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Abstract. In this article, an iterated function system (IFS) is considered on the real
projective line RP1 so that the attractor is a Cantor-like set. Hausdorff dimension of this
attractor is estimated. The existence of a probability measure associated with this IFS
on RP1 is also demonstrated. It is shown that the n-th quantization error of order r for
the push-forward measure is a constant multiple of the n-th quantization error of order r
of the original measure. Finally, an upper bound for the n-th quantization error of order
2 for this measure is provided.
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1. introduction

Given a probability measure on a measurable space, the quantization process involves
finding a discrete set of points in the space, each point associated with a probability, such
that the resulting discrete probability measure is the close approximation of the original
one. Quantization error is the difference between the continuous probability measure and
its discretized representation. Graf-Luschgy [7], studied the n-th quantization error for
an invariant probability measure. Also, Roychowdhury [9], estimated the quantization di-
mension for the self-similar measure using the quantization error of this measure. Most of
the authors studied the quantization theory in Euclidean spaces [6, 10]. Barany et al. [2]
studied the Furstenberg measure, which plays an important role in information theory.
The authors used the Lyapunov exponents to determine the upper bound for the Haus-
dorff dimension of the Furstenberg measure on the real projective space. Also, Jurga et
al. [4], studied the dimension of the attractor of an iterated function system induced by the
projective action on the real projective line. In particular, they generalized a recent result
of Solomyak and Takahashi [11] by showing that the Hausdorff dimension of the attractor
is given by the minimum of 1 and the critical exponent.

The objective of this article is to explore an Iterated Function System (IFS) operating on
the real projective line and investigate the quantization theory concerning the probability
measure associated with this IFS. To achieve this, we consider a RPIFS on the real projec-
tive line RP1 so that it has an attractor. Then, employing methodologies outlined in prior
works such as [4,11], we estimate the Hausdorff dimension of this attractor. Also, we prove
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the existence of a probability measure associated with this RPIFS on RP1. Furthermore,
we demonstrate that the quantization error of order r for the push-forward measure is a
constant multiple of the quantization error of order r of the original measure. We end
the chapter by providing an upper bound of n-th quantization error of order 2 for this
probability measure.

2. Preliminaries

In this section, we give basic definitions of the real projective line, generating cone, and
projective metric and introduce some notations related to this article.

2.1. Real projective line. Recall the definition of the real projective line, which is de-
noted by RP1, is the quotient of the set R2 \{(0, 0)} of non-zero vectors by the equivalence
relation “x ∼ y if and only if x = cy for some c ∈ R∗ (non-zero reals)”. The real projective
line may be identified with the line R extended by a point at infinity. More precisely, the
line R may be identified with the subset of RP1 given by

RP∗ = {[x : 1] : x ∈ R} .

This subset covers all points of RP1 except one, which is the point at infinity, ∞ := [1 : 0].
Thus

RP1 = RP∗ ∪ {∞}.
For [x1 : 1], [x2 : 1] ∈ RP∗, define

[x1 : 1]⊕ [x2 : 1] = [x1 + x2 : 1]

[x1 : 1] ⋆ [x2 : 1] = [x1x2 : 1]

and the scalar multiplication of an element [x : 1] ∈ RP∗ with c ∈ R is defined by c⊙ [x :
1] = [cx : 1]. The difference between two elements [x1 : 1], [x2 : 1] ∈ RP∗ is defined by

[x1 : 1]⊖ [x2 : 1] = [x1 − x2 : 1].

Definition 2.1.1 (Projective metric on RP∗). For [x1 : 1], [x2 : 1] ∈ RP∗, define a metric
dP on RP∗ as follows:

(1) dP
(
[x1 : 1], [x2 : 1]

)
:= |x1 − x2|.

Definition 2.1.2 (Generating cone). Let [x], [y] ∈ RP∗. Then the point [x], [y] generates
two line segments in RP1. We consider a segment that does not intersect the point at
infinity [1 : 0], and we denote it by Cxy, and call it cone generated by [x], [y] (see Figure
1). A cone C is said to be multi-cone if C is the disjoint union of finite numbers of
generating cones.

