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Abstract

The paper establishes an analog Whittaker-Shannon-Kotelnikov sampling theorem with

with fast decreasing coefficient, as well as a new modification of the corresponding interpolation

formula applicable for general type non-vanishing bounded continuous signals.
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1 Introduction

Problems of recovery of signals from incomplete observations were studied intensively in different

settings. This includes recovering signals from samples. The most important tools used for signal

processing are based on the representation of signal processes in the frequency domain. This

includes, in particular, the conditions of data recoverability. In general, possibility or recovery

a continuous time signal from a sample is usually associated with restrictions on the class of

underlying signals such as restrictions on the spectrum. The classical Nyquist–Shannon sampling

theorem establishes that a band-limited signal vanishing on ±∞ can be recovered without error

from a discrete sample taken with a sampling rate that is at least twice the maximum frequency

of the signal (the Nyquist critical rate). In particular, a band-limited signal x(t) ∈ C(R)∩L2(R)

with the spectrum contained in the interval [−π, π] can be recovered from its sample {x(k)}∞k=−∞

as

x(t) =

∞∑

k=−∞

sin(π(k − t))

π(k − t)
x(k). (1)

This is celebrated Whittaker-Shannon-Kotelnikov interpolation formula, also known as Whit-

taker–Shannon interpolation formula, Shannon’s interpolation formula, and Whittaker’s interpo-
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lation formula. It can be observed that since the coefficients of this interpolation formula are

decreasing as ∼ 1/k, it covers only signals such that x(t) → 0 with a certain rate as |t| → +∞.

There are many works devoted to generalization of the Sampling Theorem; see e.g. the reviews

in [4, 6, 8, 9, 10] and literature therein. However, the extension of this result on non-vanishing

signals has not been obtained yet.

The purpose of the present paper is to obtain an interpolation formula similar to (1) but

applicable to non-vanishing continuous signals.

It can be observed that a non-vanishing signal from L∞(R) can be modified to a signal from

L1(R) without any loss of information, for example, by replacement x(t) by e−|t|x(t). However, at

least for the case of signals from L1(R), these damping transformations represent the convolutions

in the frequency domain, with smoothing kernels. Unfortunately, a band-limited signal will be

transformed into a non-band-limited one along the way. For the general type two-sided processes

from L∞(R), one could expect a similar impact of the damping transformations on the spectrum.

Therefore, it was essential to develop a special approach for extrapolation of non-vanishing signals

from their samples.

The paper present an analog of Sampling Theorem and a modification of Whittaker–Shannon-

Kotelnikov interpolation formula for non-vanishing signals (Theorem 2.2 and formula (3) in Section

2). The kth coefficients for this new interpolation formula (3) are decreasing as ∼ 1/k2. Some

numerical experiments are described in Section 3.

2 The main result: Sampling theorem and interpolation formula

Some notations

Let R and C, be the set of all real and complex numbers, respectively, and let Z be the set of all

integers.

We denote by L∞(R) the standard space of all functions x : R → C, considered up to

equivalency, such that ‖x‖L∞(R) := ess supt∈R |x(t)| < +∞.

For r ∈ [1,∞), we denote by Lr(R) the standard space of all functions x : R → C, considered

up to equivalency, , such that ‖x‖Lr(R) :=
(∫∞

−∞ |x(t)|rdt
)1/r

< +∞.

We denote by C(R) the standard linear space of continuous functions f : R → C with the

uniform norm ‖f‖C := supt |f(t)|.

Definition 2.1 For a Borel measurable set D ⊂ R with non-empty interior, let x ∈ L∞(R) be

such that
∫∞
−∞ x(t)y(t)dt = 0 for any y ∈ L1(R) such that Y |R\D ≡ 0, where Y is the Fourier
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transform of y. In this case, we say that D is a spectral gap of x ∈ L∞(R).

