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Quantum cryptography has undergone substantial growth and development within the multi-disciplinary field
of quantum information in recent years. The field is constantly advancing with new protocols being developed,
security measures being improved, and the first practical applications of these technologies being deployed in
optical fibers and free space optical beams. In this paper, we present a comprehensive review of a cutting-edge
metropolitan-scale protocol for continuous-variable quantum cryptography. The protocol allows an arbitrary
number of users to send modulated coherent states to a relay, where a generalised Bell detection creates se-
cure multipartite correlations. These correlations are then distilled into a shared secret key, providing a secure
method for quantum secret-sharing. This novel approach to quantum cryptography has the potential to offer
high-rate secure multipartite communication using readily available optical components, making it a promising
advancement in the field.
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I. INTRODUCTION

Quantum key distribution (QKD) [1, 2] with continuous-
variable (CV) systems [3] has garnered significant attention
in recent years. The design of CV-based QKD protocols uti-
lizing Gaussian quantum states of optical beams has proven
to be particularly effective, and these states can now be eas-
ily produced in laboratory settings. The ideal implementation
of QKD protocols that utilize CV systems [4, 5] and Gaussian
states [6] has the potential to approach the PLOB bound [7, 8],
which is the ultimate limit of point-to-point communication.
These advancements demonstrate the exciting progress and
potential for continued development in the field of QKD with
CV systems. Recently, there has been a significant push to-
wards an end-to-end approach that can be applied to network
implementations [9–11]. This approach utilizes an interme-
diate relay as a means of communication, allowing parties to
perform measurement-device-independent (MDI) QKD pro-
tocols [10, 12], even if the relay is untrusted. This devel-
opment provides a solution that can greatly benefit network
implementations and has garnered significant attention in the
field.

We analyze a cutting-edge multipartite protocol for secure
quantum secret-sharing (QSS) that utilizes CV systems and an
MDI configuration. This protocol can be easily implemented
using linear optics and provides a secure method for key dis-
tribution. In this protocol, an arbitrary number of users are
divided into groups and send Gaussian-modulated coherent
states to an untrusted relay. A generalized multipartite Bell
detection is performed at the relay and the results are publicly
broadcast. QSS enables the distribution of a secret key among
all users, which requires their collaboration for validity. In
the case of non-collaboration, a threshold behavior is mani-
fested and allows for the detection of “dummy” users, leading
to the potential abort of the protocol. This multipartite pro-
tocol based on CV systems and MDI configuration provides
a promising solution for secure key distribution in a network
setting.

Consider a configuration where users are distributed asym-

metrically around a relay station and analyze the security of
the protocol against collective attacks. In this scenario, we
assume that Eve uses independent entangling cloners [7, 13]
and analyze the asymptotic regime of many (ideally infinite)
exchanged signals. The links connecting the parties to the re-
lay are modeled as memory-less thermal-loss channels, with
the assumption that users in the same ensemble share both
common transmissivity and thermal noise. Under these real-
istic conditions, we demonstrate that the protocol is suitable
for metropolitan-scale areas. For example, the ultimate limit
for bipartite secure communication still allows for the estab-
lishment of a secret key between two groups in a noisy envi-
ronment within a radius of 10 km.

The paper is organized as follows: in Sec. II, we describe
the communication scheme. Sec. III A focuses on the anal-
ysis of bi-partitions of users for a thermal-loss channel. In
Sec. III B, we examine two specific configurations, referred
to as the Y- and X-schemes, which allow for secure secret-
sharing among three and four groups, respectively. Finally, in
Sec. IV, we summarize our findings and provide concluding
remarks. To facilitate a deeper understanding of the protocol,
the mathematical tools used in our analysis are provided in the
appendices.

II. DESCRIPTION OF THE COMMUNICATION SCHEME

We provide the definition of a generic secret-sharing proto-
col as follows:

Definition 1 An (M,N)-threshold scheme is a procedure for
dividing a message into N pieces, called shadows or shares,
such that no subset of fewer than M shadows can reveal the
message, but any set of M shadows can be used to reconstruct
it [14].

To illustrate this concept, consider the scenario of Alice set-
ting up a launch program for a nuclear warhead from a remote
location. To ensure that the launch cannot be initiated by a
single person, she divides the launch code into N parts, and
distributes them among N individuals. These shares are en-
crypted and contain no information about the original launch
code individually. However, if M individuals cooperate, they
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Figure 1. (a) Illustration of a group of N users organized into M ensembles, each consisting of N j users, where j = {1, . . . , M}, such that∑M
j=1 N j ≤ N. The possible presence of “dummy” users is represented in red. The ensembles are arranged at different distances from the

relay, while the users within each ensemble are at equal distances from the relay (Note: the illustration may not be entirely accurate in terms
of distances between ensembles and relay). (b) (General) Prepare and measure (PM) implementation of the QSS scheme for N = 7 users,
with N1 = 3 in group “1”, and N2 = 4 users in group “2”. It may be generalised to an arbitrary number M of groups, each with a different
number N j of users users. Each user, referred to as “Bob,” sends a Gaussian-modulated coherent state with amplitude |αk⟩ to an untrusted
relay through an optical link described by a thermal-loss channel Φ j. At the relay, the incoming states undergo a generalised multipartite
Bell detection, performed through a cascade of beamsplitters and homodyne detectors. The beamsplitters have transmissivities T1 = 1 and
Tk = 1 − k−1 for k = {2, . . . , N}, while the homodyne detectors measure either the q̂ or the p̂ quadrature, as described in the figure. The
outcome, γ := (p, q2, . . . , qN) is broadcast to the Bobs, so that a posteriori correlations are created among their local variables α1, . . . , αN .
These correlations are used to extract a secret key for QSS. (Attack) Sample of the protocol in the EB representation, where each thermal-loss
channel Φ j is characterised by its transmissivity η j and thermal noise ω j = 2n̄ j + 1.

would be able to reconstruct the complete launch code. This
makes it more challenging for any single person to gain unau-
thorized access, as they would need to collude with M − 1
others.

In order to perform a QSS protocol, consider an arbi-
trary number N of trusted users (referred to as “Bobs”) ar-
ranged into M groups, with N j users in each group, where
j = {1, . . . , M}. The sum of all users in the groups should not
exceed N (see Fig. 1a), and when

∑M
j=1 N j = N, we refer to this

as the “full-house” case. The users send random Gaussian-
modulated coherent states |αk⟩ through a thermal-loss channel
Φ j to an untrusted relay, where a generalized multipartite Bell
detection is performed, as depicted in Fig. 1b. The relay is
modeled as an N-port interferometer consisting of N beam-
splitters, with increasing transmittivities T1 = 1 to Tk = 1−k−1

for k = {2, . . . , N}, followed by N homodyne detections. The
first output is measured in p̂, while the rest are q̂-homodyned,
where q̂ and p̂ are the two quadrature operators of the optical
mode such that

[
q̂, p̂

]
= 2i. The outcome γ := (p, q2, . . . , qN)

is broadcast to all Bobs, who can then remove the local dis-
placement caused by the measurements. Further mathematical
details are provided in App. A.

