
This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which
this version may no longer be accessible.

DIMSIM – Device Integrity Monitoring through
iSIM Applets and Distributed Ledger Technology

Tooba Faisal & Emmanuel Marilly
Nokia Bell-Labs, France

Tooba.Faisal@nokia-bell-labs.com
Emmanuel.Marilly@nokia-bell-labs.com

Abstract—In the context of industrial environment, devices,
such as robots and drones, are vulnerable to malicious activities
such device tampering (e.g., hardware and software changes). The
problem becomes even worse in a multi-stakeholder environment
where multiple players contribute to an ecosystem.

In such scenarios, particularly, when devices are deployed in
remote settings, ensuring device integrity so that all stakeholders
can trust them is challenging. Existing methods, often depend on
additional hardware like the Trusted Platform Module (TPM)
which may not be universally provided by all vendors. In this
study, we introduce a distributed ledger technology-oriented
architecture to monitor the remote devices’ integrity using eUICC
technology, a feature commonly found in industrial devices for
cellular connectivity. We propose that using secure applets in
eUICC, devices’ integrity can be monitored and managed without
installing any additional hardware.

To this end, we present an end-to-end architecture to monitor
device integrity thereby enabling all the stakeholders in the sys-
tem to trust the devices. Additionally, we leverage the properties
of immutable databases to provide robustness and efficiently to
our model. In our primary evaluations, we measure the overhead
caused by hashing our proposed data packets and performance of
integrating an immutable database into our system. Our results
show that performing hashing on our data packets takes order
of microseconds, while reading and writing to an immutable
database also requires only milliseconds.

I. INTRODUCTION

Future industrial systems, such as Industry 4.0 and Industry
5.0, are envisioned as multi-stakeholder environments— a
multi-actor and open ecosystem [1] — in which assets and
services may not necessarily come from a limited number
of providers. These systems provide opportunities for a wide
range of vendors, regardless of their business size, to con-
tribute to the ecosystem. The primary concern in such systems
is trust among the stakeholders within the ecosystem [2], [3].

We believe that such open systems can only be enabled if
and only if the systems are inherently trustable and account-
able.

This assertion is grounded in the following primary reasons:
The first challenge related to open systems [1] is their ability to
easily interoperate with devices from a wide range of providers
and form end-to-end heterogeneous systems. In such hetero-
geneous systems various device providers will be involved
in an end-to-end service. Therefore, each party depends on
other parties for the smooth operations and quality of service
delivered. Hence, malfunctioning of a single device will im-
pact the performance of an overall service. The challenge is

not limited to quality but also for security reasons; a corrupt
or poorly secured device can introduce dangers to the full
system [4]. This necessitates robust monitoring and reporting
mechanisms that allow complete transparency among actors,
thereby establishing trust.

The second challenge revolves around establishing account-
ability for devices in large-scale deployments featuring multi-
ple participants in the ecosystem. In industrial contexts, ensur-
ing the accountability and reliability of remote devices poses
a significant challenge. When devices operate remotely, their
performance may deviate from the intended programming.
This discrepancy could stem from various factors, including
malicious interference by external entities altering device soft-
ware to compromise the environment or derive personal gains.
Thus, devices integrated into industrial environments must
inherently embed mechanisms ensuring not only the integrity
of their software and firmware but also providing unequivocal
assurances regarding the accuracy and accountability of the
data they generate. A robust system of accountability is crucial
to uphold the reliability and trustworthiness of the entire
ecosystem.

Hence, future generation of industrial systems must be
both open and accountable, inherently ensuring trust. Data
generated by these devices and transactions between stake-
holders must be accurate, trustworthy, and reliable for all the
participants. Additionally, these systems should guarantee the
proper execution of devices’ programmed functions, while also
detecting and taking appropriate actions for any malicious
behaviors. The entire ecosystem should operate autonomously,
functioning in a zero-touch manner.

Current systems rely on Trusted hardware such as trusted
platform modules, with remote attestation [5]. Such architec-
tures can both perform local and remote confirmation of the
device integrity. However, the problem with such architectures
is that an additional hardware such as Trusted Platform Module
must be installed inside a device. Moreover, in the case of
remote attestation, when a party verifies the device integrity,
the system relies on a centralized architecture of remote
attestation. This means, when multiple parties want to keep
track of device integrity, they must rely on a central party.

