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ABSTRACT
The initial algebra for an endofunctor 𝐹 provides a recursion and

induction scheme for data structures whose constructors are de-

scribed by 𝐹 . The initial-algebra construction by Adámek (1974)

starts with the initial object (e.g. the empty set) and successively

applies the functor until a fixed point is reached, an idea inspired

by Kleene’s fixed point theorem. Depending on the functor of inter-

est, this may require transfinitely many steps indexed by ordinal

numbers until termination.

We provide a new initial algebra construction which is not based

on an ordinal-indexed chain. Instead, our construction is loosely

inspired by Pataraia’s fixed point theorem and forms the colimit of

all finite recursive coalgebras. This is reminiscent of the construc-

tion of the rational fixed point of an endofunctor that forms the

colimit of all finite coalgebras. For our main correctness theorem,

we assume the given endofunctor is accessible on a (weak form of)

locally presentable category. Our proofs are constructive and fully

formalized in Agda.

CCS CONCEPTS
• Theory of computation→ Logic.
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1 INTRODUCTION
Structural recursion is a fundamental principle in computer sci-

ence; it appears whenever one traverses syntax or other inductively

defined data structures such as natural numbers, lists, or trees. Any
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concrete recursion principle depends on the type of the construc-

tors of the syntax or data structure of interest. A uniform view on

these recursion principles is provided by the theory of algebras for

an endofunctor 𝐹 on a category, where 𝐹 is a parameter modelling

the type of constructors. An algebra for 𝐹 can be understood as an

object of data with operations of the type modelled by 𝐹 .

An initial algebra for 𝐹 – if it exists – provides the data structure

which is the canonical minimal implementation of a data type with

constructors specified by 𝐹 . Its universal property yields a recursion

and an induction principle for this data structure.

For example, for the set functor 𝐹 defined by 𝐹𝑋 = {•} + 𝑋 × 𝑋
the initial 𝐹 -algebra (𝐼 , 𝑖) consists of all binary trees. A standard

example of a recursively defined function on binary trees is the

height-function ℎ : 𝐼 → N defined by

ℎ(•) = 0 and ℎ
(
𝑠 𝑡

)
= 1 + max(ℎ(𝑠), ℎ(𝑡)), (1)

where the second case considers the binary tree obtained by joining

the trees 𝑠, 𝑡 ∈ 𝐼 under a new root node. Initiality means that for

every 𝐹 -algebra there exists a unique homomorphism from (𝐼 , 𝑖) to
(𝐴, 𝑎). For instance, the height-function ℎ is the unique function

from the initial algebra (𝐼 , 𝑖) to the 𝐹 -algebra on 𝐴 = N with the

following structure 𝑎 (see also Figure 1):

𝑎 : 𝐹N→ N 𝑎(inl(•)) = 0 𝑎(inr(𝑘, 𝑛)) = 1 + max(𝑘, 𝑛); (2)

here inl : {•} → {•} + N × N and inr : N × 𝑁 → 𝐹N denote the

coproduct injections. This models that a leaf has height 0, and an

inner nodewith children of height𝑘 and𝑛, respectively, has a height

of 1+max(𝑘, 𝑛). Note that the commutativity of the left-hand square

in Figure 1 is equivalent to the two equations in (1); in particular,

one sees that the arguments 𝑘, 𝑛 of the algebra structure 𝑎 can be

thought of as the returned values of the recursive calls of ℎ to the

maximal subtrees 𝑠 and 𝑡 of a given binary tree which is not simply

a leaf.

{•} + 𝐼 × 𝐼 𝐼 inr(•, • •) •
• •

{•} + N × N N inr(0, 1) 2

id{•}+ℎ×ℎ

𝑖

∃!ℎ

𝑖

id{•}+ℎ×ℎ
ℎ

𝑎

• ↦→ 0

(𝑘,𝑛) ↦→ 1+max(𝑘,𝑛)

𝑎

Figure 1: Example of an algebra (N, 𝑎) and the algebra homo-
morphism ℎ induced by the initial algebra (𝐼 , 𝑖)
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Since initial algebras are an important concept, it is natural to in-

vestigate, when initial algebras exist and how they are constructed.

Their existence is entailed by assumptions on the ‘smallness’ of the

constructions performed by the endofunctor 𝐹 . More precisely, ev-

ery accessible endofunctor on a locally presentable category has an

initial algebra; this follows from classical results by Adámek [5]. He

also provided a construction of the initial algebra for an endofunc-

tor 𝐹 generalizing Kleene’s construction of the least fixed point of a

continuous function on a cpo (or more generally, the corresponding

transfinite version for monotone maps on chain-complete posets,

which is essentially due to Zermelo [27]). For the category of sets,

the construction builds the initial-algebra chain, an ascending chain

of sets, by transfinite recursion. It starts with the initial object, the

empty set, and then successively applies the functor 𝐹 :

∅ → 𝐹∅ → 𝐹 2∅ → 𝐹 3∅ → · · ·

At a limit ordinal 𝑖 , one takes the colimit of the chain of all previ-

ous sets. If the initial-algebra chain converges in the sense that a

connecting map from one step to the next is an isomorphism, then

its inverse is the structure of an initial algebra for 𝐹 .

This provides a nice iterative construction of initial algebras.

However, the use of transfinite induction makes it difficult to for-

malize this classical initial-algebra construction in full generality in

a proof assistant based on type theory, such as Agda, Coq, or Lean.

The problem seems to be that the notion of an ordinal is inherently

set-theoretic, and therefore does not easily translate into type the-

ory. It is the goal of our paper to provide a new construction of the

initial algebra which does not rely on transfinite recursion and can

be formalized in proof assistants.

Our construction is based on coalgebras obeying the recursion

scheme [24], aka. recursive coalgebras [9, 12, 20]. They are coal-

gebras 𝑟 : 𝑅 → 𝐹𝑅 satisfying a property much like the universal

property of an initial algebra: for every 𝐹 -algebra 𝑏 : 𝐹𝐵 → 𝐵, there

exists be a unique coalgebra-to-algebra morphism:

𝐹𝑅 𝑅

𝐹𝐵 𝐵

𝐹ℎ

𝑟

∃!ℎ

𝑏

Recursive coalgebras have originally arisen in the categorical study

of well-founded induction [20]; in fact, under mild assumptions on

the endofunctor 𝐹 a coalgebra is recursive iff it is well-founded [2,

15, 23–25]; the latter notion generalizes the classical notion of a

well-founded relation to the level of coalgebras for an endofunctor.

Consequently, a recursive coalgebra 𝑅 → 𝐹𝑅 models a kind

of decomposing or ‘divide’ step within a recursive (divide-and-

conquer) computation; this has been nicely explained by Capretta

et al. [9]. Since it does not need be closed under operations of

type 𝐹 , a recursive coalgebra allows us to collect only some of

the inhabitants from the initial algebra or graph-like versions of

the syntactic tree-like elements, e.g. sharing subtrees. For example,

Figure 2 shows an example of a recursive coalgebra for the set

functor 𝐹𝑋 = {•} + 𝑋 × 𝑋 . This coalgebra is indeed recursive,

𝑅 𝑟 𝐹𝑅

𝑢 ↦→ inr(𝑥, 𝑥)
𝑣 ↦→ inr(𝑦,𝑤)
𝑤 ↦→ inr(𝑧,𝑦)
𝑥 ↦→ inl(•)
𝑦 ↦→ inl(•)
𝑧 ↦→ inl(•)

𝑢

•𝑥 • 𝑥
𝑣

•𝑦 𝑤

•𝑧 • 𝑦

Figure 2: Example of a recursive 𝐹 -coalgebra 𝑟 : 𝑅 → 𝐹𝑅

because for every algebra 𝑏 : 𝐹𝐵 → 𝐵, the following function

ℎ : 𝑅 −→ 𝐵

ℎ(𝑥) := ℎ(𝑦) := ℎ(𝑧) := 𝑏 (inl(•))
ℎ(𝑢) := 𝑏 (inr(ℎ(𝑥), ℎ(𝑥)))
ℎ(𝑤) := 𝑏 (inr(ℎ(𝑧), ℎ(𝑦)))
ℎ(𝑣) := 𝑏 (inr(ℎ(𝑦), ℎ(𝑤)))

specifies a unique coalgebra-to-algebra morphism from (𝑅, 𝑟 ) to
(𝐵,𝑏). So recursive coalgebras can intuitively be understood as

well-founded data objects whose constructor types are specified

by 𝐹 .

An important special case is that if the structure 𝑟 : 𝑅 → 𝐹𝑅 of a

recursive coalgebra happens to be an isomorphism, then (𝑅, 𝑟−1)
is the initial algebra.

1.1 Overview of the Contribution
In the present work, we use this observation to provide a new

construction of the initial algebra. Intuitively, our construction is

based on the idea that

The initial algebra is the collection of well-founded data
object of type 𝐹 (modulo behavioural equivalence).

Our construction works for every accessible endofunctor on a

locally presentable category. To make the point that our proof is

constructive, we formalize it in Agda. To this end we use the notion

of a Fil-accessible category, for a collection Fil of filtered colimits,

which subsumes the notion of a locally 𝜆-presentable category (for

a regular cardinal 𝜆), but without the need to mention any cardinal

number 𝜆 explicitly.

To construct an initial algebra, we consider recursive coalgebras

𝑟 : 𝑅 → 𝐹𝑅 where 𝑅 is a presentable object; this notion generalizes

that of a finite set. Therefore, such coalgebras are said to be finite-
recursive. We then take the colimit of all finite-recursive coalgebras

for 𝐹 and obtain a coalgebra 𝛼 : 𝐴 → 𝐹𝐴. Even though 𝐴 is not

finitely presentable, (𝐴, 𝛼) is locally finite-recursive, in the sense

that it is built as a colimit from finite-recursive coalgebras. We

prove that (𝐴, 𝛼) satisfies a universal property: it is the terminal
locally finite-recursive coalgebra.

Finally, we prove that it is a fixed point of 𝐹 . To this end, we

provide a non-trivial argument showing that (𝐹𝐴, 𝐹𝛼) is also locally
finite-recursive. An argument in the style of Lambek’s Lemma then

shows that 𝛼 is an isomorphism, whence (𝐴, 𝛼−1) is the initial

algebra.
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Structure of this paper. After discussing categorical preliminaries

on locally presentable categories and recursive coalgebras (Sec-

tion 2), we establish our main initial algebra theorem (Section 3).

The relation and differences to the construction based on the initial-

algebra chain are discussed in Section 4. We address technical

aspects and conceptual challenges of the Agda formalization in

Section 5. The main text concludes in Section 6. The index of for-

malized results (Section 7) links the results from the paper with the

corresponding result in Agda.

1.2 Agda Formalization
Our theorem is fully formalized inAgda (2.6.4) using the agda-cate-
gories library (v0.2.0) [14]. Despite the effort, we went for the

formalization for the following reasons:

(1) Underpin our claim that our results are constructive. Agda

makes it explicitly visible where non-constructive methods (such

as the law of excluded middle) are used in our proofs or in proofs

of standard lemmas (especially on hom-colimits and locally pre-

sentable categories). In addition, the distinction between small and

large colimits becomes visible due to Agda’s type level system.

(2) Exclude mistakes; especially the proof that (𝐹𝐴, 𝐹𝛼) is locally
finite-recursive turned out to be non-trivial.

(3) Contribute to the growing field of mechanized mathematics.

We kept many lemmas on colimits and coalgebras as general as

possible and will submit them to the agda-categories project.

The paper is phrased in standard set theory and category theory

to be more accessible to general readers, but we keep it as close to

our Agda formalization as possible.

Our Agda source code spans more than 5000 lines and 29 files.

Both the source code and the HTML documentation can be found

in the ancillary files on arxiv.org and on:

https://git8.cs.fau.de/software/initial-algebras-unchained

(also archived on archive.softwareheritage.org)

We annotate mechanized definitions and theorems with a click-

able icon which links to the online HTML documentation of

the respective result in the Agda code base. So readers who want

to have a quick look may browse the linked HTML documentation.

Additional clues about the formalization (and clickable links) can

be found in the index in Section 7 at the end of this document.

1.3 Related Work
Adámek et al. [3] have provided a proof of an initial algebra theorem

which uses recursive coalgebras to construct the initial algebra

from a given pre-fixed point of 𝐹 (that is, an algebra 𝐴 whose

structure morphism is monomorphic). They use Pataraia’s fixed

point theorem to obtain the initial algebra as the least fixed point

of a monotone operator on the lattice of subobjects of 𝐴. However,

assuming existence of a pre-fixed point is quite strong; establishing

this is almost as difficult as proving existence of an initial algebra.

Our construction works without that assumption and obtains (the

carrier of) the initial algebra as a colimit.

Pitts and Steenkamp [21] formalized an initial algebra theorem in

Agda using inflationary iteration and avoiding transfinite iteration.

There have been efforts to incorporate ordinals in Agda [13]

and transfinite induction in Coq [22]. However, it is not clear to

us whether this could be used for any formalization of the initial-

algebra chain or the notion of a locally 𝜆-presentable category.

Our construction is reminiscent of the construction of the ra-

tional fixed point of a finitary endofunctor on a locally finitely

presentable category [4]. This is constructed by taking the colimit

of all coalgebras with a finitely presentable carrier (in lieu of all

finite-recursive) coalgebras. In addition, our technique of applying

the functor to a locally finite-recursive coalgebra (Theorem 3.22) is

reminiscent of what is done in work on the rational fixed point [17–

19, 26] to show that it is indeed a fixed point. Beside incorporating

recursiveness, we needed to slightly adapt the ideas to make them

work in the Agda formalization.

Our notion of a Fil-accessible category (Definition 3.1) is very

similar to a notion used by Urbat [26]. It is also reminiscent of the

notion of a D-accessible category introduced by Adámek et al. [1]

and further studied by Centazzo et al. [10, 11].

