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LOW-RANK TREE TENSOR NETWORK OPERATORS
FOR LONG-RANGE PAIRWISE INTERACTIONS∗

GIANLUCA CERUTI† , DANIEL KRESSNER‡ , AND DOMINIK SULZ§

Abstract. Compactly representing and efficently applying linear operators are fundamental ingredients in
tensor network methods for simulating quantum many-body problems and solving high-dimensional problems in
scientific computing. In this work, we study such representations for tree tensor networks, the so called tree tensor
network operators (TTNOs), paying particular attention to Hamiltonian operators that involve long-range pairwise
interactions between particles. Generalizing the work by Lin, Tong, and others on matrix product operators, we
establish a direct connection between the hierarchical low-rank structure of the interaction matrix and the TTNO
property. This connection allows us to arrive at very compact TTNO representations by compressing the interaction
matrix into a hierarchically semi-separable matrix. Numerical experiments for different quantum spin systems validate
our results and highlight the potential advantages of TTNOs over matrix product operators.

Key words. Tensor networks, linear operators, low-rank tensors, hierarchical semi-separable matrices, hierar-
chical Tucker format.
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1. Introduction. In a wide variety of situations, tensor network methods have demonstrated
their power to address the computational challenges imposed by high dimensionality. Most notably,
this includes matrix product states (MPS) for many-body quantum systems [29] or the (mathemat-
ically equivalent) tensor train (TT) decomposition [26] for applications in engineering and scientific
computing; see [1, 11, 16] for surveys. Many of these approaches crucially rely on a suitable rep-
resentation of the operator describing the system. In this work, we will consider operators that
describe pairwise interactions between sites (or modes) of a system:

H ∶ Cn1×⋯×nd → C
n1×⋯×nd , H =

d

∑
k=1

D(k) + ∑
1≤i<j≤d

β(i, j)A(i)A(j),(1.1)

where A(i) and D(i) represent operators that act on the ith site only, while the coefficients β(i, j)
characterize the strength of interactions between pairs of sites. The matrix representation of a
single-site operator like A(i) takes the form Ind

⊗ ⋅ ⋅ ⋅ ⊗ Ini+1 ⊗Ai ⊗ Ini−1 ⊗ ⋅ ⋅ ⋅ ⊗ In1
for some matrix

Ai ∈ Cnk×nk , where I denotes an identity matrix of suitable size and ⊗ denotes the usual Kronecker
product. In scientific computing, an operator of the form (1.1) arise from the discretization of
partial differential equations (PDEs) on d-dimensional hypercubes, while for quantum systems a
Hamiltonian of the form (1.1) describes the interaction between pairs of particles. If the matrix
β ∈ Cd×d containing the coefficients β(i, j) is sparse, only a few pairs interact with each other.
In particular, when β is banded, only short-range interactions are allowed, that is, only nearby
sites interact with each other. When β does not have banded structure, distant sites interact with
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each other. The presence of such long-range interactions significantly complicates the use of tensor
network methods, including the compact representation of H.

To efficiently use MPS / TT representations for, e.g., computing ground states or perform-
ing time evolution it is advantageous to avoid the canonical representation (1.1) of the operator
H and use a matrix product operator (MPO) representation [27, 29, 33]. For example, when
applying H in canonical representation to a tensor in TT decomposition, the associated TT rep-
resentation ranks (which critically determine memory complexity) grow by a factor around d2/2.
If, instead, H is represented in MPO format, its potentially much smaller MPO ranks determine
this growth. In particular, it is well known that the MPO ranks are constant (not depending on
d) for short-range interactions. In the context of PDEs, such MPO representations for H have
been constructed in [6, 15], highlighting the connection between the MPO representation and the
quasi-separability [7] of β. In the context of quantum systems, a similar connection has been made
in [21], additionally discussing the compression of β as a quasi-separable matrix. This is particu-
larly important for long-range interactions like the Coulomb interaction β(i, j) = 1/∣i− j∣, for which
β is not a quasi-separable matrix but can be well approximated by one. A quasi-optimal algorithm
for quasi-separable approximation is described in [23], but to the best of our knowledge no software
implementation is publicly available.

While MPS excels at compressing ground states for short-range and/or translation-invariant
interactions [14], it may struggle to attain compact representations in the presence of long-range
interactions. Due to the frequent occurrence of long-range interactions in applications, this mo-
tivates the need to consider more general tensor network formats. In this work, we will consider
Tree Tensor Networks (TTNs) at a level of generality that includes any connected loop-free tensor
network. TTNs include MPS / TT as a special case when choosing a highly unbalanced, degenerate
binary tree. However, TTNs are more commonly used with a balanced (binary) tree, correspond-
ing to the hierarchical Tucker format [10] in scientific computing. This comes with the advantage
that the distances between nodes within the tree scale logarithmically with d. Consequently, the
representation rank in a TTN can be expected to remain smaller than for MPS, where this distance
scales linearly. In the realm of quantum systems, TTNs have demonstrated promising numerical
accuracy in capturing long-range interactions and correlations among particles [17, 30]. However,
the efficient realization of this promise requires a compact representation of the operatorH that cor-
responds to the TTN format. The construction of such Tree Tensor Network Operators (TTNOs)
has been discussed for nearest-neighbor interaction in [31]. In [25], state diagrams are used for the
construction of quantum Hamiltonians in the TTN format.

In this paper, we generalize the work by Lin and Tong [21] on MPOs to TTNOs for general tree
tensor networks. Our main contribution is show a direct connection between the hierarchical semi-
separable (HSS) decomposition [35] of the interaction matrix β and the TTNO for H from (1.1).
This connection allows to leverage existing algorithms and software, such as the hm-toolbox [24],
for compressing and working with HSS matrices. We prove that when the interaction matrix β

has HSS rank of k then the maximum rank of the TTNO is bounded by k + 2 and we provide
an explicit construction of this TTNO. We also quantify the error (in the spectral norm) inflicted
on H by the compression of β, which predicts that the error will remain small for interaction
matrices typically encountered in practice, including Coulomb interactions. This is confirmed by our
numerical experiments, which exhibit that small HSS ranks are commonly encountered in relevant
quantum scenarios, without needing to impose strong assumptions on the interaction matrix, such
as decaying interactions or translational invariance.

The rest of this paper is structured as follows. In Section 2, we recall TTNs and TTNOs. In
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Section 3, we first show how to construct TTNO without imposing conditions on β. Section 4
contains our main result, the construction of a TTNO from an HSS decomposition of β, including
an error bound when β is compressed in the HSS format. In Section 5, we verify our results
numerically for several quantum spin systems. Further, we compare the TTNO representation for
a balanced binary trees with the TTNO for a degenerate binary tree (corresponding to an MPO)
in the context of long-range interactions.

2. Tree tensor networks. Following [5, 4], this section introduces a tree tensor network
formalism that includes the MPS/TT and HT tensor formats discussed in the introduction.