Definition 2.1.3 (Real projective iterated function system (RPIFS) on RP1). Given a
finite set P ⊂ GL(2,R), the associated RPIFS is denoted by WP =

{
RP1;wA : A ∈ P

}
,

where the projective transformations wA : RP1 → RP1 are given by wA[x] = [Ax].
2



Figure 1. Cone generated by the points [x], [y] in RP∗.

Definition 2.1.4 (Oriented RPIFS). The RPIFS WP =
{
RP1;wA : A ∈ P

}
is said to

be orientation preserving if P ⊂ GL+(2,R) = {A ∈ GL(2,R) : det(A) > 0} or P ⊂
GL−(2,R) = {A ∈ GL(2,R) : det(A) < 0}. We denotes the corresponding RPIFS by W +

P
or W −

P if P ⊂ GL+(2,R) or P ⊂ GL−(2,R) respectively.

For simplicity, we assume that P ⊂ GL+(2,R). Then the action of GL+(2,R) factors
through the SL(2,R) action, via A → A√

det(A)
. Hence it is enough to work on SL(2,R).

In this chapter, we assume that P ⊂ SL(2,R) and we use the same notation W +
P for this

case. We denote Pn, as all the products of n matrices from P . Then P∗ :=
⋃∞

n=1 Pn form
a semi-group generated by P . Given a matrix A = (aij) ∈ P , define

∥A∥ = max
ij

{|aij|}.

Definition 2.1.5. Let P ⊂ SL(2,R) be finite. Then P is called semi-discrete if Id /∈ P∗,
where the closure is taken over SL(2,R).

Let P = {Ai : i ∈ I} ⊂ SL(2,R), where I = {1, 2, . . . ,m}. Write Ai = Ai1Ai2 · · ·Ain

for i = i1i2 · · · in ∈ In.

Definition 2.1.6. Let P = {Ai : i ∈ I} be a finite collection of matrices in SL(2,R)
and d be a left-invariant Riemannian metric on SL(2,R). Then the set P is said to be
Diophantine if there exists c > 0 such that for all n ∈ N, we have

(2) i, j ∈ In, Ai ̸= Aj =⇒ d(Ai, Aj) > cn.

The set P is said to be strongly Diophantine if there exists c > 0 such that for all n ∈ N,
we have

(3) i, j ∈ In, i ̸= j =⇒ d(Ai, Aj) > cn.

Definition 2.1.7. A finite set P ⊂ SL(2,R) is called uniformly hyperbolic if there
exists λ > 1 and a constant c > 0, such that

(4) ∥A∥ ≥ cλn, for all A ∈ Pn and n ∈ N.
3



The next theorem can be obtained by the results from [1], [3] and [4].

Theorem 2.1.1. The following statements are equivalent.

(1) The RPIFS WP has an attractor FP that avoids a hyperplane.
(2) P is uniformly hyperbolic.
(3) There is a non-empty open set V ⊂ RP1 such that WP is contractive on V .

(4) There exits a multi-cone C such that WP(int(C)) ⊊ int(C).

Given a finite or a countable set P = {Ai : i ∈ I} ⊂ SL(2,R), define the zeta function
ζP : [0,∞] → R ∪ {∞} by

(5) ζP(t) :=
∞∑
n=1

∑
i∈In

(
∥Ai∥

)−2t

and its critical exponent

(6) ξP := inf {t > 0 : ζP(t) < ∞} .

If ζP(t) is divergent for all t ≥ 0, then define ξP = ∞.

Theorem 2.1.2 ( [4]). Let P = {Ai : i ∈ I} be a finite collection of matrices in SL(2,R)
which is Diophantine and semi-discrete. If the attractor FP of the corresponding RPIFS
W +

P is not singleton, then

dimH(FP) = min{1, ξP},
where dimH denotes the Hausdorff dimension.

Definition 2.1.8. A set P ⊂ SL(2,R) is said to be strongly irreducible, if each map
in W +

P does not preserve any finite subset of RP1. A set P ⊂ SL(2,R) is said to be
irreducible if each map in W +

P does not have a common fixed point in RP1.