For Ω ∈ (0,+∞), we denote by V(Ω) the set of all signals x ∈ L∞(R) with the spectral gap

R \ (−Ω,Ω). We call these signals band-limited.

We use the terms ”spectral gap” and ”band-limited” because, for a signal x ∈ L2(R), Definition

2.1 means that X(ω) = 0 for ω ∈ D, where X the Fourier transform of x. The standard Fourier

transform is not applicable for general type non-vanishing signals from L∞(R, however, we will

use the terms ”spectral gap” and ”band-limited” for them as well. It is shown in Section 4.3 below

that this is still justified with respect to the spectral properties of these signal.

Let Ω ∈ (Ω, π) be given. Let some even integer number N be selected such that

N >
Ω

π − Ω
.

Further, let some Ω1 ∈ (Ω, π) be selected such that

N ≥
Ω1

π − Ω1
.

Clearly, such Ω1 exists.

For t ∈ [N,N + 1) and τ = t−N ∈ [0, 1), let us select

g(t) =
π⌊t⌋

t
=

πN

N + τ
.

It is easy to see that, for any t ∈ [N,N + 1), we have g(t) ≥ πN(N + 1)−1 ≥ Ω1 and g(t)t = πN .

Assume that the function g(t) is extended periodically from [N,N + 1) to g : R → [Ω1, π].

This function is right-continuous. In addition, g(m) = π and (t−m)g(t) = πN for any integer m

and any t ∈ [N +m,N +m+ 1).

Theorem 2.2 For any continuous bounded band-limited signal x ∈ C(R)∩V(Ω), for any integer

m and any t ∈ [N +m,N +m+ 1), we have that

x(t) =
∑

k∈Z

ak(t)x(k), (2)

where am(t) = 1− g(t)
π , and

ak(t) =
(t−m) sin[g(t)(k −m)]

π(k −m)(k − t)
, k 6= m. (3)

The corresponding series is absolutely convergent.
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In particular, formula (3) implies that ak(k) = 1, and that ak(l) = 0 for any integers k and l such

that k 6= l.

It can be noted that, under the assumptions of Theorem 2.2, we have that

ak(t) =
(t−m)g(t)sinc[g(t)(k −m)]

π(k − t)
=

Nsinc[g(t)(k −m)]

k − t
, k 6= m.

We used here that (t−m)g(t) = πN .

Corollary 2.3 Theorem 2.2 implies that a non-vanishing process from x ∈ V(R) ∩ C(R), i.e., a

band-limited process with the spectral gap R \ (−Ω,Ω), is uniquely defined for any θ ∈ R by its

one-sided sample {x(k)}k∈Z,k≤θ.

3 Some numerical experiments

In some straightforward numerical experiments, we applied truncated interpolation classical in-

terpolation formula (1) and our formula (3) for simulated band limited signals, with summation

over {k ∈ Z : |k| ≤ L}, for some large enough L. For these experiments, we used Ω = 5
12π

and preselected Ω1 = (Ω + π)/2. The number N was selected as the smallest even number such

that N > Ω1/(π − Ω1). It can be noted that these choices define the simulated signal uniquely.

We experimented with band-limited vanishing signals from L2(R) as well as with non-vanishing

signals from L∞(R).

For band-limited vanishing signals from L2(R), we found that the results were indistin-

guishable for both formulae (1) and (3). In particular, we considered a band-limited signal

x(t) = A[sinc(Mπt) + sinc(Mπ(t − 1)/2], with M = 256 and A =
√

M4/5. This signal has

been used for numerical examples in [6], p.30.

We estimated x(t) at several arbitrarily selected single points. For example, for t = 47830.4,

we found the following.

• The error for both interpolation for L = 103 was about 10−5.

• The error for both interpolation for L = 104 was about 10−6.

• The error for both interpolation for L = 105 was about 10−7. More precisely, the error for

interpolation (1) was 1.3503206299415515963 · 10−7, and the error for interpolation (3) was

7.6562947048617628244 · 10−7.

