alice, Bob and Charlie in the proof of Theo-
rem 7 for an instance of Chain3(n) where n = L−2

3 with X1[J1] = X2[J2] = 1. The red intervals in
the figure (I1(1), I1(J1 − 1),I2(1),I2(J1 − 1)) correspond to expired intervals. The optimal solution is
{I1(J1), I2(J1), IJ2

, I ′J2
, I3(J2)} of size 5 . Otherwise, if X1[J1] = X2[J2] = 0, then the optimal solution would

have been of size 2. All intervals I3(i) are disjoint from I1(J1) and I2(J2). However, they intersect with
I1(J1+1) and I2(J2+1) as emphasized by the vertical dashed lines. Intervals I3(i) for n+2(J1− 1) ≥ i > n
have been omitted as they do not impact the optimal solution and their only role is to advance the sliding
window.

.

The total number of intervals added by the three players is 3n+ 2+ 2(J1 − 1) = L+ 2(J1 − 1). So, after

Charlie’s execution A, the incumbent window indeed consists of I.

We will argue now that if X1[J1] = X2[J2] = 1 then the optimal solution size is 5, while if X1[J1] =

X2[J2] = 0 then the optimal solution size is 2.

Suppose thus that X1[J1] = X2[J2] = 1. Then it is not hard to see that the unique optimal solution is

{I1(J1), I2(J1), I3(J2), IJ2
, I ′J2
} of size 5.

Next, suppose that X1[J1] = X2[J2] = 0. Notice first that, in this case, I1(J1), I2(J1), I3(J2) intersect

with every other interval in the input, so they can only belong to independent sets of size at most 1.

Also, we have that any interval I1(i) with i > J1 would block all the intervals I3(j) for 1 ≤ j ≤ n+2(J1−1)

and IJ2
. So, an interval from I1(i) with i > J1 can be included in an optimal set of size at most 2 (either

{I1(i), I ′J2
} or {I1(i), I2(j)} for some j > J1). Similarly, I2(i) with i > J2 can be included in an optimal set

of size at most 2. Furthermore, we can construct from Bob and Charlie’s input a solution of size at most 2

(similar to the 3
2 − ε insertion only lower bound construction of [10]). The size of an optimal solution is thus

in this case 2.

Recall that A has an approximation factor of 2.5 − ε. Hence, if X1[J1] = X2[J2] = 1 then A reports a

solution of size at least 3, thereby distinguishing it from the case when X1[J1] = X2[J2] = 0, which yields

an optimal size of 2.

Since, by Theorem 2, Chain3(n) requires a message of size Ω(n), and since the protocol solely consists

of forwarding the memory state of A, we conclude that A requires a memory of size Ω(n) = Ω(L), which

16



completes the proof.

5 Conclusion

In this paper, we initiated the study of the Interval Selection problem in the sliding window model of com-

putation. We gave algorithms and lower bounds for both unit-length and arbitrary-length intervals. In the

unit-length case, we gave a 2-approximation algorithm that uses space O(|OPT |), and we showed that this is

best possible in that any (2− ε)-approximation algorithm requires space Ω(L). In the arbitrary-length case,

we gave a (113 + ε)-approximation algorithm that uses space Õ(|OPT |), and we showed that any (52 − ε)-

approximation algorithm requires space Ω(L). Contrasted with results known from the one-pass streaming

setting, our result implies that Interval Selection in both the unit-length and the arbitrary-length cases is

harder to solve in the sliding window setting than in the one-pass streaming setting.

We conclude with two open questions.

First, the approximation guarantees of our algorithm for arbitrary-length intervals and our respective

lower bound do not match. Can we close this gap?

Second, the sliding window model has received significantly less attention for the study of graph problems

than the traditional one-pass streaming setting. While from a theoretical perspective, the sliding window

model is less clean than the one-pass streaming model, as discussed in the introduction, it is, however, the

more suitable model for many applications. We are particularly interested in understanding the differences

between the two models. For example, which graph problems can be solved equally well in the sliding window

model as in the one-pass streaming setting, and which problems are significantly harder to solve?

