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Abstract. In this short note, we show that every convex, order bounded above

functional on a Banach lattice is automatically norm continuous. This improves a

result in [21] and applies to many deviation and variability measures. We also show

that an order-continuous, law-invariant functional on an Orlicz space is strongly

consistent everywhere, extending a result in [18].

1. Automatic Continuity

Since its introduction in the landmark paper Artzner et al [3], the axiomatic theory of

risk measures has been a fruitful area of research. Among many topics, one particular

direction is to investigate automatic continuity of risk measures. In general, automatic

continuity has long been an interesting research topic in mathematics and probably

originates from the fact that a real-valued convex function on an open interval is

continuous. This well-known fact was later extended to the following theorem for

real-valued convex functionals on general Banach lattices.

Theorem (Ruszczyński and Shapiro [21]). A real-valued, convex, monotone functional

on a Banach lattice is norm continuous.

Recall that a functional ρ on a vector space X is said to be convex if ρ(λX + (1 −
λ)Y ) ≤ λρ(X) + (1 − λ)ρ(Y ) for any X, Y ∈ X and any λ ∈ [0, 1]. Recall also that

a Banach lattice X is a real Banach space with a linear order that is compatible with

norm, i.e., |X| ≤ |Y | in X implies ∥X∥ ≤ ∥Y ∥ (see [2] for standard terminology and

facts regarding Banach lattices). A functional ρ on a Banach lattice X is said to be

increasing if ρ(X) ≤ ρ(Y ) whenever X ≤ Y in X . ρ is said to be decreasing if −ρ is

increasing. ρ is said to be monotone if it is either increasing or decreasing.

The above celebrated result of Ruszczyński and Shapiro has drawn extensive atten-

tion in optimization, operations research and risk management. We refer the reader to
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Biagini and Frittelli [7] for a version on Frechet lattices and Farkas, Koch-Medina and

Munari [12] for further literature on automatic norm continuity properties.

With law invariance, other types of continuity properties beyond norm continuity

can be established. The theorem below is striking. Recall first that a functional ρ is

said to be law invariant if ρ(X) = ρ(Y ) whenever X and Y have the same distribution.

Recall also that a functional ρ on a set X of random variables is said to have the Fatou

property if ρ(X) ≤ lim infn ρ(Xn) whenever Xn
o−→ X in X . Here Xn

o−→ X in X ,

termed as order convergence in X , is used in the literature to denote dominated a.s.

convergence in X , i.e., Xn
a.s.−→ X and there exists Y ∈ X such that |Xn| ≤ Y a.s. for

any n ∈ N. The Fatou property is therefore just order lower semicontinuity.

Theorem (Jouini et al [17]). A real-valued, convex, monotone, law-invariant func-

tional on L∞ over a non-atomic probability space has the Fatou property. Consequently,

it is σ(L∞, L1) lower semicontinuous and admits a dual representation via L1.

This theorem was recently extended by Chen et al [10] to general rearrangement-

invariant spaces. See [10, Theorem 2.2., Theorem 4.3, Theorem 4.7] for details.

In this section, we aim at extending the above theorem of Ruszczyński and Shapiro

on norm continuity of convex functionals. Specifically, we show that the monotonicity

assumption can be significantly relaxed to the following notion on order boundedness.

Definition 1.1. Let X be a Banach lattice. For U, V ∈ X with U ≤ V , the order

interval [U, V ] is defined by

[U, V ] = {X ∈ X : U ≤ X ≤ V }.

A functional ρ : X → R is said to be order bounded above if it is bounded above on all

order intervals.

While risk measures are usually assumed to be monotone, many important function-

als used in finance, insurance and other disciplines are not necessarily monotone.

Example 1.2. General deviation measures were introduced in Rockafellar et al [20] as

convex functionals satisfying certain conditions. They are usually not monotone, but

may be order bounded above. A specific example is standard deviation and semidevi-

ations. Recall that for a random variable X ∈ L2, its standard deviation, upper and

lower semideviations are given by

σ(X) = ∥X − E[X]∥L2 , σ+(X) = ∥(X − E[X])+∥L2 , σ−(X) = ∥(X − E[X])−∥L2 ,

respectively. They are well known to be convex. It is also easy to see that they are

not increasing or decreasing. We show that they are all order bounded above on L2.
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Indeed, take any order interval [U, V ] ⊂ L2 and any X ∈ [U, V ]. The desired order

boundedness property is immediate by the following inequalities.