Given a finite set P = {Ai : i ∈ I} ⊂ SL(2,R) and non-degenerate probability vector
(pi)i∈I , one can consider the probability measure µ on SL(2,R) whose support is P as
follows:

(7) µ =
∑
i∈I

piXAi
,

where XA denotes the characteristic function on SL(2,R).

Theorem 2.1.3 ( [5, 8]). If P = {Ai : i ∈ I} ⊂ SL(2,R) is strongly irreducible and
generates an unbounded semi-group, then there exists a unique probability measure P on
RP1 such that

P =
∑
i∈I

piP ◦ A−1
i .

Definition 2.1.9 (Bernoulli measure). Let I∗ = {1, 2, . . . ,m}N be the sequence space
and for i = (i1, i2, . . .) ∈ I∗, define i |n= (i1, i2, . . . , in). Then the cylinder set on I∗,
is defined by [i1, i2, . . . , in] = {j ∈ I∗ : j |n= (i1, i2, . . . , in)}. Let (p1, p2, . . . , pm) be the
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probability vector and B(I∗) be the σ-algebra on I∗ generated by the cylinder sets and
given a cylinder set [i1, i2, . . . , in], the measure µ on B(I∗) is defined by

(8) µ([i1, i2, . . . , in]) =
n∏

k=1

pik .

This measure µ is known as Bernoulli measure.

Theorem 2.1.4 ( [2, 8]). If P be the probability measure associated with the RPIFS
WP =

{
RP1;wA : A ∈ P

}
and µ be the Bernoulli measure on I∗ = {1, 2, . . . ,m}N, then

(9) P = µ ◦ Π−1,

where Π : I∗ → FP be the coordinate map given by Π(i) = lim
n→∞

wAi1
wAi2

· · ·wAin
([x]), for

arbitrary [x] ∈ RP1.

3. Cantor-like set on the real projective line

In this section, we consider the set P =

{
A1 =

(
1
3

−2
3

0 1

)
, A2 =

(
1
3

2
3

0 1

)}
⊂ GL(2,R)

and the corresponding RPIFS on RP1. We estimate the Hausdorff dimension of the attrac-
tor of it and we see the existence of an invariant probability measure whose support is the
attractor of this RPIFS. Here, we get the following results.

Theorem 3.0.1. The RPIFS WP =
{
RP1;wA1 , wA2

}
associated with the set P has an

attractor.

Proof. Since det(A1) = det(A2) =
1
3
> 0, so, we consider the corresponding RPIFS W +

P ,

where P =

{
A1 =

( 1√
3

− 2√
3

0
√
3

)
, A2 =

( 1√
3

2√
3

0
√
3

)}
⊂ SL(2,R). It can be seen that for

all A ∈ Pn and n ∈ N,

(10) A =

((
1√
3

)n
∗

0
(√

3
)n
)
.

So, ∥A∥ ≥ (
√
3)n. Therefore, P is uniformly hyperbolic. Therefore, by Theorem 2.1.1 the

RPIFS W +
P =

{
RP1;wA1 , wA2

}
has an attractor. Since for i = 1, 2, wAi

’s are the projective
transformations. So, W +

P and WP have the same attractor. Therefore, WP has an attractor
in RP1. □

Here, we see the step-by-step construction of the projective cantor set:
Let us consider the cone Cab, generated by the points [a] = [−1 : 1] and [b] = [1 : 1] (see
Fig 2). Now

wA1 [a] = [A1a] = [−1 : 1]; wA1 [b] = [A1b] = [−1

3
: 1]

wA2 [a] = [A2a] = [
1

3
: 1]; wA2 [b] = [A2b] = [1 : 1].

5



Figure 2. Cone generated by [a] and [b].

Since projective transformation preserves the collinearity. So, wA1(Cab) = Ca1b1
, is the cone

generated by the points [a1] = [a] = [−1 : 1] and [b1] = [−1
3
: 1]. Similarly, wA2(Cab) =

Ca2b2
, is the cone generated by the points [a2] = [1

3
: 1] and [b2] = [b] = [1 : 1]. Therefore,

WP(Cab) = Ca1b1
∪Ca2b2

(see Fig 3). To continue this process, we get the attractor of this
RPIFS (see Fig 4). We are calling it projective Cantor set.

