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Abstract

The effective design and management of public transport systems are essential
to ensure the best service for users. The performance of a transport system will
depend heavily on user behaviour. In the common-lines problem approach, users
choose which lines to use based on the best strategy for them. While Wardrop
equilibrium has been studied for the common-lines problem, no contributions have
been made towards achieving the social optimum. In this work, we propose two
optimisation problems to obtain this optimum, using strategy flow and line flow
formulations. We prove that both optimisation problems are equivalent, and we
obtain a characterisation of the social optimum flows. The social optimum makes
it possible to compute the price of anarchy (PoA), which quantifies the system’s
efficiency. The study of the PoA enables the effective design and management of
public transport systems, guaranteeing the best service to users.
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1 Introduction

The study of public transport modelling is crucial for designing and managing efficient, sus-
tainable, and equitable public transport systems. Recent advances in the area have provided
valuable tools for modelling public transport systems and facilitating the evaluation of their
performance ([13, 8, 14]). Many factors influence people’s behaviour and their decision to use
public transport. One of them is the fare for the service, so it is important to design a fare
system that is accessible to all. This will also benefit the system, as attracting more passen-
gers helps to cover costs, thus ensuring the sustainability of the service ([23]). In addition, the
desire to use public transport more frequently is affected by satisfaction with the service pro-
vided. It is therefore important to know the preferences and attitudes of users when modelling
public transport systems, to ensure an attractive and efficient service ([19]).

Knowing how users are distributed among the different routes and modes of transport is
essential for efficient resource allocation, congestion management and service planning. Tech-
nological advances allow obtaining part of this information from smart card data ([1]). Know-
ing user behaviour helps to decide, for example, where to invest in new public transport lines
or stations to meet future demand ([12]). In short, anticipating user behaviour is critical to
creating a transportation network that is efficient, resilient, and responsive to the changing
needs and preferences of its users. Sometimes, users decide on their travel itinerary based
primarily on the time they will need to spend to complete it. This travel time is affected
by the in-vehicle travel time and by the waiting time at the origin stop. [3] proposed the
common bus lines problem, where it is assumed that passengers consider a set of lines to make
their trip and will take the one that arrives first at the stop. The common-lines problem has
been extensively studied over the years ([15, 16, 4]), leading to significant advancements in the
formulation and resolution of the flow assignment problem.

In transportation modelling, two fundamental concepts consider different perspectives on
network efficiency and user behaviour: Wardrop Equilibrium (or User Equilibrium) and System
Optimum (see [6] and the references therein). Wardrop Equilibrium assumes that travel times
on all used paths between an origin and a destination are equal and less than travel times
on unused paths. In other words, users can not improve their own travel time by unilaterally
changing routes. On the other hand, System Optimum represents a traffic assignment in
which the overall cost of the system is minimised, assuming that users behave cooperatively
seeking the best system performance. These principles are crucial for modelling travellers’
route choices and understanding the efficiency of transportation networks.

A relevant metric to quantify the system inefficiency that arises when users make selfish and
non-cooperative decisions is the price of anarchy, which consists of the ratio between the cost at
equilibrium and the optimal system cost. Understanding and mitigating the price of anarchy
is crucial for transportation planners and policymakers because it provides information on the
discrepancy between individual and collective optimisation. Strategies and interventions can
then be devised to align user behaviour with system efficiency, thus reducing congestion and
delays and overall improving the sustainability of transportation networks.

The price of anarchy has been studied in different networks with flow circulation, such as
the Internet ([10]), road networks ([20], [5], [21], [22]) and public services ([7]). Our objective
is to study the price of anarchy in the common bus lines problem. For this, we need to
know the flow assignment according to the Wardrop Equilibrium and according to the social
optimum. The former has been studied in the literature ([4, 2]), but to our knowledge, no
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work has addressed the social optimum applied to the common-lines problem. In this work, we
propose two optimisation problems that allow us to obtain the social optimum in the common-
lines problem, and we arrive at a solution characterisation similar to the one existing in the
literature for the equilibrium case. Our work focuses on simple networks, considering only two
nodes, and is intended to begin extending the study to general networks in the future. Once
we have the solution characterisation for the social optimum, we analyse this approach in two
small examples. This, together with the study of the equilibrium assignment, allows us to
analyse the evolution of the price of anarchy as demand increases. In this way, we can study
when the network becomes inefficient, which allows us to evaluate the consequences of selfish
user behaviour.

The work is organised as follows: Section 2 presents the common-lines problem, the
Wardrop Equilibrium and its characterisation and defines the social optimum in this context.
Section 3 is devoted to obtaining the solution characterisation for the social optimum. Once
we have both characterisations (equilibrium and social optimum), we can define in Section 4
the price of anarchy. Next, in Section 5 we present two examples, in which the social cost
and the price of anarchy are analysed, considering the same network with different frequency
functions. Finally, we present an appendix to develop some demonstrations in detail.

2 The common-lines problem

[3] introduced the common-lines approach to study the flow assignment on public transport
networks where lines share some route sections. In this problem, users must select a set of
lines that they probably use, and choose the one that involves the shortest expected travel
time. Over the years, the study of the common-lines problem has been extended considering
general networks, introducing the concept of strategy adopted by the users, and considering
frequency functions that depend on the flow using the line ([15, 16, 4]). In this section, we
introduce the common-lines problem and two models of passenger assignment. The first one
assumes selfish behaviour (Wardrop Equilibrium) and the second one cooperative behaviour
(social optimum). We also provide the characterisation of the equilibrium solution obtained
by [4].