The theoretical assessment of the protocol is performed in
the entanglement-based (EB) representation. In this represen-
tation, each source of coherent states is represented by a two-
mode squeezed vacuum (TMSV) state ρ̂AB, which undergoes
heterodyne detection. The B̂ modes are kept at each user’s
station, while the Â modes are sent to the relay for detection.

As a result, each user is equipped with a TMSV state ρ̂AB that
has a zero mean and a covariance matrix (CM) that is equal to

VAB =

(
µI

√
µ2 − 1Z√

µ2 − 1Z µI

)
, (1)

where Z = diag {1, −1}, I = diag {1, 1}, 1 ≤ µ := cosh 2r ∈
R [15], and the modes are ordered as

(
q̂A, p̂A, q̂B, p̂B

)T
. Here,

r is the squeezing parameter. By heterodyning mode B̂, each
Bob remotely prepares a coherent state |β⟩ on mode Â, the
amplitude of which is modulated by a complex Gaussian with
variance µ−1. For large modulation µ ≫ 1, the outcome of the
measurement β̃ ≃ α∗ is approximately equal to the projected
amplitude α. The CM of the TMSV state ρ̂AB Eq. (1), upon
the action of the channel Φ j, undergoes the transformation

V′AB =

(
x jI z jZ
z jZ yI

)
, (2)

with j = {1, . . . , M}. Here, each thermal-loss channel Φ j is
characterized by its transmissivity η j and thermal noise ω j,
such that

x j = η jµ +
(
1 − η j

)
ω j,

y = µ,

z j =

√
η j

(
µ2 − 1

)
.

(3)
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Figure 2. Unitary entanglement localisation in M-symmetric states.
Within each group, users cooperate to concentrate the entanglement
they share, and we can describe the situation from the point of view
of M “super users,” which are the M groups of users.

After the Bell measurement and communication of the out-
come γ, the modes B̂ := B̂1 · · · B̂N are projected onto a sym-
metric N-mode Gaussian state (see also App. B). The users are
divided into M groups, each consisting of N j members, and
the global state is represented by ρM|γ, where M̂ := N̂1 · · · N̂M
represents all the members of the M groups. The members of
each group can apply local operations (LOs) [16] on ρM|γ to
establish a common secret key among the M groups. These lo-
cal Gaussian operations concentrate the quantum correlations
of all the Bobs, transforming ρM|γ into an effective M-mode
Gaussian state ρM|γ with CM [17] [18]

VM|γ =


Γ11 Γ12 · · · Γ1M
Γ21 Γ22 · · · Γ2M
...

...
. . .

...
ΓM1 ΓM2 · · · ΓMM

 , (4)

where [19]

Γi j = yI δi j

− ziz jdiag

δi j
∑

k,i NkX
(ki) −

(
1 − δi j

)
X(i j)∑

k,i NkX
(i) ,

√
NiN j∑M

k=1 Nk xk

 ,
(5)

with δi j the Kronecker delta, and

X
(αβ) :=

∏
k,α,β

xk. (6)

As a result, we can consider the situation from the perspec-
tive of M aggregated entities, commonly referred to as “super
users,” which correspond to the M groups into which the users
are divided. This is shown in Fig. 2. For more information on
this process, refer to App. C.

We consider the practical limitations that arise during the
implementation of the multipartite Bell detection. The pres-
ence of inefficiencies in the detectors is accounted for by in-
cluding detector efficiencies τ < 1 in the homodyne measure-
ments. This is achieved through the use of N beam splitters
with transmissivity τ. In CV-Bell detections, it is possible to

attain high efficiencies at both optical and telecom frequen-
cies, both with and without fiber components. Despite the
technical difficulties, homodyne detection can reach detection
efficiencies of up to 90% [13, 20, 21].

To account for the finite effects due to a limited number
of exchanged signals between the parties, we must consider
the reconciliation efficiency ξ of the classical codes used for
error correction and privacy amplification [1, 2]. Despite be-
ing crucial for extracting a secret key, this process typically
has an efficiency ξ < 1, with typical values ranging from
ξ ≃ 0.95 ÷ 0.985 [22–27]. In addition to this, there may
be other imperfections that arise from the relay, such as the
asymmetric behavior of the interferometer beamsplitters [11].
However, this case is nontrivial and requires numerical solu-
tions, and is therefore not considered in this analysis.

Assuming asymptotic security and infinite Gaussian modu-
lation [28], the secret-key rate of the protocol against collec-
tive attacks is simply given by [1]

R = ξIB|γ − χE|γ. (7)

For practical purposes, the secret-key rate must be optimized
over the modulation parameter µ, as outlined in App. D. To
analyze the potential performance of the protocol, we will fo-
cus on scenarios that are suitable for experimental testing, by
considering the cases with M = {2, 3, 4}.

III. RESULTS

A. Bipartite system

In a QSS session, users are divided into M = 2 groups,
referred to as group “1” and group “2”, with group “2” po-
sitioned deeper [29] in the interferometer and serving as the
decoder [30] (see also App. E). As shown in Fig. 3, the per-
formance of the protocol is evaluated in terms of the secret-
key rate, measured in bits per channel use, as a function of
the distance d1 between group “1” and the relay (measured in
kilometers for a standard optical fiber with 0.2 dB/km atten-
uation). The relay is fixed at a distance of d2 = 0 km from
group “2”. The notation used is the following

Definition 2 A splitting of the kind “X/Y” means that X%
(Y%) of all users belongs to group “1” (“2”).