2.1. Dimension tree. Tree tensor networks rely on a recursive partition of the dimensions 1
through d. This partitioning is represented by a dimension tree τ̄ . In the following definition, L(τ)
denotes the set of leaves of a tree τ and we always assume that it consists of a (nonempty) set of
consecutive integers.

Definition 2.1 (dimension tree). For d ≥ 1, a dimension tree τ̄ with leaves L(τ̄) = {1, . . . , d}
is recursively defined as follows:
(i) For a dimension tree τ with more than one leaf, L(τ) is partitioned as

L(τ) = L(τ1) ∪̇L(τ2) ∪̇ ⋯ ∪̇L(τm)

for some m ≥ 2. Corresponding to this partition, the root of τ has m children that are roots
of dimension trees τ1, . . . , τm such that L(τi) = Li and

(2.1) maxL(τi) <minL(τj) ∀i < j.

We will write τ = (τ1, . . . , τm).
(ii) For a singleton L(τ) = {ℓ}, it holds that τ = ℓ.

Any tree τ = (τ1, . . . , τm) appearing in the recursive construction of Definition 2.1 is a subtree
of τ̄ . The set of all such subtrees will be denoted by T (τ̄). By condition (2.1), for any subtree
τ = (τ1, . . . , τm) ∈ T (τ̄) there exist integers ℓ1 < ℓ2 < ⋯ < ℓm+1 such that

L(τ1) = {ℓ1, ℓ1 + 1, . . . , ℓ2 − 1}, . . . , L(τm) = {ℓm, ℓm + 1, . . . , ℓm+1 − 1}.

For instance, when d = 6, an example of a dimension tree is τ̄ = ((1,2,3), (4,5,6)) – see Figure 1.

τ̄

τ1

1 2 3

τ2

4 5 6

Fig. 1. Graphical representation of the tree τ̄ = (τ1, τ2) with τ1 = (1,2,3) and τ2 = (4,5,6).

2.2. Definition of tree tensor networks. To work with tensors, it is useful to begin by
recalling the concept of matricizations. Consider a tensor C ∈ Cn1×⋅⋅⋅×nd and let I be any subset
of {1, . . . , d}. The I-matricization of C is denoted as MatI(C) ∈ CnI×n¬I , where ni =∏i∈I nτi and
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n¬I = ∏i/∈I nτi , and it is obtained by merging the indices of the modes in I into row indices while
the remaining ones are merged into column indices, following the reverse lexicographic order.

With each leaf ℓ ∈ L(τ̄) = {1, . . . , d} of a dimension tree τ̄ , we associate a basis matrix
Uℓ ∈ C

nℓ×rℓ . With each subtree τ = (τ1, . . . , τm) ∈ T (τ̄), we associate a transfer tensor Cτ ∈
C

rτ1×⋅⋅⋅×rτm×rτ . The integers rτ determine the sizes of the basis matrices and transfer tensors. We
always set rτ̄ = 1 and neglect the trailing singleton dimension of the transfer tensor Cτ̄ at the root.
In particular, if τ̄ = (τ1, τ2) then Cτ̄ becomes an rτ1 × rτ2 matrix. We are now in the position to
define a tree tensor network recursively [4, 5].

Definition 2.2 (Tree tensor network). For a given dimension tree τ̄ , consider basis matrices
Uℓ and transfer tensors Cτ defined as above. Then the corresponding tree tensor network takes the
following form:
(i) For each leaf ℓ ∈ L(τ̄) = {1, . . . , d}, we set

Xℓ ∶=Uℓ ∈ Cnℓ×rℓ .

(ii) For each subtree τ = (τ1, . . . , τm) ∈ T (τ̄), we set nτ ∶=∏
m
i=1 nτi and

Xτ ∶= Cτ

m

⨉
i=1

Uτi ∈ C
nτ1

×⋅⋅⋅×nτm×rτ ,

Uτ ∶=Mat1,...,m(Xτ) ∈ Cnτ×rτ .

At the root τ̄ = (τ1, . . . , τm), we arrive at a tensor of the form Xτ̄ ∶= Cτ̄ ⨉m
i=1Uτi ∈ C

nτ1
×⋯×nτm ,

which is a reshape of the dth order tensor X ∈ Cn1×⋯×nd represented by the entire tree tensor
network. In particular, Uτ̄ ∈ Cn1⋯nd is the vectorization of both, Xτ̄ and X . Tensor trains/matrix
product states are tree tensor networks of maximal height, while tensors in Tucker format have
height 1. Furthermore, we define the representation rank of a tree tensor network as the largest rτ
for τ ∈ T (τ̄) ∪L(τ̄), i.e., as the maximal representation rank appearing in the TTN.

Definition 2.2 recursively defines tree tensor networks via the Tucker format. For later purposes,
it is helpful to recall the unfolding formula for the Tucker format from [18]:

Matj (C
m

⨉
i=1

Uτi) =Uj Matj(C)⊗
i≠j

U⊺

τi
.(2.2)

In the mathematical literature, tree tensor networks for binary trees have been studied as hi-
erarchical tensors [12], tensors in hierarchical Tucker format [20, 10] and with general trees as
tensors in tree-based tensor format [8, 9]. In quantum chemistry, tree tensor networks are em-
ployed – among others – for the multilayer multiconfiguration time-dependent Hartree method
(ML-MCTDH) [22, 32].

The following result relates the ranks of a tree tensor network with the ranks of its matriciza-
tions; it can be found in, e.g., [13, Theorem 11.12 and Lemma 11.15].

Theorem 2.3. For a given dimension tree τ̄ , a tensor X ∈ C
n1×⋯×nd admits a tree tensor

network representation with

rτ = rank(MatL(τ)(X)), ∀τ ∈ T (τ̄) ∪L(τ̄).

2.3. Tree tensor network operators (TTNO). Having established Definition 2.2 of a tree
tensor network, we can now introduce the concept of a tree tensor network operator (TTNO).
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Definition 2.4 (TTNO). Let H ∶ Cn1×⋯×nd → C
n1×⋯×nd be a linear operator, and Ĥ ∈

C
(n1...nd)×(n1...nd) its associated linear map, i.e., vec(H(X)) = Ĥ vec(X) for all X ∈ Cn1×⋅⋅⋅×nd .

We define H as a tree tensor network operator (TTNO) of representation rank r on a given tree τ̄

if the reshape H ∈ Cn2

1
×⋯×n2

d of Ĥ forms a tree tensor network of representation rank r on τ̄ . The
tree tensor network H is the TTNO representation of H.

Definition 2.4 imposes a tree tensor network structure on a specific reshape of the linear map
associated with the operator. To illustrate this construction, we first consider one of the simplest
examples for trees of height 1, that is, determining a TTNO that aligns with the Tucker format.
Consider a linear operator of the form:

(2.3) H(X) =X
d

⨉
j=1

Aj with Aj ∈ Cnj×nj .