Note 3.0.1. Observe that the attractor FP (say), of the RPIFS WP is a Cantor-like set
on RP1.

Theorem 3.0.2. If FP is the attractor of the RPIFS W +
P , then dimH(FP) =

log 2
log 3

.

Proof. Since

(11) i, j ∈ In, i ̸= j =⇒ d(Ai, Aj) ≥
(

2√
3

)n

.

So the set P is Diophantine. Also Id /∈ A∗. Therefore, the set P is non-discrete. Hence by
Theorem 2.1.2

(12) dimH(FP) = min{1, ξP}.
Now, all the matrices in P have at least one non-zero eigenvalue, so, here we consider the
spectral norm. That is for A ∈ SL(2,R), ∥A∥ = |λ|, where |λ| is the spectral radius of A.
Since for any i ∈ In, we have

(13) Ai =

((
1√
3

)n
∗

0
(√

3
)n
)
.
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Figure 3. Multi cone generated by the points [a1], [b1] and [a2], [b2].

Figure 4. Projective Cantor set on RP1.

So, ∥Ai∥ =
(√

3
)n
. Therefore,

ζP(t) :=
∞∑
n=1

∑
i∈In

(
∥Ai∥

)−2t
=

∞∑
n=1

2n
(
(
√
3)n
)−2t

=
∞∑
n=1

(
2

3t

)n

.7



This series is convergent if 2
3t

< 1. That is log 2
log 3

< t. And it is divergent if log 2
log 3

≥ t.

Therefore, ξP = log 2
log 3

. Hence from (12), we have dimH(FP) =
log 2
log 3

. □

The following theorem proves the existence of an invariant probability measure associated
with W +

P .

Theorem 3.0.3. Let p = (1
2
, 1
2
) be the probability vector and

P =

{
A1 =

( 1√
3

− 2√
3

0
√
3

)
, A2 =

( 1√
3

2√
3

0
√
3

)}
. Let W +

P =
{
RP1;wA1 , wA2

}
be the associ-

ated RPIFS. Then there exists unique probability measure P on RP1 such that

(14) P =
1

2
P ◦ w−1

A1
+

1

2
P ◦ w−1

A2
.

In particular, if µ is the Bernoulli measure on the sequence {1, 2}N with associated proba-
bility vector p = (1

2
, 1
2
), then

(15) P (E) = µ ◦ Π−1(E) for E ⊂ RP∗,

where Π : {1, 2}N → FP is given by Π(i) = lim
n→∞

Ai1Ai2 · · ·Ain([x]), for arbitrary [x] ∈ RP1.

Proof. Since A1 fixes the unique point [a] = [−1 : 1] and A2 fixes the unique point [b] =
[1 : 1]. So the matrices A1 and A2 do not preserve any finite subset of RP1 simultaneously.
Hence the set P is strongly irreducible. Also, for all A ∈ Pn,

(16) ∥A∥ ≥ (
√
3)n.

So, P generates the unbounded semi-group. Therefore, by Theorem 2.1.3, there exists a
unique probability measure P which satisfies the equation

P =
1

2
P ◦ w−1

A1
+

1

2
P ◦ w−1

A2
.

The last part of the proof follows from Theorem 2.1.4. □

4. Voronoi partition and Quantization error

In this section, we define the Voronoi region on the real projective line RP1 and the n-th
quantization error for a probability distribution. We see the action of a projective transfor-
mation on the Voronoi region in RP1. Also, we prove results related to n-th quantization
error of order r of an invariant probability measure.

Definition 4.0.1. A set A ⊂ R1 is said to be a locally finite set in the sense that for
any bounded set B ⊂ R1, the number of elements in A ∩ B is finite and a collection A
of subsets of R1 is called locally finite if the number of elements in A intersecting any
bounded subset of R1 is finite.

Definition 4.0.2. Let ∆ be a locally finite subset of RP∗ and let the set

W ([a]|∆) =

{
[x] ∈ RP∗ : dP

(
[x], [a]

)
= min

[b]∈∆
dP
(
[x], [b]

) }
8



is the Voronoi region generated by [a].