In Fig. 3, we compare the optimal rate for different chan-
nel types (thermal- and pure-loss) and detection efficiencies,
with group “2” fixed at the relay and group “1” at varying
distances. The parameters of the thermal-loss channel are
detailed in the figure caption. Our Gaussian QSS scheme
achieves outstanding performance compared to qubit-based
protocols, with secret key rates that are at least three orders of
magnitude higher [31], over comparable distances, for which
one has ≲ 10−4 bit/use at ≲ 25 km. If symmetric configuration
was limited to 3.8 km, our apparatus can reach a maximum
distance of 170 km in standard optical fibers, with a high key
rate of 2 × 10−4 bit/use. With a clock of 25 MHz, this corre-
sponds to a key rate of the order of 2.5 Mbits/sec for all users.
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Figure 3. Secret-key rates (in bits per use) for two optimally dis-
tributed groups, as a function of the distance d1 (in km, for a stan-
dard optical fiber) of group “1”, with group “2” fixed at the relay
(d2 = 0 km). The different curves correspond to different parameter
settings: black (ω1 = ω2 = τ = 1), dashed green (ω1 = 1, ω2 =

1.1, τ = 1), red (ω1 = ω2 = 1, τ = 0.98), dashed purple (ω1 =

1, ω2 = 1.1, τ = 0.98), orange (ω1 = 1.1, ω2 = 1 = τ = 1), dashed
blue (ω1 = ω2 = 1.1, τ = 1), yellow (ω1 = 1.1, ω2 = 1, τ = 0.98),
and dashed gray (ω1 = ω2 = 1.1, τ = 0.98). The performances of
the protocol, whether ideal (black and orange curves) or not (red and
yellow curves), are not significantly affected by the presence of noise
in the nearest group (dashed green, blue, purple, and gray curves).
However, in the case of thermal noise corresponding to ω1 = 1.1
SNU and a detection efficiency of τ = 98%, the performance is re-
duced by about 150%.

The optimal bipartition corresponds to the “full-house” case
and symmetric splitting, resulting in the same best (ideal) per-
formance as standard CV-MDI-QKD [7, 12] in its asymmetric
configuration (black curve). This is possible because the state
ρ2|γ is independent from the number of users N. Our results
show that, while imperfections and noise do have a general
destructive effect, they do not appreciably affect the perfor-
mance of the protocol (solid and dashed line coincide). How-
ever, the presence of thermal noise with ω1 = 1.1 SNU and a
detection efficiency of τ = 98% reduces the performance by
about 150%. These results highlight the feasibility of high-
rate secure CV-MDI-QKD QSS in a noisy environment at a
metropolitan scale.

1. Secret-key rate versus group distance

In this study, we examine the behavior of the secret-
key rate with respect to the distance of one of the two
groups, while the other is fixed. We vary the distance di =

{0.1 km, 1 km, 10 km} of one of the groups from the relay. We
focus on the full-house case for different splittings, including
50/50, 5/95, and 1/99. The 50/50 splitting is also analyzed
in a noisy environment.

The trends [32] in the secret-key rate behavior with respect
to the distance of a group are presented in Fig. 4. Our analysis
shows that for a pure-loss channel, the performance is worse

Figure 4. performance of the protocol in terms of secret-key rate (in
bits per use) as a function of the distance of one of the groups (in
km, for a standard optical fiber), with the distance of the other group
fixed at di = 0.1 km. Figures a and b differ in which group is fixed.
The different curves correspond to different splitting ratios: 50/50
(red, black, green, and purple), 5/95 (blue), and 1/99 (gray). We
also consider different amounts of noise added to the optimal 50/50
configuration, with noise parameters of ω1 = ω2 = 1 (red, blue, and
gray), ω1 = 1, ω2 = 1.1 (black), ω1 = 1.1, ω2 = 1 (purple), and
ω1 = ω2 = 1.1 (green). The plots are invariant with respect to asym-
metrical splittings when there is no injection of noise, implying no
depth effects induced by the relay. The best performance is achieved
for the optimal 50/50 splitting, with the deepest group in the inter-
ferometer closest to the relay, resulting in an improvement of a factor
of 10 compared to the symmetric protocol [11]. The ultimate limit
for bipartite secure communication still allows for the establishment
of a secret key between two groups at a metropolitan scale within a
radius of d2 = 10 km (not shown). Noise is more tolerable in the
nearest group, where the performance is not significantly affected.

when the splittings are extreme and does not vary [33] with
asymmetrical splittings. This indicates that there are no depth
effects induced by the relay. Despite this, we are pleased to
find that the ultimate limit for bipartite secure communication
still allows for the establishment of a secret key between two
groups within a radius of 10 km in a metropolitan scale (not
shown). When studying the impact of noise, we observe that
in the case of asymmetrical noise [34], the group closer to the
relay can tolerate more noise in its link, and the performance is
not significantly affected. At present, reasonable values of ex-
cess noise are in the range of ϵ = 0.04÷0.05 SNU [35], which
express the incredible tolerance of our protocol to noise, de-
spite the conversion from excess noise to thermal noise ω not
being immediate.

Finally, Fig. 5 further (see Fig. ??) illustrates the impact
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of distance on the secret-key rate when considering non-ideal
reconciliation efficiency (ξ ≤ 1). As expected, the rate de-
crease as the distance increases, and the impact of imperfect
reconciliation becomes more pronounced. The results clearly
demonstrate the need for efficient reconciliation to achieve
high secret-key rates over large distances.

Figure 5. Secret-key rates (bits per use) are plotted against the
distance d1 (in km, for a standard optical fiber) of the superficial
group “1” in a two-group setup, where group “2” is fixed at a distance
of d2 = 0.1 km. The groups are optimally distributed in a 50/50
ratio. The figure shows the impact of reconciliation efficiency on the
secret-key rates, with different curves representing different values
of reconciliation efficiencies. Moving from right to left, the values
are ξ = 1, 0.985, 0.98, 0.95, and 0.90. As expected, the secret-key
rate decreases with decreasing reconciliation efficiency. The results
highlight the importance of high reconciliation efficiency to achieve
a higher secret-key rate in quantum key distribution protocols.

2. Threshold behaviour

The results of this study, depicted in Fig. 6, showcase the
threshold behavior characteristic of QSS. As depicted, when
one or more users do not cooperate, the performance drops
significantly, which allows for easy detection and potential
termination of the session.

Our study focuses on determining the maximum distance
achievable by one group of users, d max

j [36], as a function of
the number of users N, while keeping the distance of another
group fixed at di. Three different types of user bipartitions
were considered. As previously stated, the optimal split of
50/50 (represented by orange in the figure) has a performance
that does not depend on N. Additionally, we analyze the cases
where one “dummy” user is present in each group, leading to
two scenarios: N1 = N/2 − 1, N2 = N/2 (purple) and N1 =

N/2, N2 = N/2 − 1 (blue).
We also considered the scenario where two dummy users

are present, resulting in three possible combinations: N1 =

N2 = N/2 − 1 (red), N1 = N/2 − 2, N2 = N/2 (brown), or
N1 = N/2, N2 = N/2 − 2 (pink). Our analysis shows that, re-
gardless of the user group positioning, the worst effect occurs
when users of the shallowest group do not cooperate, implying
possible depth effects.