Its matrix representation Ĥ is retrieved by applying the unfolding formula (2.2),

vec(H(X)) =Mat1,...,m(H(X)) = (Ad ⊗⋯⊗A1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=Ĥ

vec(X) .

Following well-established techniques [20, 29] that leverage matrix/tensor low-rank approximation
for approximating operators, the Tucker operator representation of H is obtained by reshaping
vec(Ĥ) into an n2

1 × ⋅ ⋅ ⋅ × n
2

d tensor, resulting in the outer product representation

H = vec(A1) ○ ⋅ ⋅ ⋅ ○ vec(Ad) ∈ C
n2

1
×⋅⋅⋅×n2

d .

This corresponds to a rank-1 Tucker operator H = C⨉d
i=1 vec(Ai) ∈ Cn2

1
×⋅⋅⋅×n2

d with C = 1. The
described construction easily extends to a general dimension tree τ̄ , by letting each basis matrix
contain vec(A1) and setting each transfer tensor to 1. One can also accommodate a sum of r
operators of the form (2.3), using that the sum of r rank-1 TTNOs is a rank-r TTNO, but the
obtained representation may not be optimal in terms of representation ranks and storage complexity.

To conclude, we recall [20, §8] how to efficiently apply a linear operator H in TTNO represen-
tation H to a tree tensor network X with the same dimension tree τ̄ . The evaluation of H(X)
results again in a tree tensor network (of larger rank) and it can be efficiently computed as follows:

(i) For each leaf τ = ℓ, we set

(H(X))l = [Aℓ
1Uℓ, . . . ,A

ℓ
sUℓ] ,

whereAℓ
j ∈ C

nℓ×nℓ is the matrix obtained from reshaping the jth column of the basis matrix
at the ℓth leaf of the TTNO H .

(ii) For each subtree τ ∈ T (τ̄), we set

CH(X)
τ = CH

τ ⊗CX
τ .(2.4)

where CH
τ denotes the transfer tensor of the TTNO representation H at τ , and CX

τ denotes
the transfer tensor of the TTN X at τ .

The operation (2.4) involves the Kronecker product of tensors. We recall that the tensor Kronecker
product C ∈ C(n1m1)×⋅⋅⋅×(ndmd) of tensors A ∈ Cn1×⋅⋅⋅×nd and B ∈ Cm1×⋅⋅⋅×md is defined element-wise
for 1 ≤ ik ≤ nk and 1 ≤ jk ≤mk via the relation

C(j1 + (i1 − 1)m1, . . . , jd + (id − 1)md) ∶= A(i1, . . . , id)B(j1, . . . , jd) .
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It is worth noting that the operations (i) and (ii) in the application of a TTNO are independent
and can be performed in parallel. Moreover, the operation (ii) multiplies each rank of the original
tensor network by the corresponding rank of the TTNO. Thus, a compact TTNO representation
H , with small representation ranks, is of utmost interest.

3. Construction of TTNOs for Hamiltonians. We now focus on the Hamiltonian operator
(1.1), which consists of two parts. The first part, resembling a Laplacian operator, acts on individual
sites. The second part describes interactions between pairs of sites. Because the treatment of the
first part is well-established [20], we focus on the second part, which poses additional challenges.

To be specific, we investigate the TTNO representation of Hamiltonians having a matrix rep-
resentation of the form

(3.1) Ĥ = ∑
1≤i<j≤d

β(i, j) ⋅A(i)A(j) ∈ C(n1⋯nd)×(n1⋯nd),

with A(k) = Ind
⊗ ⋅ ⋅ ⋅ ⊗ Ink+1

⊗Ak ⊗ Ink−1
⊗ ⋅ ⋅ ⋅ ⊗ In1

and Ak ∈ Cnk×nk for k = 1, . . . , d. The strictly
upper triangular interaction matrix β = (β(i, j))di,j=1 captures the strength of interaction between
pairs of sites. Often, β(i, j) = f(∣i − j∣) for i < j and a given function f(⋅); the entries in the lower
triangular part of β are set to zero.

To simplify the presentation, we primarily consider binary dimension trees τ̄ , i.e., each subtree
of τ̄ takes the form τ = (τ1, τ2). In Section 3.2, we will briefly discuss the extension to general trees.

3.1. Construction of TTNOs: Unstructured case. The most straightforward approach
to derive a TTNO representation of (3.1) follows from the observation that each summand has
rank one. Summing up the TTNOs for each term thus results in a TTNO with representation rank
d(d − 1)/2; see Section 2.3. This rank is far from optimal; indeed, we will show that it can always
be reduced to O(d), without imposing any assumption on the interaction matrix β.

To obtain a TTNO representation H ∈ Cn2

1
×⋯×n2

d for (3.1), we start by vectorizing the sum-
mands:

h ∶= vec(H) = ∑
1≤i<j≤d

β(i, j) ⋅ a(i,j) ∈ Cn2

1
⋯n2

d .

where

a(i,j) ∶= ed ⊗⋯⊗ ej+1 ⊗ vec(Aj)⊗ ej−1 ⊗⋯⊗ ei+1 ⊗ vec(Ai)⊗ ei−1 ⊗⋯⊗ e1,(3.2)

and ek = vec(Ink
) denotes the vectorization of the identity matrix. More generally, given an

arbitrary tree τ and i, j ∈ L(τ) with i < j, we define the one- and two-site matrix representations
as follows:

a(i)τ = ⊗
ℓ∈L(τ)

ℓ>i

eℓ ⊗ vec(Ai) ⊗
ℓ∈L(τ)

ℓ<i

eℓ,(3.3)

a(i,j)τ = ⊗
ℓ∈L(τ)

ℓ>j

eℓ ⊗ vec(Aj)
i+1

⊗
ℓ∈L(τ)
i<ℓ<j

eℓ ⊗ vec(Ai) ⊗
ℓ∈L(τ)

ℓ<i

eℓ,(3.4)

with the understanding that the Kronecker products are executed in decreasing order with respect

to ℓ. Note that a
(i,j)
τ matches (3.2) for τ = τ̄ .
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Given a subtree τ ∈ T (τ̄), let us consider the part of the Hamiltonian (3.1) that contains all
interactions between sites within L(τ). Following the discussion above, the (vectorized) Hamiltonian
for τ takes the form

(3.5) hτ ∶= ∑
i<j

i,j∈L(τ)

β(i, j) ⋅ a(i,j)τ ∈ Cn2

τ ,

with nτ = ∏i∈L(τ) ni. Note that the definition (3.4) of a
(i,j)
τ ensures that the single-site operatorsAi

and Aj continue to act on the original sites i and j, respectively. For τ̄ = τ , all leaves are included
and hτ̄ = h. For a leaf τ = ℓ ∈ {1, . . . , d}, we set hℓ = 0.