To this end, our work introduces an end-to-end and dis-
tributed device integrity monitoring system designed for a
multivendor environment. The system monitors device in-
tegrity and enables trust, without the need for additional

1

ar
X

iv
:2

40
5.

09
91

6v
1 

 [
cs

.C
R

] 
 1

6 
M

ay
 2

02
4



This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which
this version may no longer be accessible.

hardware: DIMSIM (Device Integrity Monitoring with SIM
Applets) (Fig.??). We leverage eUICC technology to maintain
device integrity. eUICC is not an additional burden on the
device and is a standard to provide connectivity to remote de-
vices [6]. The remote verification entity in our proposal is col-
lectively managed by all participants within the ecosystem and
utilizes immutable records management. Recent application of
immutable database immudb is a new class of databases that
is auditable, irrepudiable and temper-resistant by design [7].
This ensures that all stakeholders can access the records, and
tampering with them is not possible. On the other hand, an
eUICC, or embedded Universal Integrated Circuit Card, is
closely related to the eSIM (embedded Subscriber Identity
Module) or iSIM (integrated Subscriber Identity Module).

An eUICC is a component that can host multiple SIM
profiles, allowing for the dynamic switching and reconfigu-
ration of mobile network providers, profiles or high security
services / elements additionally to the telecom services [8].
We propose upholding device integrity through the utilization
of these secure elements, unveiling the Attestation Applet, a
novel secure element nestled within the eUICC.

DIMSIM is a modular system leveraging the combination
of the eUICC (eSIM or iSIM) technology at the device level,
and Distributed Ledger technology at the cloud level (Fig. ??).
We exploit eUICC in combination with distributed ledger
technology to provide all the stakeholders a transparent view
of the device software and firmware. We use a specific type of
distributed ledgers – “Permissioned Distributed Ledger (PDL)”
due to that the fact they have already been discussed widely in
industrial applications, for example, in operations and control
networks [2], automated monitoring and network devices’
sharing [3].

II. RELATED WORK

In this work, we introduce a system designed to facilitate
a multivendor environment. Our objective is to enable stake-
holders to precisely assess the integrity of each individual
device. We achieve this with the combination of eUICC and
distributed ledger technologies.

Several systems to monitor device integrity are proposed
such as I3 [9] and Tripwire [10]. Such proposals enable
administrators to verify device integrity but do not address
the concern of malicious device deliberately tampering with
the device.

An alternate to Trusted Platform Module (TPM) within
the domain of eUICC (embedded Universal Integrated Circuit
Card) is proposed by Chakraborty et al. [11] in SimTPM.
They proposed incorporating TPM functionality in eUICC.
SimTPM utilizes the eUICC’s non-volatile memory to store
device measurements. Unlike us, they use TPM commands for
integrity monitoring and do not perform real-time monitoring.
Neither simTPM automatically reports device changes to a
remote location (e.g., device lessee).

In the context of mobile devices, Raj et al. introduced
firmwareTPM (fTPM) [12], a solution specifically tailored for
mobile devices that relies on ARM TrustZone for its operation.

Petroni et al.’s Copilot [13] aligns closely with our proposal,
although it necessitates the use of a PCI add-in card. This PCI
card plays a critical role in detecting malicious modifications
to the kernel.

Our solution surpasses the limitations of TPM functional-
ities and eliminates the dependency on additional hardware.
Notably, it’s important to mention that eUICC is already a
standard component in devices requiring connectivity. Our
framework, DIMSIM, represents an end-to-end solution that
continuously monitors device integrity and reports any anoma-
lies detected to the stakeholders.

Furthermore, DIMSIM offers a transparent view to all
stakeholders and ability to stop the device, if an anomaly
is detected. Such functionalities are crucial for ensuring the
viability of future industrial applications.

III. THREAT MODEL

The threat model focused on a heterogeneous environment
where customers and solution providers procure assets, such
as drones and cloud services from a diverse set of vendors.
To enable trust and transparency in such a multistakeholder
environment, accurate and trustable monitoring of asset usage,
service delivery and device health is required, due to SLA
assurance such as agreed upon service quality and accurate
charging. Assets such as drones can be monitored through
measurement software installed within devices. This monitor-
ing software can be stored in a shared repository and available
for audit by stakeholders. In our threat model, all parties have
potential motives for malicious behavior. Device vendors may
attempt to inflate usage readings to unfairly charge solution
providers, while customers may underreport usage to minimize
their bills. The actors can tamper with devices and other
data storage locations (e.g., edge) by manipulating with the
measurement software and/or measurements data for charging
purposes. Despite auditable software, hidden files and external
software can enable malicious device behavior.