We consider the common-lines problem as described in [4]. In the simplest case, it consists
of an origin O connected to a destination D by a finite set of bus lines A = {a1, . . . , an} (see
Figure 1). They denote by va the flow on each line a ∈ A, consider constant in-vehicle travel
time ta ≥ 0 and a smooth effective frequency function fa : [0, v̄a) → (0,∞) with f ′a(va) < 0
and fa(va) → 0 when va → v̄a. A frequency function with these characteristics will reflect an
increasing waiting time as the line is used by more passengers. The constant v̄a > 0 is called
the line saturation flow (eventually v̄a = ∞ for some links, including walking links).

To travel from O to D, each passenger selects a non empty subset of lines s ⊆ A, called the
attractive lines or strategy, boarding the first incoming bus from this set with available capacity.
If S represents the set of possible strategies, then the number of passengers travelling from O
to D, denoted by x ≥ 0, splits among all possible strategies s ∈ S. That is, x =

∑
s∈S hs,

where hs is the flow of strategy s ∈ S. Assuming that a passenger using strategy s boards
the line a ∈ s with probability πsa = fa (va) /

∑
b∈s fb (vb), it turns out that each strategy flow
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Figure 1: The simplest network to analyse the common-lines problem.

vector (hs)s∈S induces a unique vector of line flows (va)a∈A through the system of equations

va =
∑

s∋a

hs
fa(va)∑
b∈s fb(vb)

, ∀a ∈ A. (1)

The expected transit time of each strategy s, including the waiting time and in-vehicle travel
time, can be represented using this line-flow vector v by the following equation:

Ts(v) =
1 +

∑
a∈s tafa(va)∑

a∈s fa(va)
. (2)

To simplify notation, we assume throughout this work a scenario with n bus lines A =
{1, . . . , n} connecting an origin O to a destination D, each one characterised by the in-vehicle
travel time ti and frequency fi. Then, we can rewrite equation (1) as

vi =
∑

s∈S

hsδsi
fi(vi)∑
j∈s fj(vj)

, ∀i = 1, . . . , n, (3)

where

δsi =

{
1 if i ∈ s,

0 if i /∈ s.

According to Wardrop’s first principle, flows are assigned along strategies with minimal
(and therefore equal) cost. Next, we present the formal definition proposed in [4].

Definition 2.1. It is said that a strategy-flow vector h ≥ 0 with
∑

s∈S hs = x is a user
equilibrium (UE) for the common-lines problem if and only if all strategies carrying flow are
of minimal time, that is,

hs > 0 ⇒ Ts(v(h)) = T̂ (v(h)), (4)

where T̂ (v(h)) = mins∈S Ts(v(h)).

Throughout the work, we will refer to the User Equilibrium as the Wardrop Equilibrium.
The set of strategy flows satisfying the Wardrop Equilibrium condition is denoted by Hx,
while Vx represents the set of induced line flows v(h) corresponding to all h ∈ Hx. The set
Vx was characterised in [4] as the optimal solution set of an equivalent optimisation problem,
which implies the existence of a constant αx ≥ 0 such that v ∈ Vx if and only if v ≥ 0 with∑n

i=1 vi = x and

vi =





0 if ti > T̂ (w (αx)) ,

wi(αx) if ti < T̂ (w (αx)) ,

0 ≤ vi ≤ wi(αx) if ti = T̂ (w (αx)) ,

(5)
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considering w(α) = (wi(α))
n
i=1, where wi(·) is the inverse of the differentiable and strictly

increasing function vi 7→ vi/fi (vi). Here, the value vi/fi(vi) represents the social waiting cost
of line i for the flow vi. In Appendix A we give some properties of the functions wi that will
be useful in what follows.

Now we define the social optimum as the feasible flow vector that minimises the system’s
total cost, given by summing over all the strategies the product of the flows hs times the
expected transit times Ts.

Definition 2.2. A strategy-flow vector h ≥ 0 is a social optimum (SO) for the common-lines
problem if and only if it is the optimal solution of the following optimisation problem:

min
h

∑

s∈S

hsTs(v(h))

s.t. hs ≥ 0, s ∈ S,
∑

s∈S

hs = x.

(6)

3 Existence and characterisation of social optimum

Our goal in this section is to prove the existence of a social optimum h and characterise the
corresponding line flows v(h) as the optimal solution of an equivalent optimisation problem.
We will provide an analogous characterisation to (5) for the social optimum in the common-
lines problem (6).

From (2), we can rewrite the above definition as follows:

min
h

∑

s∈S

hs +
∑

i∈s hstifi(vi(h))∑
i∈s fi(vi(h))

s.t. hs ≥ 0, s ∈ S,
∑

s∈S

hs = x.

(7)

By (3),

∑

s∈S

∑

i∈s

hsti
fi(vi(h))∑
j∈s fj(vj(h))

=

n∑

i=1

∑

s∈S

tihsδsi
fi(vi(h))∑
j∈s fj(vj(h))

=

n∑

i=1

tivi(h),

then we can include vi(h) in the constraints, thus obtaining

min
v,h

∑

s∈S

hs∑
i∈s fi(vi)

+

n∑

i=1

tivi

s.t. hs ≥ 0, s ∈ S,
∑

s∈S

hs = x,

∑

s∈S

hsδsi
fi(vi)∑
j∈s fj(vj)

= vi.