2 CATEGORICAL PRELIMINARIES
We assume basic knowledge of category theory, functors, and co-

limits; see [6, 8] for a detailed introduction.

Notation 2.1. Both in this paper and in the Agda source code,

we use calligraphic letters 𝒞,𝒟,ℰ for categories, latin letters for

functors and objects, and serif-free font for identifiers consisting of

multiple letters, such as Set for the category of sets and maps.

We denote the coproduct of objects 𝑋,𝑌 ∈ 𝒞 by 𝑋 + 𝑌 (if it

exists) and we write [𝑓 , 𝑔] : 𝑋 + 𝑌 → 𝑍 for the unique morphism

induced by the morphisms 𝑓 : 𝑋 → 𝑍 and 𝑔 : 𝑌 → 𝑍 .

2.1 Finiteness in a category
A standard way to capture the notion of finiteness of an object in a

category is in terms of the preservation of filtered colimits:

Definition 2.2. We recall from Adámek and Rosický [7]:

(1) A functor 𝐹 : 𝒞 → 𝒞
′ preserves the colimit (𝑐𝑖 : 𝐷𝑖 → 𝐶)𝑖∈𝒟

of a diagram 𝐷 : 𝒟 → 𝒞 if (𝐹𝑐𝑖 : 𝐹𝐷𝑖 → 𝐹𝐶)𝑖∈𝒟 is a colimit of the

diagram 𝐹 ◦ 𝐷 : 𝒟 → 𝒞
′
( ).

(2) A category 𝒟 is filtered ( ) provided that

(a) 𝒟 is non-empty,

(b) for every 𝑋,𝑌 ∈ 𝒟 there is an upper bound 𝑍 ∈ 𝒟, that is,

there are morphisms 𝑋 → 𝑍 and 𝑌 → 𝑍 ,

(c) for every 𝑓 , 𝑔 : 𝑋 → 𝑌 there is some 𝑍 ∈ 𝒟 and some

ℎ : 𝑌 → 𝑍 with ℎ ◦ 𝑔 = ℎ ◦ 𝑓 .
A diagram 𝐷 : 𝒟 → 𝒞 is filtered if𝒟 is a filtered category, and a

colimit of a filtered diagram is said to be filtered.
(3) A functor 𝐹 : 𝒞 → 𝒞

′
is finitary if it preserves filtered colimits.

(4) An object 𝑋 ∈ 𝒞 is finitely presentable if its hom-functor

𝒞(𝑋,−) : 𝒞 → Set is finitary.

Remark 2.3. Note that the notions of small and large diagram

schemes behave slightly differently in Agda than in classic set the-

ory when quantifying over all sets. Therefore, we do not distinguish

between small and large diagram schemes 𝒟 above: preservation

of colimits simply refers to those colimits that exist.

Remark 2.4. Finitariness can equivalently be defined using di-
rected diagrams (i.e. those where the diagram scheme is a directed
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poset) in lieu of filtered ones [7, Thm. 1.5]. We decided to work

with filtered diagrams because this simplifies the formalization of

locally finitely presentable categories (Definition 2.9).

Example 2.5 [7, Ex. 1.2]. Finite presentability instantiates to stan-

dard notions of finiteness in the following categories:

(1) In the categories of sets, posets and graphs, the finitely pre-

sentable objects are precisely the finite sets, posets and graphs,

respectively.

(2) In the category of vector spaces over a field 𝑘 , the finitely pre-

sentable objects are precisely the finite dimensional vector spaces.

(3) In the category of groups and monoids, the finitely presentable

objects are precisely those which can be presented by finitely many

generators and relations.

(4) More generally, in every finitary variety, i.e. a category of alge-

bras for a finitary signature satisfying a set of equations, the finitely

presentable objects are precisely those presented by finitely many

generators and relations.

Remark 2.6. Filtered colimits in Set can be characterized as fol-

lows. Given a filtered diagram 𝐷 : 𝒟 → Set, a cocone 𝑐𝑖 : 𝐷𝑖 → 𝐶

(𝑖 ∈ 𝒟) is a colimit of 𝐷 if and only if it satisfies the two conditions:

(1) the colimit injections are jointly surjective: for every 𝑥 ∈ 𝐶

there exist 𝑖 ∈ 𝒟 and 𝑥 ′ ∈ 𝐷𝑖 such that 𝑥 = 𝑐𝑖 (𝑥 ′);
(2) for every pair 𝑥 ′, 𝑥 ′′ ∈ 𝐷𝑖 with 𝑐𝑖 (𝑥 ′) = 𝑐𝑖 (𝑥 ′′) there exists a
morphism ℎ : 𝑖 → 𝑗 in𝒟 such that 𝐷ℎ(𝑥 ′) = 𝐷ℎ(𝑥 ′′).

General (non-filtered) colimits in Set have a similar character-

ization given by condition (1) and a more involved version of (2).

Condition item (2) makes use of filteredness: whenever two ele-

ments are identified in the colimit, then are already identified by a

connecting morphism of the diagram.

When instantiating this characterization to filtered diagrams

𝐷 : 𝒟 → 𝒞 postcomposed with a hom-functor 𝒞(𝑋,−) of some

𝑋 ∈ 𝒞, we obtain:

Lemma2.7 ( ). The hom-functor𝒞(𝑋,−) for an object𝑋 preserves
the colimit 𝐶 of a filtered diagram 𝐷 iff every morphism 𝑓 : 𝑋 → 𝐶

factorizes essentially uniquely through one of the colimit injection
𝑐𝑖 : 𝐷𝑖 → 𝐶 (𝑖 ∈ 𝒟) in the sense that:
(1) there exist 𝑖 ∈ 𝒟 and 𝑓 ′ : 𝑋 → 𝐷𝑖 such that 𝑓 = 𝑐𝑖 ◦ 𝑓 ′:

𝑋 𝐶 ∀ 𝑓 𝒞(𝑋,𝐶)

𝐷𝑖 ∃𝑖 with 𝑓 ′ 𝒞(𝑋, 𝐷𝑖)

∀𝑓

∃𝑖 and 𝑓 ′
⇐⇒

∈
𝑐𝑖 in 𝒞 𝒞 (𝑋,𝑐𝑖 )

∈
in Set

(2) given two such factorizations 𝑐𝑖 ◦ 𝑓 ′ = 𝑐𝑖 ◦ 𝑓 ′′ of 𝑓 there exists a
morphism ℎ : 𝑖 → 𝑗 of𝒟 such that 𝐷ℎ ◦ 𝑓 ′ = 𝐷ℎ ◦ 𝑓 ′′.

𝑋 𝐶

𝐷𝑖 𝐷 𝑗

𝑐𝑖◦𝑓 ′=𝑐𝑖◦𝑓 ′′

𝑓 ′

𝑓 ′′
𝑐𝑖

𝐷ℎ

Indeed, apply Remark 2.6 to the cocone 𝒞(𝑋, 𝑐𝑖 ) (𝑖 ∈ 𝒟).

Next we recall the notion of a locally finitely presentable category.

The idea is that every object in such a category can be constructed

from a set of finitely presentable ones in a canonical way:

Definition 2.8 ( ). For a set𝒮 of objects of𝒞 and 𝑋 ∈ 𝒞, define

the category 𝒮/𝑋 to have

• objects (𝑆, 𝑓 ) for 𝑆 ∈ 𝒮 and 𝑓 : 𝑆 → 𝑋 (in 𝒞), and

• morphisms ℎ : (𝑆, 𝑓 ) → (𝑇,𝑔) for ℎ : 𝑆 → 𝑇 with 𝑔 ◦ ℎ = 𝑓 in 𝒞.

The functor𝑈𝑋 : 𝒮/𝑋 → 𝒞 is defined by𝑈𝑋 (𝑆, 𝑓 ) = 𝑆 . Every such
diagram𝑈𝑋 has a canonical cocone:

𝑈𝑋 (𝑆, 𝑓 )
𝑓

−→ 𝑋 for (𝑆, 𝑓 ) ∈ 𝒮/𝑋 . (3)

Definition 2.9 [7]. A category 𝒞 is locally finitely presentable (lfp,
for short) provided that it is cocomplete and has a set𝒞p of finitely

presentable objects such that every object 𝑋 ∈ 𝒞 is the colimit of

𝑈𝑋 : 𝒞p/𝑋 → 𝒞.

Example 2.10. Examples of lfp categories are ubiquitous. For ex-

ample, the categories of sets, posets and graphs are lfp. Every fini-

tary varieties of algebras forms an lfp category. Instances of this

are the categories of groups, monoids and vector spaces and many

others.

2.2 Algebra and Coalgebra
We recall some basic notions from the theory of (co-)algebras for

an endofunctor.

Definition 2.11. Given an endofunctor 𝐹 : 𝒞 → 𝒞, an 𝐹 -algebra

is a pair (𝐴, 𝑎) where 𝐴 is an object of𝒞 (the carrier of the algebra)
and with a morphism 𝑎 : 𝐹𝐴 → 𝐴 a morphism (its structure). Dually,
an 𝐹 -coalgebra is a pair (𝐶, 𝑐) consisting of a carrier object 𝐶 and a

structure morphism 𝑐 : 𝐶 → 𝐹𝐶 .

Intuitively, an 𝐹 -algebra provides an object of data values to-

gether with operations described by 𝐹 . For example, for the set

functor 𝐹𝑋 = {•} + 𝑋 × 𝑋 , an 𝐹 -algebra 𝑎 : 𝐹𝐴 → 𝐴 consists of

• some constant 𝑎(inl(•)) ∈ 𝐴, and
• a binary operation sending 𝑥,𝑦 ∈ 𝐴 to 𝑎(inr(𝑥,𝑦)) ∈ 𝐴.

An 𝐹 -coalgebra 𝑐 : 𝐶 → 𝐹𝐶 provides an object of states with ab-

stract transitions or a structured collection of successors described

by 𝐹 . For example, for the above set functor 𝐹 we have for every

state 𝑥 ∈ 𝐶 that

• either 𝑐 (𝑥) ∈ {•}, describing that 𝑥 has no successor,

• or 𝑐 (𝑥) ∈ 𝐶 ×𝐶 , describing that 𝑥 has a pair of successors.

So coalgebras can be thought of as graph like structures.

We relate 𝐹 -algebras and 𝐹 -coalgebras using the following no-

tions of morphisms:

Definition 2.12. An 𝐹 -algebra morphismℎ from (𝐴, 𝑎) to (𝐵,𝑏) is a
𝒞-morphism ℎ : 𝐴 → 𝐵 satisfying ℎ ◦𝑎 = 𝑏 ◦𝐹ℎ (see the right-hand
square in diagram (4)). An 𝐹 -coalgebra morphism 𝑔 from (𝐶, 𝑐) to
(𝐷,𝑑) is a𝒞-morphism 𝑔 : 𝐶 → 𝐷 satisfying 𝑑 ◦𝑔 = 𝐹𝑔 ◦ 𝑐 (see the
left-hand square in (4)). A coalgebra-to-algebra morphism from a

coalgebra (𝐷,𝑑) to an algebra (𝐴, 𝑎) is a 𝒞-morphism 𝑠 : 𝐷 → 𝐴
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such that 𝑠 = 𝑎 ◦ 𝐹𝑠 ◦ 𝑑 (see the middle square in (4)).

𝐶 𝐷 𝐴 𝐵

𝐹𝐶 𝐹𝐷 𝐹𝐴 𝐹𝐵

𝑔

𝑐

𝑠

𝑑

ℎ

𝑎 𝑏

𝐹𝑔 𝐹𝑠 𝐹ℎ

(4)

Definition 2.13. A coalgebra (𝑅, 𝑟 ) is recursive if for every algebra
(𝐴, 𝑎) there is a unique coalgebra-to-algebra morphism from (𝑅, 𝑟 )
to (𝐴, 𝑎).

In addition to the example of a recursive coalgebra for 𝐹𝑋 = {•}+
𝑋 ×𝑋 in the introduction, we now discuss further examples which

illustrate the point that recursive coalgebras relate to well-founded

induction and that they capture the ‘divide’ step in recursive divide-

and-conquer computations.

Example 2.14. (1) The first examples of recursive coalgebras are

well-founded relations. Recall that a binary relation 𝑅 on a set 𝑋 is

well-founded iff there is no infinite descending sequence of related

elements:

· · · 𝑅 𝑥3 𝑅 𝑥2 𝑅 𝑥1 𝑅 𝑥0 .

A binary relation 𝑅 ⊆ 𝑋 × 𝑋 is, equivalently, a coalgebra for the

power-set functor𝒫 which maps a set𝑋 to the set𝒫𝑋 of all its sub-

sets: 𝑅 corresponds to 𝑐 : 𝑋 → 𝒫𝑋 defined by 𝑐 (𝑥) = {𝑦 : 𝑦 𝑅 𝑥}.
The relation 𝑅 is well-founded iff the associated 𝒫-coalgebra is

recursive.

(2) For every endofunctor 𝐹 having an initial algebra 𝑖 : 𝐹𝐼 → 𝐼 , its

structure is an isomorphism (by Lambek’s Lemma [16]), and the

inverse 𝑖−1
: 𝐼 → 𝐹𝐼 is a recursive coalgebra.

(3) Capretta et al. [9] have shown how to obtain Quicksort using

recursivity. Let 𝐶 be any linearly ordered set (of data elements).

Quicksort is the recursive function 𝑞 : 𝐶∗ → 𝐶∗
defined by

𝑞(𝜀) = 𝜀 and 𝑞(𝑐𝑤) = 𝑞(𝑤≤𝑐 ) ★ (𝑐𝑞(𝑤>𝑐 )),
where 𝐶∗

is the set of all lists on 𝐶 , 𝜀 is the empty list, ★ is the

concatenation of lists and 𝑤≤𝑐 denotes the list of those elements

of𝑤 that are less than or equal to 𝑐 ∈ 𝐶; analogously for𝑤>𝑐 .