IV. ARCHITECTURE

Our system proposal is to provide device integrity mon-
itoring without any additional hardware. Our proposal has
a distributed architecture, in which the device integrity is
monitored by a secure applet. The remote location verification
is performed only in the situations of dispute. Three different
types of entities interact with this system a) Solution Provider
– an entity which forms solutions by combining different
services (e.g., connectivity) and devices (e.g., robots), b)
Device Vendor – device provider who leases their devices to
solution providers, and c) Service Provider - entities which
provides services such as connectivity and robot controller.

In addition to the actors, there are following main compo-
nents for our architecture:

• Assets – For example, devices and services available on a
platform such as a marketplace. The devices have cellular
connectivity, for example, private 5G.

• Attestation Applet – our proposed novel secure ele-
ment which monitors the device integrity. The Applet
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is controlled by the solution provider. The attestation
applet ensures device integrity by continuous monitoring,
reporting anomalies to the remote verifier.

• Remote Verifier – an immutable and untemperable entity
managed by all the stakeholders It maintains and manages
immutable database and record of all good-known values
of devices software and firmware. However, the Remote
Verifier cannot update the records themselves. They must
take consensus from all the stakeholders to update the
records. The remote verifier may be running on a platform
such as edge cloud.

• Permissioned Distributed Ledger (PDL) – a distributed
ledger managed by all the stakeholders within the ecosys-
tem. We use a permissioned type of distributed ledger,
which is managed by the consortium of stakeholders
within the ecosystem. The transactions and contracts
among the participants of the ecosystem are recorded in
the PDL, such as service level agreements. The ledger is
consensus agnostic.

Our system is formed by participants running a permis-
sioned distributed ledger (PDL) that includes agreements be-
tween the actors within the ecosystem. Assets (e.g., services,
devices) and their associated contracts (e.g., service level
agreements (SLAs)) are deployed as smart contracts on the
PDL. When a solution provider forms a solution by leasing
devices, service level agreements between the device vendors
and solution provider are established. When a customer wishes
to purchase a solution, they generate a request for resource(s).
The Solution Provider executes corresponding SLA and the
service (if available) is allocated to the customer. As soon as
the SLAs are established, that is, appropriate smart contracts
are executed, the service is started. The details of the resource
provisioning are out-of-scope of this work and interested
readers can refer to [3] for details.

Our goal is to ensure that the allocated resources (e.g.,
devices) perform as promised in their SLAs throughout their
lifecycle. They must provide accurate data for management
purposes, such as billing and charging. To achieve this objec-
tive, it is imperative that the devices must not be tempered by
any party in any manner. To ensure this, we implement the
following steps:

A. Initial Benchmark Measurements

First step is to get the record initial measurements of the
device software/firmware. To obtain the initial measurements,
the hash value(s) of the software and firmware are recorded
in the PDL in the form of smart contract. Note that, the hash
value is the complete hash of the software or firmware code.
We advocate for a trustable and auditable system; therefore,
the software and firmware installed on the device must be
available on a location accessible by all stakeholders (e.g.,
edge cloud, git repository) along with their respective hash
values. To protect Intellectual Property of the software, only
the hash value of the software/firmware code may be available.

Once the solution is delivered to a customer’s premises, the
solution provider provisions the devices (e.g., robots). Device

Fig. 1: DIMSIM – Modular Architecture of DIMSIM consists
of 1) an Attestation Applet, 2) a Remote Verifier and c) a
Permissioned Distributed Ledger

provisioning includes provisioning an operator profile and ver-
ifying the device software and firmware. Additionally, during
the device provisioning, a secure element is also installed and
configured as the ‘Attestation Applet’ (AA) – our novel applet,
which is designed to monitor device integrity. The Attestation
Applet hashes the device firmware and software, send these
measurements to the solution provider.

To confirm the device software and firmware are in the
same state as the device vendor has promised in the contract,
the solution provider compares the measurements with those
provided by the device vendor with the measurements submit-
ted by the Attestation Applet. If the measurements match, the
solution provider will send a confirmation receipt to the AA,
and the measurements sent by the AA, will be recorded as
initial measurements inside the applet’s non-volatile memory.
The AA will use these values as the benchmark values for
later comparison. The process is depicted in Fig(2).