The following lemma is a simple but crucial observation that will allow us to construct TTNO
representations recursively. To simplify the notation, we introduce the compact notation eτ ∶=
⊗ℓ∈L(τ) eℓ. for an arbitrary tree τ .

Lemma 3.1. For τ = (τ1, τ2) ∈ T (τ̄), the vector hτ defined in (3.5) satisfies

(3.6) hτ = eτ2 ⊗ hτ1 + hτ2 ⊗ eτ1 + ∑
i∈L(τ1)

j∈L(τ2)

β(i, j) ⋅ a(j)τ2
⊗ a(i)τ1

,

with a
(i)
τ1 ,a

(j)
τ2 defined as in (3.3).

Proof. The disjoint union L(τ) = L(τ1) ∪̇L(τ2) induces the partition

(3.7) L(τ) ×L(τ) = L(τ1) ×L(τ1) ∪L(τ2) ×L(τ2) ∪L(τ1) ×L(τ2) ∪L(τ2) ×L(τ1).

We now consider the corresponding division of the sum (3.5) defining hτ . The first subset only

considers terms in the sum for which (i, j) ∈ L(τ1)×L(τ1). Using that (3.3) implies a
(i,j)
τ = eτ2⊗a

(i,j)
τ1

for i, j ∈ L(τ1), we obtain for this part of the Hamiltonian that

∑
i<j

i,j∈L(τ1)

β(i, j) ⋅ a(i,j)τ = eτ2 ⊗ ∑
i<j

i,j∈L(τ1)

β(i, j) ⋅ a(i,j)τ1
= eτ2 ⊗ hτ1 ,

matching the first term in (3.6). Similarly, the second subset L(τ2)×L(τ2) in (3.7) yields the second
term hτ2 ⊗ eτ1 in (3.6). The third subset in (3.7) directly corresponds to the third term in (3.6),
while the fourth subset does not contribute any terms because no index pair (i, j) ∈ L(τ2) ×L(τ1)
satisfies the condition i < j.

For theoretical purposes, the following generalization of Lemma 3.1 is of interest, which splits
the tree into a subtree (or leaf) τ and its complement τ̄ ∖ τ , which is the tree that is obtained
by removing the subtree τ from τ̄ . Compared to the setting of Lemma 3.1, this situation is more
complicated because the leaves of τ are not necessarily smaller than the leaves of τ̄ . To conveniently
account for this, we introduce the symmetrized interaction matrix

(3.8) βs = β + β
⊺,

that is, βs(i, j) = β(i, j) for i < j, βs(i, j) = β(j, i) for i > j, and βs(i, i) = 0.
Lemma 3.2. For τ ∈ T (τ̄) ∪L(τ̄), consider a permutation of the modes that puts the leaves of

τ first:
ℓ1, ℓ1 + 1, . . . , ℓ2 − 1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

L(τ)

,1,2, . . . , ℓ1 − 1, ℓ2, ℓ2 + 1, . . . , d´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
L(τ̄∖τ)

.
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Let Ĥτ,τ̄∖τ denote the corresponding permutation of the matrix representation Ĥ from (3.1). Then

the vectorization of Ĥτ,τ̄∖τ takes the form

(3.9) hτ,τ̄∖τ = eτ̄∖τ ⊗hτ + hτ̄∖τ ⊗ eτ + ∑
i∈L(τ)

j∈L(τ̄∖τ)

βs(i, j) ⋅ a(j)τ̄∖τ ⊗ a(i)τ ∈ C
n
2

τ ⋅n
2

τ̄∖τ ,

where hτ̄∖τ ∈ Cn2

τ̄∖τ is the vectorization of the Hamiltonian that only considers interactions between

sites contained in L(τ̄ ∖ τ) and nτ̄∖τ =∏j∈L(τ̄∖τ) n
2
j . The vectors a

(i)
τ , a

(j)
τ̄∖τ are defined as in (3.3).

Proof. The proof follows along the lines of Lemma 3.1 using, in analogy to (3.7), the partition
induced by the disjoint union L(τ) = L(τ) ∪̇L(τ̄ ∖ τ):
{1, . . . , d} × {1, . . . , d} = L(τ) ×L(τ) ∪L(τ̄ ∖ τ) ×L(τ̄ ∖ τ) ∪L(τ) ×L(τ̄ ∖ τ) ∪L(τ̄ ∖ τ) ×L(τ).

As explained in the proof of Lemma 3.1, the first two terms of this partition match the first two
terms of (3.9). Using that β(i, j) = 0 for i ≥ j, the last two terms give rise to

∑
i∈L(τ),j∈L(τ̄∖τ),i<j

β(i, j) ⋅ a(j)τ̄∖τ ⊗ a(i)τ + ∑
i∈L(τ̄∖τ),j∈L(τ),i<j

β(i, j) ⋅ a(i)τ̄∖τ ⊗ a(j)τ

= ∑
i∈L(τ),j∈L(τ̄∖τ),i<j

β(i, j) ⋅ a(j)τ̄∖τ ⊗ a(i)τ + ∑
i∈L(τ),j∈L(τ̄∖τ),i>j

β(j, i) ⋅ a(j)τ̄∖τ ⊗ a(i)τ

= ∑
i∈L(τ),j∈L(τ̄∖τ)

βs(i, j) ⋅ a(j)τ̄∖τ ⊗ a(i)τ .

A consequence of Lemma 3.2, Theorem 3.3 below is one of the main results of this work.
It establishes a TTNO (representation) rank that grows linearly with d, instead of the quadratic
growth attained by the naive construction mentioned in the beginning of this section. For a balanced
binary tree τ̄ , the TTNO rank is bounded by ⌊d/2⌋ + 2.

Theorem 3.3. Let Ĥ be the linear operator defined by (3.1) and let τ̄ be a binary dimension
tree. Then Ĥ admits a TTNO representation H such that the ranks rτ satisfy rℓ = 2 at every leaf
ℓ ∈ L(τ̄) and
(3.10) rτ = 2 + rank(βs(τ, τ̄ ∖ τ)) ≤ 2 + dτ , ∀τ ∈ T (τ̄) ∖ τ̄ ,
where dτ denotes the cardinality of L(τ) and βs(τ, τ̄ ∖ τ) is the dτ × (d − dτ) submatrix obtained
by selecting the rows in L(τ) and the columns in {1, . . . , d} ∖L(τ) of the symmetrized interaction
matrix βs from (3.8).

Proof. By Definition 2.4 and Theorem 2.3, H ∈ Cn2

1
×⋯×n2

d admits a TTNO with the rank rτ
given by the rank of the matricization MatL(τ)(H), which maps the modes in L(τ) to row indices
and the other modes to column indices. By Lemma 3.2, we have that

(3.11) MatL(τ)(H) = hτe
⊺

τ̄∖τ + eτh
⊺

τ̄∖τ + ∑
i∈L(τ)

j∈L(τ̄∖τ)

βs(i, j) ⋅ a(i)τ (a(j)τ̄∖τ)
⊺

.