Now consider the set functor 𝐹𝑋 = {•} +𝐶 × 𝑋 × 𝑋 and define

the coalgebra 𝑠 : 𝐶∗ → {•} +𝐶 ×𝐶∗ ×𝐶∗
by

𝑠 (𝜀) = • and 𝑠 (𝑐𝑤) = (𝑐,𝑤≤𝑐 ,𝑤>𝑐 ) for 𝑐 ∈ 𝐶 and𝑤 ∈ 𝐶∗ .

This coalgebra is recursive. Thus, for the following 𝐹 -algebra𝑚 : {•}+
𝐶 ×𝐶∗ ×𝐶∗ → 𝐶∗

defined by

𝑚(•) = 𝜀 and 𝑚(𝑐,𝑤, 𝑣) = 𝑤 ★ (𝑐𝑣)
there exists a unique function 𝑞 on 𝐶∗

such that 𝑞 =𝑚 ◦ 𝐹𝑞 ◦ 𝑠 .
Note that this equation reflects the idea that Quicksort is a divide-

and-conquer algorithm. The coalgebra structure 𝑠 divides a list into

two parts𝑤≤𝑐 and𝑤>𝑐 . Then 𝐹𝑞 sorts these two smaller lists, and

finally, in the combine (or conquer) step, the algebra structure𝑚

merges the two sorted parts to obtain the desired whole sorted list.

Jeannin et al. [15, Sec. 4] provide a number of further recursive

functions arising in programming that are determined by recur-

sivity of a coalgebra, e.g. the Euclidean algorithm for the gcd of

integers, Ackermann’s function, and the Towers of Hanoi.

Notation 2.15. We denote the category of 𝐹 -coalgebras with their

morphisms by 𝐹 -Coalg and the respective category of 𝐹 -algebras by

𝐹 -Alg. The canonical forgetful functor 𝑉 : 𝐹 -Coalg → 𝒞 is defined

by 𝑉 (𝐶, 𝑐) = 𝐶 on objects, and it is identity on morphisms.

Lemma 2.16 ( ). The forgetful functor 𝑉 : 𝐹 -Coalg → 𝒞 creates
all colimits.

This means that, given a diagram 𝐷 : 𝒟 → 𝐹 -Coalg, if the com-

posed diagram 𝑉 ◦ 𝐷 : 𝒟 → 𝒞 has a colimit (ℎ𝑖 : 𝑉𝐷𝑖 → 𝐶)𝑖∈𝒟,

then there is a unique coalgebra structure 𝑐 : 𝐶 → 𝐹𝐶 such that all

the colimit injections ℎ𝑖 are coalgebra morphisms. Moreover, (𝐶, 𝑐)
is then a colimit of 𝐷 .

Lemma 2.17 ( ). Recursive coalgebras are closed under colimits
created by 𝑉 .

Proofsketch. Suppose that 𝐷 : 𝒟 → 𝐹 -Coalg is a diagram

such that 𝐷𝑑 = (𝐶𝑑 , 𝑐𝑑 ) is recursive for every 𝑑 ∈ 𝒟, we have to

show that its colimit (𝐶, 𝑐) is recursive, too. We denote the colimit

injections by 𝑖𝑑 : (𝐶𝑑 , 𝑐𝑐 ) → (𝐶, 𝑐).
Given an algebra (𝐴, 𝑎), we obtain for every 𝑑 ∈ 𝐷 a unique

coalgebra-to-algebra morphism ℎ𝑑 from (𝐶,𝑑) to (𝐴, 𝑎). It is not
difficult to prove that (ℎ𝑑 ) is a cocone (of 𝑉𝐷). Since the colimit

of 𝐷 is created by 𝑉 , there exists a unique morphism ℎ : 𝐶 → 𝐴

such that ℎ ◦ 𝑖𝑑 = ℎ𝑑 for all 𝑑 ∈ 𝒟. One now readily proves that ℎ is

a unique coalgebra-to-algebra morphism from (𝐶, 𝑐) to (𝐴, 𝑎). □

A helpful lemma to prove recursiveness is the following

Lemma 2.18 ( , [9, Prop. 5]). Consider coalgebra morphisms

ℎ : (𝑅, 𝑟 ) → (𝐵,𝑏) and 𝑔 : (𝐵,𝑏) → (𝐹𝑅, 𝐹𝑟 )
with 𝑏 = 𝐹ℎ ◦ 𝑔. If (𝑅, 𝑟 ) is recursive, then (𝐵,𝑏) is recursive, too.

For 𝑔 = id, we immediately obtain a corollary stating that recur-

sive coalgebras are closed under application of 𝐹 :

Corollary 2.19 ( , [9, Prop. 6]). If (𝑅, 𝑟 ) is a recursive coalgebra,
then so is (𝐹𝑅, 𝐹𝑟 ).

Lemma 2.20 ( , [9, Prop. 7(a)]). If the structure 𝑟 : 𝑅 → 𝐹𝑅 of
a recursive coalgebra is an isomorphism, then 𝑟−1

: 𝐹𝑅 → 𝑅 is the
initial algebra.

3 INITIAL ALGEBRA THEOREM
Our main result (Theorem 3.31) states that for every accessible

endofunctor 𝐹 on a locally presentable category𝒞 the initial algebra

can be constructed as the colimit of all sufficiently ‘small’ recursive

coalgebras; ‘small’ here means that the carriers of those recursive

coalgebra are 𝜆-presentable, where 𝜆 is a regular cardinal such

that 𝒞 is locally 𝜆-presentable and 𝐹 is 𝜆-accessible.

Since in our Agda formalization the treatment of the cardinal

number 𝜆 is problematic we work in a slightly generalized setting:

Definition 3.1 ( ). Let Fil be a collection1 of filtered categories.

(1) An object 𝑋 ∈ 𝒞 is (Fil-)presentable if its hom functor 𝒞(𝑋,−)
preserves colimits of diagrams 𝐷 : 𝒟 → 𝒞 with 𝒟 ∈ Fil.
(2) A category 𝒞 is Fil-accessible provided that

(a) there is a set 𝒞p ⊆ 𝒞 of (Fil-)presentable objects,
(b) for all 𝑋 ∈ 𝒞, the slice category (𝒞p/𝑋 ) lies in Fil,

1
In Agda, Fil is realized as a predicate; in classic set theory, it suffices to consider Fil
as a class of small, filtered categories.
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(c) every object 𝑋 ∈ 𝒞 is the colimit of 𝑈𝑋 : 𝒞p/𝑋 → 𝒞 (Defi-

nition 2.8).

Remark 3.2. (1) Definition 3.1 is very similar to an instance of

an (I,M)-accessible category in the sense of Urbat [26, Def. 3.4].

His notion is parametric in a collection I of sifted diagrams and the

class M of an (E,M)-factorization system which 𝒞 is equipped

with. Modulo the assumption on existence of colimits our notion

is an instance of his by taking I = Fil and the trivial factorization

system (isomorphisms, all morphisms).
(2) Definition 3.1 is also reminiscent of the notion of a D-accessible
category introduced by Adámek et al. [1, Def. 3.4]. The parameterD
is a limit doctrine, that is, an essentially small collection of small

categories. They consider D-filtered colimits, which are colimits

that commute in Set with all limits with a diagram scheme in D.
For example, for D consisting of all finite categories, one obtains

filtered colimits, and forD consisting of all finite discrete categories,

one obtains sifted colimits. The precise relationship of this notion

to ours (or Urbat’s notion) is subject to further study.

(3) Unlike the classical definition of a locally presentable category

(and the generalized notions in the previous two items) our defi-

nition explicitly mentions the canonical diagram 𝑈𝑋 , and we ex-

plicitly require that 𝒞p/𝑋 lies in Fil. The reason for this is that our

proofs use that the hom functor of a presentable object preserves

the colimit in Definition 3.1.(2c).

Example 3.3. Every lfp category 𝒞 is Fil-accessible for Fil being
the class of all filtered categories.

Example 3.4 ( ). For the same collection Fil, the category Set
is Fil-accessible, with 𝒞p being the category of all finite ordinals

{0, . . . , 𝑘 − 1} for 𝑘 ∈ N and all maps between them.

We have chosen to work with Fil-accessible categories because
their definition does not explicitly mention cardinal numbers. How-

ever, besides lfp categories, they subsume the more general notion

of a locally 𝜆-presentable category [7], for a regular cardinal 𝜆:

Example 3.5. Let 𝜆 be a regular cardinal, and recall from op. cit. that

a category𝒟 is 𝜆-filtered if every set of morphsism of size less than 𝜆

has a cocone in𝒟. Equivalently:

(1) Every set of less than 𝜆 objects has a cocone, and

(2) every family of less than 𝜆 parallel morphisms 𝑓𝑖 : 𝐴 → 𝐵 (𝑖 ∈ 𝐼
with |𝐼 | < 𝜆) has a coequalizing morphism 𝑔 : 𝐵 → 𝐶 (that is,

𝑔 ◦ 𝑓𝑖 : 𝐴 → 𝐶 is independent of 𝑖 ∈ 𝐼 ).
A diagram 𝐷 : 𝒟 → 𝒞 is 𝜆-filtered if so is its diagram scheme 𝒟,

and a 𝜆-filtered colimit is a colimit of a 𝜆-filtered diagram. A functor

is 𝜆-accessible if it preserves 𝜆-filtered colimits. An object𝑋 of a cat-

egory 𝒞 is 𝜆-presentable if its hom-functor 𝒞(𝑋,−) is 𝜆-accessible.
Finally, a category is locally 𝜆-presentable if it is cocomplete and

has a set of 𝜆-presentable objects 𝒞p such that every object of 𝒞

is a 𝜆-filtered colimit of the diagram 𝑈𝑋 : 𝒞p/𝑋 → 𝒞 (cf. Defini-

tion 3.1).

For Fil being the class of all small 𝜆-filtered categories, every

locally 𝜆-presentable category is Fil-accessible.

Note that like in lfp categories, the set 𝒞p does not necessarily

need to contain all presentable objects (up to isomorphism):

Lemma 3.6 ( ). Every presentable object 𝑋 ∈ 𝒞 is a split quotient
of some object 𝑃 ∈ 𝒞p.

That is, there exists a split epimorphism 𝑃 ↠ 𝑋 .

Assumption 3.7. For the remainder of this section, we fix a col-

lection Fil of filtered categories, Fil-accessible category 𝒞 and an

endofunctor 𝐹 : 𝒞 → 𝒞. We also assume that every pair 𝑋,𝑌 of

presentable objects has a coproduct 𝑋 + 𝑌 .

It then follows that 𝑋 + 𝑌 is presentable, too.

Lemma 3.8 ( ). Presentable objects are closed under binary co-
product in 𝒞.

Proofsketch. Similarly as in the setting of lfp categories, one

uses filteredness (implied by Fil) in order to lift the desired factor-

ization property from presentable objects 𝑋 and 𝑌 to 𝑋 + 𝑌 . □

Definition 3.9. A coalgebra (𝐶, 𝑐) is
(1) finite-recursive (finrec) if it is recursive and 𝐶 presentable ( ).

(2) locally finrec if it is the colimit of finrec coalgebras ( ). This

means that there is a diagram 𝐷 : 𝒟 → 𝐹 -Coalg and a cocone

(𝐷𝑖 → (𝐶, 𝑐))𝑖∈𝒟 such that

(a) 𝐷𝑖 is finrec for every 𝑖 ∈ 𝒟,

(b) (𝑉𝐷𝑖 : 𝑉𝐷𝑖 → 𝐶)𝑖∈𝒟 is a colimit in𝒞 (where𝑉 : 𝐹 -Coalg →
𝒞 is the forgetful functor).

Informally speaking, a finrec coalgebra is a system with transi-

tions of type 𝐹 that is free of cycles and in which every element has

a finite description. This is precisely the intuition of the elements of

the initial algebra. Consequently, our main theorem characterizes

the initial algebra (considered as a coalgebra) as the colimit 𝐴 of all
finrec coalgebras. While we obtain the coalgebra structure𝐴 → 𝐹𝐴

directly from colimit creation (Lemma 2.16), we need some non-

trivial results about locally finrec coalgebras in order to construct

its inverse viz. the algebra structure 𝐹𝐴 → 𝐴. Note that as soon

as we have established an isomorphism 𝐴 � 𝐹𝐴, it is the initial

algebra (by Lemma 2.20).

The way we obtain the desired isomorphism is very similar to

the argument of Lambek’s famous lemma [16]. In dual form this

argument can be stated as follows:

Lemma 3.10 ( ). The structure 𝑐 : 𝐶 → 𝐹𝐶 of a coalgebra (𝐶, 𝑐)
is an isomorphism provided that:
(1) there is a coalgebra morphism ℎ : (𝐹𝐶, 𝐹𝑐) → (𝐶, 𝑐),
(2) there is at most one coalgebra morphism (𝐶, 𝑐) → (𝐶, 𝑐).

The Agda formalization of the proof is quite easy to read; in fact,

this is a good place to start delving into our Agda code.