Fig. 2: Attestation Applet provisioning and Initial Measure-
ments Process

Since the SLA, that is, the smart contract recorded in the
PDL, contains the agreed-upon measurements, alternatively,
the AA can send measurements directly to the PDL. However,
in such a case, AA will have to wait for transaction approval,
which can take longer. Additionally, PDLs are limited by the
bandwidth they can handle, when many devices send requests,
it can lead to congestion and increased risk of transaction
rejection.

B. Periodic Measurements with Attestation Applet

After the initial measurements are recorded inside the device
and the solution is initiated, the Attestation Applet scans
the device firmware and software periodically and matches
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with the values recorded in the non-volatile memory from the
previous step (Fig. 1).

If the values measured by the AA match
with the recorded values, AA updates its
log(t s, current hash, previous hash, action taken)
with previous hash value similar to the current hash and
action taken as null (Table I) and waits for the next epoch
to scan. If the values do not match, the AA updates its log
and sends a message to the Remote Verifier. Optionally, if
programmed, the AA can take preventive measures on its
own such as stopping the device and terminate connectivity.

When the dispute message is received from the Attestation
Applet, the verifier checks its own database for the records.
If the ‘disputed hash’ matches with its records, the remote
verifier notifies the AA to update its records. If they do not,
the remote verifier can take further actions such as stopping
the device through control messages to the eUICC.

Note: Dispute Data Packet Details Dispute data packet
sent by the Attestation Applet consists of the follow-
ing fields: 1) DeviceID (5 − 7bytes) – device identi-
fier, 2) AppletID (5 − 7bytes) – applet identifier, 3)
TimeStamp (7 − 13bytes), 4) CurrentHash (32bytes)
– hash value calculated by the AA and did not
match with its stored and correct measurements, 5)
PreviousHash (32bytes) the hash value in the previous
epoch, 6) ActionTaken (32bytes) is the device’s immediate
action after the scan result. The possible values for Action
Taken are listed in Table I.

ID Action
0x00 null
0x01 Initiate investigation
0x02 Restrict application or software execution
0x03 Isolate device
0x04 Contain device
0x05 Revoke device
0x06 Stop and quarantine a file
0x07 Request deeper investigation

TABLE I: Commands for Action Taken

C. Device Software/Firmware Updates

The solution provider setup service level agreement with
device vendors. These SLAs executions are recorded in the
PDL.

As devices are part of a solution, when a device vendor
wants to update their software and/or firmware, the updates
to one device can impact the performance of the complete
solution, therefore solution provider must agree to the new
software updates. To that end, device vendor notifies the
solution provider with intended software/firmware updates
and its hash value. If the solution provider agrees with the
updates, they will send a confirmation. The device vendor then
executes the software update smart contracts with the updated
software/firmware hash and confirmation receipt from the
solution provider. The device vendor also sends a notification
to remote verifier that the software/firmware is updated and
send updated hash of the software/firmware to update their

records. If the solution provider does not agree with the update,
they can launch a dispute and settle as per the SLA.

Fig. 3: Software Updates on the Remote Verifier

V. CONSIDERATIONS

A. Storage

Traditional Secure Elements typically can store 4kb of
application data [14]. This means that, with the given capacity,
our log file can hold up to 125 hashes, each consisting of 32
bytes, at any given time. Once this limit is reached, the log
file will have to be archived a remote location, for example,
transferred to the Remote Verifier’s immutable database.

EUICC depends on manufacturers design. New eUICC
designs are still in the planning phase and the manufacturers
are defining their proprietary applet sizes [15]. As per the
GSMA, the memory size of an eUICC can range from several
kilobytes to several megabytes, with no specific limit on the
number of applets that can be installed [8]. For the Attestation
Applet, the storage requirement depends on a use case and the
required frequency of device integrity verification is required.

B. Response Time

In DIMSIM, the AA will notify the remote verifier for any
unexpected measurements. However, once the AA identifies
a corrupted file and then notifies the remote verifier, in
the meantime, a compromised/corrupted device can perform
malicious activities, such as spreading a virus to its nearby
devices.

To that end, AA can block the device independently and
before notifying the remote verifier. However, in such a setting,
the device will have to be stopped for false alarms.

C. Corrupted Remote Verifier

In DIMSIM, the Attestation Applet, sends a disputed hash to
the remote verifier for the verification. If the remote verifier is
compromised, it can reject the claims from the AA and allow
a corrupted device to continue its operations.