Figure 6. Maximum fiber distance for the QSS protocol, plotted for
three different types of bipartitions of the users. The optimal 50/50
splitting (orange curves) exhibits performance that is independent of
N. We consider the scenario with one dummy Bob per group, i.e.,
N1 = N/2−1 and N2 = N/2 (purple curves), or vice versa, N1 = N/2
and N2 = N/2 − 1 (blue), and two dummy Bobs, N1 = N2 = N/2 − 1
(red), or N1 = N/2 − 2 and N2 = N/2 (brown), or vice versa, N1 =

N/2 and N2 = N/2 − 2 (pink). The protocol performance is always
the worst when the users in the shallowest group do not cooperate.
In (a), we compare the performance with the corresponding pure-
loss channel (gray). In (b), we consider the case of reconciliation
efficiency ξ = 0.985 for the worst-case scenario of one dummy Bob
in group “1”. Any configuration of two dummy users produces a
negative rate. The introduction of reconciliation efficiency lowers
the curves and makes the threshold behavior more pronounced when
compared with the ideal ξ = 1 case (gray).

The introduction of reconciliation efficiency has a com-
pressing effect on the rate, making the threshold behavior even
more pronounced, as can be seen in Fig. 6(b).

B. M-partite systems: Y- and X-schemes

We present a study of a specific configuration in which there
are M = 3 groups, each with N j = N/M users and a pure-loss
channel with equal excess noise, ω j = 1 for j = {1, 2, 3}, re-
sulting in an optimal M-partition. The details of this setup are
discussed in App. F. In the Y-scheme configuration, the third
group, located farthest from the relay, is placed at a distance of
d3, while the first and second groups are positioned at an equal
distance d1/2 from the relay. This configuration is depicted in
Fig. 7a. Additionally, the relay can be configured to act as a
switch, connecting two groups at a time, as shown in Fig. 7b.

The impact of the distance d1/2 of the shallowest group on
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Figure 7. Schematic diagram of a Y-scheme with three groups.
Group “3” is the deepest in the interferometer, located at a distance
of d3 from the relay, while groups 1” and “2” are equidistant from
the relay at a distance of d1/2. (b) The relay can also function as a
switch, allowing the two superficial groups to communicate directly
without passing through the deepest group.

Figure 8. Secret-key rate (in bits per use) as a function of the distance
(in kilometers, for standard optical fiber) at which two groups are
placed from the relay, while the deepest group in the interferometer
is fixed at a distance ddeep, with deep = {2, 3}. The red, blue, and
black curves correspond to distances d3 of 100 m, 50 m, and 10 m,
respectively. The secret key rate is robust to changes in the distance
d3. Operating the relay as a switch yields a threefold improvement.
The inset shows that the performance worsens when going from two
to three groups. Specifically, we compare the red curve with M = 2,
N j = N/2 (green) and M = 2, N1 = 2N/3, N2 = N/3 (black).

the secret-key rate can be seen in Fig. 8, where the fixed dis-
tance of the deepest group, d3 = {10 m, 50 m, 100 m}, is kept
constant. The two sets of curves in the figure represent two
different relay configurations, with the right set representing
the switch case, which enhances the performance by a factor
of nearly three.

The inset provides a visual comparison to highlight the
scaling. When considering an analogous two-group scenario,
with the deepest group, i.e., group “2”, located d2 = 100 m
from the relay, and varying the distance d1 of the other group,
secure communication at a distance of nearly 60 km can be
achieved even with a non-optimal split of N1 = 2N/3 and
N2 = N/3. However, adding a third group results in a dras-
tic drop in performance that stabilizes immediately afterwards
(if other groups are to be added). In a Y-scheme with an op-

Figure 9. Comparison of the secret-key rate (bit/use) for a non-ideal
tripartite Y-scheme (red), a switch configuration (blue), and the ideal
case (gray), corresponding to Fig. 8.

timal three-partition, the restriction is to approximately 1 km,
while four groups permit secure communication up to approx-
imately 600 m. Finally, Fig. 9 presents the results of the same
scenario as Fig. 8 but with non-ideal Bell detection. Fig. 8

Relay
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1
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d4 4

Y

Relay
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21
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d3/4
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4

Figure 10. The Y-scheme and X-scheme are two ways to arrange
four groups for secure key distribution.

demonstrates the robustness of the secret-key rate to changes
in d3 for both operational modes of the relay. The scalability
of the scheme is further proven by the extension to four groups
in the Y-scheme set-up shown in Fig. 10. The deepest group
(group “4”) is located at a distance d4 from the relay, while
the other three groups (“1”, “2”, and “3”) are positioned at an
equal distance d1/2/3 from the relay. In addition, we analyze
another configuration, known as the X-scheme, in which the
users are distributed with an optimal M-partition of the form
N j = N/M, where M = 4. In this configuration, groups “1”
and “2” are positioned at a distance d1/2 from the relay, while
groups “3” and “4” are positioned at a distance d3/4 from the
relay (as shown in Fig. 10). The secret-key rate of the protocol
as a function of the distance d1/2 of the first two groups, with
the other distances d3/4 fixed, is shown in Fig. 11. As the best
protocol performance is achieved when the deepest group(s)
in the interferometer is (are) located closer to the relay, we fix
their distance. When distributed in a X-scheme (represented
by green curves), the four groups perform better (by approxi-
mately less than 15%) than they would in a Y-scheme (repre-
sented by red curves). This is because the larger the number
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Figure 11. Secret-key rate (bit/use) as a function of the distance
(in km, for standard optical fiber) between the relay and the deep-
est group in the interferometer, for different distances between the
other two groups and two fixed values of the deepest group’s dis-
tance: ddeep = 100 m (red), 50 m (blue), and 10 m (black), corre-
sponding to depths deep = {4, 3/4}, respectively. The X-scheme
(green) outperforms the Y-scheme (red) by less than 15%. The ro-
bustness to changes in ddeep is similar for both schemes.

of users closer to the relay, the better the performance.

IV. CONCLUSIONS

We have presented a novel multipartite CV-MDI-QKD pro-
tocol that enables secure quantum secret sharing among an ar-
bitrary number of users. This protocol builds upon the asym-
metric configuration from previous works [9, 11] and extends
the capabilities of standard CV-MDI-QKD [7, 12]. Our anal-
ysis focuses on the asymptotic security of the protocol, ig-
noring finite-size effects and assuming individual uncorrelated
attacks. Despite these limitations, the results are promising,
especially considering the high level of excess thermal noise
we have used in our analysis, which is even higher than what
has been achieved experimentally [35]. Moreover, the chal-
lenges associated with modeling a correlated attack make this
a highly nontrivial task both theoretically and computation-
ally.