In addition, we tested these interpolation formulae for some non-vanishing processes. In par-

ticular, we considered signal x(t) = cos(Ωt−L/2)). Again, we estimated x(t) at several arbitrarily

selected single points. For t = 47830.4, we found the following.
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• For L = 103, the errors for the interpolation was about 10−5 for (1), and about 10−6 for (3).

• For L = 103, the errors for the interpolation was about 10−5 for (1), and about 10−6 for (3).

• For L = 104, the errors for the interpolation was about 10−5 for (1), and about 10−8 for (3).

• For L = 105, the errors for the interpolation was about 10−6 for (1), and about 10−11 for

(3). More precisely, the error for interpolation (1) was 1.577106079952983464 ·10−6 , and the

error for interpolation (3) was 8.7279850013999293878 · 10−11.

These experiments show that formula (3) can replace formula (1) for band-limited vanishing

signals, and can be used for effectively for non-vanishing signals as well.

4 Background: spectral representation for non-vanishing signals

In this section, we outline some results being used in the proof for the main Theorem 2.2.

4.1 Some notations and definitions for spaces of functions

We denote by z the complex conjugation. We denote by ∗ the convolution

(h ∗ x)(t) :=

∫ ∞

−∞
h(t− s)x(s)ds, t ∈ R.

For a Banach space X , we denote by X ∗ its dual.

For r ∈ [1,∞), we denote by ℓr the set of all processes (signals) x : Z → C, such that

‖x‖ℓr :=
(∑∞

t=−∞ |x(t)|r
)1/r

< +∞. We denote by ℓ∞ the set of all processes (signals) x : Z → C,

such that ‖x‖ℓ∞ := supt∈Z |x(t)| < +∞.

We denote by W 1
2 (R) the Sobolev space of functions f : R → C that belong to L2R together

with the distributional derivatives up to the first order.

Clearly, the embeddings W 1
2 (R) ⊂ C(R) and C(R)∗ ⊂ W 1

2 (R)∗ are continuous.

Let
p

W 1
2 (−π, π) denote the Sobolev space of functions f : [−π, π] → C that belong to L2(−π, π)

together with the distributional derivatives up to the first order, and such that f(−π) = f(π).

Let C be the space of functions f ∈ C([−π, π]) with the finite norm ‖f‖C :=
∑

k∈Z |f̂k|,

where f̂k = 1
2π

∫ π
−π e

−iωsf(s)ds are the Fourier coefficients of f . In other words, C is the space

of absolutely convergent Fourier series on [−π, π]. By the choice of its norm, this is a separable

Banach space that is isomorphic to ℓ1.

Lemma 4.1 i. The embedding
p

W 1
2 (−π, π) ⊂ C is continuous.
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ii. If f ∈ C and g ∈ C, then h = fg ∈ C, and ‖h‖C ≤ ‖f‖C‖g‖C .

iii. For f ∈ C , define gf (ω,m) := eimωf(ω), where m ∈ Z, ω ∈ R. Then gf (·, t) ∈ C and

‖gf (·, t‖C = ‖f‖C .

LetA be the space of continuous functions f ∈ C(R) with the finite norm ‖f‖A :=
∫
R
|f̂(ω)|dω,

where f̂(ω) =
∫∞
−∞ e−iωsf(s)ds is the Fourier transform of f . By the choice of this norm, this is

a separable Banach space that is isomorphic to L1(R).

In particular, the definition for A implies that Y ∈ A in Definition 2.1.

It can be noted that there are functions in C(R) that do not belong to A.

Lemma 4.2 i. The embedding W 1
2 (R) ⊂ A is continuous.

ii. If f ∈ A and g ∈ A, then h = fg ∈ A, and ‖h‖A ≤ ‖f‖A‖g‖A.

iii. For f ∈ A , define gf (ω, t) := eitωf(ω), where t, ω ∈ R. Then gf (·, t) ∈ A, ‖gf (·, t‖A =

‖f‖A, and the function g(·, t) is continuous in A with respect to t ∈ R.