(8)
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Now, we can write this problem as a minimisation problem in v that includes a minimisation
in h, that is,

min
v

Φ(v) +
n∑

i=1

tivi

s.t. vi ≥ 0, i = 1, . . . , n,
n∑

i=1

vi = x,

(9)

where Φ(v) is the optimal value of the following optimisation problem parameterised by v:

min
h

∑

s∈S

hs∑
i∈s fi(vi)

s.t. hs ≥ 0, s ∈ S,
∑

s∈S

hs = x,

∑

s∈S

hsδsi
fi(vi(h))∑
j∈s fj(vj(h))

= vi i = 1, . . . , n.

(10)

Because it can be shown that
∑

s∈S hs =
∑n

i=1 vi and in (9) it is requested that
∑n

i=1 vi = x,
we can remove the constraint

∑
s∈S hs = x from Φ. Furthermore, to simplify the expression

of Φ, we define τs = (
∑

i∈s fi(vi))
−1, and we divide by fi(vi) the last constraint, obtaining:

min
h

∑

s∈S

hsτs

s.t. hs ≥ 0, s ∈ S,
∑

s∈S

hsδsiτs =
vi

fi(vi)
, i = 1, . . . , n.

(11)

The existence of the social optimum depends on the following characterisation of the
function Φ.

Theorem 3.1. The optimal value of problem (11) is given by

Φ(v) = max
i

(
vi

fi(vi)

)
.

Proof. Problem (11) is a linear optimisation problem in h that can be solved by inspection.
To simplify the proof, we assume that the values of vi

fi(vi)
are decreasing, i.e.,

vi
fi(vi)

≥
vi+1

fi+1(vi+1)
∀i = 1, . . . , n− 1.

We denote by s̄ the strategy that includes all the lines. Since the objective is to minimise the
function ∑

s∈S

hsτs =
∑

s∈S
s 6=s̄

hsτs + hs̄τs̄
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and τs̄ ≤ τs for all s ∈ S, it is convenient to bet everything on τs̄. This means that it is
desirable that as much of the flow as possible uses the strategy s̄. That is, we seek hs̄ ≥ hs
for all s ∈ S.

From the last constraint of problem (11), we have that
∑

s∈S

δsihsτs =
vi

fi(vi)
∀i ∈ A.

Furthermore, because it is a sum of non-negative terms, we have

δs̄ihs̄τs̄ ≤
∑

s∈S

δsihsτs,

and since i ∈ s̄ for all i = 1, . . . , n (so δs̄i = 1 for all i = 1, . . . , n), we know that

hs̄τs̄ ≤
vi

fi(vi)
∀i = 1, . . . , n.

From this, we can conclude that the largest value that hs̄τs̄ can take is the minimum of vi
fi(vi)

,

that is, vn
fn(vn)

. However, because we have established that hs̄ must take the largest possible
value and since τs̄ is fixed, must be hs̄τs̄ = vn

fn(vn)
. Returning to the last constraint of problem

(11), we have that ∑

s∈S

δsnhsτs =
vn

fn(vn)
,

from where we can obtain
vn

fn(vn)
=
∑

s 6=s̄

δsnhsτs + δs̄nhs̄τs̄ =
∑

s 6=s̄

δsnhsτs +
vn

fn(vn)

and we conclude that ∑

s 6=s̄

δsnhsτs = 0. (12)

Furthermore, for any line i 6= n, it must be satisfied

vi
fi(vi)

=
∑

s∈S

δsihsτs =
∑

s 6=s̄

δsihsτs + δs̄ihs̄τs̄ =
∑

s 6=s̄

δsihsτs +
vn

fn(vn)

and we have that ∑

s 6=s̄

δsihsτs =
vi

fi(vi)
−

vn
fn(vn)

. (13)

Up to now, we know that must be h∗s̄τs̄ =
vn

fn(vn)
and from (12) we can conclude that hs = 0

for each s 6= s̄ such that n ∈ s. We can then rewrite the problem (11) as

min
h

∑

s∈S
n/∈s

hsτs +
vn

fn(vn)

s.t. hs ≥ 0, s ∈ S, n /∈ S,
∑

s∈S
n/∈s

δsihsτs =
vi

fi(vi)
−

vn
fn(vn)

, i ∈ {1, . . . , n− 1}.
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To obtain the flow of the remaining strategies (those that do not contain line n), it is sufficient
to see that the problem remains the same but with one less line. Now, the line n is not consid-
ered, and we have new independent terms given by vi

fi(vi)
− vn

fn(vn)
maintaining the decreasing

property. Repeating the same procedure, we obtain that h∗s̃τs̃ = vn−1

fn−1(vn−1)
− vn

fn(vn)
, where s̃

is the strategy that contains all lines except n. The new minimisation problem is as follows:

min
h

∑

s∈S
n−1,n/∈s

hsτs +
vn−1

fn−1(vn−1)

s.t. hs ≥ 0, s ∈ S, n− 1, n /∈ s,
∑

s∈S
n−1,n/∈s

δsihsτs =
vi

fi(vi)
−

vn
fn(vn)

−
vn−1

fn−1(vn−1)
, i ∈ {1, . . . , n− 2}.

Continuing this procedure, the optimal value is v1
f1(v1)

in the ordered case or max
i

vi
fi(vi)

in the

general case.

Calling α = max
i

(
vi

fi(vi)

)
> 0 and applying the above Theorem to problem (9), we have

min
v,α

n∑

i=1

tivi + α

s.t. vi ≥ 0, i = 1, . . . , n,
n∑

i=1

vi = x,

vi
fi(vi)

≤ α, i = 1, . . . , n.