The performance of a M-partite CV-MDI-QKD protocol
with M > 2 groups has been analyzed in this study. To sim-
plify the analysis, two specific configurations, the Y- and X-
schemes, have been considered. The results show that the
“switch” variant of the Y-scheme leads to improved perfor-
mance. The protocol also demonstrates robustness to changes
in the distance of the deepest group in the interferometer, pro-
viding a foundation for building a network of nodes.

In conclusion, it is important to keep in mind that the se-
curity of the presented protocol is only proven in the asymp-
totic limit of many exchanged signals and does not take into
account finite-size effects. Further research is needed to im-
prove the security and performance of the protocol. This in-
cludes the study of multipartite Bell detections, which have
been limited to only a few users so far [37, 38]. Alternatives

such as a squeezed state protocol or a thermal-state protocol
in the THz frequency range [39], as well as discrete modu-
lation [40] [1, 41, 42], may lead to improved results. Addi-
tionally, exploring other set-ups, such as smaller groups con-
nected with two-by-two Bell-like detections, could help ex-
tend the study to more complex networks and clusters of net-
works. The potential for improvement in this field is vast and
provides ample opportunities for future research.

Appendix A: Action of the interferometer

The relay station in our model is represented by the N-port
interferometer outlined in Sec. II. This interferometer operates
on the travelling modes Â and is described by the symplectic
linear transformation [11] given by

Â1 → A1 =
1
√

N

N∑
j=1

Â j,

Âk → Ak =
1

√
k (k − 1)

(k − 1) Âk −

k−1∑
i=1

Âi


for k = {2, . . . , N} .

(A1)

For clarity, we will use A instead of Â to represent the trav-
elling modes after they have undergone the transformation of
the interferometer.

1. Bipartite system

To provide further clarity, let us consider the case where
there are only two groups (M = 2). After the interferometer
has acted, the global input state is described by the CM

VB =

(
y I2N Υ

ΥT Ξ

)
, (A2)

where, for the sake of calculation simplicity, the order of the
modes has been changed to

{
B̂1, . . . , B̂N , A1, . . . , AN

}
, with

B̂ j =
(
q̂B

j , p̂B
j

)T
and A j =

(
qA

j , pA
j

)T
. Note that in this case,

the absence of the hat symbol distinguishes the modes before
and after the interferometer’s action. In general, for the case
M = 2, the entries of the matrices Υ and Ξ can be calculated
using Eq. (A5). where the value of ⋆ = {1, 2} in the expres-
sion depends on the group, and with Λa, b := ax1 + bx2. It is
noteworthy that, with a proper rearrangement of the modes,
the matrix Υ is upper-triangular. To give a concrete example,
let us consider the case where N = 5, N1 = 2, and N2 = 3.
This scenario is depicted by the block matrices

Υ =



z1√
5
−

z1√
2
−

z1√
6
−

z1

2
√

3
−

z1

2
√

5
z1√

5
z1√

2
−

z1√
6
−

z1

2
√

3
−

z1

2
√

5
z2√

5
0

√
2
3 z2 −

z2

2
√

3
−

z2

2
√

5
z2√

5
0 0

√
3

2 z2 −
z2

2
√

5
z2√

5
0 0 0 2z2√

5


⊗ Z, (A3)
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Ξ =



Λ2, 3

5 0 −

√
2

15Λ1,−1 −
Λ1,−1
√

15
−
Λ1,−1

5
0 Λ1, 0 0 0 0

−

√
2

15Λ1,−1 0 Λ1, 2

3
Λ1,−1

3
√

2
Λ1,−1
√

30

−
Λ1,−1
√

15
0 Λ1,−1

3
√

2
Λ1, 5

6
Λ1,−1

2
√

15

−
Λ1,−1

5 0 Λ1,−1
√

30
Λ1,−1

2
√

15
Λ1, 9

10


⊗ I.

(A4)

Υ =



z1√
N −

z1√
2
· · · −

z1√
j( j−1)

· · · −
z1√

k(k−1)
· · · −

z1√
N(N−1)

... z1√
2
· · · · · · · · · · · · · · · −

z1√
N(N−1)

z1√
N

0
. . . · · · · · · · · · · · ·

...

z2√
N 0 · · ·

√
j−1

j z2 · · · · · · · · · −
z2√

N(N−1)
...

... · · · 0
. . . · · · · · · −

z2√
N(N−1)

...
... · · ·

... 0
√

k−1
k z2 · · ·

...

... 0 · · · · · · · · · 0
. . . − z2√

N(N−1)
z2√
N

0 · · · 0 · · · · · · 0
√

N−1
N z2



⊗ Z,

Υ



〈
B̂iA j

〉
= 0, 1 , i > j,〈

B̂mA1

〉
=

z⋆
√

N
, ∀m,〈

B̂lAk

〉
= −

z⋆
√

k (k − 1)
, 1 , l < k,

〈
B̂kAk

〉
=

√
k − 1

k
z⋆, k ≥ 2,

, Ξ



〈
A2

1

〉
=
ΛN1,N2

N
,〈

A2
k

〉
=
Λ2, k(k−1)−2

k(k − 1)
, k > 2,〈

A2A j

〉
= 0, ∀ j , 2

⟨A1Ak⟩ = −2
Λ1,−1

√
Nk (k − 1)

, k > 2,

⟨AlAk⟩ = 2
Λ1,−1

√
l (l − 1) k (k − 1)

, l, k > 2,

(A5)

Appendix B: Generalised multipartite Bell detection

To perform the multipartite Bell detection, N − 1 homo-
dyne detections in the q̂-quadrature and one homodyne detec-
tion in the p̂-quadrature are carried out. Using the example in
Eq. (A2), in the scenario with N = 5, N1 = 2, and N2 = 3, the
resulting conditional global input state is described as

VB|γ =


A C E E E
C A E E E
E E B D D
E E D B D
E E D D B

 . (B1)

where

A = yI −
 1

x1

Λ3, 1

Λ3, 2
0

0 1
Λ2, 3

 z2
1,

B = yI −
 2

x2

Λ1, 1

Λ3, 2
0

0 1
Λ2, 3

 z2
2,

C =
 x2

x1

1
Λ3, 2

0
0 − 1

Λ2, 3

 z2
1,

D =
 x1

x2

1
Λ3, 2

0
0 − 1

Λ2, 3

 z2
2,

E =
 1
Λ3, 2

0
0 − 1

Λ2, 3

 z1z2.