References

[1] Cezar-Mihail Alexandru, Pavel Dvorák, Christian Konrad, and Kheeran K. Naidu. Improved weighted

matching in the sliding window model. In Petra Berenbrink, Patricia Bouyer, Anuj Dawar, and Ma-

madou Moustapha Kanté, editors, 40th International Symposium on Theoretical Aspects of Computer

Science, STACS 2023, March 7-9, 2023, Hamburg, Germany, volume 254 of LIPIcs, pages 6:1–6:21.

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.STACS.2023.6.

[2] Ainesh Bakshi, Nadiia Chepurko, and David P. Woodruff. Weighted maximum independent set of

geometric objects in turnstile streams. In International Workshop and International Workshop on

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 2019.

URL: https://api.semanticscholar.org/CorpusID:67856291.

[3] Leyla Biabani, Mark de Berg, and Morteza Monemizadeh. Maximum-weight matching in sliding win-

dows and beyond. 2021. URL: https://api.semanticscholar.org/CorpusID:245276580.

[4] Vladimir Braverman and Rafail Ostrovsky. Smooth histograms for sliding windows. In 48th Annual

IEEE Symposium on Foundations of Computer Science (FOCS 2007), October 20-23, 2007, Providence,

RI, USA, Proceedings, pages 283–293. IEEE Computer Society, 2007. doi:10.1109/FOCS.2007.55.

[5] Sergio Cabello and Pablo Pérez-Lantero. Interval selection in the streaming model. Theor. Comput.

Sci., 702:77–96, 2017. doi:10.1016/j.tcs.2017.08.015.

[6] Graham Cormode, Jacques Dark, and Christian Konrad. Independent sets in vertex-arrival streams.

ArXiv, abs/1807.08331, 2018. URL: https://api.semanticscholar.org/CorpusID:49907556.

17

https://doi.org/10.4230/LIPIcs.STACS.2023.6
https://api.semanticscholar.org/CorpusID:67856291
https://api.semanticscholar.org/CorpusID:245276580
https://doi.org/10.1109/FOCS.2007.55
https://doi.org/10.1016/j.tcs.2017.08.015
https://api.semanticscholar.org/CorpusID:49907556


[7] Michael S. Crouch, Andrew McGregor, and Daniel M. Stubbs. Dynamic graphs in the sliding-

window model. In Hans L. Bodlaender and Giuseppe F. Italiano, editors, Algorithms - ESA

2013 - 21st Annual European Symposium, Sophia Antipolis, France, September 2-4, 2013. Pro-

ceedings, volume 8125 of Lecture Notes in Computer Science, pages 337–348. Springer, 2013.

doi:10.1007/978-3-642-40450-4\_29.

[8] Jacques Dark, Adithya Diddapur, and Christian Konrad. Interval selection in data streams: Weighted

intervals and the insertion-deletion setting. In Foundations of Software Technology and Theoretical

Computer Science, 2023. URL: https://api.semanticscholar.org/CorpusID:266192962.

[9] Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining stream statistics over

sliding windows: (extended abstract). In Proceedings of the Thirteenth Annual ACM-SIAM Sympo-

sium on Discrete Algorithms, SODA ’02, page 635–644, USA, 2002. Society for Industrial and Applied

Mathematics.

[10] Yuval Emek, Magnús M. Halldórsson, and Adi Rosén. Space-constrained interval selection. ACM Trans.

Algorithms, 12(4):51:1–51:32, 2016. doi:10.1145/2886102.

[11] Moran Feldman, Ashkan Norouzi-Fard, Ola Svensson, and Rico Zenklusen. The one-way communication

complexity of submodular maximization with applications to streaming and robustness. In Proceedings

of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, page 1363–1374,

New York, NY, USA, 2020. Association for Computing Machinery. doi:10.1145/3357713.3384286.

[12] T. S. Jayram, Ravi Kumar, and D. Sivakumar. The one-way communica-

tion complexity of hamming distance. Theory Comput., 4:129–135, 2008. URL:

https://api.semanticscholar.org/CorpusID:15825208.