Remark 4.0.1. The Voronoi diagram {W ([a]|∆) : [a] ∈ ∆} is locally finite covering of
RP∗.

Here, we provide some results concerning the general projective transformation on the
real projective line.

Theorem 4.0.1. Let A =

(
a11 a12
v 1

)
∈ GL(2,R) and TA : RP1 → RP1 be the corre-

sponding projective transformation. Then the following holds:

(1) If v = 0, then W
(
TA[a]|TA(∆)

)
= TA

(
W ([a]|∆)

)
for all [a] ∈ ∆.

(2) If TA(∆) ⊂ RP∗ and W
(
TA[a]|TA(∆)

)
= TA

(
W ([a]|∆)

)
for all [a] ∈ ∆, then v = 0.

Proof. (1) If v = 0. Since det(A) ̸= 0, so a11 ̸= 0 and for all [x : 1] ∈ RP∗, TA[x : 1] =
[A(x, 1)] = [a11x + a12 : 1] ∈ RP∗. Therefore, TA restricted on RP∗ is invertible.
Then

W
(
TA[a]|TA(∆)

)
=

{
[x] ∈ RP∗ : dP

(
[x], TA[a]

)
= min

[b]∈TA(∆)
dP
(
[x], [b]

)}
=

{
TA[x] ∈ RP∗ : dP

(
TA[x], TA[a]

)
= min

[d]∈∆
dP
(
TA[x], TA[d]

)}
.

Now, if [c] = [c : 1] ∈ RP∗, then

dP
(
TA[x], TA[c]

)
= dP

(
[a11x+ a12 : 1], [a11c+ a12 : 1]

)
= |a11||x− c|
= |a11|dP

(
[x], [c]

)
.

Therefore,

W
(
TA[a]|TA(∆)

)
=

{
TA[x] ∈ RP∗ : |a11|dP

(
[x], [a]

)
= min

[d]∈∆
|a11|dP

(
[x], [d]

)}
=

{
TA[x] ∈ RP∗ : dP

(
[x], [a]

)
= min

[d]∈∆
dP
(
[x], [d]

)}
= TA

(
W ([a]|∆)

)
.

(2) If possible let v ̸= 0. Then [− 1
v
: 1] ∈ RP∗. Since RP∗ =

⋃
[a]∈∆ W ([a]|∆), so,

[− 1
v
: 1] ∈ W ([c]|∆) for some [c] ∈ ∆. Therefore, TA[− 1

v
: 1] = [− 1

v
a11 + a12 :

0] ∈ TA

(
W ([c]|∆)

)
. Given that TA(∆) ⊂ RP∗, so [a] ̸= [− 1

v
: 1] for all [a] ∈ ∆.

Therefore, RP∗ =
⋃

[a]∈∆W (TA[a]|TA(∆)). Hence [− 1
v
: 1] /∈ W (TA[c]|TA(∆)).

This gives a contradiction to W
(
TA[c]|TA(∆)

)
= TA

(
W ([c]|∆)

)
. Hence the proof.

□

Definition 4.0.3. Let µ be the probability distribution on RP∗ and [x : 1] be the random
variable on RP∗ with distribution µ. Let

Fn =
{
f : RP∗ → RP∗ such that f is measurable map with |f

(
RP∗)| ≤ n

}
.

9



The elements of Fn are called n-quantizers. Let r ≥ 1 and assume that∫
RP∗

dP
(
[x : 1], [0 : 1]

)r
dµ[x] < ∞.

The n-th quantization error for µ of order r is defined by

Vn,r(µ) = inf
f∈Fn

∫
RP∗

dP
(
[x], f [x]

)r
dµ[x].

A quantizer f ∈ Fn is said to be n-optimal for µ of order r if

Vn,r(µ) =

∫
RP∗

dP
(
[x], f [x]

)r
dµ[x].

Lemma 4.0.1.

Vn,r(µ) = inf
∆ ⊂ RP∗

|∆| < n

∫
RP∗

min
[a]∈∆

dP
(
[x], [a]

)r
dµ[x].

Proof. Let ∆ = f
(
RP∗) for a fixed f ∈ Fn. Then |∆| ≤ n. For [a] ∈ ∆, let

A[a] = {[x] ∈ RP∗ : f [x] = [a]} .