U − E[V ] ≤X − E[X] ≤ V − E[U ]

0 ≤(X − E[X])+ ≤ (V − E[U ])+

0 ≤(X − E[X])− ≤ (U − E[V ])+

Example 1.3. General variability measures were introduced in Bellini et al [4]. Many

of them are also order bounded above, although usually not monotone. In fact, all the

three one-parameter families of variability measures in [4, Section 2.3] are easily seen

to be order bounded above but not monotone.

Our main result in this section is as follows.

Theorem 1.4. Let X be a Banach lattice. Let ρ : X → R be a convex, order bounded

above functional. Then ρ is norm continuous.

It is obvious that a monotone functional is order bounded above. Hence, Theorem

1.4 includes the preceding theorem of Ruszczyński and Shapiro as a special case.

Proof of Theorem 1.4. Let (Xn) and X be such that ∥Xn − X∥ → 0 in X . We want

to show that ρ(Xn) → ρ(X). Suppose otherwise that ρ(Xn) ̸→ ρ(X). By passing to a

subsequence, we may assume that

|ρ(Xn)− ρ(X)| > ε0 for some ε0 > 0 and any n ∈ N.(1.1)

Since ∥Xn −X∥ → 0, by passing to a further subsequence, we may assume that

∥Xn −X∥ ≤ 1

n2n
for any n ∈ N.

Then
∑∞

n=1

∥∥n|Xn −X|
∥∥ < ∞ so that Y :=

∑∞
n=1 n|Xn −X| exists in X . Note that

|Xn −X| ≤ 1

n
Y for any n ∈ N.(1.2)

Moreover, since ρ is order bounded above on [X − Y,X + Y ] = X + [−Y, Y ], there

exists a real number M > 0 such that

ρ(X + Z) ≤ M for any Z ∈ [−Y, Y ], i.e., whenever |Z| ≤ Y.(1.3)

Now fix any ε > 0. Put N = ⌊1
ε
⌋+ 1. By (1.2),

1

ε
|Xn −X| ≤ Y for any n ≥ N.(1.4)

On one hand, by the convexity of ρ and the following identity

Xn =(1− ε)X + ε
(
X +

1

ε
(Xn −X)

)
,
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we have

ρ(Xn) ≤(1− ε)ρ(X) + ερ
(
X +

1

ε
(Xn −X)

)
,

implying that

ρ(Xn)− ρ(X) ≤ ε
(
ρ
(
X +

1

ε
(Xn −X)

)
− ρ(X)

)
.

This together with (1.4) and (1.3) implies that

ρ(Xn)− ρ(X) ≤ ε
(
M − ρ(X)

)
for any n ≥ N.(1.5)

On the other hand, by the convexity of ρ and

2X −Xn = (1− ε)X + ε
(
X +

1

ε
(X −Xn)

)
,

we have as before that

ρ(2X −Xn) ≤(1− ε)ρ(X) + ερ
(
X +

1

ε
(X −Xn)

)
≤(1− ε)ρ(X) + εM,

for any n ≥ N . In particular,

ρ(2X −Xn)− ρ(X) ≤ ε(M − ρ(X)) for any n ≥ N.

By X = 1
2
Xn +

1
2
(2X −Xn) and the convexity of ρ, we also get

ρ(X) ≤ 1

2
ρ(Xn) +

1

2
ρ(2X −Xn)

so that

ρ(X)− ρ(Xn) ≤ ρ(2X −Xn)− ρ(X).

It follows that

ρ(X)− ρ(Xn) ≤ ε(M − ρ(X)) for any n ≥ N.(1.6)

Combining (1.5) and (1.6), we have

|ρ(X)− ρ(Xn)| ≤ ε(M − ρ(X)) for any n ≥ N.

Hence, ρ(Xn) → ρ(X). This contradicts (1.1) and completes the proof. □

Remark 1.5. Theorem 1.4 is also valid on Frechet lattices. The major technical differ-

ence lies in constructing Y satisfying (1.2). This can be achieved using the techniques

in the proof of Biagini and Frittelli [7, Theorem 1].
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2. Strong Consistency

In this section, we discuss the strong consistency of estimating the risk ρ(X) using

historical data or Monte Carlo simulations.