Proof. First note that the coalgebra structure is a coalgebra

morphism 𝑐 : (𝐶, 𝑐) → (𝐹𝐶, 𝐹𝑐). Composing it with the coalgebra

morphism ℎ : (𝐹𝐶, 𝐹𝑐) → (𝐶, 𝑐) according to item (1) yields an

endomorphism on (𝐶, 𝑐), which must be the identity by item (2):

ℎ ◦ 𝑐 = id𝐶 . In the following computation we use this, functoriality

of 𝐹 , and that ℎ is a coalgebra morphism to conclude that it is the

inverse of 𝑐:

𝑐 ◦ ℎ = 𝐹ℎ ◦ 𝐹𝑐 = 𝐹 (ℎ ◦ 𝑐) = 𝐹 id𝐶 = id𝐹𝐶 . □
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𝐹 -Coalgfinrec:
Diagram of

all recursive (𝑅, 𝑟 )
with 𝑅 ∈ 𝒞p

Locally finrec

coalgebra (𝐴, 𝛼)
Colimit

Colimit Injection:

it is the unique

ℎ : (𝑅, 𝑟 ) → (𝐴, 𝛼)
for every

(𝑅, 𝑟 ) ∈ 𝐹 -Coalgfinrec

Theorem 3.24

Universal Property:

there is a unique

(𝑅, 𝑟 ) ∃!−→ (𝐴, 𝛼)
for all (locally)

finrec (𝑅, 𝑟 )

Proposition 3.27

Corollary 3.28

(𝐹𝐴, 𝐹𝛼) is
also a locally

finrec coalgebra

Theorem 3.22 There exists

ℎ : (𝐹𝐴, 𝐹𝛼) → (𝐴, 𝛼)

The identity id𝐴
is the only

endomorphism

(𝐴, 𝛼) → (𝐴, 𝛼)

Fixpoint

𝐴 � 𝐹𝐴

Lambek’s Lemma

(Lemma 3.10)

Initial Algebra

(𝐴, 𝛼−1)

Lemma 2.20

Figure 3: Roadmap for the initial algebra theorem (Theorem 3.30)

Remark 3.11. Note that the (dual of the) original Lemma assumes

that (𝐶, 𝑐) is terminal to establish the two conditions above.

In order to verify the two condition of Lemma 3.10 for our coal-

gebra 𝐴 → 𝐹𝐴 we will develop elements of the theory of locally

finrec coalgebras. A roadmap of the major proof steps is visualized

in Figure 3.

3.1 Applying 𝐹 to Locally Finrec Coalgebras
At the heart of Lambek’s lemma lies the observation that for every

coalgebra 𝑐 : 𝐶 → 𝐹𝐶 application of 𝐹 to the coalgebra structure

yields the coalgebra 𝐹𝑐 : 𝐹𝐶 → 𝐹𝐹𝐶 . This still holds for recursive

coalgebras: If (𝑅, 𝑟 ) is recursive, then so is (𝐹𝑅, 𝐹𝑟 ) (Corollary 2.19).

However, for finrec coalgebras this does not hold, not even for very

simple examples of set functors. For example, for the set functor

𝐹𝑋 = N × 𝑋 , the coalgebra (𝐹𝐶, 𝐹𝑐) does not have a finite carrier
unless 𝐶 is empty.

Generalizing to locally finrec coalgebras, we recover the ability

to apply 𝐹 : if (𝐶, 𝑐) is locally finrec, then so is (𝐹𝐶, 𝐹𝑐) provided that
𝐹 preserves the colimit of a diagram of finrec coalgebra which forms

(𝐶, 𝑐). To stay in line with the Agda formalization, we allow𝒟 to

be a large category.

Assumption 3.12 ( ). We fix a locally finrec coalgebra (𝐴, 𝛼) and
a (potentially large) diagram 𝐷 : 𝒟 → 𝐹 -Coalg of finrec coalgebras
whose colimit is (𝐴, 𝛼). We assume that 𝒟 lies in Fil, and that 𝐹

preserves the colimit of the diagram 𝑉 ◦ 𝐷 : 𝒟 → 𝒞. We write

(𝑋𝑖 , 𝑥𝑖 ) for the finrec coalgebra 𝐷𝑖 and 𝜋𝑖 : (𝑋𝑖 , 𝑥𝑖 ) → (𝐴, 𝛼) for
the colimit injection (in 𝐹 -Coalg) for every 𝑖 ∈ 𝒟.

Remark 3.13. The names 𝐴 and 𝛼 : 𝐴 → 𝐹𝐴 are the members of

the coalgebra record in the Agda’s categories library. For our fixed

locally finrec coalgebra we keep these names in order to stay as

close as possible to the formalized proof, while all other coalgebras

have roman letters as structures.

For an accessible functor 𝐹 on a locally presentable category 𝒞

(Examples 3.3 and 3.5), Assumption 3.12 is satisfied: the diagram 𝐷

may be taken as the canonical projection

𝐹 -Coalgfinrec/(𝐴, 𝛼) → 𝐹 -Coalg.

In order to show that (𝐹𝐴, 𝐹𝛼) is locally finrec again, we shall

present a diagram 𝐸 : ℰ → 𝐹 -Coalg of finrec coalgebras whose

colimit is (𝐹𝐴, 𝐹𝛼). For that we use that the object 𝐹𝐴 is the colimit

of the canonical diagram𝑈𝐹𝐴 : 𝒞p/𝐹𝐴 −→ 𝐹𝐴. (Definition 3.1.(2c)).

The objects of 𝒞p/𝐹𝐴 are pairs (𝑃, 𝑝) consisting of a presentable

object 𝑃 ∈ 𝒞p and a morphism 𝑝 : 𝑃 → 𝐹𝐴. The objects of the

desired diagram schemeℰ are commuting triangles with one side

in 𝒞p/𝐹𝐴 and the other side coming from a colimit injection of 𝐷 ,

which we denote byℰ0:

ℰ0 := {(𝑃, 𝑝, 𝑖, 𝑝′) | (𝑃, 𝑝) ∈ 𝒞p/𝐹𝐴, 𝑖 ∈ 𝒟, 𝐹𝜋𝑖 ◦ 𝑝′ = 𝑝} ( )

(𝑃, 𝑝, 𝑖, 𝑝′) ∈ ℰ0 =̂

𝑃 𝐹𝐴

𝐹𝑋𝑖

𝑝

𝑝′ 𝐹𝜋𝑖 (5)

The elements ofℰ0 relate the colimits of𝐷 and𝑈𝐹𝐴: themorphism 𝑝

is the colimit injection of (𝑃, 𝑝) to 𝐹𝐴 and 𝜋𝑖 is the colimit injection

of (𝑋𝑖 , 𝑥𝑖 ) to (𝐴, 𝛼). The collectionℰ0 is only as large as 𝒟: if 𝒟 is

a small category, thenℰ0 is a set.

Lemma3.14. Every object of𝒞p/𝐹𝐴 extends to an essentially unique
object ofℰ0:
(1) For every (𝑃, 𝑝) ∈ 𝒞p/𝐹𝐴 there exist 𝑖 ∈ 𝒟 and 𝑝′ : 𝑃 → 𝐹𝑋𝑖

such that (𝑃, 𝑝, 𝑖, 𝑝′) ∈ ℰ0. ( )
(2) For all (𝑃, 𝑝, 𝑖, 𝑝′) ∈ ℰ0 and 𝑝′′ : 𝑃 → 𝐹𝑋𝑖 with 𝐹𝜋𝑖 ◦ 𝑝′′ = 𝑝 ,

there exist 𝑗 ∈ 𝒟 and a𝒟-morphism 𝑖 → 𝑗 making 𝑝′, 𝑝′′ equal:

𝑃 𝐹𝑋𝑖 𝐹𝑋 𝑗 .

𝑝′

𝑝′′

𝐹𝐷 (𝑖→𝑗 )
( )

Proof. Since 𝐹 preserves the colimit of𝑉 ◦𝐷 : 𝒟 → 𝒞 we know

that 𝐹𝜋𝑖 : 𝐹𝑋𝑖 → 𝐹𝐴 (𝑖 ∈ 𝒟) is a colimit. Now apply Lemma 2.7 to

this colimit and any given (𝑃, 𝑝) in 𝒞p/𝐹𝐴. □

Every object 𝑡 = (𝑃, 𝑝, 𝑖, 𝑝′) ∈ ℰ0 induces a finrec coalgebra:

since 𝑃 and 𝑋𝑖 are in 𝒞p, their coproduct 𝑃 + 𝑋𝑖 exists (Assump-

tion 3.7) and is presentable (Lemma 3.8). On 𝑃 + 𝑋𝑖 , we define the
following coalgebra structure

⟨𝑡⟩ :=
(
𝑃 + 𝑋𝑖 𝐹𝑋𝑖 𝐹 (𝑃 + 𝑋𝑖 )

[𝑝′,𝑥𝑖 ] 𝐹 inr )
With Lemma 3.14.(1), this coalgebra structure can be understood to

be generated by 𝑝 : 𝑃 → 𝐹𝐴. We put

𝐸0 (𝑡) := (𝑃 + 𝑋𝑖 , ⟨𝑡⟩) ∈ 𝐹 -Coalg.
7
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Moreover, we have a canonical coalgebra morphism

inj𝑡 := [𝑝, 𝛼 ◦ 𝜋𝑖 ] : 𝐸0 (𝑡) −→ (𝐹𝐴, 𝐹𝛼); ( )

indeed, consider the following diagram:

𝑃 + 𝑋𝑖 𝐹𝑋𝑖 𝐹 (𝑃 + 𝑋𝑖 )

𝐹𝐴 𝐹𝐹𝐴

[𝑝′,𝑥𝑖 ]

[𝑝,𝛼◦𝜋𝑖 ]

⟨𝑡 ⟩

𝐹 inr

𝐹𝜋𝑖 𝐹 (𝛼◦𝜋𝑖 ) 𝐹 [𝑝,𝛼◦𝜋𝑖 ]
𝐹𝛼

Its right-hand and middle parts commute due to functoriality of 𝐹 ,

and for the left-hand part consider the coproduct components sep-

arately: the left-hand one commutes by (5) and the right-hand one

since 𝜋𝑖 is a coalgebra morphisms from (𝑋𝑖 , 𝑥𝑖 ) to (𝐴, 𝛼).
In order to turnℰ0 into the categoryℰ and 𝐸0 into an appropriate

diagramℰ → 𝐹 -Coalg, the morphisms need to be carefully chosen:

Definition 3.15 ( ). (1) The diagram schemeℰ is the full sub-

category of 𝐹 -Coalg/(𝐹𝐴, 𝐹𝛼) given by the coalgebra morphisms

inj𝑡 : 𝐸0𝑡 → (𝐹𝐴, 𝐹𝛼) (𝑡 ∈ ℰ0). In more detail:

• the objects ofℰ are the elements ofℰ0, and

• for 𝑡1, 𝑡2 ∈ ℰ0, the hom setℰ(𝑡1, 𝑡2) consists of those coalgebra
morphisms ℎ : 𝐸0 (𝑡1) → 𝐸0 (𝑡2) such that inj𝑡2

◦ ℎ = inj𝑡1

:

𝑃 + 𝑋𝑖 𝐹 (𝑃 + 𝑋𝑖 )

𝐹𝐴

𝑄 + 𝑋 𝑗 𝐹 (𝑄 + 𝑋 𝑗 )

ℎ

⟨𝑡1 ⟩

inj 𝑡 1

=

[𝑝,𝛼
◦𝜋𝑖 ]

𝐹ℎ

⟨𝑡2 ⟩

inj
𝑡
2
=[𝑞,𝛼◦𝜋

𝑗 ]

for

𝑡1= (𝑃, 𝑝, 𝑖, 𝑝′)
𝑡2= (𝑄,𝑞, 𝑗, 𝑞′)

(2) The diagram 𝐸 : ℰ → 𝐹 -Coalg is defined by

𝐸 (𝑃, 𝑝, 𝑖, 𝑝′) = (𝑃 + 𝑋𝑖 , ⟨𝑃, 𝑝, 𝑖, 𝑝′⟩), 𝐸 (ℎ) = ℎ.

Note that we do not need that ℰ is filtered (or lies in Fil); by
definition every colimit of finrec coalgebras is locally finrec.

Remark 3.16. (1) We obtain a canonical cocone on 𝐸 given by

inj𝑡 : 𝐸 (𝑡) → (𝐹𝐴, 𝐹𝛼) for every 𝑡 ∈ ℰ0 .

(2) Note that it is important thatℰ(𝑡1, 𝑡2) contains all coalgebra
morphisms of type ℎ : 𝑃1 + 𝑋𝑖1 → 𝑃2 + 𝑋𝑖2 and not just coproducts

ℎℓ + ℎ𝑟 : 𝑃1 + 𝑋𝑖1 → 𝑃2 + 𝑋𝑖2 . For in the latter case the colimit of 𝐸

would simply be the coproduct 𝐹𝐴 +𝐴.

All objects in the diagram 𝐸 are indeed recursive:

Proposition 3.17 ( ). For every object 𝑡 ∈ ℰ0, the coalgebra 𝐸 (𝑡)
is recursive.

Proof. For 𝑡 = (𝑃, 𝑝, 𝑖, 𝑝′), consider the following diagram:

𝑋𝑖 𝑃 + 𝑋𝑖 𝐹𝑋𝑖

𝐹𝑋𝑖

𝐹𝑋𝑖 𝐹 (𝑃 + 𝑋𝑖 ) 𝐹𝐹𝑋𝑖

inr

𝑥𝑖

𝑥𝑖

[𝑝′,𝑥𝑖 ]

[𝑝′,𝑥𝑖 ]

𝐹𝑥𝑖

id

𝐹 inr
𝐹𝑥𝑖

𝐹 inr 𝐹 [𝑝′,𝑥𝑖 ]

It clearly commutes so that we obtain two coalgebra morphisms:

(𝑋𝑖 , 𝑥𝑖 )
inr−−→ (𝑃 + 𝑋𝑖 , ⟨𝑡⟩) and (𝑃 + 𝑋𝑖 , ⟨𝑡⟩)

[𝑝′,𝑥𝑖 ]−−−−−−→ (𝐹𝑋𝑖 , 𝐹𝑥𝑖 )

By definition, ⟨𝑡⟩ = 𝐹 inr◦[𝑝′, 𝑥𝑖 ], so all requirements of Lemma 2.18

are met and thus 𝐸 (𝑡) = (𝑃 + 𝑋𝑖 , ⟨𝑡⟩) is recursive. □

For the verification that (𝐹𝐴, 𝐹𝛼) is locally finrec, it remains

to show that the cocone (inj𝑡 : 𝑉𝐸𝑡 → 𝐹𝐴)𝑡 ∈ℰ0
is a colimit in 𝒞

(Definition 3.9.(2b)). We do so by relating it to the colimits of𝒞p/𝐹𝐴
and 𝐷 : 𝒟 → 𝐹 -Coalg. First a technical lemma stating that 𝒟-

morphism can be extended toℰ-morphisms:

Lemma 3.18 ( ). For every 𝒟-morphism 𝑓 : 𝑖 → 𝑗 we have an
ℰ-morphism id𝑃 + 𝐷𝑓 : (𝑃, 𝑝, 𝑖, 𝑝′) → (𝑃, 𝑝, 𝑗, 𝐹𝐷 𝑓 ◦ 𝑝′).