(14)

This formulation is quite similar to that given in Section 1.2 of [4] for the UE problem,
considering the function h proposed there as the identity. Since wi(·) is the inverse function of
vi 7→ vi/fi (vi), we finally have a new linear optimisation problem with non-linear constraints
that do not include the strategy flow variables hs:

min
v,α

n∑

i=1

tivi + α

s.t.
n∑

i=1

vi = x,

0 ≤ vi ≤ wi(α), i = 1, . . . , n.

(15)

This problem is convex whenever −wi is a convex function (in other words, whenever wi is
concave). As we will see below, the chosen frequency function satisfies the condition stated
in Proposition A.2, so that wi turns out to be a concave function, and the problem (15) is
convex.
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For this problem, the Karush-Kuhn-Tucker (KKT) conditions implies that there exist
multipliers λ, µ1i ≥ 0, µ2i ≥ 0 such that

µ1i vi = 0 and µ2i (vi − wi(α)) = 0 for i = 1, . . . , n, (KKT-a)

ti − λ− µ1i + µ2i = 0, for i = 1, . . . , n, (KKT-b)

1−
n∑

i=1

µ2iw
′
i(α) = 0. (KKT-c)

Since α > 0 we have wi(α) > 0 for all i = 1, . . . , n, and then (KKT-a) implies µ1i and µ2i cannot
both be positive. Furthermore, (KKT-b) is equivalent to ti − λ = µ1i − µ2i . Then, combining
both facts, yields µ1i = (ti − λ)+ and µ2i = (λ− ti)+. Then equation (KKT-c) becomes

n∑

i=1

(λ− ti)+w
′
i(α) = 1 (16)

and we get the following system




µ1i vi = 0 for i = 1, . . . , n,
µ2i (vi − wi(α)) = 0 for i = 1, . . . , n,
µ1i = (ti − λ)+ for i = 1, . . . , n,
µ2i = (λ− ti)+ for i = 1, . . . , n,∑n

i=1(λ− ti)+w
′
i(α) = 1.

(17)

For a fixed α we define the function ψα(λ) as the left side of equation (16), i.e.,

ψα(λ) =
n∑

i=1

(λ− ti)+w
′
i(α).

If we can guarantee the existence and uniqueness of the solution of ψα(λ) = 1, then there
exists a unique λ such that the last condition in (17) is satisfied. Once λ is obtained, we can
obtain µ1i and µ2i to finally obtain the arc flows vi for all i ∈ A.

The ψα graph is shown in Figure 2(a). It is not difficult to see that the function ψα is
continuous, piece-wise linear, strictly increasing, and convex for each α (since w′

i(α) > 0).
Also, ψα(λ) = 0 if λ is less than the minimum of ti’ s. From that value, the function strictly
increases with a slope that positively jumps every time it passes through a new ti. Therefore,
the function will exceed the value of 1, and then, the equation (16) must have a unique solution.
Without loss of generality, we will assume that the values of ti are increasing, i.e., ti < ti+1 for
all i = 1, . . . , n− 1, so t1 = mini ti. Figure 2(b) illustrates the graph of ψα for different values
of α. As we can observe, ψα is a decreasing function of α, and the graphs for the specific
values α2 and α3 are shown. This and other properties of ψα are demonstrated in Appendix
B.

This allows defining an application that maps each α with the solution of equation ψα(λ) =
1. We denote this function by λ̄. To proceed with the social optimum characterisation, we
establish some preliminary results for λ̄.

Proposition 3.1. Assume that the functions wi ∈ C2(0,∞) are strictly concave for all i =
1, . . . , n. Thus, the function λ̄ is an increasing function.

9



λ

1

t1 t2 t3

ψα

λ(α)

(a) ψα is continuous, piece-wise linear, strictly
increasing, and convex for a specific α.

λ

1

t1 t2 t3

ψα2
ψα ψα3

λ(α2)
λ(α)

λ(α3)

(b) ψα is a decreasing function of α.

Figure 2: Graph of function ψα for a specific α and for different increasing values of α.

Proof. Let α̂, α̃ ∈ (0,∞) be such that α̂ < α̃, and let λ̂ = λ̄(α̂) and λ̃ = λ̄(α̃). Then
ψα̂(λ̂) = ψα̃(λ̃) = 1. By Proposition B.1,

ψα̂(λ̃) > ψα̃(λ̃) = ψα̂(λ̂).

Since ψα is an increasing function for a fixed value of α, from above it follows that λ̂ < λ̃, or
equivalently, λ̄(α̂) < λ̄(α̃). Then we get the result.

We can obtain explicit formulas for the λ̄ function. In the case where there is no αk such
that ψαk

(tk) = 1 for all k = 2, . . . , n, we get λ̄(α) > tn for all α ∈ (0,∞) by Proposition B.2.
Then, the equation that defines λ̄(α) is

n∑

i=1

(λ̄(α) − ti)w
′
i(α) = 1,

which is easy to solve for

λ̄(α) =
1 +

∑n
i=1 tiw

′
i(α)∑n

i=1 w
′
i(α)

. (18)

On the other hand, assume there exists αj ∈ (0,∞) such that ψαj
(tj) = 1, or equivalently,

λ̄(αj) = tj . Without loss of generality, we assume that j is the first index with this property.
Then, by Proposition B.2, for each tk with k = j, . . . , n, there exist αk ∈ (0,∞) such that
λ̄(αk) = tk.

Now, the function λ̄ can be defined in the intervals (0, αj), (αj , αj+1), . . . , (αn,∞), by
inverting the last equation in (17). More precisely, for j < k ≤ n − 1 and α ∈ (αk, αk+1) we
have that λ̄(α) ∈ (tk, tk+1) so the equation that defines λ̄(α) is

k∑

i=1

(λ̄(α) − ti)w
′
i(α) = 1,

from which it is easy to solve for

λ̄(α) =
1 +

∑k
i=1 tiw

′
i(α)∑k

i=1 w
′
i(α)

.
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In the same way, for α > αn, we have that λ̄(α) > tn, so similarly as before, we can obtain

λ̄(α) =
1 +

∑n
i=1 tiw

′
i(α)∑n

i=1 w
′
i(α)

.