Throughout this section, fix a nonatomic probability space (Ω,F ,P). Let L0 be the

space of all random variables on Ω, with a.s. equal random variables identified as the

same. Let X be a subset of L0. Denote the set of distributions of all random variables

in X by

M(X ) = {P ◦X−1 : X ∈ X}.

Recall that a law-invariant functional ρ on X induces a natural mapping Rρ on M(X )

by

Rρ(P ◦X−1) = ρ(X), for any X ∈ X .

Let X be a subset of L0 containing L∞. Take any X ∈ X . Let (Xn) be a stationary

and ergodic sequence of random variables with the same distribution as X (see [9,

Section 6.7] for the definition of a stationary and ergodic process). We denote the

empirical distribution of X arising from X1, . . . , Xn by

m̂n =
1

n

n∑
i=1

δXi
;

here δx is the Dirac measure on R at x. Since L∞ ⊂ X , m̂n ∈ M(L∞) ⊂ M(X ). This

allows us to consider the corresponding empirical estimate for ρ(X):

ρ̂n := Rρ(m̂n);

We say that ρ is strongly consistent at X if for any stationary and ergodic sequence of

random variables with the same distribution as X,

ρ̂n = Rρ(m̂n)
a.s.−−→ ρ(X).

We refer to Krätschmer, Schied and Zähle [18, 19] and the references therein for lit-

erature on strong (and weak) consistency of risk measures. In particular, the proof of

[18, Theorem 2.6] gives the following result.

Theorem (Krätschmer et al [18]). A norm-continuous, law-invariant functional on

an Orlicz heart is strongly consistent everywhere.

Let’s first recall the definitions of Orlicz spaces and hearts. A function Φ : [0,∞) →
[0,∞) is called an Orlicz function if it is non-constant, convex, increasing, and Φ(0) =

0. The Orlicz space LΦ is the space of all X ∈ L0 such that the Luxemburg norm is

finite:

∥X∥Φ := inf
{1

λ
> 0 : E

[
Φ
(
λ|X|

)]
≤ 1

}
< ∞.
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The Orlicz heart HΦ is a subspace of LΦ defined by

HΦ :=
{
X ∈ L0 : E

[
Φ
(
λ|X|

)]
< ∞ for any λ > 0

}
.

We refer to [11] for standard terminology and facts on Orlicz spaces. Risk measures

on Orlicz spaces have been studied extensively; see, e.g., [5, 6, 8, 13, 14, 15, 16] and

the references therein.

The above theorem in conjunction with Theorem 1.4 immediately yields the following

result, which improves [18, Theorem 2.6].

Corollary 2.1. A convex, law-invariant, order bounded above functional on an Orlicz

heart is strongly consistent everywhere.

The above theorem of Krätschmer et al is essentially due to the fact that for any

X ∈ HΦ, and for a.e. ω ∈ Ω, there exist a random variable Xω on Ω with same

distribution as X and a sequence of random variables (Xω
n ) on Ω with distributions

m̂n(ω)’s such that

∥Xω
n −Xω∥Φ → 0.(2.1)

This, however, does not hold for arbitrary random variables in a general Orlicz space

LΦ. Specifically, when Φ fails the ∆2-condition, there exists X ∈ LΦ\HΦ. For this X,

(2.1) must fail: Xω
n takes only at most n values and thus is a simple random variable

lying in HΦ; therefore, (2.1) would imply X ∈ HΦ as well.

We extend the theorem of Krätschmer et al as follows. Recall first that on a set

X ⊂ L0, a functional ρ : X → R is said to be order continuous at X ∈ X if ρ(Xn) →
ρ(X) whenever Xn

o−→ X in X . In the literature, order continuity is also termed as the

Lebesgue property.

Theorem 2.2. An order-continuous, law-invariant functional on an Orlicz space is

strongly consistent everywhere.

For the proof of Theorem 2.2, we need to establish a few technical lemmas, which

along the way also reveal why order continuity is the most natural condition for general

Orlicz spaces. For an Orlicz function Φ, the Young class is defined by

Y Φ :=
{
X ∈ L0 : E [Φ (|X|)] < ∞

}
.