Proof. Indeed, ℎ = 𝐷𝑓 : (𝑋𝑖 , 𝑥𝑖 ) → (𝑋 𝑗 , 𝑥 𝑗 ) is a coalgebra mor-

phism. Hence, the following diagram clearly commutes:

𝑃 + 𝑋𝑖 𝐹𝑋𝑖 𝐹 (𝑃 + 𝑋𝑖 )

𝑃 + 𝑋 𝑗 𝐹𝑋 𝑗 𝐹 (𝑃 + 𝑋 𝑗 )

[𝑝′,𝑥𝑖 ]

id+ℎ

𝐹 inr

𝐹ℎ 𝐹 (id+ℎ)
[𝐹ℎ◦𝑝′,𝑥 𝑗 ] 𝐹 inr

From 𝜋 𝑗 ◦ ℎ = 𝜋𝑖 we also obtain the commutative triangle

𝑃 + 𝑋𝑖

𝐹𝐴

𝑃 + 𝑋 𝑗

[𝑝,𝛼◦𝜋𝑖 ]

id+ℎ

[𝑝,𝛼◦𝜋 𝑗 ] □

Lemma 3.19 ( ). For every (𝑉 ◦ 𝐸)-cocone (𝑘𝑡 : 𝑉𝐸𝑡 → 𝐾)𝑡 ∈ℰ0
,

the morphism 𝑘𝑡 only depends on (𝑃, 𝑝) ∈ 𝒞p/𝐹𝐴. That is, for all
objects 𝑡1 = (𝑃, 𝑝, 𝑖1, 𝑝1) and 𝑡2 = (𝑃, 𝑝, 𝑖2, 𝑝2) of ℰ0 the following
diagram commutes:

𝑃 + 𝑋𝑖1
𝑃 𝐾

𝑃 + 𝑋𝑖2

𝑘𝑡
1

inl

inl 𝑘𝑡
2

Proof. Using that 𝒟 is filtered (Assumption 3.12), we first take

an upper bound 𝑖3 of 𝑖1, 𝑖2 in 𝒟, that is, we have 𝒟-morphisms

ℎ1 : 𝑖1 → 𝑖3 and ℎ2 : 𝑖2 → 𝑖3. Using them we can extend 𝑖3 to an

object ofℰ0 in two ways:

𝑃 𝐹𝐴

𝐹𝑋𝑖1 𝐹𝑋𝑖3

𝑝

𝑝1

𝑝3:=

𝐹𝜋𝑖
1

𝐹𝐷ℎ1

𝐹𝜋𝑖
3

𝑃 𝐹𝐴

𝐹𝑋𝑖2 𝐹𝑋𝑖3

𝑝

𝑝2

𝑝′
3
:=

𝐹𝜋𝑖
2

𝐹𝐷ℎ2

𝐹𝜋𝑖
3

By the essential uniqueness (Lemma 3.14.(2)), there exist an 𝑖4 ∈ 𝒟

and a𝒟-morphism𝑚 : 𝑖3 → 𝑖4 making 𝑝3 and 𝑝′
3
equal:

𝑝4 :=
(
𝑃 𝐹𝑋𝑖3 𝐹𝑋𝑖4

𝑝3

𝑝′
3

𝐹𝐷𝑚 )
Put 𝑡4 := (𝑃, 𝑝, 𝑖4, 𝑝4) and use Lemma 3.18 to extend the𝒟-morphisms

ℎ1 and ℎ2 to theℰ-morphisms id𝑃 +ℎ𝑖 : 𝑡𝑖 → 𝑡4, 𝑖 = 1, 2. Using that
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the 𝑘𝑡 form a cocone, we can then verify the desired independence

property:

𝑃 + 𝑋𝑖1

𝑃 𝑃 + 𝑋𝑖4 𝐾

𝑃 + 𝑋𝑖2

𝑘𝑡
1

id+ℎ1

inl

inl

inl

𝑘𝑡
4

id+ℎ2

𝑘𝑡
2 □

The independence following from Lemma 3.19 allows us to re-

duce cocones of (𝑉 ◦ 𝐸) to those of 𝒞p/𝐹𝐴. For the latter we can
then use the universal property of the colimit 𝐹𝐴.

Lemma 3.20 ( ). For every (𝑉 ◦ 𝐸)-cocone (𝑘𝑡 : 𝑉𝐸𝑡 → 𝐾)𝑡 ∈ℰ0
,

there is a 𝑈𝐹𝐴-cocone ( ¯𝑘 (𝑃,𝑝 ) : 𝑃 → 𝐾) (𝑃,𝑝 ) such that ¯𝑘 (𝑃,𝑝 ) =

𝑘𝑡 ◦ inl for some 𝑡 = (𝑃, 𝑝, 𝑖, 𝑝′) ∈ ℰ0.

Proof. Given (𝑃, 𝑝), we define ¯𝑘 (𝑃,𝑝 ) := 𝑘𝑡 ◦ inl for the 𝑡 ∈ ℰ0

obtained from Lemma 3.14.(1). By Lemma 3.19, the morphism
¯𝑘 (𝑃,𝑝 )

is independent of the choice of 𝑖 and 𝑝′ in 𝑡 = (𝑃, 𝑝, 𝑖, 𝑝′).
We now prove that everymorphism𝑔 : (𝑃, 𝑝) → (𝑄,𝑞) in𝒞p/𝐹𝐴

can be extended to anℰ-morphism as follows: for every extension

𝑡2 = (𝑄,𝑞, 𝑖, 𝑞′) ∈ ℰ0 of (𝑄,𝑞) we have the morphism 𝑔 + id𝑋𝑖
inℰ

from the extension 𝑡1 = (𝑃, 𝑝, 𝑖, 𝑞′ ◦ 𝑔) of (𝑃, 𝑝). Indeed, 𝑔 + id𝑋𝑖
is

a coalgebra morphism from 𝐸 (𝑡1) to 𝐸 (𝑡2):

𝐸 (𝑡1) ≡
(
𝑃 + 𝑋𝑖 𝐹𝑋𝑖 𝐹 (𝑃 + 𝑋𝑖 )

)
𝐸 (𝑡1) ≡

(
𝑄 + 𝑋𝑖 𝐹𝑋𝑖 𝐹 (𝑄 + 𝑋𝑖 )

)
[𝑞′◦𝑔,𝑥𝑖 ]

𝑔+id

⟨𝑡1 ⟩

id

𝐹 inr

𝐹 (𝑔+id)

[𝑞′,𝑥𝑖 ]

⟨𝑡2 ⟩

𝐹 inr

Moreover, using that 𝑞 ◦ 𝑔 = 𝑝 we obtain inj𝑡2

◦ (𝑔 + id𝑋𝑖
) = inj𝑡1

:

𝑃 + 𝑋𝑖

𝐹𝐴

𝑄 + 𝑋𝑖

[𝑝,𝛼◦𝜋𝑖 ]=inj𝑡
1

𝑔+id

[𝑞,𝛼◦𝜋𝑖 ]=inj𝑡
2

The cocone coherence property of (𝑘𝑡 )𝑡 ∈ℰ0
then yields that of the

morphisms
¯𝑘 (𝑃,𝑝 ) ; indeed, the following diagram commutes:

𝑃 𝑃 + 𝑋𝑖

𝐾

𝑄 𝑄 + 𝑋𝑖

inl

𝑔

¯𝑘 (𝑃,𝑝 )

𝑘𝑡
1

𝑔+id

inl

¯𝑘 (𝑄,𝑞)

𝑘𝑡
2 □

For the verification of the universal property of the tentative

colimit, we also translate the cocone morphisms back and forth:

Lemma 3.21. For every (𝑉 ◦ 𝐸)-cocone (𝑘𝑡 : 𝑉𝐸𝑡 → 𝐾)𝑡 ∈ℰ0
, a 𝒞-

morphism 𝑣 : 𝐹𝐴 → 𝐾 is a morphism of𝑈𝐹𝐴-cocones, that is,

¯𝑘 (𝑃,𝑝 ) =
(
𝑃

𝑝
−−→ 𝐹𝐴

𝑣−−→ 𝐾
)
, for every 𝑝 ∈ 𝒞p/𝐹𝐴,

if and only if it is a morphism of (𝑉 ◦ 𝐸)-cocones:

𝑘𝑡 =
(
𝑃 + 𝑋𝑖

inj𝑡−−−−→ 𝐹𝐴
𝑣−−→ 𝐾

)
, for every 𝑡 ∈ ℰ.

Proof. The implication for ‘if’ is easy to verify ( ): we have

𝑣 ◦ 𝑝 = 𝑣 ◦ [𝑝, 𝛼 ◦ 𝜋𝑖 ]︸      ︷︷      ︸
inj𝑡

◦inl = 𝑘𝑡 ◦ inl = ¯𝑘 (𝑃,𝑝 ) ,

using the definition of inj𝑡 and ¯𝑘 (𝑃,𝑝 ) in the second and third steps,

respectively.

The argument for ‘only if’ is non-trivial ( ). First recall from

the proof of Proposition 3.17 that inr : (𝑋𝑖 , 𝑥𝑖 ) → (𝑃 + 𝑋𝑖 , ⟨𝑡⟩) is a
coalgebra morphism. Next we use that the object 𝛼 ◦ 𝜋𝑖 : 𝑋𝑖 → 𝐹𝐴

of 𝒞p/𝐹𝐴 has the following factorization using that 𝜋𝑖 : (𝑋𝑖 , 𝑥𝑖 ) →
(𝐴, 𝛼) is a coalgebra morphism:

𝑋𝑖 𝐴 𝐹𝐴

𝐹𝑋𝑖

𝜋𝑖

𝑥𝑖

𝛼

𝐹𝜋𝑖

So we have the object 𝑠 = (𝑋𝑖 , 𝛼 ◦ 𝜋𝑖 , 𝑋𝑖 , 𝑥𝑖 ) ofℰ and we see that

the codiagonal ∇ : 𝑋𝑖 +𝑋𝑖 → 𝑋𝑖 is a coalgebra morphism from 𝐸 (𝑠)
to (𝑋𝑖 , 𝑥𝑖 ):

𝑋𝑖 + 𝑋𝑖 𝐹𝑋𝑖 𝐹 (𝑋𝑖 + 𝑋𝑖 )

𝑋𝑖 𝐹𝑋𝑖

[𝑥𝑖 ,𝑥𝑖 ]

∇

⟨𝑠 ⟩

𝐹 inr

id
𝐹∇

𝑥𝑖

(6)

Composing the coalgebra morphism inr : (𝑋𝑖 , 𝑥𝑖 ) → (𝑃 + 𝑋𝑖 , ⟨𝑡⟩)
with the one in (6) we obtain a morphism inℰ from 𝑠 to 𝑡 ; indeed,

the composition is a coalgebra morphism 𝐸 (𝑠) → 𝐸 (𝑡), and we

have inj𝑡 ◦ inr ◦ ∇ = inj𝑠 :

𝑋𝑖 + 𝑋𝑖

𝑋𝑖 𝐹𝐴

𝑃 + 𝑋𝑖

∇
[𝛼◦𝜋𝑖 ,𝛼◦𝜋𝑖 ]

inr

𝛼◦𝜋𝑖

[𝑝,𝛼◦𝜋𝑖 ]

So we have anℰ-morphism inr ◦ ∇ : 𝑠 → 𝑡 and conclude that

𝑘𝑠 = 𝑘𝑡 ◦ inr ◦ ∇. (7)

We are ready to show the desired equation 𝑘𝑡 = 𝑣 ◦ inj𝑡 . We consider

the coproduct components of the domain 𝑃 +𝑋𝑖 separately. For the
left-hand component we have

𝑣 ◦ inj𝑡 ◦ inl = 𝑣 ◦ [𝑝, 𝛼 ◦ 𝜋𝑖 ] ◦ inl def. of inj𝑡
= 𝑣 ◦ 𝑝 since [𝑥,𝑦] ◦ inl = 𝑥
= ¯𝑘 (𝑃,𝑝 ) by assumption

= 𝑘𝑡 ◦ inl def. of
¯𝑘 (𝑃,𝑝 ) (Lemma 3.20).
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For the right-hand coproduct component we compute as follows:

𝑣 ◦ inj𝑡 ◦ inr = 𝑣 ◦ [𝑝, 𝛼 ◦ 𝜋𝑖 ] ◦ inr = 𝑣 ◦ (𝛼 ◦ 𝜋𝑖 )
= ¯𝑘 (𝑋𝑖 ,𝑥𝑖 ) by assump. for 𝑝 = 𝛼 ◦ 𝜋𝑖
= 𝑘𝑠 ◦ inl def. of

¯𝑘 (𝑋𝑖 ,𝑥𝑖 ) (Lemma 3.20)

= 𝑘𝑡 ◦ inr ◦ ∇ ◦ inl by (7)

= 𝑘𝑡 ◦ inr since ∇ ◦ inl = id.
□

Finally, using that the canonical cocone

𝑝 : 𝑃 → 𝐹𝐴 ((𝑃, 𝑝) ∈ 𝒞p/𝐹𝐴)

is a colimit, we obtain that the (𝑉 ◦ 𝐸)-cocone

inj𝑡 : 𝑉𝐸𝑡 → 𝐹𝐴 (𝑡 ∈ ℰ)

is a colimit, too. Thus, under our Assumption 3.12 we have the

following result:

Theorem 3.22 ( ). The coalgebra (𝐹𝐴, 𝐹𝛼) is locally finrec.