Finally, since j is the first index such that equation (16) has solution for tj, there does not
exist αj−1 ∈ (0,∞) such that ψαj−1

(tj−1) = 1. Then, from Proposition B.2, we get that there
is no α ∈ (0,∞) such that ψα(λ) = 1 for λ < tj−1. Therefore, for 0 < α < αj , we have that
tj−1 < λ̄(α) < tj, and

λ̄(α) =
1 +

∑j
i=1 tiw

′
i(α)∑j

i=1 w
′
i(α)

.

Then, under the hypothesis of Corollary B.1 and some abuse of notation,

λ̄(α) =





1+
∑k

i=1
tiw′

i(α)∑k
i=1

w′

i(α)
if α ∈ (αk, αk+1) for some k = j − 1, . . . , n,

tk if α = αk for some k = j, . . . , n,

(19)

where αj−1 = 0 and αn+1 = +∞.

Theorem 3.2. If the functions wi are strictly concave and w′
i is continuous for all i = 1, . . . , n,

then the function λ̄ is continuous.

Proof. For the case where there is no αk such that ψαk
(tk) = 1 for all k = 2, . . . , n, λ̄ is defined

by (18), which will be continuous as w′
i is continuous for each i = 1, . . . , n (since we know

that w′
i(α) > 0 for α > 0). Assume now there exists αj ∈ (0,∞) such that ψαj

(tj) = 1. Let
k = j − 1 . . . , n and consider α ∈ (αk, αk+1). As we saw previously, the function λ̄ will be
(19),

λ̄(α) =
1 +

∑k
i=1 tiw

′
i(α)∑k

i=1w
′
i(α)

which will be continuous for the same reason mentioned above. Therefore, all that remains is
to prove the continuity in αk for k = j, . . . , n. We know that λ̄(αk) = tk; in that case,

ψαk
(tk) =

k−1∑

i=1

(tk − ti)w
′
i(αk) = 1.

Then

tk =
1 +

∑k−1
i=1 tiw

′
i(ᾱk)∑k−1

i=1 w
′
i(ᾱk)

. (20)

Now, analysing the left limit, we have:

lim
α→α−

k

λ̄(α) = lim
α→α−

k

1 +
∑k−1

i=1 tiw
′
i(α)∑k−1

i=1 w
′
i(α)

=
1 +

∑k−1
i=1 tiw

′
i(αk)∑k−1

i=1 w
′
i(αk)

= tk,
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where the last equality follows from (20). Finally, the right limit is:

lim
α→α+

k

λ̄(α) = lim
α→α+

k

1 +
∑k

i=1 tiw
′
i(α)∑k

i=1w
′
i(α)

=
1 +

∑k
i=1 tiw

′
i(αk)∑k

i=1w
′
i(αk)

= tk,

where the last equality holds because

1 = ψαk
(tk) =

k−1∑

i=1

(tk − ti)w
′
i(αk) =

k−1∑

i=1

(tk − ti)w
′
i(αk) + (tk − tk)w

′
i(αk)

=

k∑

i=1

(tk − ti)w
′
i(αk)

= tk

k∑

i=1

w′
i(αk)−

k∑

i=1

tiw
′
i(αk)

so it is evident that tk =
1+

∑k
i=1

tiw
′

i(αk)
∑k

i=1
w′

i(αk)
. Therefore, λ̄ is continuous in αk for k = j, . . . , n,

and then continuous in its domain.

Now, let α > 0, there exist λ̄(α) such that (16) holds. Then, the relations given in the
system (17) implies that vi = 0 if λ̄(α) < ti and vi = wi(α) if λ̄(α) > ti, while for the remaining
lines we have 0 ≤ vi ≤ wi(α). Hence

∑

i

{wi(α) : ti < λ̄(α)} ≤
n∑

i=1

vi ≤
∑

i

{wi(α) : ti ≤ λ̄(α)}

If we denote by
x̂(α) =

∑

i

{wi(α) : ti < λ̄(α)}, (21)

x̌(α) =
∑

i

{wi(α) : ti ≤ λ̄(α)}, (22)

then x ∈ [x̂(α), x̌(α)]. The functions x̂(α) and x̌(α) are increasing, continuous, and equal,
except at the values αk such that λ̄(αk) = tk where we have x̌(αk) > x̂(αk) (Figure 3).
Moreover, x̂(0) = x̌(0) = 0 and x̂(α) = x̌(α) →

∑n
i=1 v̄i when α → ∞. Therefore, for each

x ∈ (0,
∑n

i=1 v̄i), there exists a unique αx such that x ∈ [x̂(αx), x̌(αx)].
We are ready to provide a direct characterisation of the optimum line-flows v. The next

Theorem will be useful for stating a simple model for general transit networks by working
directly in terms of arc-flows and avoiding explicitly dealing with the notion of strategy.
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α

∑
v̄i

α2 α3

(a) Graph of the function x̂ defined in (21).

α

∑
v̄i

α2 α3

(b) Graph of the function x̌ defined in (22).

Figure 3: The functions x̂(α) and x̌(α). Note that they are equal, except at the values
αk such that λ̄(αk) = tk where we have x̌(αk) > x̂(αk).