Then A[a] is non-empty and
⋃

[a]∈∆ A[a] = RP∗. Now,∫
RP∗

dP
(
[x], f [x]

)r
dµ[x] =

∑
[a]∈∆

∫
A[a]

dP
(
[x], [a]

)r
dµ[x]

≥
∑
[a]∈∆

∫
A[a]

min
[b]∈∆

dP
(
[x], [b]

)r
dµ[x]

=

∫
RP∗

min
[b]∈∆

dP
(
[x], [b]

)r
dµ[x].

Therefore,

(17) Vn,r(µ) = inf
f∈Fn

∫
RP∗

dP
(
[x], f [x]

)r
dµ[x] ≥ inf

∆ ⊂ RP∗

|∆| < n

∫
RP∗

min
[a]∈∆

dP
(
[x], [a]

)r
dµ[x].

Conversely, let ∆ ⊂ RP∗ with |∆| ≤ n and A[a] = W ([a]|∆). For [a] ∈ ∆, define f : RP∗ →
RP∗ such that f =

∑
[a]∈∆[a]χA[a]

, where the summation is over ⊕ and χA[a]
: RP∗ → RP∗

is the characteristic function on A[a]. Then f ∈ Fn and∫
RP∗

min
[a]∈∆

dP
(
[x], [a]

)r
dµ[x] =

∑
[a]∈∆

∫
A[a]

min
[a]∈∆

dP
(
[x], [a]

)r
dµ[x].

10



Sincc [x] ∈ A[a] = W ([a]|∆). Therefore,∫
RP∗

min
[a]∈∆

dP
(
[x], [a]

)r
dµ[x] =

∑
[a]∈∆

∫
A[a]

dP
(
[x], [a]

)r
dµ[x]

=

∫
RP∗

dP
(
[x], f [x]

)r
dµ[x]

≥ inf
f∈Fn

∫
RP∗

dP
(
[x], f [x]

)r
dµ[x] = Vn,r(µ).

So,

(18) inf
∆ ⊂ RP∗

|∆| < n

∫
RP∗

min
[a]∈∆

dP
(
[x], [a]

)r
dµ[x] ≥ Vn,r(µ).

Hence from (17) and (18), we get the desired result. □

Definition 4.0.4. A set ∆ ⊂ RP∗ with |∆| < n is said to be n-optimal set of centers for
the probability distribution µ of order r if

Vn,r(µ) =

∫
RP∗

min
[a]∈∆

dP
(
[x], [a]

)r
dµ[x].

Let Cn,r(µ) be the collection of all n-optimal set of centers for µ of order r. Then we get
the following.

Theorem 4.0.2. Let A =

(
a11 a12
v 1

)
∈ GL(2,R) and TA : RP1 → RP1 be the corre-

sponding projective transformation. Then the following holds:

(1) If v = 0, then Vn,r(TAµ) = |a11|r Vn,r(µ).
(2) If v = 0, then Cn,r(TAµ) = TA (Cn,r(µ)),

where TAµ is the push-forward measure of µ.

Proof. (1) If v = 0. Let Ω ⊂ TA

(
RP∗) such that |Ω| ≤ n. Since v = 0, so, TA|RP∗ is a

non-singular map on RP∗. Therefore, there is ∆ in RP∗ such that TA(∆) = Ω and
|∆| = |Ω| ≤ n. Then∫

TA(RP∗)

min
[a]∈Ω

dP
(
[y], [a]

)r
d
(
µ ◦ T−1

A

)
[y] =

∫
RP∗

min
[b]∈∆

dP
(
TA[x], TA[b]

)r
dµ[x]

= |a11|r
∫
RP∗

min
[b]∈∆

dP
(
[x], [b]

)r
dµ[x]

≥ |a11|r Vn,r(µ).

Therefore, taking infimum over Ω with |Ω| ≤ n, we get

Vn,r(TAµ) ≥ |a11|r Vn,r(µ).(19)
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Now, it is an easy exercise to see that T−1
A = TA−1 , where A−1 =

(
1

a11
−a12

a11
0 1

)
. So,

if we replace TA by T−1
A in the beginning and proceed as above then we get

Vn,r(T
−1
A µ) ≥ 1

|a11|r
Vn,r(µ).