Proof. We shall prove that the cocone inj𝑡 : 𝑃+𝑋𝑖 → 𝐹𝐴 (𝑡 ∈ ℰ)

is a colimit of𝑉 ◦𝐸. Given a cocone𝑘𝑡 : 𝑃+𝑋𝑖 → 𝐾 (𝑡 ∈ ℰ) we obtain

the cocone
¯𝑘 (𝑃,𝑝 ) : 𝑃 → 𝐾 ((𝑃, 𝑝) ∈ 𝒞p/𝐹𝐴) using Lemma 3.20.

Thus, there exists a uniquemorphism 𝑣 : 𝐹𝐴 → 𝐾 such that
¯𝑘 (𝑃,𝑝 ) =

𝑣 ◦ 𝑝 for every 𝑝 : 𝑃 → 𝐹𝐴 in 𝒞p/𝐹𝐴. By Lemma 3.21, we have,

equivalently, that𝑘𝑡 = 𝑣◦inj𝑡 for every 𝑡 ∈ ℰ. Hence, 𝑣 is the unique

morphism with this property, which completes the proof. □

3.2 Unique Colimit Injections
For the uniqueness condition in Lambek’s lemma (Lemma 3.10.(2))

and the universal property in general, it helps to investigate when

the colimit injections of locally finrec coalgebras are unique as

coalgebra morphisms.

We continue to work under Assumption 3.12.

Lemma 3.23 ( ). For every coalgebra (𝐵, 𝛽) with presentable car-
rier 𝐵, every coalgebra morphism ℎ : (𝐵, 𝛽) → (𝐴, 𝛼) factorizes
through one of the colimit injections𝜋 𝑗 : (𝑋 𝑗 , 𝑥 𝑗 ) → (𝐴, 𝛼) in 𝐹 -Coalg:

(𝐵, 𝛽) (𝐴, 𝛼)

(𝑋 𝑗 , 𝑥 𝑗 )

ℎ

ℎ′
𝜋 𝑗

Proof. The hom-functor 𝒞(𝐵,−) : 𝒞 → Set preserves the co-
limit 𝐴 of 𝑉 ◦ 𝐷 ; here, we use that we have a colimit in the base

category 𝒞 (Definition 3.9.(2b)). Thus, we obtain an 𝑖 ∈ 𝒟 and a

𝒞-morphism 𝑝′ such that the following triangle commutes in 𝒞

(cf. Lemma 2.7):

𝐵 𝐴

𝑋𝑖

ℎ

𝑝′ 𝜋𝑖

Proving that 𝑝′ is a coalgebra morphism amounts to showing that

the left-hand square of the following diagram commutes:

𝐵 𝑋𝑖 𝐴

𝐹𝐵 𝐹𝑋𝑖 𝐹𝐴

𝛽

𝑝′

?

ℎ

𝑥𝑖

𝜋𝑖

⟲ 𝛼

𝐹𝑝′
𝐹𝜋𝑖

We will not prove its commutativity. Instead, observe that 𝐹 pre-

serves the colimit of 𝑉 ◦ 𝐷 (by assumption), so the morphisms

𝐹𝜋𝑖 : 𝐹𝑋𝑖 → 𝐹𝐴 (𝑖 ∈ 𝒟) form a colimit. Since 𝒟 lies in Fil, it is
filtered. We now use that 𝐵 is presentable and the ensuing essen-

tial uniqueness of factorizations of the morphism 𝛼 ◦ ℎ : 𝐵 → 𝐹𝐴

through the colimit injection 𝐹𝜋𝑖 (Lemma 2.7.(2)). The two paths

of the left-hand square above are two such factorizations. Hence,

there exists some morphism 𝑑 : 𝑖 → 𝑗 in𝒟 such that 𝐹𝐷𝑑 ◦𝑥𝑖 ◦𝑝′ =
𝐹𝐷𝑑 ◦ 𝐹𝑝′ ◦ 𝛽 :

𝐵 𝐹𝐴

𝐹𝑋𝑖 𝐹𝑋 𝑗

𝛼◦ℎ
𝑥
𝑖 ◦𝑝 ′

𝐹𝑝 ′◦𝛽

𝐹𝜋𝑖

𝐹𝐷𝑑

𝐹𝜋 𝑗

We verify that ℎ′ := 𝐷𝑑 ◦ 𝑝′ : 𝐵 → 𝑋 𝑗 is the desired coalgebra

morphism (𝐵, 𝛽) → (𝑋 𝑗 , 𝑥 𝑗 ):

𝐵 𝑋𝑖 𝑋 𝑗

𝐹𝐵 𝐹𝑋𝑖 𝐹𝑋 𝑗

𝛽

𝑝′

ℎ′

𝐷𝑑

𝑥𝑖 𝑥 𝑗

𝐹𝑝′

𝐹ℎ′

𝐹𝐷𝑑

Indeed, the right-hand square commutes, and the left-hand one

does when postcomposed with 𝐹𝐷𝑑 ; thus the outside commutes as

desired. Moreover, we have

𝜋 𝑗 ◦ ℎ′ = 𝜋 𝑗 ◦ 𝐷𝑑 ◦ 𝑝′ = 𝜋𝑖 ◦ 𝑝′ = ℎ. □

Theorem 3.24 ( ). Given a locally finrec coalgebra (𝐴, 𝛼) and
𝑖 ∈ 𝒟, the colimit injection 𝜋𝑖 is the unique coalgebra morphism from
(𝑋𝑖 , 𝑥𝑖 ) to (𝐴, 𝛼) provided that 𝐷 : 𝒟 → 𝐹 -Coalg is full.

Proof. Given a coalgebra morphism ℎ : (𝑋𝑖 , 𝑥𝑖 ) → (𝐴, 𝛼), apply
Lemma 3.23 to obtain a factorization through some colimit injection:

(𝐴, 𝛼)

(𝑋𝑖 , 𝑥𝑖 ) (𝑋 𝑗 , 𝑥 𝑗 )

ℎ

ℎ′

𝜋 𝑗

Since 𝐷 is full, ℎ′ = 𝐷𝑑 for some morphism 𝑑 : 𝑖 → 𝑗 of𝒟. Hence,

ℎ = 𝜋 𝑗 ◦ 𝐷𝑑 = 𝜋𝑖 by the cocone coherence condition. □

3.3 Colimit of All Finrec Coalgebras
We now move on to consider the colimit of all finrec coalgebras

and establish that this satisfies the two conditions in Lemma 3.10,

which imply that it is the initial algebra.

Notation 3.25. We denote by 𝐹 -Coalgfinrec the full subcategory of

𝐹 -Coalg consisting of all finrec coalgebras with a carrier in 𝒞p.
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In the classical setting, this category is small: The reason is

that 𝒞p is a set, and on each object of 𝒞p there is only a set of

coalgebra structures. So the colimit of the forgetful functor

𝐹 -Coalgfinrec 𝐹 -Coalg 𝒞
𝐷 𝑉

exists whenever 𝒞 is cocomplete.

Assumption 3.26 ( ). For the remainder of this section we as-

sume that 𝐹 -Coalgfinrec lies in Fil, that the colimit of𝑉 ◦𝐷 exists and

is preserved by 𝐹 .

We denote colim(𝑉 ◦ 𝐷) by 𝐴 and note that it carries a canonical

coalgebra structure 𝛼 : 𝐴 → 𝐹𝐴 such that (𝐴, 𝛼) := colim𝐷 (by

Lemma 2.16). Moreover, the coalgebra (𝐴, 𝛼) is locally finrec by

definition.

From the uniqueness result in Theorem 3.24 we deduce the fol-

lowing universal property:

Proposition 3.27 ( ). For every finrec coalgebra (𝐶, 𝑐), there is a
unique coalgebra morphism (𝐶, 𝑐) → (𝐴, 𝛼).

Proof. By Lemma 3.6, every presentable object 𝐶 ∈ 𝒞 is a

split quotient of some object 𝑃 in 𝒞p via 𝑒 : 𝑃 ↠ 𝐶 , say. Choose

𝑚 : 𝐶 ↣ 𝑃 such that 𝑒 ◦𝑚 = id𝐶 . Then the following coalgebra

structure

𝑝 =
(
𝑃

𝑒−−→ 𝐶
𝑐−−→ 𝐹𝐶

𝐹𝑚−−−−→ 𝐹𝑃
)

turns 𝑒 and 𝑚 into a coalgebra morphism; indeed, the diagram

below commutes

𝑃 𝐶 𝐹𝐶 𝐹𝑃

𝐶 𝐹𝐶

𝑃 𝐶 𝐹𝐶 𝐹𝑃

𝑒

𝑒

𝑐

id

𝐹𝑚

id
𝐹𝑒

𝑚

𝑐

id
𝐹𝑚

id

𝑒 𝑐 𝐹𝑚

Thus, we have the coalgebra morphism 𝑐 ◦𝑒 : (𝑃, 𝑝) → (𝐹𝐶, 𝐹𝑐). By
Lemma 2.18 applied toℎ =𝑚 and𝑔 = 𝑐◦𝑒 (and noting that 𝑝 = 𝐹ℎ◦𝑔)
we see that (𝑃, 𝑝) is recursive. Thus, this coalgebra lies in 𝐹 -Coalgfinrec
since 𝑃 lies in 𝒞p. The diagram 𝐷 : 𝐹 -Coalgfinrec ↩→ 𝐹 -Coalg is a full

functor. By Theorem 3.24, the colimit injection 𝜋 : (𝑃, 𝑝) → (𝐴, 𝛼)
is the unique coalgebra morphism. Using that 𝑒 ◦𝑚 = id𝐶 , we see
that there is a unique coalgebra morphism from (𝐶, 𝑐) to (𝐴, 𝛼): we
have the coalgebra morphism

(𝐶, 𝑐) 𝑚−−−→ (𝑃, 𝑝) 𝜋−−→ (𝐴, 𝛼),
and given any coalgebra morphism ℎ : (𝐶, 𝑐) → (𝐴, 𝛼), we have
ℎ ◦ 𝑒 = 𝜋 by the unicity of 𝜋 whence ℎ = ℎ ◦ 𝑒 ◦𝑚 = 𝜋 ◦𝑚. □

This universal property also lifts to colimits of finrec coalgebras:

Corollary 3.28 ( ). For every locally finrec coalgebra (𝐶, 𝑐), there
is a unique coalgebra morphism (𝐶, 𝑐) → (𝐴, 𝛼).

Proof. Proposition 3.27 lifts from finrec coalgebras to locally

finrec coalgebras by a general property ( ) of colimits. If 𝐷 : 𝒟 →
𝐹 -Coalg is the witnessing diagram (𝐶, 𝑐) = colim𝐷 that consists of

finrec coalgebras 𝐷𝑖 (𝑖 ∈ 𝒟), then there is a unique 𝐷𝑖 → (𝐴, 𝛼) for
every 𝑖 ∈ 𝒟. Thus, (𝐴, 𝛼) forms a cocone for𝐷 , which induces some

morphism (𝐶, 𝑐) → (𝐴, 𝛼). For uniqueness, consider 𝑓 , 𝑔 : (𝐶, 𝑐) →
(𝐴, 𝛼). For all 𝑖 ∈ 𝒟, we have 𝑓 ◦ inj𝑖 = 𝑔 ◦ inj𝑖 : 𝐷𝑖 → (𝐴, 𝛼), again

by above uniqueness. Since colimit injections are jointly epic, this

entails 𝑓 = 𝑔. □

Corollary 3.29. The coalgebra (𝐴, 𝛼) is the terminal locally finrec
coalgebra.

This allows us to prove our main theorem.

Theorem 3.30 ( ). The coalgebra structure 𝛼 : 𝐴 → 𝐹𝐴 is an
isomorphism, and 𝛼−1

: 𝐹𝐴 → 𝐴 is the initial 𝐹 -algebra.

Proof. Applying 𝐹 to (𝐴, 𝛼) yields a locally finrec coalgebra

(𝐹𝐴, 𝐹𝛼) (Theorem 3.22). By Corollary 3.28, we obtain a (unique)

coalgebra morphism (𝐹𝐴, 𝐹𝛼) → (𝐴, 𝛼). By another application of

Corollary 3.28, we see that identity is the only coalgebra morphism

on (𝐴, 𝛼).
Thus, 𝛼 is an isomorphism by Lambek’s lemma (Lemma 3.10),

and by Lemma 2.20, its inverse is the structure of the initial 𝐹 -

algebra. □

Theorem 3.31. For every accessible endofunctor on a locally pre-
sentable category, the initial algebra is the colimit of all recursive
coalgebras with a 𝜆-presentable carrier.

Proof. Suppose that𝒞 is locally 𝜆-presentable and that 𝐹 : 𝒞 →
𝒞 is 𝜆-accessible. Let Fil be the class of all 𝜆-filtered categories.

Then 𝐹 -Coalgfinrec is an essentially small category consisting of all

recursive coalgebra with a 𝜆-presentable carrier and the colimit of

𝐹 -Coalgfinrec ↩→ 𝐹 -Coalg
𝑉−→ 𝒞

exists and is preserved by 𝐹 . Thus, 𝐹 has an initial algebra given by

the colimit of the above diagram. □

4 COMPARISONWITH THE
INITIAL-ALGEBRA CHAIN

The initial-algebra chain [5], which we have recalled for sets in

the introduction, generalizes Kleene’s fixed point theorem: recall

that the latter starts with the bottom element and then successively

applies a function to it. This yields an ascending chain approaching

the desired fixed point from below.

For the construction of the initial algebra for an endofunctor

𝐹 : 𝒞 → 𝒞, one starts with the initial object 0 ∈ 𝒞. Its initiality

induces a morphism ! : 0 −→ 𝐹0. Applying the functor successively

to this morphism yields the 𝜔-chain

0

!−−→ 𝐹0

𝐹 !−−−→ 𝐹 2
0

𝐹 2
!−−−−→ · · · 𝐹𝑘−1

!−−−−−−→ 𝐹𝑘0

𝐹𝑘 !−−−−→ 𝐹𝑘+1
0

𝐹𝑘+1
!−−−−−→ · · ·

Let us write𝑊𝑖 for 𝐹
𝑖
0 and 𝑤𝑖, 𝑗 : 𝑊𝑖 → 𝑊𝑗 for the connecting

morphisms. We also denote the colimit of this 𝜔-chain by 𝑊𝜔

(assuming that it exists in 𝒞).