It is easy to see that HΦ ⊂ Y Φ ⊂ LΦ. As in [18], we use the term Φ-weak topology in

place of the Φ(|·|)-weak topology on M(Y Φ) for brevity. This topology is metrizable.

Moreover, for a sequence (µn) ⊂ M(Y Φ) and µ0 ∈ M(Y Φ), (µn) converges Φ-weakly

to µ0, written as µn
Φ-weakly−−−−−→ µ0, iff

µn
weakly−−−→ µ and

∫
Φ(|x|)µn(dx) →

∫
Φ(|x|)µ0(dx).
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The following Skorohod representation for Φ-weak convergence is a general order

version of [18, Theorem 3.5] and [19, Theorem 6.1] beyond the Orlicz heart and without

any restrictions on Φ.

Lemma 2.3. (i) Let (µn) be a sequence in M(Y Φ) that converges Φ-weakly to

some µ0 ∈ M(Y Φ). Then there exist a subsequence (µnk
) of (µn), a sequence

(Xk) in Y Φ and X ∈ Y Φ such that Xk has distribution µnk
for each k ∈ N, X

has distribution µ0, and Xk
o−→ X in Y Φ.

(ii) Let (Xn) in Y Φ and X ∈ Y Φ be such that Xn
o−→ X in Y Φ. Then µn

Φ-weakly−−−−−→
µ0, where µn’s are the distributions of Xn’s and µ0 is the distribution of X,

respectively.

Proof. We start with the following observation. Since Φ is continuous and increasing,

for any sequence (Xn) in Y Φ we have

E
[
Φ
(
sup
n∈N

|Xn|
)]

= E
[
sup
n∈N

Φ(|Xn|)
]

(2.2)

(i). Take (µn) in M(Y Φ) that converges Φ-weakly to µ0 ∈ M(Y Φ). Since the

probability space is nonatomic, the classical Skorohod representation yields (Xn) ⊂ Y Φ

and X ∈ Y Φ such that Xn ∼ µn for every n ∈ N, X ∼ µ0 , and Xn
a.s.−−→ X. Clearly,

(2.3) E[Φ(|X|)] =
∫

Φ(|x|)µ0(dx) = lim
n

∫
Φ(|x|)µn(dx) = lim

n
E[Φ(|Xn|)] < ∞.

Since Φ is continuous, we also have that Φ(|Xn|)
a.s.−−→ Φ(|X|). This combined with

(2.3) yields (see [1, Theorem 31.7]) that∥∥Φ(|Xn|)− Φ(|X|)
∥∥
L1 → 0.

Passing to a subsequence we may assume that

∞∑
n=1

∥∥Φ(|Xn|)− Φ(|X|)
∥∥
L1 < ∞

so that
∞∑
n=1

∣∣Φ(|Xn|)− Φ(|X|)
∣∣ ∈ L1.

In particular,

sup
n∈N

∣∣Φ(|Xn|)− Φ(|X|)
∣∣ ∈ L1.

It follows from Φ(|Xn|) ≤
∣∣Φ(|Xn|)−Φ(|X|)

∣∣+Φ(|X|) that supn∈N Φ(|Xn|) ∈ L1. Hence,

by (2.2), E[Φ(supn∈N |Xn|)] = E[supn∈N Φ(|Xn|)] < ∞. That is, supn∈N|Xn| ∈ Y Φ;

equivalently, (Xn) is dominated in Y Φ. In particular, we have Xn
o−→ X in Y Φ
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(ii). Let (Xn) be such that Xn
o−→ X in Y Φ and µn be the distribution of Xn for

each n, µ0 be the distribution of X. We clearly have µn
weakly−−−→ µ and by the continuity

of Φ, we get Φ(|Xn|)
a.s.−−→ Φ(|X|). Since (Xn) is dominated in Y Φ, supn∈N|Xn| ∈ Y Φ.

Thus in view of (2.2), we get

E
[
sup
n∈N

Φ(|Xn|)
]
= E

[
Φ
(
sup
n∈N

|Xn|
)]

< ∞,

i.e., supn∈N Φ(|Xn|) ∈ L1. By the dominated convergence theorem, we get∫
Φ(|x|)µ0(dx) = E[Φ(|X|)] = lim

n
E[Φ(|Xn|)] = lim

n

∫
Φ(|x|)µn(dx).