In particular, it follows that the embeddings W 1
2 (R) ⊂ A ⊂ C(R) ⊂ L1(R) and L1(R)∗ ⊂

C(R)∗ ⊂ A∗ ⊂ W 1
2 (R)∗ are continuous.

We assume that each X ∈ L1(R) represents an element of the dual space C(R)∗ such that

〈X, f〉 =
∫∞
−∞X(ω)f(ω)dω for f ∈ C(R). We will use the same notation 〈·, ·〉 for the extension of

this bilinear form on A∗ ×A.

4.2 Spectral representation for non-vanishing signals

The space A and its dual A∗ have been used to define formally a spectral representation for x ∈ ℓ∞

via X ∈ A∗ such that 〈X, f〉 =
∫∞
−∞ x(t)ϕ(t)dt for any f ∈ A, where ϕ ∈ L1(R) is the Fourier

transfer for f ; see, e.g., Chapter VI in [5]. In Chapter III in [3], a similar definition was used for

the Fourier transforms for pseudo-measures on [−π, π] represented as elements of ℓ∞. However,

for the purposes of this paper, we will use a more straightforward definition from [2] based on the

following lemma.

Proposition 4.3 For any x ∈ L∞(R), there exists a weak* limit X ∈ A∗ of the sequence of

functions Xm(ω) :=
∫m
−m e−iωtx(t)dt defined on R for m > 0. This X is such that ‖X‖A∗ =

‖x‖L∞(R).

It can be noted that, in Proposition 4.3, Xm ∈ L1(R) ⊂ C(R)∗ ⊂ A∗.
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We define a spectral representation of x ∈ L∞(R) via mapping F : L∞(R) → A∗ such that

X = Fx for x ∈ L∞(R) is the limit in A∗ introduced in Proposition 4.3. By Proposition 4.3, this

mapping is linear and continuous.

Clearly, for x ∈ L1(R), Fx is the standard Fourier transform, and G = F−1 is the inverse

Fourier transform.

Further, for any h ∈ L1(R), define a mapping Mh : A∗ → L∞(R) such that yh = MhX is

defined as

yh(t) =
1

2π
〈X,H(·)ei·t〉 for X ∈ A∗, H = Fh, t ∈ R.

By Lemma 4.1(iii), it follows that H(·)ei·t ∈ A for any t ∈ R, and it is continuous in t in the

topology of A.

Remark 4.4 For the special case where X ∈ L1(R), the standard results for Fourier transforma-

tions imply for h ∈ A that yh(t) =
1
2π 〈Yh, e

i·t〉 for any t ∈ R, where Yh = HX. In this case, the

form 〈HX, ei·t〉 is well defined since H ∈ C(R) and hence HX ∈ L1(R).

Clearly, the operator Mh : A∗ → L∞(R) is linear and continuous for any h ∈ A. Moreover,

yh(t) is continuous in t, Mh(A
∗) ⊂ C(R), and the mapping Mh : A∗ → C(R) is continuous.

Lemma 4.5 i. For any x ∈ L∞(R) and X = Fx, we have that (h ∗ x)(t) = yh(t), where

yh = MhX.

ii. For any X ∈ A∗ and y = MhX, there exists an unique up to equivalency process x ∈

L∞(R) such that (h ∗ x)(t) = yh(t) for any h ∈ A for all t. For this process, we have that

‖x‖L∞(R) ≤ ‖X‖A∗ , and Fx = X.

We define an operator G : A∗ → L∞(R) such that x = GX in Lemma 4.5(ii) above.

Theorem 4.6 The mappings F : L∞(R) → A∗ and G : A∗ → L∞(R) are continuous isometric

bijections such that F = G−1 and G = F−1.