For a leaf τ = ℓ, this simplifies to aℓe
⊺

τ̄∖ℓ+eℓh
⊺
τ̄∖τ +∑j/=ℓ βs(ℓ, j) ⋅aℓ(a(j)τ̄∖ℓ

)⊺, which clearly has rank at
most 2, thus establishing rℓ = 2. For a subtree τ ∈ T (τ̄) we can rewrite the third term in (3.11) as a

matrix product of three matrices, the matrix containing the columns a
(i)
τ , the matrix βs(τ, τ̄ ∖ τ),

and the matrix containing the rows (a(j)τ̄∖τ)
⊺

. As the rank of this matrix product is bounded by the
rank of βs(τ, τ̄ ∖ τ), this establishes (3.10).
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We conclude this section by providing the explicit construction of basis matrices and transfer
tensor for a TTNO that achieves the upper bound rτ = 2 + dτ of Theorem 3.3 for an unstructured
interaction matrix β. For this purpose, let us first consider τ = (τ1, τ2) ∈ T (τ̄) ∖ {τ̄}, where neither
τ1 nor τ2 is a leaf. Enumerating the leaves L(τ1) = {ℓ1, . . . , ℓ2 − 1} and L(τ2) = {ℓ2, . . . , ℓ3 − 1}, we
introduce

Uτ1 ∶= [eτ1 hτ1 a
(ℓ1)
τ1 ⋯ a

(ℓ2−1)
τ1

] ∈ Cn
2

τ1
×(2+dτ1

),

Uτ2 ∶= [eτ2 hτ2 a
(ℓ2)
τ2 ⋯ a

(ℓ3−1)
τ2

] ∈ Cn2

τ2
×(2+dτ2

).

It follows from the result (3.6) of Lemma 3.1 that each column in the corresponding matrix Uτ for
τ = (τ1, τ2) can be obtained as a linear combination of Kronecker products between columns of Uτ2

and columns of Uτ1 . In other words, there exists a transfer tensor Cτ ∈ C(2+dτ1
)×(2+dτ2

)×(2+dτ ) such
that

Uτ = [eτ hτ a
(ℓ1)
τ ⋯ a

(ℓ3−1)
τ ] = (Uτ2 ⊗Uτ1)Mat1,2(Cτ ) ∈ Cn2

τ×(2+dτ ),

where we recall that nτ = nτ1nτ2 . To determine the entries of Cτ , it is helpful to reshape each

column of Uτ as an nτ1 × nτ2 matrix. Using U
(k)
τ to denote the matrix corresponding to the kth

column, it follows from basic properties of the Kronecker product that

U(k)τ =Uτ1Cτ (∶, ∶, k)U⊺

τ2
,

where Cτ (∶, ∶, k) ∈ C(2+dτ1
)×(2+dτ2

) is the kth frontal slice of Cτ . For example, the first column eτ
corresponds to U

(1)
τ = eτ1e

⊺
τ2

and thus the first slice of Cτ is zero except for the entry 1 at position
(1,1). Continuing in this manner, we obtain that the first two frontal slices of Cτ are

⎡⎢⎢⎢⎢⎢⎣

1 0
0 0

0

0 0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0 1
1 0

0

0 β(τ1, τ2)
⎤⎥⎥⎥⎥⎥⎦
,(3.12)

where β(τ1, τ2) is the submatrix of β obtained by selecting the rows in L(τ1) and the columns in
L(τ2). The remaining dτ = dτ1 + dτ2 frontal slices of Cτ are given by

⎡⎢⎢⎢⎢⎢⎣
0 0
0 0

0

0 u3u
⊺

1

⎤⎥⎥⎥⎥⎥⎦
, . . . ,

⎡⎢⎢⎢⎢⎢⎣
0 0
0 0

0

0 u2+dτ1
u⊺
1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0 0
0 0

0

0 u1u
⊺

3

⎤⎥⎥⎥⎥⎥⎦
, . . . ,

⎡⎢⎢⎢⎢⎢⎣
0 0
0 0

0

0 u1u
⊺

2+dτ2

⎤⎥⎥⎥⎥⎥⎦
,(3.13)

where ui is the vector (of appropriate length) with 1 at entry i and zeros everywhere else.
When τ1 and/or τ2 are leaves, then one or both of the first two terms in (3.6) vanish, i.e.,

hℓ = 0. Consequently, the basis matrices do not need to account for these terms and take the form

(3.14) Uℓ ∶= [eℓ vec(Aℓ)] ∈ Cn2

ℓ×2.

Transfer tensors involving leaves need to be adjusted accordingly: It suffices to take into account
the first slice of (3.12) and a modified version of the second where one or both of the ones in the
upper-right block are set to zero. At the root tree τ̄ , it suffices to form hτ̄ , which is equal to h by
construction. Hence, the transfer tensor Cτ̄ becomes a matrix equal to the second matrix in (3.12),
while setting the upper left block in the second slice to zero.

Our construction satisfies rℓ = 2 for each leaf ℓ because of (3.14) and rτ = dτ + 2 for every
subtree τ /= τ̄ because of the size of the transfer tensor Cτ .
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3.2. General trees. The results of Section 3.1 extend to general trees, which allow for an
arbitrary number of children at each node. In the following, we briefly sketch the construction of
the TTNO in this general case. While the basis matrices are defined in the same way as in (3.14),
the construction of the transfer tensors becomes slightly more technical. Considering a subtree
τ = (τ1, . . . , τm), we partition

β(τ, τ) =
⎡⎢⎢⎢⎢⎢⎣
β(τ1, τ1) ⋯ β(τ1, τm)

⋱ ⋮
β(τm, τm)

⎤⎥⎥⎥⎥⎥⎦
.

The corresponding partition of the sum (3.5) is now given by

(3.15) hτ =
m

∑
i=1

eτm ⊗⋯⊗ eτi+1 ⊗ hτi ⊗ eτi−1 ⊗⋯⊗ eτ1 +
m

∑
i<j

∑
k∈L(τi)

ℓ∈L(τj)

β(k, ℓ) ⋅ a(ℓ)τj
⊗ a(k)τi

.

Enumerating L(τi) = {ℓi, ℓi + 1, . . . , ℓi+1 − 1}, we proceed as before and set

Uτi = [eτi hτi a(ℓi) ⋯ a(ℓi+1−1)] , i = 1, . . . ,m.

In analogy to the case of a binary tree, the decomposition (3.15) implies that there exists a transfer
tensor Cτ of order m + 1 such that

Uτ = [eτ hτ a(ℓ1) ⋯ a(ℓm+1−1)] = (Uτm ⊗⋯⊗Uτ1)Mat1∶m(CA
τ ).