That is

|a11|rVn,r(µ) ≥ Vn,r(TAµ).(20)

Combining (19) and (20), result follows.
(2) Let Ω ⊂ TA

(
RP∗) such that Ω ∈ Cn,r(TAµ). Since TA is invertible and v = 0, so,

there is ∆ in RP∗ such that Ω = TA(∆) and |∆| = |Ω| ≤ n. We claim that ∆ is
also an n-optimal set of the centers for µ. Since Ω ∈ Cn,r(TAµ), therefore,

Vn,r(TAµ) =

∫
TA(RP∗)

min
[a]∈Ω

dP
(
[y], [a]

)r
d
(
µ ◦ T−1

A

)
[y]

=

∫
RP∗

min
[b]∈∆

dP
(
TA[x], TA[b]

)r
dµ[x]

= |a11|r
∫
RP∗

min
[b]∈∆

dP
(
[x], [b]

)r
dµ[x].(21)

Since a11 ̸= 0, using item (1), it follows that

Vn,r(µ) =

∫
RP∗

min
[b]∈∆

dP
(
[x], [b]

)r
dµ[x].

This proves our claim. Hence ∆ ∈ Cn,r(µ). Therefore, Ω = TA(∆) ∈ TA (Cn,r(µ)).
This implies that Cn,r(TAµ) ⊆ TA (Cn,r(µ)). To prove the converse part, we replace
TA by T−1

A in the beginning and proceed as above. This completes the proof.
□

To estimate the upper bound of the n-th quantization error of a probability measure, we
recall the RPIFS WP =

{
RP1;wA1 , wA2

}
and the associated invariant probability measure

P defined as above. Let Cab, be the cone generated by the points [a] = [−1 : 1] and

[b] = [1 : 1]. For ω = (ω1, ω2, . . . , ωl) ∈ {1, 2}l, define wAω = wAω1
◦ wAω2

◦ · · · ◦ wAωl
. Let

Cω = wAω(Cab) and [c], [d] be the boundary points of the cone Cω. Let mω ∈ Cω be the
point which lies in the equal distance from the points [c] and [d] concerning the metric
dP. That is the mid-point of the cone Cω. The collection (Cω)ω∈{1,2}l consists 2l number

of cones in the l-th level of the construction of Cantor-like set on RP1. The cones Cω1∗ ,
Cω2∗ are said to be children of Cω into which Cω is split up at (l + 1)-th level. Then the

attractor FP =
⋂
l∈N

⋃
ω∈{1,2}l

Cω is the Cantor-like set on RP1.

Let n ∈ N with n ≥ 1, and k(n) ∈ N be the unique number such that 2k(n) ≤ n < 2k(n)+1.

Let I ⊂ {1, 2}k(n) with card(I) = n− 2k(n), and let ∆n be the set consisting all points mω
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of the cone Cω with ω ∈ {1, 2}k(n) \ I and all mid-points mω1∗ , mω2∗ of the children of Cω

with ω ∈ I. That is

∆n =
{
mω : ω ∈ {1, 2}k(n) \ I

}
∪ {mω1∗ : ω ∈ I} ∪ {mω2∗ : ω ∈ I} .

Let Dn = 1
2

1
18k(n)

[
2k(n)+1 − n+ 1

9
(n− 2k(n))

]
. Then we get the following:

Theorem 4.0.3. The upper bound of the n-th quantization error for P of order 2 is Dn.

To prove the above theorem, first, we prove the following lemmas.

Lemma 4.0.2. If S : RP∗ → R+ is Borel measurable and k ∈ N, then∫
S[x]dP [x] =

1

2l

∑
i∈{1,2}l

∫
S ◦ wAi

[x]dP [x].

Proof. From (14), ∫
S[x]dP [x] =

∫
S[x]d

(1
2
P ◦ w−1

A1
+

1

2
P ◦ w−1

A2

)
[x]

=
1

2

∑
i∈{1,2}

∫
S[x]dP ◦ w−1

Ai
[x]

=
1

2

∑
i∈{1,2}

∫
S ◦ wAi

[x]dP [x].(22)

Now, by repeated applications of the equation (14) in (22), we get the required result. □

Lemma 4.0.3. For [0 : 1] ∈ RP∗,∫
dP
(
[x : 1], [0 : 1]

)2
dP [x] =

1

2
.