(1) By the universal property of this colimit there is a canonical

morphism𝑊𝜔 → 𝐹𝑊𝜔 . If the colimit is preserved by 𝐹 (e.g. be-

cause 𝐹 is finitary), then this morphism has an inverse which can

be shown to be the structure of an initial 𝐹 -algebra.

(2) If the colimit is not preserved by 𝐹 , then the iteration continues;

the next step is induced by the universal property of the colimit𝑊𝜔 :

𝑊𝜔 −→ 𝐹𝑊𝜔 −→ 𝐹𝐹𝑊𝜔 −→ · · ·
The chain can be continued in this vein by transfinite recursion. If

the functor 𝐹 is 𝜆-accessible [7, Def. 2.16] for some regular cardinal
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𝜆, then the transfinite chain terminates in 𝜆 steps; this means that

𝑤𝜆,𝜆+1
: 𝑊𝜆 → 𝐹𝑊𝜆 is an isomorphism. In contrast, our construc-

tion does not use transfinite recursion and takes only one colimit,

regardless of the size of 𝜆.

When looking at this chain through a coalgebraic lens, one ob-

serves that the chain consists of recursive coalgebras:

• ! : 0 → 𝐹0 is trivially a recursive coalgebra by initiality.

• Applying 𝐹 to this coalgebra yields recursive coalgebras 𝐹𝑘 ! : 𝐹𝑘0 →
𝐹 (𝐹𝑘0), 𝑘 ∈ N (Corollary 2.19).

• Their colimit𝑊𝜔 → 𝐹𝑊𝜔 is again recursive (Lemma 2.17).

However, in general these recursive coalgebras are not contained

in the diagram scheme 𝐹 -Coalgfinrec that we use in our construction

in Section 3. In every category, the initial object is presentable, so

! : 0 → 𝐹0 is a finrec coalgebra and thus a split quotient of a finrec

coalgebra in 𝐹 -Coalgfinrec by Lemma 3.6. However, already the second

step 𝐹0 → 𝐹𝐹0 of the initial-algebra chain may leave the realm

of finrec coalgebras, because 𝐹0 may not be presentable anymore.

Even for simple set functors such as 𝐹𝑋 = N+𝑋 ×𝑋 , the set 𝐹∅ = N
is infinite.

Of course, 𝐹0 → 𝐹𝐹0 and, more generally, 𝐹𝑘0 → 𝐹𝐹𝑘0 for

every 𝑘 ∈ N are locally finrec; this follows from Theorem 3.22.

5 AGDA FORMALIZATION
The non-trivial details concerning the definition of the diagram

𝐸 : ℰ → 𝐹 -Coalg (Definition 3.15) have motivated us to formalize

the entire construction in a machine-checked setting.

5.1 Technical Aspects
After an attempt with Coq, we ultimately chose Agda (version 2.6.4)

because it has an (almost official) library for category theory [14]

(version 0.2.0). The formalized proofs are spread across 29 files and

more than 5000 lines of code in total. The entire source code and

compilation instructions can be found on

https://git8.cs.fau.de/software/initial-algebras-unchained

(also archived on archive.softwareheritage.org)

in the supplementary material archive.

All files compile with the flags ––without–K ––safe. For one file
(Iterate.Colimit), we additionally use ––lossy–unification
to adjust Agda’s unification heuristic and substantially speed up

compilation.
2
This does not compromise correctness.

5.2 Formalization Challenges
Agda’s type system is organized in levels: if a structure (like a

function or record) quantifies over all sets on level ℓ , then the

quantifying structure lives on level (at least) ℓ + 1. This implies that

if we consider coalgebras living on level ℓ , then the property of

being recursive lives on level ℓ + 1 because it quantifies over all

algebras on level ℓ . Consequently, it is unclear whether a colimit

of our main diagram 𝐹 -Coalgfinrec ↩→ 𝐹 -Coalg exists, even when

restricting to coalgebras over Set. However, assuming the law of

excluded middle, we can bring 𝐹 -Coalgfinrec back down to level ℓ

( ). In order to keep the law of excluded middle out of the main

construction, we allow potentially large colimits in Fil-accessible
categories and in the definition of locally finrec coalgebras.

2
https://agda.readthedocs.io/en/latest/language/lossy-unification.html

Contrary to our original expectations, no issues regarding choice

principles arose. In our proofs, we have used multiple times that if

a hom-functor preserves a colimit, then morphisms into the colimit

factorize through the diagram (see e.g. Section 2.1 and Lemma 3.14).

For the sake of modelling quotients, categories in the Agda library

are not enriched over plain sets but instead over setoids. The lat-

ter are sets with an explicit equivalence relation denoting element

equality. Thus, when working with elements of a colimit, in lieu

of equivalence classes, one uses concrete representatives of equiv-

alence classes. Note that it was surprisingly tedious to prove that

setoids forms a Fil-accessible category ( ).

6 CONCLUSIONS AND FUTUREWORK
We have shown that for a suitable endofunctor 𝐹 on a Fil-accessible
category, the initial algebra is obtained as the colimit of all recursive

coalgebras with a presentable carrier. This formalizes the intuition

that the initial algebra for 𝐹 is formed by all data objects of type

𝐹 modulo behavioural equivalence, which means that data objects

are identified if they can be related by a coalgebra homomorphism.

Despite the fact that our description looks rather non-constructive,

given that there is no concrete starting point, our main theorem

can be proven in the constructive setting of Agda.

We leave as an open problem how well lfp categories can be

formalized in a constructive setting with proper quotient types in

lieu of setoids. In addition, it would be interesting to see whether

our construction can be adapted to well-founded coalgebras.
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7 INDEX OF FORMALIZED RESULTS
Below we list the Agda file containing the referenced result and (if

applicable) mention a concrete identifier in this file. The respective

HTML files can be found on

https://arxiv.org/src/2405.09504/anc/index.html

and are also directly linked below.

Definition 2.2.(1) =̂ preserves-colimit in Colimit-Lemmas.
Definition 2.2.(2) =̂ filtered in Filtered.
Lemma 2.7 =̂ hom-filtered-colimit-characterization in

Hom-Colimit-Choice.
Definition 2.8 in Canonical-Cocone – The file defines the

category, the forgetful functor, and the cocone (3)

Lemma 2.16 in F-Coalgebra-Colimit – We have various for-

mulations, depending on whether one needs the entire colimit

or wants to prove that a particular cocone in coalgebras is col-

imitting.

Lemma 2.17 =̂ Limitting-Cocone-IsRecursive in Coalgebra.
Recursive.

Lemma 2.18 =̂ sandwich-recursive in Coalgebra.Recursive.
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Corollary 2.19 =̂ iterate-recursive in Coalgebra.Recursive.
Lemma 2.20 =̂ iso-recursive⇒initial in Coalgebra.Re-

cursive.
Definition 3.1 =̂ Accessible in Accessible-Category.
Example 3.4 =̂ Setoids-Accessible in Setoids-Accessible.
Lemma 3.6 =̂ presentable-split-in-fin in Accessible-

Category.
Lemma 3.8 =̂ presentable-coproduct in Presentable.
Definition 3.9.(1) =̂ FiniteRecursive inIterate.Assumptions
– A record with a parameter (the coalgebra) and two members:

1. the carrier is presentable, 2. the coalgebra is recursive.

Definition 3.9.(2) in CoalgColim – CoalgColim describes a

coalgebra that occurs as the colimit of coalgebras all satisfying a

certain property. This property is then instantiated to FiniteRe-
cursive in the main construction.

Lemma 3.10 =̂ lambek in Lambek – The proof is surprisingly

short and readable.

Assumption 3.12 =̂ ProofGlobals in Iterate.ProofGlobals
– We maintain a record of all running assumptions such that we

can fill the namespace with one line (open ProofGlobals).
Definitionℰ0 =̂ ℰ0 in Iterate.FiniteSubcoalgebra.
Lemma 3.14.(1) =̂ P-to-triangle in Iterate.FiniteSubcoal-

gebra.
Lemma 3.14.(2) =̂ CC.p’-unique in Iterate.FiniteSubcoal-

gebra.
inj𝑡 =̂ hom-to-FA in Iterate.FiniteSubcoalgebra – Also see

hom-to-FA-i1 and hom-to-FA-i2

Definition 3.15 =̂ ℰ in Iterate.DiagramScheme.
Proposition 3.17 =̂ P+X-coalg-is-FiniteRecursive in Iter-

ate.FiniteSubcoalgebra.
Lemma 3.18 =̂ coalg-hom-to-ℰ-hom in Iterate.Diagram-

Scheme.
Lemma 3.19 =̂ cocone-is-triangle-independent in Iterate.

Colimit.
Lemma 3.20 =̂ E-Cocone-to-D in Iterate.Colimit – Here,

𝐷 refers to the canonical diagram𝑈𝐹𝐴 : 𝒞p/𝐹𝐴 → 𝒞

‘if’-direction of Lemma 3.21 =̂ reflect-Cocone⇒ in Iterate.
Colimit.

‘only if’-direction of Lemma 3.21 =̂ lift-Cocone⇒ in Iter-
ate.Colimit.

Theorem 3.22 =̂ iterate-CoalgColimit in Iterate – The

entire proof spreads over the following modules of Iterate: As-
sumptions, Colimit, DiagramScheme, FiniteSubcoalgebra, Proof-

Globals

Lemma 3.23 =̂ hom-to-coalg-colim-triangle in Unique-Proj.
Theorem 3.24 =̂ unique-proj in Unique-Proj – The colimit

injections are called projections in the Formalization because this

is the terminology in the agda-categories library

Assumption 3.26 =̂ TerminalRecursive in Construction –

The assumptions are turned into module parameters. Instead of

the essentially small 𝐹 -Coalgfinrec, the Agda code considers the

colimit of those recursive coalgebras whose carrier lies in 𝒞p.

Proposition 3.27 =̂ universal-property in Construction –

The statements about the constructed recursive coalgebra in the

diagram are proven in retract-coalgebra-* in Coalgebra.Recursive

Corollary 3.28 =̂ universal-property-locally-finrec in

Construction.
Colimit property in the proof of Corollary 3.28 =̂ colimit-

unique-rep in Colimit-Lemmas.
Theorem 3.30 =̂ initial-algebra in Construction.
Level of 𝐹 -Coalgfinrec =̂ IsRecursive-via-LEM in Classical-

Case.
Setoids are Fil-accessible =̂ Setoids-Accessible in Setoids-
Accessible.

REFERENCES
[1] Jirí Adámek, Francis Borceux, Stephen Lack, and Jirí Rosický. 2002. A classification

of accessible categories. J. Pure Appl. Algebra 175 (2002), 7–30.
[2] Jirí Adámek, Stefan Milius, and Lawrence S. Moss. 2020. On Well-Founded

and Recursive Coalgebras. In Foundations of Software Science and Computa-
tion Structures - 23rd International Conference, FOSSACS 2020, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2020,
Dublin, Ireland, April 25-30, 2020, Proceedings (Lecture Notes in Computer Science,
Vol. 12077), Jean Goubault-Larrecq and Barbara König (Eds.). Springer, 17–36.

https://doi.org/10.1007/978-3-030-45231-5_2

[3] Jirí Adámek, Stefan Milius, and Lawrence S. Moss. 2021. Initial Algebras Without

Iteration ((Co)algebraic pearls). In 9th Conference on Algebra and Coalgebra in
Computer Science, CALCO 2021, August 31 to September 3, 2021, Salzburg, Austria.
5:1–5:20. https://doi.org/10.4230/LIPICS.CALCO.2021.5

[4] Jirí Adámek, Stefan Milius, and Jiri Velebil. 2006. Iterative algebras at work.

Math. Struct. Comput. Sci. 16, 6 (2006), 1085–1131. https://doi.org/10.1017/

S0960129506005706

[5] Jiří Adámek. 1974. Free algebras and automata realizations in the language of

categories. Commentationes Mathematicae Universitatis Carolinae 015, 4 (1974),
589–602. http://eudml.org/doc/16649

[6] Jiří Adámek, Horst Herrlich, and George E. Strecker. 2004. Abstract and Concrete

Categories. The Joy of Cats.

[7] Jiří Adámek and Jiří Rosický. 1994. Locally Presentable and Accessible Categories.
Cambridge University Press.

[8] Steve Awodey. 2010. Category Theory. OUP Oxford. http://books.google.de/

books?id=-MCJ6x2lC7oC

[9] Venanzio Capretta, Tarmo Uustalu, and Varmo Vene. 2006. Recursive coalgebras

from comonads. Inf. Comput. 204, 4 (2006), 437–468. https://doi.org/10.1016/j.ic.

2005.08.005

[10] Claudia Centazzo. 2004. Generalized algebraic models. Ph. D. Dissertation. Dé-
partement de Mathématique de la Faculté des Sciences de l’Université catholique

de Louvain.

[11] Claudia Centazzo, Jirí Rosický, and Enrico Vitale. 2004. A characterization of

locally 𝐷-presentable categories. Cah. Topol. Géom. Différ. Catég. 45, 2 (2004),
141–146.

[12] Adam Eppendahl. 1999. Coalgebra-to-Algebra Morphisms. In Conference on
Category Theory and Computer Science, CTCS 1999, Edinburgh, UK, December
10-12, 1999 (Electronic Notes in Theoretical Computer Science, Vol. 29), Martin

Hofmann, Giuseppe Rosolini, and Dusko Pavlovic (Eds.). Elsevier, 42–49. https:

//doi.org/10.1016/S1571-0661(05)80305-6

[13] Fredrik Nordvall Forsberg, Chuangjie Xu, and Neil Ghani. 2020. Three equivalent

ordinal notation systems in cubical Agda. In Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs, CPP 2020, New Orleans,
LA, USA, January 20-21, 2020. 172–185. https://doi.org/10.1145/3372885.3373835

[14] Jason Z. S. Hu and Jacques Carette. 2021. Formalizing Category Theory in Agda.