4.3 Band-limited signals and spectral representation

The following lemma connects Definition 2.1 with the spectral representation.

Lemma 4.7 A signal x ∈ L∞(R) has a spectral gap D ⊂ R if and only if 〈Fx, f〉 = 0 for any

f ∈ A such that f |R\D ≡ 0.

This implies that, for any signal x ∈ V(Ω) and any f1, f2 ∈ A, if f1(ω) = f2(ω) for all

ω ∈ [−Ω,Ω] then 〈Fx, f1〉 = 〈Fx, f2〉.
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5 Proofs

5.1 Proofs of auxiliary results

The proof for Lemma 4.1 can be found in [1].

Proof of Lemma 4.7. Let y ∈ L1(R), and let Y = Fy ∈ L∞(R). It follows from the definitions

that Y ∈ A. Let h(t) = ȳ(−t) and H = Fh. We have that Y = H̄. Furthermore,

∫ ∞

−∞
x(t)y(t)dt =

∫ ∞

−∞
x(t)h̄(−t)dt = (h̄ ∗ x)(0) =

1

2π
〈X,Hei·0〉 =

1

2π
〈X,H〉 =

1

2π
〈X, Ȳ 〉.

Since Y (ω) = 0 if and only if Ȳ (ω) = 0, the lemma statement follows from the definitions. �

The proofs for the remaining statements listed in Section 4.2 can be found in [2].

5.2 Proof of Theorem 2.2

As the first step to prove Theorem 2.2, we need to obtain its more abstract conditional version.

Proposition 5.1 Let Ω ∈ (0, π) be given, and let Ω1 ∈ (Ω, π) be selected. Suppose that there

exists a function E : R×R → C such that the following holds.

i. E(t, ω) = eiωt for all t ∈ R and ω ∈ [−Ω1,Ω2].

ii. For any t, E(t, ·)|[−π,π] ∈ C and supt∈R ‖E(t, ·)|[−π,π]‖C < +∞.

iii. For any t, E(t, ·) ∈ A and supt∈R ‖E(t, ·)‖A < +∞.

For t ∈ R and k ∈ Z, let

ak(t) :=
1

2π

∫ π

−π
E(t, ω)e−iωkdω.

Then any signal x ∈ C(R) ∩ V(Ω) can be represented as

x(t) =
∑

k∈Z

ak(t)x(k).

The corresponding series is absolutely convergent. In addition, if E(t, ω) = E(t,−ω) for all t and

ω, then ak(t) ∈ R.

It can be noted that, under the assumption of Lemma 5.1, we have that

i. ak(k) = 1 and ak(m) = 0 for all t ∈ R and all integers k and m, m 6= k;

ii. {ak(t)}k∈Z ∈ ℓ1 for all t.
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Proof of Proposition 5.1. Suppose that E(t, ω) is such as described in Lemma 5.1. Since

E(t, ·) ∈ A, we have that {αk(t)} ∈ ℓ1 for all t. Hence

E(t, ω) =
∑

k∈Z

ak(t)e
iωk =

∑

k∈Z

ak(t)E(k, ω), t ∈ R, ω ∈ [−Ω1,Ω1],

where the series are absolutely convergent for any t, ω. Moreover, the sum

E(t, ·) =
∑

k∈Z

ak(t)E(k, ·) (4)

converges in A for any t ∈ R.

It can be reminded that eiωt =
∑

k∈Z ak(t)e
iωk for ω ∈ [−Ω1,Ω1], but this does not hold if

|ω| > Ω1.

Further, let AΩ be the set of all h ∈ A such that h(t) = 0 if |t| > π−Ω1. Clearly, (h∗e
i·t)(ω) =

(h ∗E(t, ·))(ω) if ω ∈ [−Ω,Ω] and h ∈ AΩ. Let X = Fx. By Lemma 4.5, by Theorem 4.6, and by

the choice of E and X, we have that

yh(t) = (h ∗ x)(t) =
1

2π
〈X,h ∗ ei·t〉 =

1

2π
〈X,h ∗ E(t, ·)〉

for all t and all h ∈ AΩ. Hence

x(t) =
1

2π
〈X,E(t, ·)〉, t ∈ R.