(B2)
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Appendix C: Unitary entanglement localisation of M-symmetric
states

Eq. (B1) displays a distinctive symmetry that remains con-
sistent for any value of M, making it possible to simplify
our problem. To demonstrate this simplification, let us exam-
ine one quadrature (the same reasoning can be applied to the
other). As a straightforward application of linear algebra [18],
let us consider a N × N matrix of the form

WN j :=
(
d j − c j

)
IN j + N jc j PN j

=



d j c j c j · · · c j

c j d j c j
. . . c j

c j c j d j
. . . c j

...
. . .
. . .
. . .
...

c j c j c j c j d j


,

(C1)

where PN j denotes the projection matrix onto the vector vN j =

N−1/2
j (1, 1, . . . , 1)T [43]. With the above Eq. (C1), it is

straightforward to see that the matrix is diagonal in the basis
defined by vN j and N j − 1 orthogonal vectors, that is

W′
N j
= R−1

N j
WN j RN j

=



d j − c j 0 0 · · · 0

0 d j − c j 0
. . . 0

0 0 d j − c j
. . . 0

...
. . .

. . .
. . .

...

0 0 0 0 d j +
(
N j − 1

)
c j


.

(C2)

The matrix RN j is the rotation that diagonalizes the matrix,
which can be obtained from the basis of eigenvectors {ek}

N j

k=1

of the matrix itself. It is given by RN j = N−1/2
j

(
e1, . . . , eN j

)T
.

We define

Definition 3 An M-symmetric state is a multi-partite state of∑M
j=1 N j modes characterized by its CM VM. The state is con-

structed by incorporating diagonal blocks,

ON jN j =
(
d j − c j

)
IN j + N jc j PN j ≡ WN j , (C3)

with the same symmetry as WN j , and off-diagonal blocks,

ONiN j ≡ P f −1
i j

(i , j) , (C4)

which are proportional to PN j and have all elements equal to
fi j.

For clarity, we present an example of a

V3 =


WN1 P f −1

12
P f −1

13

P f −1
12

WN2 P f −1
23

P f −1
13

P f −1
23

WN3

 . (C5)

As previously stated, Eq. (B1) is an example of a particular
V2. By applying the same reasoning as in Eq. (C2), we can
find the transformed CM of a general M-symmetric state, as

V′M =
M⊕

i=1

R−1
Ni

VM

M⊕
j=1

RN j , (C6)

whose blocks are therefore simply given by

O′NiN j
= R−1

Ni
ONiN j RN j . (C7)

Thus, the transformed CM V′M describes an effective state
of M modes, since

(∑M
j=1 N j

)
− M of them are thermal (or

vacuum) states that are uncorrelated with each other [as seen
in Eq. (C9)]. The effective M-mode state is described by

O′NiN j
= [di + (Ni − 1) ci] δi j +

(
1 − δi j

)
fi j

√
NiN j. (C8)

For example, we provide a transformed

V′2 =

d1 − c1 0
. . . 0 0 0 0 0

0 d1 − c1
. . . 0 0 0 0 0

...
. . .

. . .
... 0 0 0 0

0 0 0 d1 + (N1 − 1) c1 f12
√

N1N2 0 0 0

0 0 0 f12
√

N1N2 d2 + (N2 − 1) c2 0 0 0

0 0 0 0
...

. . .
. . .

...

0 0 0 0 0
. . . d2 − c2 0

0 0 0 0 0
. . . 0 d2 − c2





, (C9)
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and therefore V′2 corresponds N1+N2−2 uncorrelated thermal
modes, while the effective 2-mode state is described by

V′2 =
d1 + (N1 − 1) c1 f12

√
N1N2

f12
√

N1N2 d2 + (N2 − 1) c2


 . (C10)

By induction and following the above reasoning, the general
post-reduction CM of the effective M-mode state is given by
Eqs. 4 and 5 in the main text. To clarify these expressions, let
us consider the case of

V3|γ =

 Γ11 Γ12 Γ13
Γ12 Γ22 Γ23
Γ13 Γ23 Γ33

 . (C11)

where

Γ11 = yI −
 N3 x2+N2 x3

Θq
0

0 N1
Θp

 z2
1,

Γ22 = yI −
 N3 x1+N1 x3

Θq
0

0 N2
Θp

 z2
2,

Γ33 = yI −

 ΛN2 ,N1
Θq

0
0 N3

Θp

 z2
3,

Γ12 =
√

N1N2

 x3
Θq

0
0 − 1

Θp

 z1z2,

Γ13 =
√

N1N3

 x2
Θq

0
0 − 1

Θp

 z1z3,

Γ23 =
√

N2N3

 x1
Θq

0
0 − 1

Θp

 z2z3,

(C12)

withΘq := N1x2x3+cyclics andΘp :=
∑3

j=1 N jx j. The change
in labeling is made to facilitate comprehension [see Eqs. C12
and 5].

Appendix D: Secret-key rate

Before the action of the eavesdropper and the measure-
ments, the global input state that describes the parties (the
Bobs) and the eavesdropper (Eve) is pure and Gaussian. Af-
ter her action and before the measurements, the global output
state is still pure, although it may be non-Gaussian. The local
measurements commute, so we can defer the Bobs’ hetero-
dyne detections until after Eve’s measurement. As a result,
the Bobs and Eve share a pure conditional state ρ̂BE|γ, where
we label the local modes as B̂ := B̂1 · · · B̂N . The reduced states
for the Bobs and Eve are ρ̂B|γ and ρ̂BE|γ, respectively. Since the
conditional state is pure, the von Neumann entropies S of the
subsystems are equal, meaning

S
(
ρ̂B|γ

)
= S

(
ρ̂E|γ

)
. (D1)

Analogously, in the conditional post-relay scheme, the action
of the Bobs projects ρ̂BE|γ into a pure [44] state ρ̂BE|γβ̃(N) , yield-
ing to

S
(
ρ̂B|γβ̃(N)

)
= S

(
ρ̂E|γβ̃(N)

)
. (D2)

As a consequence, the amount of information that Eve can
obtain about Bobs’ variables β̃(N) :=

{
β̃ j

}N

j=1
, conditioned on

γ, is upper-bounded by her Holevo quantity

χE|γ = S
(
ρ̂E|γ

)
− S

(
ρ̂E|γβ̃(N)

)
= S

(
ρ̂B|γ

)
− S

(
ρ̂B|γβ̃(N)

)
,

(D3)

which is fully determined by the conditional state ρ̂B|γ. In-
deed, assuming asymptotic security and infinite Gaussian
modulation, the secret-key rate of the protocol can then be
expressed as

R = ξIB|γ − χE|γ, (D4)

where ξ < 1 is the reconciliation efficiency. It is worth noting
that, even though

∑M
j=1 N j < N, Eve still has a purification of

the global state due to the assumption of all trusted users, and
as a result, the secret-key rate is covariant [45] [11].