Theorem 3.3. Let x ∈ (0,
∑n

i=1 v̄i), and assume that the functions wi ∈ C2(0,∞) are strictly
concave for all i = 1, . . . , n. Set λ̄ as the function defined by (19), with αx the unique solution
of x ∈ [x̂(α), x̌(α)]. The social optimum is given by

vi =





0 if ti > λ̄(αx),

wi(αx) if ti < λ̄(αx),

0 ≤ vi ≤ wi(αx) if ti = λ̄(αx).

(23)

The last Theorem implies that for each x ∈ (0,
∑n

i=1 v̄i), there exists at least one social
optimum. This optimum will be unique unless there are two or more lines with ti = λ̄(α).

Note that in the case where there is no αk ∈ (0,∞) such that λ̄(αk) = tk for all k = 2, . . . , n,
the functions x̂(α) and x̌(α) are equal in all their domains. Furthermore, by Proposition B.2,
λ̄(αx) > ti for all i, and then vi = wi(αx). On the other hand, if there exists αk ∈ (0,∞) such
that λ̄(αk) = tk for some k and x does not belong to any of the intervals [x̂(αk), x̌(αk)], we
have vi = wi(αx) for all the lines with ti < λ̄(αx) and vi = 0 for the lines with ti > λ̄(αx).
When x ∈ [x̂(αk), x̌(αk)] we have αx = αk and λ̄(αx) = tk. Note that in this scenario, a flow
increment (or reduction) in the range [x̂(αk), x̌(αk)] only modifies the optimum flow on line
k. In this situation, every optimum flow vk may have 0 < vk/fk(vk) < αx for some line k.

Theorem 3.3 is weak in that, in most cases, it is not possible to recover the strategy flows
from the line flows. However, from the point of view of public transport decision-makers, it
is sufficient to know the number of passengers that must use each line to guarantee optimal
operation of the system.

4 Price of anarchy

In the previous sections, we presented the common-lines problem for the case of an origin and
a destination and the characterisation of the equilibrium solution and the social optimum.
This allows us to analyse the public transport network’s performance when users behave
selfishly (seeking to minimise their travel time) compared to cooperative behaviour (seeking

13



the system’s optimal performance). For this, we recall what we mean by social cost in the
common-lines problem. Given a strategy flow assignment, the social cost of a transport network
is given by:

SC =
∑

s∈S

hsTs(v(h)). (24)

Equivalently, as a consequence of the results obtained in Section 3, given an arc flow assignment
the social cost of the transport network can be obtained as

SC =

n∑

i=1

tivi +max
i

(
vi

fi(vi)

)
. (25)

If the strategy-flow vector h (or the line-flow vector v) is a social optimum, the social cost is
the minimum possible, and we denote this optimal social cost as OSC. If, instead, the strategy-
flow vector h∗ is an equilibrium, each strategy s with h∗s > 0 satisfy that Ts(v(h∗)) = T̂ (v(h∗)),
where T̂ (v(h∗)) = mins∈S Ts(v(h

∗)). Therefore, the social cost associated with an equilibrium
can be obtained as follows:

WSC =
∑

s∈S

h∗sTs(v(h
∗)) =

∑

s∈S

h∗sT̂ (v(h
∗)) = T̂ (v(h∗))

∑

s∈S

h∗s = T̂ (v(h∗))x. (26)

When users are permitted to behave selfishly, the social cost is greater than or equal to
the optimal system cost (WSC ≥ OSC). In [11], the concept of price of anarchy is used to
quantify the system’s inefficiency when users follow individual and non-cooperative objectives.
This concept has been used in different routing games, for example, public services ([7]) or
traffic networks ([20], [22]), but to the best of our knowledge, its application in the common-
lines problem has not been studied. As introduced in [7], the price of anarchy can be used
as an indicator of the inefficiency of a given public transport system, comparing the network
performance when users behave selfishly with the optimal state of the system. Specifically,
the price of anarchy is given by the ratio between the social cost associated with the Wardrop
equilibrium (WSC) and the optimal system cost (OSC):

PoA =
WSC

OSC
. (27)

Based on this formulation, if the price of anarchy is greater than 1, the system becomes
inefficient in the equilibrium situation (when users behave selfishly). With our characterisation
of the social optimum, we now have the necessary tools to calculate the price of anarchy for
the common-lines problem. This allows us to analyse different scenarios, detect under which
conditions the system becomes inefficient, and thus make decisions that allow redirection of
flow over the different lines in such a way that the best service is guaranteed to the users.

5 Numerical Implementation

In this section, we propose two examples to analyse the equilibrium assignment and the social
optimum. We will study the evolution of the social cost in the equilibrium situation and the
optimal system cost as demand increases, which will allow us to analyse the price of anarchy
and, consequently, the efficiency of the network.
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o d

1

2

Figure 4: Network with one origin (o), one destination (d) and two arcs (A = {1, 2}).

In both examples, we use the same travel time, bus capacity, and nominal frequency data.
However, we use different effective frequency functions extracted from the literature. The
first example is approached from the characterisation of the equilibrium solution and the
social optimum, given in Equation (5) and Theorem 3.3, respectively. The second example is
approached by solving the corresponding optimisation problems. We will consider a network
with two nodes and two arcs connecting them, as shown in Figure 4. Travel times, bus capacity,
and nominal frequencies used will be detailed in the examples.