In particular,

x(k) =
1

2π
〈X,E(k, ·)〉, k ∈ Z.

By (4), it follows that

x(t) =
1

2π
〈X,

∑

k∈Z

ak(t)E(k, ω)〉 =
∑

k∈Z

ak(t)
1

2π
〈X,E(k, ω)〉 =

∑

k∈Z

ak(t)x(k).

This completes the proof of Lemma 5.1. �

The following step is to find a function E satisfying the assumptions of Proposiotion 5.1.

Up to the end of this paper, we assume that N and g are selected as in Theorem 2.2. In

particular, g(m) = π for any m ∈ Z.

Lemma 5.2 We have that eig(t)t = e−ig(t)t = 1 for all t ∈ [N,N + 1). In addition, eig(t)(t−m) =

e−ig(t)(t−m) = 1 for all m ∈ Z and t ∈ [N +m,N +m+ 1).
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Proof of Lemma 5.2. Let t = N + τ and τ ∈ [0, 1). We have

g(t) =
π⌊t⌋

t
=

πN

N + τ
.

Clearly, Ω1 ≤ g(t) ≤ π , g(t)t = πN and

eig(t)t = eiπN = 1, t ∈ [N,N + 1).

We used here that N is even. Further, let m ∈ Z. By the choice of g, we have that g(t+m) = g(t),

and

eig(t)(t−m) = eig(t−m)(t−m) = 1, t ∈ [N +m,N +m+ 1).

This completes the proof of Lemma 5.2. �

Lemma 5.3 Let a function Ẽ : [N,N + 1] → C be defined as

Ẽ(t, ω) = eiωt, ω ∈ [−g(t), g(t)],

Ẽ(t, ω) = eig(t)t, ω /∈ [−g(t), g(t)].

Further, let a function ξ : [N,N + 1] × R → R be selected such that ξ(t, ·) ∈ W 1
2 (R) for any t,

and ξ(t, ω) = 1 for any ω ∈ [−g(t), g(t)]. We define the function EN : R×R → C as

EN (t, ω) = Ẽ(t, ω)ξ(t, ω), ω ∈ R, t ∈ [N,N + 1].

Further, let t = m+N + τ , where τ ∈ [0, 1) and m ∈ Z. Let

E(t, ω) = EN (τ, ω)eiωm, ω ∈ R, t ∈ R.

Then the conditions (i)-(iii) of Proposition 5.1 hold for these E, In addition, E(t, ω) = E(t,−ω)

for all t and ω.

Proof of Lemma 5.3. It is easy to see that condition (i) of Proposition 5.1 is satisfied for E.

Further, Ẽ(t, ·)|[−π,π] ∈
p

W 1
2 (−π, π) for any t ∈ [N,N + 1], and

sup
t∈[N,N+1]

‖Ẽ(t, ·)|[−π,π]‖ p

W 1

2
(−π,π)

< +∞.

Hence EN (t, ·)|[−π,π] ∈ C for any t ∈ [N,N + 1) and

sup
t∈[N,N+1]

‖Ẽ(N + τ, ·)|[−π,π]‖C < +∞.
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Furthermore, EN (t, ·) ∈ W 1
2 (R) for any t ∈ [N,N + 1], and

sup
t∈[N,N+1]

‖Ẽ(t, ·)‖W 1

2
(R) < +∞.

Hence condition (ii) of Proposition 5.1 are satisfied for EN (t, ω) and for t ∈ [N,N + 1].

Further, by Lemma 4.1(iii), for any v ∈ A, we have that

ei·mv ∈ A, ‖v‖A = ‖ei·mu‖A.