In summary, the discretized Hamiltonian (3.1) also admits a TTNO representation for a general
tree τ̄ , with the ranks rℓ = 2 for every leaf ℓ and rτ = 2 + dτ for every subtree τ ≠ τ̄ . Allowing for
more children can be used to decrease dτ and thus the ranks, at the expense of increasing the order
of the transfer tensors.

4. Compressed TTNO via HSS decomposition. In this section, we will briefly intro-
duce HSS matrices and establish their connection to TTNOs of Hamiltonians describing pairwise
interactions.

4.1. Hierarchical Semi-Separable (HSS) matrices. We will use the concept of Hierarchi-
cally Semi-Separable (HSS) matrices, as defined in [36], to represent the d × d interaction matrix
β. For this purpose, a binary dimension tree τ̄ (see Definition 2.1) is used to to recursively block-
partition a d × d matrix β. At the root τ̄ = (τ1, τ2), this corresponds to partitioning

β = β(τ̄ , τ̄) = [β(τ1, τ1) β(τ1, τ2)
β(τ2, τ2)] .

This partitioning is recursively repeated for β(τ1, τ1) and β(τ2, τ2) using the subtrees τ1 and τ2,
respectively. Figure 2 provides a graphical representation for different dimension trees. Note that
HSS matrices are commonly used with (nearly) balanced binary trees; the degenerate tree shown
in the right of Figure 2 is closely related to the notion of quasi-separable matrices; see also [19] for
a discussion.

For β to be an HSS matrix it is assumed that the off-diagonal block β(τ1, τ2) for every subtree
τ = (τ1, τ2) admits a (low-rank) factorization

(4.1) β(τ1, τ2) = V τ1Sτ1,τ2V
∗

τ2
, V τ1 ∈ C

dτ1
×kτ1 , Sτ1,τ2 ∈ C

kτ1
×kτ2 , V τ2 ∈ C

dτ2
×kτ1 ,
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Fig. 2. Different recursive block-partitions of an 8 × 8 interaction matrix β. Left: Recursive block-partition
corresponding to a balanced binary tree. Right: Recursive block-partition corresponding to a degenerate tree.

for some (small) integers kτ1 , kτ2 . Recall that dτ1 , dτ2 denote the cardinality of L(τ1), L(τ2).
Additionally, the HSS decomposition requires that the basis matrices V τi are nested across all
levels. For each tree τ = (τ1, τ2), this structure is characterized by the existence of a translation
operator Rτ ∈ C(kτ1

+kτ2
)×kτ such that

V τ = (V τ1 0
0 V τ2

)Rτ ∈ Cdτ×kτ .(4.2)

The HSS rank is the largest value of kτ across all levels. To represent an HSS matrix β it suffices
to store the middle factor Sτ1,τ2 from (4.1) for all siblings (τ1, τ2) and the translation matrices Rτ ,
assuming that basis matrices on the leaf level are normalized to Vℓ = 1.

Remark 4.1. It is important to note that (4.1) enforces identical left and right factors, which
is not required in the usual definition of HSS matrices. However, it is not difficult to see that the
above definition of an HSS matrix β coincides with the usual definition applied to the symmetrized
interaction matrix βs = β + β

⊺. In particular, the results from [36] imply that the smallest kτ for
which β admits an HSS decomposition in the sense of (4.1)–(4.2) is given by

kτ = rank (βs(τ, τ̄ ∖ τ)), ∀τ ∈ T (τ̄).
The submatrix βs(τ, τ̄ ∖ τ) is commonly referred to as an HSS block row of βs.

4.2. TTNO from HSS. In the following, we derive a TTNO for the Hamiltonian from an
HSS decomposition of the interaction matrix β.

Corollary 4.2. Let Ĥ be the linear operator defined by (3.1), and let τ̄ be a binary dimension
tree. If β admits an HSS decomposition (4.1)–(4.2) then there exists a TTNO representation H of
Ĥ with representation ranks rτ = 2+kτ for every subtree τ ∈ T (τ̄) and rℓ = 2 for every leaf ℓ ∈ L(τ̄).
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Proof. This result is a direct consequence of Theorem 3.3 combined with Remark 4.1.

In the rest of this section, we provide an explicit construction that realizes the representation
ranks established by Corollary 4.2 from an HSS decomposition (4.1)–(4.2) of β. For this purpose,
let τ = (τ1, τ2) ∈ T (τ̄)∖ {τ̄} such that neither τ1 nor τ2 is a leaf. Recalling the result of Lemma 3.1,
the vectorization of the part of the Hamiltonian Ĥ corresponding to τ takes the form

hτ = eτ2 ⊗ hτ1 + hτ2 ⊗ eτ1 + ∑
i∈L(τ1)

j∈L(τ2)

β(i, j) ⋅ a(j)τ2
⊗ a(i)τ1

.

Introducing the short-hand notation

aτ1 ∶= [a(ℓ1)τ1
⋯ a(ℓ2−1)τ1

] ∈ Cn2

τ1
×dτ1 , aτ2 ∶= [a(ℓ2)τ2

⋯ a(ℓ3−1)τ2
] ∈ Cn2

τ2
×dτ2

allows us to rewrite the third summand as

∑
i∈L(τ1)

j∈L(τ2)

β(i, j) ⋅ a(j)τ2
⊗ a(i)τ1

= (aτ2 ⊗ aτ1)vec(β(τ1, τ2)).(4.3)

The HSS structure of the interaction matrix β induces a low-rank structure on the off-diagonal
block β(τ1, τ2) =Vτ1Sτ1,τ2V

∗

τ2
; see (4.1). Hence, we obtain that (4.3) can be rewritten as

(4.4) (aτ2 ⊗ aτ1)vec(β(τ1, τ2)) = (aτ2Vτ2 ⊗ aτ1Vτ1)vec(Sτ1,τ2).
In turn, it suffices to consider the compressed bases

ãτ1 ∶= aτ1Vτ1 ∈ C
n2

τ1
×kτ1 , ãτ2 ∶= aτ2Vτ2 ∈ C

n2

τ2
×kτ2 .

We proceed as in the construction of Section 3.1 for the unstructured case, but using compressed
bases. For this purpose, we introduce

Ũτ1 ∶= [eτ1 hτ1 ãτ1] ∈ Cn2

τ1
×(2+kτ1

)
, Ũτ2 ∶= [eτ2 hτ2 ãτ2] ∈ Cn2

τ2
×(2+kτ2

)
.

We now aim at determining the tensor C̃τ ∈ C(2+kτ1
)×(2+kτ2

)×(2+kτ ) that transfers these bases to the
corresponding basis at the parent node:

Ũτ ∶= [eτ hτ ãτ ] ∈ Cn2

τ×(2+kτ ), ãτ ∶= aτVτ .