5.1 Example from solution characterisation

First, we will present the example given in [4] for the common-lines problem under congestion
and calculate the social optimal line flow. Assume a bus stop served by two lines with travel
times t1 < t2, independent Poisson arrivals of rate µ1 and µ2, and equal capacity K. In that
case, the analytic expressions for each effective frequency function are

fi(vi) = vi

(
1

ρi(vi)
− 1

)
i = 1, 2, (28)

with v̄i = Kµi and ρi(vi) the unique solution ρ ∈ [0, 1) of the equation µi(ρ+ρ2+· · ·+ρK) = vi.
This function is differentiable with f ′i(vi) < 0 and fi(vi) → 0+ when vi → v̄i. The inverse
wi(α) of vi → vi

fi(vi)
is

wi(α) = µiα
(
1− [α/(1 + α)]K

)
i = 1, 2,

which is a concave increasing function. Furthermore

w′
i(α) = µi

(
1− [α/(1 + α)]K [1 +K/(1 + α)]

)
i = 1, 2,

which is a differentiable function. Then, the assumptions made in the preceding sections hold
for the effective frequency function (28).

Therefore, by Theorem (3.3), for every x ∈ (0, v̄1+v̄2) there exists a unique social optimum.
To compute it explicitly, set µ = µ1

µ1+µ2
and let α2 be the solution of λ̄(α) = t2. That is

ψα(t2) = 1 ⇔ (t2 − t1)w
′
1(α) = 1 ⇔ w′

1(α) =
1

t2 − t1
. (29)

By Lemma B.1, we know that if

f1(0)(t2 − t1) = w′
1(0)(t2 − t1) = µ1(t2 − t1) < 1
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there is no α2 solving λ̄(α) = t2, and then by Proposition B.2, λ̄(α) > t2 for all α ∈ (0,∞).
Therefore, according to Theorem 3.3, there exist αx such that vso

1 = w1(αx) and vso

2 = w2(αx).
From the constrain vso

1 + vso

2 = x and the definition of wi, it follows that vso

1 = µx and
vso

2 = (1− µ)x.
Consider now the case µ1(t2− t1) ≥ 1, by Lemma B.1 there exist αso

2 such that λ̄(αso

2 ) = t2.
Let lso = x̂(αso

2 ) and uso = x̌(αso

2 ):

• If x < lso, then αx < αso

2 and λ̄(αx) < t2. Then from Theorem 3.3 we get vso

2 = 0 and so
vso

1 = x.

• If x = lso, then x = w1(αx) with αx = αso

2 and t1 < λ̄(αx) = t2. Then from Theorem
3.3 we get vso

1 = w1(α
so

2 ) = x and so vso

2 = 0.

• If lso < x < uso, then αx = αso

2 and t1 < λ̄(αx) = t2. Then from Theorem 3.3 we get
vso

1 = w1(αx) = lso and so vso

2 = x− lso.

• If x = uso, then x = w1(αx) + w2(αx). Furthermore, αx = αso

2 and t1 < λ̄(αx) = t2.
Then from Theorem 3.3 we get vso

1 = w1(αx) = lso and so vso

2 = x− lso = w2(αx).

• If x > uso, then αx > αso

2 and λ̄(αx) > t2. Then from Theorem 3.3 we get vso

1 =
w1(αx) = µx and vso

2 = w2(αx) = (1− µ)x.

In summary, the social optimum flow assignment vso

1 and the equilibrium flow assignment
vw

1 (calculated in [4]) for this example are:

vso

1 =





x if x ≤ lso,

lso if lso < x < uso,

µx if x ≥ uso;

vw

1 =





x if x ≤ lw,

lw if lw < x < uw,

µx if x ≥ uw;

(30)

where

lw :=

2∑

i=1

{
wi(α

w

2 ) : ti < T̂ (w(αw

2 ))
}

and uw :=

2∑

i=1

{
wi(α

w

2 ) : ti ≤ T̂ (w(αw

2 ))
}
,

and αw

2 is the solution of T̂ (w(α)) = t2. As we can see, the social optimal assignment takes
the same values as the equilibrium assignment, but the difference lies in the threshold values
l and u. Let us show that the solution of λ̄(α) = t2 is less than the solution of T̂ (w(α)) = t2
corresponding to the equilibrium problem, and therefore lso < lw and uso < uw.

Since αso

2 is the solution of λ̄(α) = t2, it follows that (29) holds, so αso

2 is the solution of

1−
1

µ1(t2 − t1)
=

(
α

1 + α

)K (
1 +

K

1 + α

)
.

The right-hand side of the above equation is an increasing continuous function of α. Similarly,
since αw

2 is the solution of T̂ (w(α)) = t2, we get that αw

2 is the solution of

1−
1

µ1(t2 − t1)
=

(
α

1 + α

)K

.
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In that case, the right hand is also an increasing continuous function of α. Furthermore
(

α

1 + α

)K

<

(
α

1 + α

)K (
1 +

K

1 + α

)

for all α ∈ (0,∞). Therefore, αso

2 < αw

2 . Then, since wi’ s are increasing functions, we get
lso < lw and uso < uw.

To compute the social cost, we will use the arc flow formulation given by (25). From (30)
we get

• If x ≤ lso,

SC = t1x+ t20 + max

(
x

f1(x)
,

0

f2(0)

)
= t1x+

ρ1(x)

1− ρ1(x)

• If lso < x < uso,

SC = t1l
so + t2(x− lso) + max

(
lso

f1(lso)
,

x− lso

f2(x− lso)

)

From the constraint lso < x < uso, it follows that

x− lso < uso − lso = w2(α
so

2 ) = αso

2 f2(w2(α
so

2 )),

where the last equality follows from (36). Furthermore f2(·) is a decreasing function, so

x− lso

f2(x− lso)
<

uso − lso

f2(uso − lso)
=
αso

2 f2(w2(α
so

2 ))

f2(w2(αso

2 ))
= αso

2 .