In Proceedings of the 10th ACM SIGPLAN International Conference on Certified Pro-
grams and Proofs (Virtual, Denmark) (CPP 2021). Association for Computing Ma-

chinery, New York, NY, USA, 327–342. https://doi.org/10.1145/3437992.3439922

[15] Jean-Baptiste Jeannin, Dexter Kozen, and Alexandra Silva. 2017. Well-founded

coalgebras, revisited. Math. Struct. Comput. Sci. 27, 7 (2017), 1111–1131. https:

//doi.org/10.1017/S0960129515000481

[16] Joachim Lambek. 1968. A Fixpoint Theorem for complete Categories. Mathema-
tische Zeitschrift 103 (1968), 151–161. http://eudml.org/doc/170906

[17] Stefan Milius. 2010. A Sound and Complete Calculus for Finite Stream Circuits.

In Proceedings of the 25th Annual IEEE Symposium on Logic in Computer Science,
LICS 2010, 11-14 July 2010, Edinburgh, United Kingdom. IEEE Computer Society,

421–430. https://doi.org/10.1109/LICS.2010.11

[18] Stefan Milius, Dirk Pattinson, and Thorsten Wißmann. 2016. A New Foundation

for Finitary Corecursion – The Locally Finite Fixpoint and Its Properties. In

Proc. 19th International Conference on Foundations of Software Science and Com-
putation Structures (FoSSaCS 2016) (LNCS, Vol. 9634), Bart Jacobs and Christof

Löding (Eds.). Springer, 107–125. https://doi.org/10.1007/978-3-662-49630-5_7

[19] Stefan Milius, Dirk Pattinson, and Thorsten Wißmann. 2020. A new foundation

for finitary corecursion and iterative algebras. Inf. Comput. 271 (2020), 104456.

13

https://arxiv.org/src/2405.09504/anc/Coalgebra.Recursive.html#iterate-recursive
https://arxiv.org/src/2405.09504/anc/Coalgebra.Recursive.html#iterate-recursive
https://arxiv.org/src/2405.09504/anc/Coalgebra.Recursive.html#iso-recursive⇒initial
https://arxiv.org/src/2405.09504/anc/Coalgebra.Recursive.html#iso-recursive⇒initial
https://arxiv.org/src/2405.09504/anc/Coalgebra.Recursive.html#iso-recursive⇒initial
https://arxiv.org/src/2405.09504/anc/Accessible-Category.html#Accessible
https://arxiv.org/src/2405.09504/anc/Accessible-Category.html#Accessible
https://arxiv.org/src/2405.09504/anc/Setoids-Accessible.html#Setoids-Accessible
https://arxiv.org/src/2405.09504/anc/Setoids-Accessible.html#Setoids-Accessible
https://arxiv.org/src/2405.09504/anc/Accessible-Category.html#presentable-split-in-fin
https://arxiv.org/src/2405.09504/anc/Accessible-Category.html#presentable-split-in-fin
https://arxiv.org/src/2405.09504/anc/Accessible-Category.html#presentable-split-in-fin
https://arxiv.org/src/2405.09504/anc/Presentable.html#presentable-coproduct
https://arxiv.org/src/2405.09504/anc/Presentable.html#presentable-coproduct
https://arxiv.org/src/2405.09504/anc/Iterate.Assumptions.html#FiniteRecursive
https://arxiv.org/src/2405.09504/anc/Iterate.Assumptions.html#FiniteRecursive
https://arxiv.org/src/2405.09504/anc/CoalgColim.html
https://arxiv.org/src/2405.09504/anc/Lambek.html#lambek
https://arxiv.org/src/2405.09504/anc/Lambek.html#lambek
https://arxiv.org/src/2405.09504/anc/Iterate.ProofGlobals.html#ProofGlobals
https://arxiv.org/src/2405.09504/anc/Iterate.ProofGlobals.html#ProofGlobals
https://arxiv.org/src/2405.09504/anc/Iterate.FiniteSubcoalgebra.html#ℰ₀
https://arxiv.org/src/2405.09504/anc/Iterate.FiniteSubcoalgebra.html#ℰ₀
https://arxiv.org/src/2405.09504/anc/Iterate.FiniteSubcoalgebra.html#P-to-triangle
https://arxiv.org/src/2405.09504/anc/Iterate.FiniteSubcoalgebra.html#P-to-triangle
https://arxiv.org/src/2405.09504/anc/Iterate.FiniteSubcoalgebra.html#P-to-triangle
https://arxiv.org/src/2405.09504/anc/Iterate.FiniteSubcoalgebra.html#CC.p'-unique
https://arxiv.org/src/2405.09504/anc/Iterate.FiniteSubcoalgebra.html#CC.p'-unique
https://arxiv.org/src/2405.09504/anc/Iterate.FiniteSubcoalgebra.html#CC.p'-unique
https://arxiv.org/src/2405.09504/anc/Iterate.FiniteSubcoalgebra.html#hom-to-FA
https://arxiv.org/src/2405.09504/anc/Iterate.FiniteSubcoalgebra.html#hom-to-FA
https://arxiv.org/src/2405.09504/anc/Iterate.DiagramScheme.html#ℰ
https://arxiv.org/src/2405.09504/anc/Iterate.DiagramScheme.html#ℰ
https://arxiv.org/src/2405.09504/anc/Iterate.FiniteSubcoalgebra.html#P+X-coalg-is-FiniteRecursive
https://arxiv.org/src/2405.09504/anc/Iterate.FiniteSubcoalgebra.html#P+X-coalg-is-FiniteRecursive
https://arxiv.org/src/2405.09504/anc/Iterate.FiniteSubcoalgebra.html#P+X-coalg-is-FiniteRecursive
https://arxiv.org/src/2405.09504/anc/Iterate.DiagramScheme.html#coalg-hom-to-ℰ-hom
https://arxiv.org/src/2405.09504/anc/Iterate.DiagramScheme.html#coalg-hom-to-ℰ-hom
https://arxiv.org/src/2405.09504/anc/Iterate.DiagramScheme.html#coalg-hom-to-ℰ-hom
https://arxiv.org/src/2405.09504/anc/Iterate.Colimit.html#cocone-is-triangle-independent
https://arxiv.org/src/2405.09504/anc/Iterate.Colimit.html#cocone-is-triangle-independent
https://arxiv.org/src/2405.09504/anc/Iterate.Colimit.html#cocone-is-triangle-independent
https://arxiv.org/src/2405.09504/anc/Iterate.Colimit.html#E-Cocone-to-D
https://arxiv.org/src/2405.09504/anc/Iterate.Colimit.html#E-Cocone-to-D
https://arxiv.org/src/2405.09504/anc/Iterate.Colimit.html#reflect-Cocone⇒
https://arxiv.org/src/2405.09504/anc/Iterate.Colimit.html#reflect-Cocone⇒
https://arxiv.org/src/2405.09504/anc/Iterate.Colimit.html#reflect-Cocone⇒
https://arxiv.org/src/2405.09504/anc/Iterate.Colimit.html#lift-Cocone⇒
https://arxiv.org/src/2405.09504/anc/Iterate.Colimit.html#lift-Cocone⇒
https://arxiv.org/src/2405.09504/anc/Iterate.Colimit.html#lift-Cocone⇒
https://arxiv.org/src/2405.09504/anc/Iterate.html#iterate-CoalgColimit
https://arxiv.org/src/2405.09504/anc/Iterate.html#iterate-CoalgColimit
https://arxiv.org/src/2405.09504/anc/Unique-Proj.html#hom-to-coalg-colim-triangle
https://arxiv.org/src/2405.09504/anc/Unique-Proj.html#hom-to-coalg-colim-triangle
https://arxiv.org/src/2405.09504/anc/Unique-Proj.html#unique-proj
https://arxiv.org/src/2405.09504/anc/Unique-Proj.html#unique-proj
https://arxiv.org/src/2405.09504/anc/Construction.html#TerminalRecursive
https://arxiv.org/src/2405.09504/anc/Construction.html#TerminalRecursive
https://arxiv.org/src/2405.09504/anc/Construction.html#universal-property
https://arxiv.org/src/2405.09504/anc/Construction.html#universal-property
https://arxiv.org/src/2405.09504/anc/Construction.html#universal-property-locally-finrec
https://arxiv.org/src/2405.09504/anc/Construction.html#universal-property-locally-finrec
https://arxiv.org/src/2405.09504/anc/Colimit-Lemmas.html#colimit-unique-rep
https://arxiv.org/src/2405.09504/anc/Colimit-Lemmas.html#colimit-unique-rep
https://arxiv.org/src/2405.09504/anc/Colimit-Lemmas.html#colimit-unique-rep
https://arxiv.org/src/2405.09504/anc/Construction.html#initial-algebra
https://arxiv.org/src/2405.09504/anc/Construction.html#initial-algebra
https://arxiv.org/src/2405.09504/anc/Classical-Case.html#IsRecursive-via-LEM
https://arxiv.org/src/2405.09504/anc/Classical-Case.html#IsRecursive-via-LEM
https://arxiv.org/src/2405.09504/anc/Classical-Case.html#IsRecursive-via-LEM
https://arxiv.org/src/2405.09504/anc/Setoids-Accessible.html#Setoids-Accessible
https://arxiv.org/src/2405.09504/anc/Setoids-Accessible.html#Setoids-Accessible
https://arxiv.org/src/2405.09504/anc/Setoids-Accessible.html#Setoids-Accessible
https://doi.org/10.1007/978-3-030-45231-5_2
https://doi.org/10.4230/LIPICS.CALCO.2021.5
https://doi.org/10.1017/S0960129506005706
https://doi.org/10.1017/S0960129506005706
http://eudml.org/doc/16649
http://books.google.de/books?id=-MCJ6x2lC7oC
http://books.google.de/books?id=-MCJ6x2lC7oC
https://doi.org/10.1016/j.ic.2005.08.005
https://doi.org/10.1016/j.ic.2005.08.005
https://doi.org/10.1016/S1571-0661(05)80305-6
https://doi.org/10.1016/S1571-0661(05)80305-6
https://doi.org/10.1145/3372885.3373835
https://doi.org/10.1145/3437992.3439922
https://doi.org/10.1017/S0960129515000481
https://doi.org/10.1017/S0960129515000481
http://eudml.org/doc/170906
https://doi.org/10.1109/LICS.2010.11
https://doi.org/10.1007/978-3-662-49630-5_7


Submission, January 2024, Easychair T. Wißmann and S. Milius

https://doi.org/10.1016/j.ic.2019.104456

[20] Gerhard Osius. 1974. Categorical set theory: A characterization of the category

of sets. Journal of Pure and Applied Algebra 4, 1 (1974), 79–119. https://doi.org/

10.1016/0022-4049(74)90032-2

[21] Andrew M. Pitts and S. C. Steenkamp. 2021. Constructing Initial Algebras Using

Inflationary Iteration. In Proceedings of the Fourth International Conference on
Applied Category Theory, ACT 2021, Cambridge, United Kingdom, 12-16th July
2021. 88–102. https://doi.org/10.4204/EPTCS.372.7

[22] Tianyu Sun, Wensheng Yu, and Yaoshun Fu. 2019. Formalization of Transfinite

Induction in Coq. In 2019 Chinese Automation Congress (CAC). 1001–1005. https:

//doi.org/10.1109/CAC48633.2019.8997376

[23] Paul Taylor. 1996. Intuitionistic Sets and Ordinals. J. Symb. Log. 61, 3 (1996),

705–744. https://doi.org/10.2307/2275781

[24] Paul Taylor. 1999. Practical Foundations of Mathematics. Cambridge studies in

advanced mathematics, Vol. 59. Cambridge University Press.

[25] Paul Taylor. 2023. Well Founded Coalgebras and Recursion. https://www.

paultaylor.eu/ordinals/welfcr.pdf accessed on 2024-01-27.

[26] Henning Urbat. 2017. Finite Behaviours and Finitary Corecursion. In 7th Confer-
ence on Algebra and Coalgebra in Computer Science, CALCO 2017, June 12-16, 2017,
Ljubljana, Slovenia. 24:1–24:16. https://doi.org/10.4230/LIPIcs.CALCO.2017.24

[27] Ernst Zermelo. 1904. Beweis, daß jede Menge wohlgeordnet werden kann.

Math. Ann. 59 (1904), 514–516.

14

https://doi.org/10.1016/j.ic.2019.104456
https://doi.org/10.1016/0022-4049(74)90032-2
https://doi.org/10.1016/0022-4049(74)90032-2
https://doi.org/10.4204/EPTCS.372.7
https://doi.org/10.1109/CAC48633.2019.8997376
https://doi.org/10.1109/CAC48633.2019.8997376
https://doi.org/10.2307/2275781
https://www.paultaylor.eu/ordinals/welfcr.pdf
https://www.paultaylor.eu/ordinals/welfcr.pdf
https://doi.org/10.4230/LIPIcs.CALCO.2017.24

	Abstract
	1 Introduction
	1.1 Overview of the Contribution
	1.2 Agda Formalization
	1.3 Related Work

	2 Categorical Preliminaries
	2.1 Finiteness in a category
	2.2 Algebra and Coalgebra

	3 Initial Algebra Theorem
	3.1 Applying F to Locally Finrec Coalgebras
	3.2 Unique Colimit Injections
	3.3 Colimit of All Finrec Coalgebras

	4 Comparison with the Initial-Algebra Chain
	5 Agda Formalization
	5.1 Technical Aspects
	5.2 Formalization Challenges

	6 Conclusions and Future Work
	Acknowledgments
	7 Index of formalized results
	References