Similarly, we have for u ∈ C that

ei·mu ∈ C, ‖u‖C = ‖ei·mu‖C .

Then conditions (iii) are satisfied for the selected E, and Hence condition (iii) of Proposition 5.1

are satisfied for EN (t, ω), for t ∈ [N,N +1]. In addition, E(t, ω) = E(t,−ω) for all t and ω. This

completes the proof of Lemma 5.3. �

It can be noted that E(t, g(t)) = Ē(t,−g(t)) 6= E(t,−g(t)) for E selected as in Lemma 5.3 for

non-integer t 6∈ {N,N + 1}.

We will denote by ak(t) the corresponding coefficients ak(t) defined as in Proposition 5.1 with

E and g defined by Lemma 5.3.

Proposition 5.4 Let E be selected as in Lemma 5.3. For t ∈ [N,N + 1), we have that a0(t) =

1− g(t)
π and

ak(t) =
t sin[g(t)k]

πk(k − t)
, k 6= 0.

It can be noted that, since g(t)t = πN for t ∈ [N,N + 1), we have that

ak(t) =
g(t)t sinc(g(t)k)

π(k − t)
=

Nsinc(g(t)k)

k − t
, k 6= 0.

Proof of Proposition 5.4. Clearly, ak(t) = Ik=t for t ∈ Z, by the choice of g(k) = π. Further,

we have that

ak(t) =
1

2π
(αk(t) + βk(t)),

where

αk(t) =

∫ g(t)

−g(t)
e−iωkeiωtdω,

βk(t) =

∫ −g(t)

−π
e−iωkeig(t)tdω +

∫ π

g(t)
e−iωkeig(t)tdω = eig(t)t

(∫ −g(t)

−π
e−iωkdω +

∫ π

g(t)
e−iωkdω

)
.
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Assume that k 6= 0. In this case,

αk(t) =

∫ g(t)

−g(t)
e−iωkeiωtdω =

eig(t)(t−k) − e−ig(t)(t−k)

i(t− k)
=

e−ig(t)k − eig(t)k

i(t− k)
= −

2 sin(g(t)k)

t− k
,

βk(t) = eig(t)t

(
eig(t)k − eiπk

−ik
+

e−iπk − e−ig(t)k

−ik

)
= eig(t)t

(
e−ig(t)k − eig(t)k

ik

)

= −eig(t)t
2 sin(g(t)k)

k
,

and

ak(t) =
1

2π
(αk(t) + βk(t)) = −

1

2π

(
2 sin(g(t)k)

t− k
+ eig(t)t

2 sin(g(t)k)

k

)
.

By the choice of even N , we have that eig(t)t = eiπN = 1. Hence

ak(t) =
1

2π
(αk(t) + βk(t)) = −

1

π
sin(g(t)k)

(
1

t− k
+

1

k

)
=

1

π
sin(g(t)k)

t

k(k − t)
. (5)

Further, assume that k = 0. In this case,

α0(t) =

∫ g(t)

−g(t)
eiωtdω = −

eig(t)t − e−ig(t)t

it
= −

eiNπ − e−iNπ

it
.

Since t ≥ N > 0, we have that α0(t) = 0. Further, we have β0(t) = 2eig(t)t(π− g(t)) = 2(π− g(t)).

Hence a0(t) = 1− g(t)
π . This completes the proof of Proposition 5.4. �

Lemma 5.5 Let E be selected as in Lemma 5.3. For any k,m ∈ Z, we have that

ak(t+m) = ak−m(t).

Proof of Lemma 5.5. Let N be defined as in Lemma 5.3, and let t = N + τ , By the definitions,

E(t, ω) = eiMωE(τ, t), where M ∈ Z is such that τ = t−M ∈ [N,N + 1). Hence E(t +m,ω) =

eimωE(t, ω) and

ak(t+m) =
1

2π

∫ π

−π
eimωE(t, ω)e−iωkdω =

1

2π

∫ π

−π
E(t, ω)e−iω(k−m)dω = ak−m(t).