This proves µn
Φ-weakly−−−−−→ µ0. □

The lemma below reveals the essential and natural role of order continuity.

Lemma 2.4. Let ρ : Y Φ → R be law invariant. The following are equivalent.

(i) Rρ is continuous on M(Y Φ) with the Φ-weak topology.

(ii) ρ is order continuous on Y Φ.

Proof. (ii) =⇒ (i). Suppose that (ii) holds but (i) fails. Recall that the Φ-weak

topology is metrizable. Thus we can find a sequence (µn) and µ0 in M(Y Φ) such that

µn
Φ-weakly−−−−−→ µ0 but Rρ(µn) ̸→ Rρ(µ0). Passing to a subseqeunce, we may assume that

(2.4) |Rρ(µn)−Rρ(µ0)| ≥ ε0,

for some ε0 > 0 and all n ∈ N. By Lemma 2.3(i), there exist a subsequence (µnk
) of

(µn), a sequence (Xk) in Y Φ and X ∈ Y Φ such that Xk has distribution µnk
for each

k ∈ N, X has distribution µ0, and Xk
o−→ X in Y Φ. (ii) implies that

Rρ(µnk
) = ρ(Xk) → ρ(X) = Rρ(µ0).

This contradicts (2.4) and proves (ii) =⇒ (i). The reverse implication (i) =⇒ (ii) is

immediate by Lemma 2.3(ii). □

We now present the proof of Theorem 2.2.

Proof of Theorem 2.2. Suppose that ρ : LΦ → R is law invariant and order continuous.

Take any X ∈ LΦ and any stationary and ergodic sequence of random variables with

the same distribution as X. Denote by µ0 their distribution. Let λ > 0 be such

that E[Φ(λ|X|)] < ∞. Put Φλ(·) := Φ(λ·). Arguing similarly as in the proof of [18,

Theorem 2.6], by applying Birkhoff’s ergodic theorem, one obtains a measurable subset

Ω0 of Ω such that P(Ω0) = 1 and for every ω ∈ Ω0,

m̂n(ω)
Φλ-weakly−−−−−−→ µ0.
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Since ρ is order continuous on LΦ and Y Φλ ⊂ LΦ, ρ is also order continuous on

Y Φλ . By Lemma 2.4, Rρ is continuous on M(Y Φλ) with the Φλ-weak topology. Thus

ρ̂n(ω) = Rρ(m̂n(ω)) → Rρ(µ0) = ρ(X) for every ω ∈ Ω0. This proves that ρ is strongly

consistent at X. □

We end this note with the following remark that improves the implication (b) =⇒ (a)

in [18, Theorem 2.8] due to our Theorem 1.4.

Corollary 2.5. Suppose that Φ satisfies the ∆2-condition. Let ρ be any convex, law-

invariant, order bounded above functional on LΦ. Then Rρ is continuous on M(LΦ)

for the Φ-weak topology.

Proof. By Theorem 1.4, ρ is norm continuous. When Φ satisfies the ∆2-condition,

order convergence in LΦ implies norm convergence. Thus ρ is also order continuous.

Under the ∆2-condition, we also have HΦ = Y Φ = LΦ. Now apply Lemma 2.4. □
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the numéraire fails, Finance and Stochastics 18, 145-173 (2014)

[13] Gao, N., Leung, D., Munari, C., Xanthos, F.: Fatou property, representations, and extensions of

law-invariant risk measures on general Orlicz spaces, Finance and Stochastics 22, 395-415 (2018)

[14] Gao, N., Leung, D., Xanthos, F.: Closedness of convex sets in Orlicz spaces with applications to

dual representation of risk measures, Studia Mathematica 249, 329-347 (2019)



10 N. GAO AND F. XANTHOS

[15] Gao, N., Munari, C., Xanthos, F.: Stability properties of Haezendonck-Goovaerts premium prin-

ciples, Insurance: Mathematics and Economics 94, 94-99 (2020)

[16] Gao, N., Xanthos, F.: On the C-property and w∗-representations of risk measures, Mathematical

Finance 28(2), 748-754 (2018)

[17] Jouini, E., Schachermayer, W., Touzi, N.: Law invariant risk measures have the Fatou Property,

Adv. Math. Econ. 9, 49-71 (2006)
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