Appendix E: Bipartite system

In the QSS protocol, the parties are divided into M = 2
groups, and the effective two-mode CM can be obtained fol-
lowing the methods presented in Refs. [11]. Using the same
notation, the resulting CM is given by

V2|γ =

(
∆1 Γ

′

Γ′ ∆2

)
, (E1)

where, for l = {1, 2}, one explicitly has

∆l = y − diag
 (N − Nl) z2

l

ΛN−N1,N−N2

,
Nlz2

l

ΛN−N2,N−N1

 ,
Γ′ = z1z2

√
N1N2 diag

(
1

ΛN−N1,N−N2

, −
1

ΛN−N2,N−N1

)
,

(E2)

and againΛa, b := ax1+bx2. One may compute the symplectic
eigenvalues of the CM Eq. (E1) as [6]

ν± =

√√
∆ ±

√
∆2 − 4

∥∥∥V2|γ
∥∥∥

2
, (E3)

where ∆ = ∥∆1∥ + ∥∆2∥ + 2
∥∥∥Γ′∥∥∥ and ∥·∥ indicates the determi-

nant. However, it is not known beforehand if the rate will be
asymptotically maximum or if there exists an optimal mod-
ulation value µ that maximizes it. Our analysis shows that
there is an optimal modulation in the full-house case, where
all users participate. Additionally, we also study the asymp-
totic trends for large modulation values in the full-house (FH)
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scenario and find that

ν(FH)
+ → |η1 − η2|

√
N1N2

N12Ñ12

µ,

ν(FH)
− →

1
|η1 − η2|

√
λ12λ̃12

N1N2
,

(E4)

with

λi j := Niω j

(
1 − η j

)
+ N jωi (1 − ηi) ,

λ̃i j := Niωi (1 − ηi) + N jω j

(
1 − η j

)
,

Ni j := Niη j + N jηi,

Ñi j := Niηi + N jη j,

(E5)

which are all symmetrical with respect to the interchange of
indices i and j. The removable discontinuity η1 = η2 does not
represent a problem, as we will prove in the next Sec. E 1.

1. Conditioning: Heterodyne Detection

Assuming group “2” serves as the decoder, the conditional
CM after local heterodyne detection of Eq. (E1) is calcalated
as [6]

V1|γ2 = ∆1 − Γ
′ (I + ∆2)−1 Γ′T, (E6)

which is diagonal and therefore its symplectic eigenvalue can
be obtained by the symplectic invariance of its determinant,
that is

νS S
N =

√∥∥∥V1|γ2
∥∥∥. (E7)

Specifically, in the FH limit, the symplectic eigenvalue is
given by

νS S
N →

1
η1

√
(λ12 + N1η2)

(̃
λ12 + N2η2

)
N1N2

. (E8)

Having the total and conditional symplectic spectra [Eqs. (E4)
and (E8), respectively], the Holevo quantity using as

χ = h (ν+) + h (ν−) − h
(
νS S

N

)
, (E9)

where the entropic function h is defined as

h(ν) :=
ν + 1

2
log2

(
ν + 1

2

)
−
ν − 1

2
log2

(
ν − 1

2

)
. (E10)

The function is equal to zero for the vacuum noise h (1) = 0
and asymptotically approaches

h(ν) = log2
e
2
ν + O

(
ν−1

)
. (E11)

The continuity of the Holevo quantity χ in the transition from
the asymmetrical to the symmetrical configuration, i.e., in

{η1 = η2, ω1 = ω2}, must be verified. This can be done by
comparing their respective symplectic eigenvalues in the FH
case. When η1 = η2 := η and ω1 = ω2 := ω, the following
holds

ν(FH)
± →

√
y
(
y −

z2

x

)

=

√[
(1 − η) µω + η

]
µ

(1 − η)ω + ηµ
,

(E12)

in agreement with Refs. [11]. The same continuity holds for
νS S

N , which converges to

νS S
N →

√
τ12τ21

τ̃12τ̃21
, (E13)

where we define

τi j := η
(
Ni + N jµ

)
+ Nω (1 − η) µ

τ̃i j := η
(
Ni + N jηµ

)
+ Nω (1 − η) .

(E14)

2. Mutual Information

The mutual information can be expressed compactly as [12]

I =
1
2

log2 Σ, (E15)

where we make the assumption that group “2” serves as the
decoder, allowing us to write

Σ =
1 + ∥∆1∥ + Tr {∆1}

1 +
∥∥∥V1|γ2

∥∥∥ + Tr
{
V1|γ2

} , (E16)

with ∆1 and V1|γ2 defined in Eqs. (E1) and (E6), respectively.
A closer examination of the denominator σn := 1 +

∥∥∥V1|γ2
∥∥∥ +

Tr
{
V1|γ2

}
reveals

σn →

η2 (η1 + η2) N (N − N1 − N2)2 µ2

(N − N1)
[
N (η1 + η2) − N12

] [
(N − N2) (η1 + η2) − N1η2

] .
(E17)

The (quadratic) dependence on the modulation µ highlights
the importance of identifying an optimal value of µ to maxi-
mize the secure communication performance. In contrast, in
the FH case, there is no such dependence, as

σ(FH)
n →

(λ12 +N12)
(̃
λ12 + Ñ12

)
N1N2η

2
1

. (E18)

This suggests that for a bipartite system, there is a direct rela-
tionship between full-house and asymptotic behavior. When-
ever all users cooperate, the rate is maximized for high values
of modulation µ ≫ 1. On the other hand, as soon as one or
more users do not cooperate, there exists an optimal modula-
tion value that maximizes the rate.
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3. Secret-key rate

In a thermal-loss channel with asymptotic security, the
secret-key rate against collective attacks can be obtained using
Eq. (7), assuming perfect reconciliation (ξ = 1) and utilizing
an infinite Gaussian modulation as

R =
1
2

log2 Σ − h (ν+) − h (ν−) + h
(
νS S

N

)
. (E19)

One may determine its FH asymptotic limit, resulting in

Rasy = log2

 2η1η2

e |η1 − η2|

√
N1N2

(λ12 +N12)
(̃
λ12 + Ñ12

) 
− h

 1
|η1 − η2|

√
λ12λ̃12

N1N2


+ h

 1
η1

√
(λ12 + N1η2)