Similarly to (3.12), the first two frontal slices of C̃τ are determined using (4.4):

⎡⎢⎢⎢⎢⎢⎣
1 0
0 0

0

0 0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0 1
1 0

0

0 Sτ1,τ2

⎤⎥⎥⎥⎥⎥⎦
.

To determine the remaining frontal slices of C̃τ , we extend (3.13) by first defining the matrix

M̃ = [vec(u3u
⊺

1), . . . ,vec(u2+kτ1
u⊺1),vec(u1u

⊺

3), . . . ,vec(u1u
⊺

2+kτ2
)] ∈ Ckτ1

kτ2
×(kτ1

+kτ2
),

where ui again denotes the ith unit vector (of appropriate length), with 1 at entry i and zeros
everywhere else. The definition of this matrix ensures that

(4.5) [eτ2 ⊗ ãτ1 ∣ ãτ2 ⊗ eτ1] = (Ũτ2 ⊗ Ũτ1)M̃ ∈ Cn2

τ×(kτ1
+kτ2

).
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Together with the nestedness (4.2) of the HSS basis matrices, this gives

ãτ = aτVτ = [eτ2 ⊗ aτ1 ∣ aτ2 ⊗ eτ1] [ Vτ1 0
0 Vτ2

]Rτ

= [eτ2 ⊗ ãτ1 ∣ ãτ2 ⊗ eτ1]Rτ = (Ũτ2 ⊗ Ũτ1)M̃Rτ ∈ Cn2

τ×kτ .

Hence, instead of (3.13), the remaining slices of C̃τ are now set to

⎡⎢⎢⎢⎢⎢⎢⎣

0 0
0 0

0

0 (M̃Rτ)i

⎤⎥⎥⎥⎥⎥⎥⎦
i = 1, . . . , kτ ,

where (M̃Rτ)i denotes the matricization of the ith column . The transfer tensors at the leaves and
at the root tree τ̄ are adjusted accordingly. This concludes our construction of the TTNO from
the HSS decomposition of β by choosing the basis matrices Uℓ defined in (3.14) and the transfer
tensors defined above. The ranks rτ of this construction match those of Corollary 4.2.

Remark 4.3. The construction above extends to trees with arbitrarily many children at each
node by employing a suitable generalization of the HSS decomposition, which permits the use of
more than two subtrees on each level. However, we are not aware of algorithms or even software
that cover such a general setting.

4.3. Approximation of β by an HSS matrix. In simple cases, β is known to admit an
exact HSS decomposition with small ranks. For example, in the case of nearest-neighbor interaction,
the only nonzero entries of β are β(i, i + 1) = 1 for i = 1, . . . , d − 1. In turn, the rank of the HSS
block row βs(τ, τ̄ ∖ τ) is bounded by two because this matrix has at most two nonzero entries. By
Corollary 4.2, this implies that the TTNO rank is bounded by four, which recovers known results
from the literature; see, e.g., [31, Example 3.8].

For long-rank interactions, β usually does not admit an HSS decomposition with small ranks
but it can often be well approximated by such a matrix. This approximation is closely related to
the low-rank approximation of the HSS block rows βs(τ, τ̄ ∖τ) from Remark 4.1. Given a tolerance
ǫ > 0, we choose k such that

(4.6) σk+1(βs(τ, τ̄ ∖ τ)) ≤ ǫ∥βs(τ, τ̄ ∖ τ)∥2,
where σk+1(⋅) denotes the (k + 1)th largest singular value of a matrix. This property is known to
hold with k = O(log(d/ǫ)) for long-range interactions commonly found in the literature, including
Coulomb interaction β(i, j) = 1/∣i − j∣; see [3, 21].

When (4.6) is satisfied, one can determine an approximation of β having HSS rank k and
approximation error proportional to ǫ. This follows from applying [35, Corollary 4.3] to the sym-
metrized interaction matrix βs. The result is constructive; the matrix βk can be constructed by
applying the SVD-based procedures from [35, 24] to βs.

Lemma 4.4. Let β ∈ Cd×d be a strictly upper triangular interaction matrix such that (4.6) is
satisfied for a binary dimension tree τ̄ and some ǫ > 0. Then there exists a strictly upper triangular
matrix βk ∈ C

d×d in HSS decomposition (4.1)–(4.2) of HSS rank k such that

∥β −βk∥F ≤ Ch(τ̄)√k∥β∥F ⋅ ǫ .
is satisfied for some constant C, where h(τ̄) denotes the height of τ̄ .
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Using the approximation βk from Lemma 4.4, a TTNO decomposition of the corresponding
Hamiltonian Ĥk can be cheaply obtained using the procedure described in Section 4.2. The following
result shows that Ĥk is O(ǫ)-close to Ĥ in the spectral norm.

Theorem 4.5. Under the setting and assumptions of Lemma 4.4, let Ĥ be the linear operator
defined by (3.1). Then

Ĥk =
d

∑
i<j

βk(i, j) ⋅A(i)A(j) ∈ C(n1⋯nd)×(n1⋯nd),

has TTNO rank 2 + k and satisfies the error bound

∥Ĥ − Ĥk,ǫ∥
2
≤ Ch(τ̄)√k∥β∥F( d

∑
i<j

∥Ai∥22∥Aj∥22)1/2 ⋅ ǫ.
Proof. From the triangular inequality and the Cauchy-Schwartz inequality, it follows that

∥Ĥ − Ĥk,ǫ∥
2
= ∥ d

∑
i<j

(β(i, j) − βk(i, j))A(i)A(j)∥
2

≤
d

∑
i<j

∣β(i, j) − βk(i, j)∣ ⋅ ∥A(i)∥2∥A(j)∥2
=

d

∑
i<j

∣β(i, j) − βk(i, j)∣ ⋅ ∥Ai∥2∥Aj∥2 ≤ ∥β −βk∥F (
d

∑
i<j

∥Ai∥22∥Aj∥22)1/2.
The proof is concluded by applying Lemma 4.4 and Corollary 4.2.

5. Numerical experiments. In this section, we report the results of numerical experiments
applying our described construction of TTNOs for diverse quantum spin systems. These experi-
ments were conducted using MATLAB 2018b software along with the MATLAB tensor toolboxes [2,
34] and the hm-toolbox [24].

5.1. Closed quantum spin system. In the first example, we consider the operator associated
with the Schrödinger equation with long-range unitary dynamics for spin- 1

2
particles:

H = Ω
d

∑
k=1

σ(k)x +∆
d

∑
k=1

n(k) + ν∑
i<j

1

(j − i)αn(i)n(j).(5.1)

Here, σ
(k)
x denotes the first 2×2 Pauli matrix acting on the kth site, while n(i) and n(j) denote the

projectors onto the ith and jth excited states, respectively. See [30] for a more detailed description.
The parameters Ω, ∆, and ν are model-related, while the parameter α describes various interaction
regimes among the particles:

● α = 0 encodes an all-to-all interaction;
● α =∞ encodes nearest-neighbor interactions;
● 0 < α <∞ encodes long-range interactions.