[13] Mikhail Kapralov. Space lower bounds for approximating maximum matching in the

edge arrival model. In ACM-SIAM Symposium on Discrete Algorithms, 2021. URL:

https://api.semanticscholar.org/CorpusID:232172216.

[14] Robert Krauthgamer and David Reitblat. Almost-smooth histograms and sliding-window graph algo-

rithms. Algorithmica, 84(10):2926–2953, 2022. doi:10.1007/s00453-022-00988-y.

[15] Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University Press, 1997.

[16] Ami Paz and Gregory Schwartzman. A (2+ǫ)-approximation for maximum weight matching in the

semi-streaming model. ACM Trans. Algorithms, 15(2):18:1–18:15, 2019. doi:10.1145/3274668.

[17] Sai Krishna Chaitanya Nalam Venkata Subrahmanya. Vertex cover in the sliding window model. Mas-

ter’s thesis, Rutgers, The State University of New Jersey, 2021.

[18] Janani Sundaresan. Optimal communication complexity of chained index, 2024. arXiv:2404.07026.

18

https://doi.org/10.1007/978-3-642-40450-4_29
https://api.semanticscholar.org/CorpusID:266192962
https://doi.org/10.1145/2886102
https://doi.org/10.1145/3357713.3384286
https://api.semanticscholar.org/CorpusID:15825208
https://api.semanticscholar.org/CorpusID:232172216
https://doi.org/10.1007/s00453-022-00988-y
https://doi.org/10.1145/3274668
http://arxiv.org/abs/2404.07026


A2

A3

B

C1

C2

Figure 6: Illustration of a good window, where the vertical black lines depict its boundaries. Black intervals
represent streams A2, A3. Blue intervals represent the stream B. The upper green intervals belong to C1.
The bottom green intervals belong to C2. Stream A1 is omitted to keep the illustration simple – these
intervals are responsible for creating the windows of CP(A)).

A Hard Instance for the Analysis of Algorithm 4

A.1 Description of the Instance

We will present a hard instance demonstrating that the analysis of Algorithm 4 is tight. We assume that

the smooth histogram parameter β is set to β = 0. This is a reasonable assumption since the approximation

factor of the algorithm approaches the optimal value of 11
3 when β → 0.

As before, let CP1 be the oldest still active instance created by the smooth histogram algorithm, and let

CP0 be the expired instance which came before CP1. Given CP0 and CP1, we can divide the active stream

into successive parts A,B,C. A represents the intervals that arrived before the starting position of CP1.

C represents the intervals that arrived right after the runs CP0 and CP1 became adjacent (i.e after all the

instances between CP0 and CP1 are deleted). The intervals arriving after A but before C are denoted as B.

The smooth histogram condition then translates to CP(AB) = CP(A).

Let ℓ be a positive integer divisible by 3. We will first give the full stream in Algorithm 5 and then

explain the purpose of each portion of the stream.

We call the created windows [x, x+1) with x = 3k+2, for some integer k, good. Notice that the number

of windows created by CP(A) is ℓ while the number of good windows is exactly ℓ/3 because ℓ is divisible by

3.

We will now discuss the instance created in Algorithm 5, which is also sketched in Figure 6.

• Stream A

Stream A has three parts in this order: A1, A2, A3.

– Stream A1

This stream is responsible for creating the windows [x, x + 1) for any integer x ∈ [ℓ] \ {1, ℓ} and

windows (−∞, 2), [ℓ,∞).

– Stream A2

19



This stream inserts intervals inside the windows [x, x + 1). Notice that the interval [x + 0.5, x+

0.54] ∈ A2 is completely inside the window [x, x+1) and replaces the interval [x+0.1, x+1] ∈ A1

as both the leftmost and the rightmost intervals of the window.

– Stream A3

This stream inserts intervals that intersect the boundaries of windows created by A1. The stream

contributes to the size of the optimal solution of the overall stream ABC.

• Stream B

If we execute stream B immediately after stream A, the windows created in A will remain unchanged.

In B, we only add items inside or intersecting the good windows. Consider therefore a good window

W = [x, x+ 1).