(̃
λ12 + N2η2

)
N1N2

 .
(E20)

The asymmetric configuration, when ideal conditions are met, enables secure long-distance communication. In particular, for
η2 = 1 (which corresponds to a distance of 0, km for the second user), the secret-key rate expression in Eq. (E20) simplifies to

Rasy (η2 = 1) = log2

 2η1

e (1 − η1)

√
N1N2{

N1 + N2
[
ω1 (1 − η1) + η1

]} {
N2 + N1

[
ω1 (1 − η1) + η1

]} 
− h (ω1) + h

 1
η1

√[
N1 + N2ω1 (1 − η1)

] [
N2 + N1ω1 (1 − η1)

]
N1N2

 .
(E21)

Under the condition that group “1” has pure-loss links (ω1 =

1), Eq. (E20) can be further simplified to

Rasy (η2 = 1, ω1 = 1) = log2

[
η1

e (1 − η1)

√
N1N2

N

]

+ h

 1
η1

√[
N1 + N2 (1 − η1)

] [
N2 + N1 (1 − η1)

]
N1N2

 .
(E22)

The rate Eq. (E20) is based on the assumption of infinite use
of the relay channel. However, this can be closely approx-
imated after a large but finite number of rounds, as demon-
strated in Fig. 12. The fast convergence of the rate expressed
in Eq. (E19) to its asymptotic value is particularly notewor-
thy. Additionally, it is observed that the configurations “X/Y”
and “Y/X” show the same behavior, indicating that there are
no depth effects introduced by the relay. Furthermore, when
N1 + N2 < N, there exists an optimal modulation value µ that
maximizes the rate, as confirmed by Fig. 13 in the case of a
pure-loss channel with ω1 = ω2 = 1.

4. Non-ideal Bell detector

In the bipartite asymmetrical scenario, the transformation
rule Eq. (E2) is represented as

(N − N1) x1 + (N − N2) x2

7→ (N − N1) x1 + (N − N2) x2 + N
1 − τ
τ
,

(N − N2) x1 + (N − N1) x2

7→ (N − N2) x1 + (N − N1) x2 + N
1 − τ
τ
.

(E23)

This generalizes the results from Refs. [9, 37, 46]. Further-
more, in the case of a FH scenario, with N1 + N2 = N,
Eq. (E23) simplifies to

x j 7→ x j +
1 − τ
τ
, j = {1, 2}. (E24)

One can then generalize Eq. (E20) by following the approach
presented in Ref. [37] and applying the transformations from
Eq. (E24). Although Eq. (E20) is not expressed in terms of
x j, y, and z j, but rather in terms of the channel parameters η j,
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Figure 12. The solid curves show the secret-key rate (bit/use) as a
function of modulation µ, obtained from Eq. (E19), for different split-
tings of the signal in the full-house configuration, where Alice sends
signals to all four users. The dotted curves represent the asymptotic
rate Eq. (E20) for large values of µ. Moving from top to bottom, the
splitting ratios are 50/50, 5/95, and 1/991. The distances and ther-
mal noises are fixed to d1 = 1 km, d2 = 0.1 km, and ω1 = ω2 = 1
SNU. The figure shows that the optimal modulation for maximiz-
ing the rate is always large, independent of the splitting, and that the
performance is symmetric with respect to the ‘X/Y” and “Y/X” split-
tings.

Figure 13. The secret-key rate (bit/use) as a function of the modula-
tion µ (SNU) for a pure-loss channel (i.e., ω1 = ω2 = 1) exhibits the
presence of an optimal µ for dummy users, regardless of the distance
of the groups from the relay. The curves show the performance of
different “asymmetries” in the 50/50 splitting. The blue curve cor-
responds to the optimal 50/50 case, which has the same trend shown
in Fig. 12. Other parameters are d1 = 1 km and d2 = 0.01 km.

ω j, and the modulation µ, making this substitution non-trivial,
after developing the usual analysis, it can be shown that, in
the FH case, the asymptotic non-ideal secret-key rate for two

groups with a thermal-loss channel is given by

Rasy = log2

 2τη1η2

e |η1 − η2|

√
N1N2

L12L21

 − h
 1
τ |η1 − η2|

√
S 12S 21

N1N2


+ h

 1
τη1

√
R12R21

N1N2

 ,
(E25)

where

S i j = Ni
[
1 − τ + τω1 (1 − η1)

]
+ N j

[
1 − τ + τω2 (1 − η2)

]
,

Ri j = Ni
[
1 − τ + τω1 (1 − η1)

]
+ N j

[
1 − τ (1 − η2) + τω2 (1 − η2)

]
,

Li j = Ni
[
1 − τ (1 − η1) + τω1 (1 − η1)

]
+ N j

[
1 − τ (1 − η2) + τω2 (1 − η2)

]
.

(E26)

Appendix F: M-partite systems: Y- and X-schemes

The standard procedure is followed when analyzing the se-
curity of a system with more than two groups. However, when
dealing with multiple groups, it is important to pay attention
to the rate. The smallest possible secret-key rate is obtained
by subtracting the maximum Holevo quantity χ from the min-
imum mutual information I between any two groups. This
is because the rate between different groups can vary and a
potential eavesdropper may attack the group with the lower
rate. To consider the worst-case scenario, we need to take the
lowest possible rate into account.

To optimize the system, we must first find the symplectic
eigenspectrum of VM|γ [see Eq. (4)]. The conditioning of the
system can then be performed in M different ways and we
need to find the method that maximizes the Holevo quantity
or minimizes the conditional von Neumann entropy S cond. To
do this, we perform local heterodyne detection on VM|γ and
find the group that is furthest from the relay, as this group will
result in the minimum conditional entropy [47].

For the switch to function correctly, we must consider all
combinations of two groups and perform a heterodyne mea-
surement. They are characterised by the

(
M
2

)
Vyzs 4 × 4 ma-

trices built from VM|γ with the blocks Γyy, Γzz, and Γyz of the
groups “Y” and “Z” of interest, with y, z = {1, . . . , M}. The
minimum is still obtained by measuring the group that is fur-
thest from the relay.

The correct mutual information Eq. (E15) can be deter-
mined by considering all the M (M − 1) /2 Σ-matrices two-
by-two. In the tripartite case, we label Σxy|ζ such that Γxx is
the numerator block and Vy|ζ the denominator one. Given that
the groups are dx ≥ dy ≥ dz from the relay, the minimum mu-
tual information is obtained by considering groups “Z” and
“X” and conditioning the measurement on group “Y”. The
secret-key rate is then given by Eq. (7) after optimizing the
modulation µ.
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