Recall that, the AA has direct access and authority to
stop the device. The AA can be programmed in such a
way to take preventive measures itself. For example, after
multiple alarms of malfunctioning, the AA can stop the device
and send a notification to the solution provider. In another
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solution example, multiple remote verifiers can be deployed,
and action will be taken only after collecting consensus from
all the remote verifiers. However, multiple remote verifiers
may introduce additional delays to the system.

VI. EVALUATION SETUP & PRELIMINARY RESULTS

Our proposal has two main components: 1) A device
equipped with eUICC and 2) the Remote verifier.

A. An IoT Device equipped with eUICC

Our objective is to ensure the device integrity. We achieve
this through secure applets installed inside an eUICC. The
AA scans the device periodically and matches with its own
records.

Our primary experimental setup is based on a Raspberry
pi Model 4B, 4G LTE base Hat, Quectel EC25-E 4g/LTE
module and Comprion test eSIM/eUICC card. Provision of the
eUICC is done by the Nokia iSIM secure connect platform.
The eUICC is connected indirectly via a modem. Specific AT
(Attention) commands are used to enable the communication
between the eUICC and a device. Application Protocol Data
Unit (APDU) messages have been defined to interact within
the Attestation Applet following the standard ISO7816. Usu-
ally, eUICC supports different connectivity options to the host
device. The indirect communication via a modem, based on
ISO7816 (T=0 protocol). The direct communication is based
on protocols such as I2C or SPI.

In Figure 4, we present an example of hashes match
command message used between the Attestation Applet and
the device.

Fig. 4: APDU Command to match hashes

B. Remote Verifier

Our next objective is to assess the performance of the
remote verifier and determine the cost associated with sending
the hash value for verification. A crucial component of the
remote verifier is its immutable database. Therefore, in our
primary evaluations, we focus on both the hashing time and
the expenses related to utilizing an immutable database.

The remote verifier has been implemented on an Ubuntu
Virtual Machine with 4 vCPUs, 12 GB of RAM, and 149
GB of hard disk space. Its functionalities are coded in Python
v3.10.2, utilizing an immutable database1.

We ran around 1000 iterations of our initial implementation
and the analysis indicates that the 32 byte hash comparison at

1https://immudb.io

the remote verifier took maximum ≈203.941 µsec, ≈7.907
minimum, and the standard deviation is ≈9.875 µsec. We
recorded data (Equation 1) in the immutable database and the
recording process yields maximum value of ≈182.503 ms,
minimum value is ≈8.447 ms with the standard deviation
of ≈5.041 ms. Reading operations to the database take a
lesser time with maximum value of ≈5.318 ms, minimum
≈0.583 ms. and the standard deviation of ≈0.143 ms. As
such, immudb is a lightweight and fast solution compared
to other cryptographic-based data storage systems, such as
blockchains [7]. While immudb utilizes cryptographic hashes
to store records, which may result in lower performance
compared to traditional databases, it’s important to note that
we primarily access the database for reading the latest values
and resolving disputes. Data is only recorded in the event of
software updates.

< software id, hashvalue, timestamp > (1)

Fig. 5: Remote Verifier Performance Evaluation - For hashing
32 bytes of data, the maximum value is ≈124.08 µsec, mini-
mum value is ≈7.36 µsec and median is ≈8.304 µsec – Im-
mutable database evaluations show that recording data (Equa-
tion 1) took max ≈182.503 ms and minimum value is ≈8.447
ms and the median value is ≈9.837 ms. The performance of
write operation is a bit higher than the read operation, however,
the write operation is used only in the situations of software
updates

VII. CONCLUSION & FUTURE WORK

Ensuring the integrity of remote devices within distributed
ledger technology enabled systems is of paramount impor-
tance. The challenge becomes particularly critical when it is
employed for service level agreements, where the future settle-
ments, such as, payments, rely on the data sent to distributed
ledgers through smart contract executions. Currently, proposed
methods require enormous amount of resources and thus are
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expensive to implement. In this paper, we present DIMSIM,
our distributed architecture to ensure device integrity without
the need for additional hardware, thereby facilitating inher-
ently secure devices.

We are currently in the process of developing a complete
prototype for DIMSIM and plan to present our analysis in a fu-
ture work. Importantly, when the future devices are integrated
with our solution, their integrity will be guaranteed. Through
our solution, the confidence and trust among the stakeholders
will be enabled.
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