The intervals [x − 0.1, x + 0.26], [x + 0.9, x + 1.1] are intervals crossing the boundary of W . They

completely include the boundary intervals of A3 (i.e [x− 0.05, x+0.05] from the previous window and

[x + 0.95, x+ 1.05]). The interval [x + 0.53, x+ 0.71] ∈ B is an interval inside W that intersects the

interval [x+ 0.5, x+ 0.54] ∈ A2.

• Stream C

The stream C is divided into C1, C2 and only adds intervals completely included within good windows.

Consider therefore a good window W = [x, x+ 1).

– Stream C1

The purpose of the stream C1 is to create new windows from the windows of the run CP(AB).

The new windows created inside W are [x, x+ 0.3), [x+ 0.3, x+ 0.75) and [x+ 0.75, x+ 1).

– Stream C2

The stream C2 contributes to |OPT ∩ C| of our instance, where OPT is an independent set of

optimal size inside the stream ABC. The interval [x+ 0.06, x+ 0.15] ∈ C2 intersects the interval

[x − 0.1, x + 0.26] ∈ B, but it does not intersect the interval [x − 0.05, x + 0.05] ∈ A3. The

interval [x+0.9, x+0.94] ∈ C2 has similar properties. The intervals [x+ 0.25, x+0.35] ∈ C2 and

[x + 0.7, x + 0.8] ∈ C2 intersect with the boundaries of the windows of CP(C1), so they will not

be saved by the algorithm. Lastly, the interval [x + 0.55, x + 0.6] ∈ C2 does not intersect with

[x+ 0.5, x+ 0.54] ∈ A2, but it intersects with [x+ 0.53, x+ 0.71] ∈ B.

A.2 Analysis of the Instance

Here we will prove that the output is indeed a 11
3 approximation of the optimal solution, therefore proving

that our analysis of Algorithm 4 is best possible.

Lemma 5. The streams A,B yield CP(AB) = CP(B) = ℓ, hence the smooth histogram condition is obeyed.

Proof. Notice that after the run of stream A, we have created the windows [x, x+1) for x ∈ [ℓ] and windows

(−∞, 2), [ℓ,∞).

Now, we consider a good window W = [x, x+ 1). The saved interval of A inside W is [x+ 0.5, x+ 0.54].

When the stream B arrives, the intervals [x − 0.1, x + 0.26] and [x + 0.9, x + 1.1] cross the boundaries

of W . The interval [x + 0.53, x+ 0.71] ∈ B intersects with the interval [x + 0.5, x + 0.54] ∈ A, so only the

rightmost of the window is changed after the stream B is processed.

Since no new windows are created by B, we can argue that CP(AB) = ℓ (the number of windows created

by CP(A)). Furthermore, all the intervals of B are pairwise independent so that CP(B) = |B| = ℓ, hence

proving the required lemma.

20



Lemma 6. Let OPT be an optimal independent set of stream ABC. Then, |OPT | ≥ 11ℓ
3 .

Proof. Inspecting the intervals given by the streams A2, A3, C2, we see that they form an independent set.

We have

• |A2| = ℓ,

• |A3| = ℓ, and

• |C2| = 5 · ℓ3 .

Hence, we obtain that |A2 ∪ A3 ∪ C2| =
11ℓ
3 , which implies |OPT | ≥ |A2 ∪ A3 ∪ C2| =

11ℓ
3 as required.

Lemma 7. The naive smooth histogram approach outputs a solution of size CP(BC) = ℓ.

Proof. Recall that all intervals in B and C are inserted only into good windows or at the boundary of good

windows. Let [x, x+ 1) be a good window (i.e x = 3k + 2 for integer k). We will show that |CP(BC) ∩ [x−

1, x+ 2]| = 3 (the good window and its neighbouring windows).

After processing the B stream, we have window boundaries at x + 0.26, x + 0.71 and x + 1.1. Observe

that all of the intervals of C1 cross the window boundaries at x + 0.26, and x + 0.71, so they do not get

saved by the run of CP. Furthermore, we have that the interval [x+0.25, x+0.35] ∈ C2 crosses the window

boundary at x + 0.26 while the interval [x + 0.7, x + 0.8] ∈ C2 crosses the boundary at x + 0.71, so these

intervals also do not get saved.

