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The analysis of electrophysiological recordings of the human brain in resting state

is a key experimental technique in neuroscience. Resting state is indeed the default

condition to characterize brain dynamics. Its successful implementation relies both

on the capacity of subjects to comply with the requirement of staying awake while

not performing any cognitive task, and on the capacity of the experimenter to val-

idate that compliance. Here we propose a novel approach, based on permutation

entropy, to provide a quality control of the resting state condition by evaluating its

stability during a recording. We combine the calculation of permutation entropy with

a method for the estimation of its uncertainty out of a single time series, thus en-

abling a statistically robust assessment of resting state stationarity. The approach is

showcased on electroencephalographic data recorded from young and elderly subjects

and considering both eyes-closed and eyes-opened resting state conditions. Besides

showing the reliability of the approach, the results showed higher instability in elderly

subjects that hint at a qualitative difference between the two age groups with regard

to the distribution of unstable activity within the brain. The method is therefore a

tool that provides insights on the issue of resting state stability of interest for neuro-

science experiments. The method can be applied to other kinds of electrophysiological

data like, for example, magnetoencephalographic recordings. In addition, provided

that suitable hardware and software processing units are used, its implementation,

which consists here of a posteriori analysis, can be translated into a real time one.
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Countless studies in neuroscience rely on the analysis of experimentally recorded

electrophysiological activity of the human brain during the so-called resting

state, i.e. when subjects are not performing any cognitive task. However, con-

trolling a subject’s compliance with this condition is usually not possible during

an experiment, and the recorded data might be contaminated by unwanted and

unknown activity. In this work, we propose an approach to mitigate this typi-

cally overlooked issue by analyzing electroencephalographic data and detecting

possible drifts in brain dynamics, corresponding to an unstable resting state con-

dition that compromises the recording’s reliability. To carry out this analysis we

rely on permutation entropy, an information-theoretical measure of complexity

of a time series. A statistically significant drift in permutation entropy along a

recording is linked to a lack of stationarity, thus providing a marker of instability

of the resting state. Our method makes up a simple and powerful tool to carry

out quality control of electrophysiological data, as well as of other time series

for which the detection of non-stationarity is essential.

I. INTRODUCTION

The characterization of brain states by relying on the analysis of electrophysiological

recordings is a fundamental issue in neuroscience and a basic tool in the medical practice.

Among the possible brain states, the so-called resting state plays a major role in the in-

vestigation of brain functional organization1. The interest in resting state brain dynamics

was first prompted by Biswal et al.2 in the context of functional magnetic resonance imag-

ing (MRI). Since then, the resting state paradigm has been widely used also in connection

with electroencephalographic (EEG) and magnetoencephalographic (MEG) analytical tech-

niques3–5. A well-known result concerning the brain organization in resting state is provided

by the identification, primarily via functional MRI, of resting state networks6,7. Among

these, the “default mode” network is possibly the most studied one8,9.

The definition of the resting state condition is procedural: tipically, resting state corre-

sponds to subjects being instructed by an operator to “do nothing”, i.e. not to perform any

cognitive task, while either keeping their eyes closed or fixating a static marker on a screen.
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Once the instruction is provided, the subject is entrusted with its implementation. As a mat-

ter of fact, the operator does not have more than trust to depend on in order to establish

the reliability of the experiment outcome. How to objectively determine the quality of the

resting state implementation is an unsolved issue. Two different approaches can be envis-

aged. A first possibility is to devise rigorous and reproducible protocols to be followed when

conducting resting state experiments10. Indeed, as some researchers have pointed out11,12, a

lack of a shared consensus on the implementation of a resting state is a possible reason for

the ongoing underutilization of resting state measurements in clinical applications. However,

regardless of how meticulously it is implemented, a protocol cannot provide any a posteriori

assessment of the reliability of recorded data. Conversely, the second approach consists of

assessing the stability of resting state by means of a measurable quantity. This strategy was

followed, for example, by using graph metrics in order to evaluate the reliability of resting

state brain networks identified through functional MRI13.

The goal of the present paper is to address the problem of stability of the resting state

assumption by analyzing segments of EEG time series to detect variations in the dynamical

state of the brain. To this purpose, permutation entropy14 (PE) was used as a marker of time

series complexity. Indeed, the analysis of EEG recordings has been increasingly tackled by

means of approaches typical of information theory: PE, which has become widespread thanks

to its simplicity of implementation, was proposed, for example, as a mean to automatically

detect epileptic seizure15 and, more recently, as a biomarker for Alzheimer’s disease16.