This completes the proof of Lemma 5.5. �

Corollary 5.6 Let E be selected as in Lemma 5.3. Let ak(·) be defined by (3). Then for any

m ∈ Z, any signal x ∈ V(Ω) ∩C(R) can be represented, for t ∈ [N +m,N +m+ 1), as

x(t) =
∑

k∈Z

ak−m(t−m)x(k). (6)

The corresponding series is absolutely convergent.
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Remark 5.7 Corollary 5.6 is due to the particular choice of acceptable E. Possibly, there exist

acceptable choices of E such that does not hold.

Proof of Corollary 5.6. Let x̃(t) := x(t + m). It is easy to see that x̃ ∈ V(Ω). Clearly,

x(t) = x̃(t−m) for all t. By Proposition 5.4, we have that

x̃(s) =
∑

k∈Z

ak(s)x̃(k), s ∈ [0, 1).

Hence, for t ∈ [m+N,m+N + 1),

x(t) = x̃(t−m) =
∑

k∈Z

ak(t−m)x̃(k) =
∑

k∈Z

ak(t−m)x(k +m) =
∑

k∈Z

ad−m(t−m)x(d).

This completes the proof of Corollary 5.6. �

Proof of Theorem 2.2 follows immediately from Proposition 5.4 and Corollary 5.6. �

Proof Corollary 2.3. By Theorem 2.2, the signal x is uniquely defined by the sequence

{x(k)}k∈Z. Further, it can be shown that the sequence {x(k)}k∈Z represents a band-limited

bounded discrete time signal as defined in Theorem 4 [1]. Then Corollary 2.3 follows from Theo-

rem 4 [1]. �

Concluding remarks

i. Since |ak(t)| ∼ 1/k2 as |k| → +∞, we have that
∑

k∈Z |ak(t)| < +∞ for any t ∈ R.

This allows to apply interpolation formula (3) to non-vanishing bounded signals. For these

signals, the classical interpolation formula (1) in not applicable, since the coefficients decay

as ∼ 1/k.

ii. It can be seen that selection of N and Ω1 for interpolation formula (2)-(3) is non-unique.

Furthermore, it is possible that there are other potential choices of E in Proposition 5.1,

leading to other versions of interpolation formula (2).

iii. The condition that Ω ∈ (0, π), and that the sampling points are integers, can be removed,

as usual, by linear changes of the times scale, i.e., with the replacement of the signal x(t) by

signal x(µt), with µ > 0. Clearly, less frequent sampling would require µ > 1, and selection

of a larger Ω would require µ < 1.

iv. The classical Whittaker-Shannon-Kotelnikov interpolation formula (1) allows spectrum

bandwidth [−π, π]. On the other hand, Theorem 2.2 requires that the spectrum band-

width of x is [−Ω,Ω], for Ω ∈ (0, π). Therefore, the possibility to cover non-vanishing
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signals is achieved via certain oversampling; this oversampling, however, can be arbitrarily

small, since Ω can be arbitrarily close to π.

v. It can be emphasised that the interpolation formula (3) is exact; it is not an approximation.

Therefore, for a vanishing signal x ∈ L2(R) ∩ V(Ω) ∩ C(R), both formulae (1) and (3) give

the same value. Similarly, for x ∈ V(Ω0) for Ω0 ∈ (0, π), for all possible different choices

of Ω ∈ [Ω0, π), Ω1 ∈ [Ω, π), N = N(Ω1), and E, the value of the sum (2) is the same. Of

course, the values for the corresponding finite truncated sums will be different.

vi. It is known that band-limited signals from L2(R) are continuous. However, Theorem 2.2

is formulated for signals from C(R) ∩ V(Ω) rather than for signals from V(Ω), since it is

unclear yet if general type band-limited signals x ∈ V(Ω) are continuous. We leave it for the

future research.
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