When processing C, however, the intervals [x+ 0.06, x+ 0.15], [x+ 0.55, x+ 0.6], [x+ 0.9, x+ 0.94] ∈ C2

get inserted into the solution. Additionally, they do not change the structure of the windows created by the

run CP(B) (i.e they only modify the leftmost or the rightmost interval of each window created by B).

So, |CP(BC) ∩ [x − 1, x + 2]| = 3. Because there are ℓ/3 good windows and the intervals [x − 1, x + 2]

where x = 3k + 2 do not pairwise intersect, we have |CP(BC)| = ℓ as required.

Lemma 8. Steps 1 and 2 of Algorithm 4 output a solution of size ℓ.

Proof. First, observe that steps 1 and 2 of Algorithm 4 are run on substream C. Furthermore, since only

good windows contain intervals in substream C, it suffices to explore how steps 1 and 2 act on good windows.

In each good window, the stream C1 is responsible for creating the windows of the runs of Algorithm

4. Observe that the intervals [x + 0.25, x + 0.35] ∈ C2 and [x + 0.7, x + 0.8] ∈ C2 cross the boundaries

of these windows and are thus not stored by the algorithm. In each good window, only the intervals

[x+0.06, x+0.15], [x+0.55, x+0.6], [x+0.9, x+0.94] of C2 get memorized. Therefore, we obtain a solution

of size 3 for each good window. Overall, the obtained solution by the runs of steps 1 and 2 of Algorithm 4

is of size 3 · ℓ3 = ℓ.

Using the last two lemmas, we obtain the following conclusion:

Theorem 8. Let S be the size of the solution output by Algorithm 4 on the described input. Then,OPT (ABC)
S

≥
11
3 .

Proof. By the previous two lemmas, both CP(BC) and steps 1 and 2 of Algorithm 4 output a solution of

size ℓ. Notice that the set of saved intervals of steps 1 and 2 of Algorithm 4 is a subset of the saved intervals

of CP(BC), therefore we cannot improve the overall solution by combining both solutions. So, S = ℓ.

By Lemma 6, OPT (ABC) ≥ 11ℓ
3 . So, we get the required conclusion.

21



Algorithm 5 Hard instance stream S = ABC for Algorithm 4

Stream A

Stream A1

1: for x from 1 to ℓ do
2: Insert [x+ 0.1, x+ 1]

Stream A2

1: for x from 1 to ℓ do
2: Insert [x+ 0.5, x+ 0.54]

Stream A3

1: for x from 1 to ℓ do
2: Insert [x+ 0.95, x+ 1.05]

Stream B

1: for x from 1 to ℓ do
2: if x = 3k + 2 for integer k then

3: Insert [x− 0.1, x+ 0.26]
4: Insert [x+ 0.53, x+ 0.71]
5: Insert [x+ 0.9, x+ 1.1]

Stream C

Stream C1:

1: for x from 1 to ℓ do
2: if x = 3k + 2 for integer k then

3: Insert [x+ 0.06, x+ 0.3]
4: Insert [x+ 0.35, x+ 0.75]

Stream C2:

1: for x from 1 to ℓ do
2: if x = 3k + 2 for integer k then

3: Insert [x+ 0.06, x+ 0.15]
4: Insert [x+ 0.25, x+ 0.35]
5: Insert [x+ 0.55, x+ 0.6]
6: Insert [x+ 0.7, x+ 0.8]
7: Insert [x+ 0.9, x+ 0.94]

22


	Introduction
	Preliminaries
	Unit-length Intervals
	Sliding Window Algorithm for Unit-length Intervals
	Space Lower Bound

	Arbitrary-length Intervals
	-approximation Sliding Window Algorithm
	Cabello and Pérez-Lantero Algorithm 
	The Smooth Histogram Technique 
	Sliding Window Algorithm 

	Space Lower Bound

	Conclusion
	Hard Instance for the Analysis of Algorithm 4
	Description of the Instance
	Analysis of the Instance