The data considered here are EEG recordings of healthy young and elderly subjects and

reconstructed at 30 brain locations. Data are extracted from the LEMON public database17,

in which resting state EEG recordings are available both in eyes-closed (EC) and eyes-opened

(EO) conditions. The availability of several interleaved EC-EO segments for each subject

provided the necessary segmentation to evaluate resting state stability. Although one might

argue that alternating EC-EO states violates the pure resting state assignment, the simplicity

of the task is not expected to affect the resting state condition, while avoiding mental drifts

like falling asleep or boredom.

The analysis proposed here is carried out by evaluating PE on different segments under

the null hypothesis of its constancy during the whole recording in each one of the two

conditions. The analysis immediately calls for the necessity of estimating the uncertainty of

PE assessments. To this purpose, we relied on a recently developed technique18 that allows
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for overcoming the problem of each time series being a singleton.

The scope of application of the method proposed in the present work is not limited to

neuroscience. Indeed, the approach discussed here is useful in any field where it is necessary

to detect nonstationarity of a system’s dynamics out of time series.

The present paper is organized as follows. The available dataset, the related prepro-

cessing, as well as a summary of the method for the evaluation PE and its uncertainty are

described in Sec. II. The evaluation of the stability of the resting state for a single subject

and node is the topic of Sec. III, whereas Sec. IV addresses the dependence of stability

on age, condition and brain location. In Sec.V we briefly address the complexity of stable

resting states. Conclusive remarks on the implications of our results are discussed in Sec. VI.

II. MATERIALS AND METHODS

A. Dataset and preprocessing

EEG data used in the present work belong to the Leipzig Mind-Brain-Body “LEMON”

database17, which is publicly available19. Data were recorded in compliance with the Dec-

laration of Helsinki and the related study protocol was approved by the ethical committee

at the University of Leipzig (reference number 154/13-ff, see also Ref.17). The available

raw recordings were acquired in a sound-attenuated EEG booth by means of a 62-channels

active ActiCAP EEG device whose electrodes were attached according to the international

standard 10-20 system. The corresponding signals are digitized with a sampling rate of

2.5 kHz upon bandpass-filtering them between 0.015 Hz and 1 kHz. Further details on the

data acquisition protocol are available in Ref.17. The dataset considered here corresponds

to two sets of subjects: a “young” set of 30 healthy subjects in the age range between 20

and 35 years old (19 males, 11 females), and an “elderly” set of 30 healthy subjects in the

age range between 60 and 80 years old (19 males, 11 females).

Data preprocessing and source reconstruction procedure are described in details in Ref.20

(Appendix B) and in Ref.21 (Sec. 2). For the sake of clarity, we summarize here the key

steps. Raw EEG recordings were first filtered within the frequency band between 0.1 Hz

and 40 Hz by relying of fourth-order high-pass and low-pass filters; second, the power line

frequency at 50 Hz was removed by means of a notch filter; third, the sampling frequency
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was reduced to 250 Hz by downsampling the data. Artifacts due to cardiac, muscular and

eye activity were removed by relying on an independent component analysis. To carry out

source reconstruction, head models were built out of the individual MRI scans provided

in the LEMON database. Source activity was reconstructed by means of the exact low-

resolution electromagnetic tomography algorithm (“eLoreta”) that provided current dipoles

with unconstrained orientations on a 10 mm template grid. The extracted sequences corre-

spond to current dipole power reconstructed at 30 brain locations (henceforth referred to as

“nodes”) selected as the centroids of 30 brain regions among the 360 defined in the atlas by

Glasser et al.22. The regions considered are V1, V6A, V4 (occipital); 4, 5L, 6mp (central);

Pfm, PF, STV (parietal); STGa, TE1a, TA2 (temporal); 10d, 10pp, p10p (frontal); each

region was selected symmetrically in both hemispheres.

Each EEG acquisition run consists of 16 alternated segments in EC (8 segments) and EO

(8 segments) conditions. To reduce transient effects, we selected 12 consecutive segments,

namely 6 EC and 6 EO, by discarding the first and last two segments of each run. Each raw

segment covers between & 60 s and 90 s: with the same purpose of reducing transients, we

trimmed each segment to 60 s, corresponding to 15000 samples, by symmetrically removing

the leading and trailing data points.

B. Permutation entropy

To compute permutation entropy, m-dimensional trajectories yn are constructed by se-

lecting m consecutive elements from a scalar time series Y = {yn}: yn = (yn, yn+1, . . . , yn+m−1).

A trajectory is then encoded into a permutation (sn,1, . . . , sn,m), were sn,j are integer num-

bers each corresponding to the rank of yn+j−1 within the trajectory yn. As the permutation

elements sn,j belong to the range [1, m], the number of possible permutations is m!. For each

possible permutation, the observed rate p̂S is assessed as the occurrence frequency of that

permutation. Permutation entropy is then estimated out of the observed rates p̂S according

to the following expression:

Ĥm(Y ) = −
∑

S

(p̂S ln p̂S) +
M̂ − 1

2(N −m+ 1)
,

where the sum corresponds to the so-called plug-in estimator, while the second term is the

Miller-Madow correction23,24 that compensates the plug-in estimator bias and depends on
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the time series length N and the number M̂ of observed permutations (M̂ 6 m!). (We

henceforth assume that 0 ln 0 = 0).