Proof. For [0 : 1] ∈ RP∗, using lemma 4.0.2∫
dP
(
[x : 1], [0 : 1]

)2
dP [x] =

1

2

∫
dP
(
wA1 [x : 1], [0 : 1]

)2
dP [x] +

1

2

∫
dP
(
wA2 [x : 1], [0 : 1]

)2
dP [x]

=
1

2

∫
dP
(
[
x

3
− 2

3
: 1], [0 : 1]

)2
dP [x] +

1

2

∫
dP
(
[
x

3
+

2

3
: 1], [0 : 1]

)2
dP [x]

=
1

2

[∫ (
x

3
− 2

3

)2

dP [x] +

∫ (
x

3
+

2

3

)2

dP [x]

]

=
1

2

[
2

∫
x2

9
dP [x] + 2

∫
4

9
dP [x]

]
=

1

9

∫
x2dP [x] +

4

9

=
1

9

∫
dP
(
[x : 1], [0 : 1]

)2
dP [x] +

4

9
.
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Therefore, ∫
dP
(
[x : 1], [0 : 1]

)2
dP [x] =

1

2
.

□

Proof of Theorem 4.0.3.∫
RP∗

min
[a]∈∆n

dP
(
[x], [a]

)2
dP [x] =

∑
ω∈{1,2}k(n)\I

∫
Cω

dP
(
[x], [a]

)2
dP [x] +

∑
ω∈I

∫
Cω1∗

dP
(
[x], [a]

)2
dP [x]

+
∑
ω∈I

∫
Cω2∗

dP
(
[x], [a]

)2
dP [x].

For every l ∈ N and for every σ ∈ {1, 2}l, from Lemma 4.0.2 and Lemma 4.0.3, we get∫
Cσ

dP
(
[x], [mσ]

)2
dP [x] =

1

2l

∫
dP
(
wAσ [x], [mσ]

)2
dP [x]

=
1

2l

∫
dP
(
wAσ [x : 1], wAσ [0 : 1]

)2
dP [x].

Now, wAσ =

(
1
3l

∗
0 1

)
. Therefore, dP

(
wAσ [x : 1], wAσ [0 : 1]

)2
=
(

1
3l

)2
dP
(
[x : 1], [0 : 1]

)2
. So,∫

Cσ

dP
(
[x], [mσ]

)2
dP [x] =

1

18l

∫
dP
(
[x : 1], [0 : 1]

)2
dP [x]

=
1

2

1

18l
.

Since ω1∗ and ω2∗ are the elements of {1, 2}k(n)+1, therefore,∫
RP∗

min
[a]∈∆n

dP
(
[x], [a]

)2
dP [x] =

1

2

1

18k(n)

∑
ω∈{1,2}k(n)\I

∫
Cω

dP [x] +
1

2

1

18k(n)+1

∑
ω∈I

∫
Cω1∗

dP [x]

+
1

2

1

18k(n)+1

∑
ω∈I

∫
Cω2∗

dP [x]

=
1

2

1

18k(n)

[
card

(
{1, 2}k(n) \ I

)
+

1

9
card

(
I
)]

=
1

2

1

18k(n)

[
2k(n) − (n− 2k(n)) +

1

9
(n− 2k(n))

]
=
1

2

1

18k(n)

[
2k(n)+1 − n+

1

9
(n− 2k(n))

]
= Dn.

Hence

Vn,r(P ) ≤ Dn.

This completes the proof. □
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Conclusion

In this article, an IFS is considered on the real projective line RP1 so that the attractor is
a Cantor-like set on it and estimated the Hausdorff dimension of such an attractor. Then,
we have shown the existence of a probability measure on RP1 associated with this IFS and
estimated the upper bound of the n-th quantization error for this measure. In the future,
it may be possible to discover the optimal set and calculate the quantization dimension of
the Cantor-like set in RP1.
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