In quantum physics related settings, values of interest are given by α = 1 (Coulomb interaction),
α = 3 (dipole-dipole interaction) or α = 6 (van der Waals interaction) [28].

In Figure 3, we observe that the relative error is independent of the total number of particles
and is proportional to the chosen HSS tolerance parameter ε = 10−12, while the TTNO rank satisfies
the theoretical bound, with an additional rank arising from the Laplacian-like part of the operator.
The reference operator is constructed using the unstructured construction from section 3.1. The
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relationship between the relative error in Frobenius norm and the HSS tolerance parameter ε is
further investigated in Figure 4, where we observe that the error grows linearly with respect to
the HSS tolerance. Finally, we vary the parameter α and evaluate the TTNO rank across different
interaction regimes. In Figure 5, we observe that an increase in α results in a decrease in the
representation rank.
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Scaled error in Frobenius norm
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Representation rank of the TTNO

hssrank + 2 + 1

Fig. 3. Long-range unitary Hamiltonian with given parameters: Ω = 3, ∆ = −2, ν = 2, α = 1 and HSS tolerance
10−12. Left: Relative error of the TTNO vs the number of particles. Right: Representation rank of the TTNO (solid
line) and the excepted ranks (dashed line) versus the number of particles.
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Fig. 4. Long-range unitary Hamiltonian with given parameters: Ω = 3, ∆ = −2, ν = 2, α = 1 and d = 256.
Left: Relative error of the TTNO vs the HSS tolerance. Right: Representation rank of the TTNO versus the HSS
tolerance.
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Fig. 5. Long-range unitary Hamiltonian with given parameters: Ω = 3, ∆ = −2, ν = 2 and d = 256. Left: Repre-
sentation rank of the TTNO versus different values of α computed with HSS tolerance 10−4. Right: Representation
rank of the TTNO versus different values of α computed with HSS tolerance 10−12.

5.2. Synthetic example: Hamiltonian with interactions of large HSS rank. In the
next example, we consider the Hamiltonian given by

H = Ω
d

∑
k=1

σ(k)x +∆
d

∑
k=1

n(k) +∑
i<j

1

1 − cos(j − i) ⋅ n(i)n(j)

We observe that the resulting interaction matrix admits a maximal HSS rank of d
2
. Thus, the

expected TTNO representation rank is d
2
+ 3, as numerically confirmed in Figure 6. This synthetic

example illustrates that it is possible, but not necessarily advisable, to use TTNO representations
via HSS decompositions even when a high HSS rank is expected a priori.

5.3. Open quantum spin system. In the next example, we consider a one-dimensional
quantum systems consisting of d distinguishable spin- 1

2
particles following a Markovian open quan-

tum dynamics governed by the operator

L = Ω
d

∑
k=1

[−iσx ⊗ I + iI⊗ σ⊺x](k) +∆
d

∑
k=1

[−in⊗ I + iI⊗ n⊺](k)(5.2)

+ γ
d

∑
k=1

[J ⊗ (J∗)⊺ − 1

2
J∗J ⊗ I −

1

2
I⊗ (J∗J)⊺](k)

+
ν

2cα
∑
i<j

−i
(j − i)α [n⊗ I](i) [n⊗ I](j) + ν

2cα
∑
i<j

i

(j − i)α [I⊗ n⊺](i) [I⊗ n⊺](j) ,
where

J = (0 0
1 0
) , n = (1 0

0 0
) , cα =

d

∑
k=1

1

kα
.
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Fig. 6. Long-range unitary Hamiltonian (synthetic example) with given parameters: Ω = 3 and ∆ = −2. Left:
Relative error of the TTNO vs the number of particles. Right: Representation rank of the TTNO (solid line) and
d/2 + 3 (dashed line) vs the number of particles.

The parameters Ω,∆, γ, ν,α are model related. For a detailed description, we refer to [30] and the
references therein.

We once again observe that the TTNO approximation can be achieved up to the selected HSS
tolerance, independently of the number of particles, as seen in Figure 7. Furthermore, a parameter
study for α is illustrated in Figure 8, where it can be observed that the operator describing the Mar-
kovian open quantum system dynamics also admits a TTNO representation of low representation
rank. The linear scaling influence of the HSS tolerance is provided in Figure 9.

5.4. Comparison among tree tensor network formats. To conclude, we would like to
remind that the proposed methodology offers the advantage of inner flexibility, enabling the explo-
ration of various tree tensor network formats within a single framework.

In Figure 10, we consider the operator (5.1) and compare the ranks and memory usage of
the decompositions for different numbers of particles obtained using balanced binary trees against
those using unbalanced binary trees, which represent well-known tensor formats like tree tensor
trains/matrix product states – widely accepted standards in physics, including but not limited to
quantum dynamics. It is observed that the representation rank produced by the unbalanced binary
tree format, i.e. TT/MPS, is smaller compared to the balanced binary tree. A similar result is
obtained for the open quantum system operator (5.2), as illustrated in Figure 11.

However, it is essential to note that while the representation rank provides valuable information,
it should not be the sole reference measure for assessing TTNO compression quality. The overall
storage complexity should also be taken into account. These examples showcase that the balanced
binary tree format requires less memory or at most an equal amount compared to the unbalanced
binary tree format (TT/MPS) as the number of particles increases.

Furthermore, as originally suggested in [4] for a nearest-neighbor spin system, it’s important to
note that the representation rank of the state in the TTN format tends to be significantly higher
for unbalanced binary trees compared to balanced binary trees. Efficient quantum computations
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Fig. 7. Open long-range Hamiltonian with given parameters: Ω = 0.4, ∆ = −2, γ = 1, ν = 2, α = 1 and HSS
tolerance 10−12. Left: Relative error of the TTNO vs the number of particles. Right: Representation rank of the
TTNO (solid line) and the excepted ranks (dashed line) versus the number of particles.
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Fig. 8. Open long-range Hamiltonian with given parameters: Ω = 0.4, ∆ = −2, γ = 1, ν = 2, α = 1 and d = 256.
Left: Representation rank of the TTNO versus different values of α computed with HSS tolerance 10−4. Right:
Representation rank of the TTNO versus different values of α computed with HSS tolerance 10−12.

require careful consideration of both the representation rank of the TTNO and that of the state.
This observation strongly indicates that balanced binary trees represent a promising approach for
simulations involving long-range interacting quantum systems.

Acknowledgements:. We thank Leonardo Robol for his help with the hm-toolbox and Chris-
tian Lubich for helpful discussions.
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Fig. 9. Open long-range Hamiltonian with given parameters: Ω = 0.4, ∆ = −2, γ = 1, ν = 2, α = 1 and d = 256.
Left: Relative error of the TTNO vs the HSS tolerance. Right: Representation rank of the TTNO versus the HSS
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