The growth rate of PE with the dimension m corresponds, asymptotically, to the

Kolmogorov-Sinai (KS) entropy of the underlying source. However, because the num-

ber of possible permutations grows as m!, the evaluation of PE for m & 10, and thus of the

KS entropy, is impractical. Consequently, PE is instead typically employed at fixed m as a

marker of complexity or—as in the present work—to detect nonstationarity by evaluating

it on different segments of a time series25. In this context, the demand of a large m has

to be traded off against the fact that an unbiased estmation of PE requires the length of

the input time series to be much larger than the number of observed permutations. The

analysis discussed here was carried out by considering trajectories having dimension m = 7.

C. Permutation entropy uncertainty estimation

A key requirement of the analysis discussed in the present work is the estimation of

the uncertainty associated to each PE assessment. To this purpose, we apply a recently

developed method18 that relies on the construction of a set of proxy time series out of the

original one via surrogate generation26. Specifically, the surrogate generation algorithm used

here is the iterative amplitude-adjusted Fourier transform (IAAFT) algorithm27,28, whereby

the amplitude distribution and the (approximate) autocorrelation of the original time series

are preserved in the surrogate ones. Upon generating a number L of surrogate time series

and computing the corresponding PE values, the uncertainty on the PE of the original time

series is provided by the standard deviation of the L surrogate PE assessments multiplied

times a suitably trimmed scaling factor α. For a detailed description of the method, the

reader is referred to Ref.18 (Sec. 3). Following the guidelines provided therein, the number

of surrogate time series to be generated for each evaluation was set here to L = 100 and the

scaling factor α was set to 2.

III. ASSESSING THE STABILITY OF THE RESTING STATE

For each subject, node and condition, six values of PE and the related uncertainty are

estimated by means of the steps described in Secs. II B and IIC. Figure 1 shows an example

6



for a single subject belonging to the young group and a single node. The stability of the

resting state is then evaluated on each of the two sets (EC and EO) of six PE assessments

as follows.

First of all, stability is assumed to occur whenever PE is independent of time, i.e. fluctu-

ations of PE between segments are statistically compatible with the uncertainty associated

to the PE values. To this purpose, a constant value ĥ, corresponding to a horizontal line in

the plot, is fitted to the data. The p-value corresponding to the resulting χ2 statistic is then

evaluated by relying on a χ2 distribution with 5 degrees of freedom. Consequently, given

a subject, node and condition, resting state is deemed to be “unstable” if the p-value falls

below the Bonferroni-corrected significance threshold of 0.05/30 ≃ 0.0017.

 4

 4.5

 5

 5.5

 6

 1  3  5  7  9  11

P
E

Segments

EC
EO

FIG. 1. Example, for a single subject, of the resting state stability analysis. The dashed lines

correspond to the constant ĥ fitted to the two sets (EC and EO) of PE values. As explained in the

main text, the EC condition (red squares) is unstable, whereas the EO condition (green dots) is

stable.

The values of the best-fit constant ĥ for the EC, EO conditions are equal to 5.0± 0.1

and 5.29± 0.04, respectively. The χ2 test provides, for the two conditions, p-values equal

to 2 · 10−10 and 0.087, leading to the conclusion that resting state under the EC condition

is unstable, whereas stability occurs under the EO condition.

7



IV. STABILITY ANALYSIS IN TERMS OF AGE, CONDITION, AND

BRAIN REGION

For each node, the number of subjects yielding an “unstable” resting state in the EC

condition is shown in Fig. 2. The analogous assessment concerning the EO condition is

instead shown in Fig. 3. In both figures, data are displayed separately for the two sets of

subjects, young and elderly.
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FIG. 2. Number of subjects for which a node is deemed to be “unstable” in the EC condition.

The data displayed in Figs. 2, 3 suggest that “instability” of resting state is not uncommon:

the number of subjects in which an “unstable” resting state condition is detected is close to

one third of the whole set of subjects. Averaging on the 30 nodes, the frequency of unstable

nodes for the young group is ≃ 26% (EC) and ≃ 28% (EO), while for the elderly group it

is equal to ≃ 44% (EC) and ≃ 34% (EO). In other words, as it results in Figs. 2, 3, the

number of subjects exhibiting “instability” is generally larger for the elderly group than for

the young group, regardless of the brain location. This observation can be explained by

elderly subjects tending to be more affected by fatigue.

One might wonder whether stability is a consistent property among nodes of the same

subject, namely whether instability of resting state concerns the whole brain or, rather, few

localized areas. To this purpose, Fig. 4 shows, for the young set of subjects, a color map

of stability as a function of subject and node. Specifically, to each subject-node pair, we
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FIG. 3. Number of subjects for which a node is deemed to be “unstable” in the EO condition.

assigned a white color if both EO and EC are deemed to be stable, and a different color in

the case of unstable EC (light green), unstable EO (bluish green), or both unstable EC and

EO (dark purple). The same analysis is reported in Fig. 5 for the elderly set of subjects.

Besides the color map, each figure also reports an histogram of the number of subjects

as a function of the number of stable nodes. While the distribution for young subjects is

right-skewed, with most subjects having a number of stable nodes & 20, the distribution

for elderly subjects appear to be more noisy, with the majority of subjects exhibiting either

a “globally stable” or a “globally unstable” resting state. This observation might reflect an

underlying lower modularity in elderly subjects21, namely the fact that brain dynamics tends

to involve many areas.

V. COMPLEXITY OF STABLE RESTING STATES

Whenever a combination of subject, node and condition is deemed to be stable, the cor-

responding ĥ value, which is indeed an average PE, can be taken as a marker to characterize

the complexity of the underlying dynamics. The distributions of ĥ values corresponding to

stable resting state are shown in Fig. 6, grouped by age and condition. It is first worth

highlighting that the maximum PE value with m = 7, corresponding to white noise time

series, is ln 7! ≃ 8.525: according to the data shown in Fig. 6, the EEG recordings analyzed
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FIG. 4. Subject-node color map of resting state stability for the set of young subjects. Subjects

are ordered by increasing (from bottom to top) number of stable nodes. The histogram in the inset

displays the distribution of the number of stable nodes.

here do not correspond to a purely stochastic dynamics. The four distributions displayed in

Fig. 6 are comparable in width and shape, though with a slight shift towards higher PE val-

ues occurring in the elderly sets. A two-tailed t-test between the young-EC and elderly-EC

data rejects the null-hypothesis of equal means (p < 0.001); the same outcome is obtained

by testing the young-EO, elderly-EO sets.

VI. DISCUSSION

In this work, we exploited EC-EO conditions as a benchmark to study resting state sta-

bility. The EC-EO paradigm is typically studied in terms of the spectral changes, most

notably the presence of alpha rhythms in EC (29). More recently, the EC-EO paradigm was

analyzed through an information-theoretic approach in two works. In the first one30, the

authors analyzed EEG recordings under the two conditions by applying a method31 aimed

at assessing the transition probabilities of ordinal patterns (i.e. permutations) and determin-
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FIG. 5. Subject-node color map of resting state stability for the set of elderly subjects. Subjects

are ordered by increasing (from bottom to top) number of stable nodes. The histogram in the inset

displays the distribution of the number of stable nodes.
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FIG. 6. Distribution plots of the values of ĥ corresponding to a “stable” resting state for the young-

elderly and EC-EO groupings. The dash-dotted line corresponds to the maximum PE value for

m = 7, namely ln 7! ≃ 8.525. The number of ĥ values contributing to each distribution are, from

left to right: 643, 645, 507, 591.
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ing the so-called network-averaged node entropy and asymmetry coefficient. The authors

showed that the EO condition is characterized by higher entropy values, accompanied by a

lower asymmetry coefficient, with respect to the EC condition. In the second paper32 the

authors described an approximate entropy analysis of EEG recordings recorded in the two

conditions, again showing that the EO condition provides higher entropy values than the

EC. Those results are in agreement with the ones obtained with the present analysis: we

also found higher PE values in the EO condition. It is worth remarking that both works

mentioned above carried out the respective analyses in sensor space: while this approach

is computationally less demanding, one has to keep in mind that the influence of volume

conduction might produce spurious results, as it was shown in the case of connectivity

measures33,34.

The application of information-theoretical tools to electrophysiological data is often lack-

ing an estimation of the related uncertainty, despite the availability of asymptotic formu-

las24,35: the significance of the quantities inferred in the analysis is typically based on averag-

ing over a set of subjects. Conversely, the approach followed here, which relies on surrogate-

based estimation of PE uncertainty, is capable of assigning an uncertainty value to each

PE assessment. This capability paves the way to the possibility of drawing subject-specific

quantitative conclusions from data. Besides the present application to quality control of

resting state stability, such possibility is of primary importance in the development of di-

agnostic biomarkers based on EEG measures36 and other kinds of electrophysiological data

like, for example, magnetoencephalographic recordings.

As final remarks, it is worth noting that a real time implementation of the method just

depends on the hardware and software units that are used to process data. In addition,

the method proposed in the present work is not limited to neuroscience: its scope can be

widened to include any field where it is necessary to detect nonstationarity of a system’s

dynamics out of singleton time series.
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