On the other hand,

lso

f1(lso)
=

w1(α
so

2 )

f1(w1(αso

2 ))
=
αso

2 f1(w1(α
so

2 ))

f1(w1(αso

2 ))
= αso

2 ,

where the last equation follows again from (36). Therefore

max

(
lso

f1(lso)
,

x− lso

f2(x− lso)

)
= αso

2 ,

and we can rewrite the social optimum as

SC = lsot1 + (x− lso)t2 + αso

2 = xt2 − lso(t2 − t1) + αso

2 = xt2 −
w1(α

so

2 )

w′
1(α

so

2 )
+ αso

2 .

Finally, using (36) and (37) we get

SC = t2x+ (αso

2 )
2 f ′1(w1(α

so

2 )).

• If x ≥ uso,

SC = t1µx+t2(1−µ)x+max

(
µx

f1(µx)
,

(1− µ)x

f2((1− µ)x)

)
= t1µx+t2(1−µ)x+

ρ1(µx)

1− ρ1(µx)

where the last equality follows from the fact that ρ1(µx) = ρ2((1 − µ)x).
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In summary, setting tµ = µt1 + (1 − µ)t2, the optimum social cost, and the equilibrium
cost are

OSC =





t1x+ ρ1(x)
1−ρ1(x)

if x ≤ lso,

t2x+ (αso

2 )
2 f ′1(w1(α

so

2 )) if lso < x < uso,

tµx+ ρ1(µx)
1−ρ1(µx)

if x ≥ uso,

(31)

WSC =





t1x+ ρ1(x)
1−ρ1(x)

if x ≤ lw,

t2x if lw < x < uw,

tµx+ ρ1(µx)
1−ρ1(µx)

if x ≥ uw.

(32)

With this development, we obtained the formulation that allows us to calculate the social
optimum assignment and the optimal social cost, equivalent to the equilibrium case reported
in the literature. To illustrate the difference between the social optimum assignment and the
equilibrium assignment we set the travel times as t1 = 1/4 and t2 = 1/2 (in hours), the
capacity as K = 20 passengers per bus, and the arrival rates as µ1 = 16 and µ2 = 10 buses
per hour. With these data, we were able to explicitly calculate the values for lso, uso, lw and
uw, obtaining:

lso = 202.77, uso = 329.51, lw = 276.09, uw = 448.65. (33)

Once we have these values, it is possible to calculate the equilibrium and social optimum
assignment according to (30) and the corresponding social cost for each case. Figure 5 shows
the evolution of flows for the equilibrium and the social optimum assignment, while Figure
6 shows the social costs and the corresponding price of anarchy for this example. In Figure
6(b) it can be seen that the price of anarchy is greater than 1 for lso ≤ x ≤ uw, that is, for
demands between 202 and 448 passengers (approximately) the network becomes inefficient in
an equilibrium situation. Moreover, the maximum price of anarchy occurs when the demand
is x = lw = 276 passengers (approximately).

5.2 Example from optimisation problems

In this example, we will use the effective frequency function proposed in [2]. In the case of
a network with only two nodes (one origin and one destination), the origin will only have
passengers boarding (no alighting), and the destination will only have passengers alighting
(no boarding), giving the following frequency function for each arc i ∈ A:

fi(vi) =





µ

[
1−

(
vi
µK

)β]
if 0 ≤ vi < µK,

ε otherwise,

(34)

where µ is the nominal frequency of the line, K is the bus capacity, and vi is the flow boarding
the line. The exponent β is always positive and determines the effective frequency’s updating
degree. Finally, ε is a very small value that represents a high waiting time at the stop when
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Figure 5: Evolution of arc flows for the example based on the solution characterisation.
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Figure 6: Evolution of the social cost and the price of anarchy for the example based
on the solution characterisation.

the bus does not have the capacity for new passengers to board. As in [2], we will consider
ε = 1/999. As seen in Appendix C, the function (34) satisfies all the necessary conditions to
formulate the social optimum problem as developed in Section 3. For this frequency function,
it is challenging to obtain explicitly the function w. It could be obtained numerically, or else
not to solve the problem from the solution characterisation (as was done in Section 5.1) but to
solve the corresponding optimisation problem. To obtain the Wardrop equilibrium, we solve
the problem proposed in [2], and to obtain the social optimum, we can solve the problem
formulated using strategy flows (problem (6)) or arc flows (problem (14)).

We consider the network shown in Figure 4 and the same data described at the end of
Section 5.1. The only additional parameter is the exponent β, which we consider to be β = 0.2.
With this information, in the first instance, we assigned a demand of x = 100 passengers per
hour and performed the equilibrium and social optimum assignments. For the equilibrium
assignment, we use a self-regulated method as proposed in [9]. To obtain the social optimum,
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we solved the original problem (6) formulated in terms of strategy flows, and we obtained the
same solution as when solving the problem (14), which only involves the arc flows. To solve
the social optimum problems, we employed the SciPy library v1.8.0 ([18]), which is accessible
in Python v3.8.5 ([17]). Specifically, we utilised the minimize function within this library,
wherein we defined the objective functions and established linear and nonlinear constraints for
each case. The trust constraint method was chosen and we configured the maximum number
of iterations to be 4000, with termination tolerances set at gtol = 10−8 for the norm of the
Lagrangian gradient and xtol = 10−8 for the change in the independent variable. The results
for equilibrium and social optimum are shown in Table 1.

For these results, we can calculate the price of anarchy as stated in (27), obtaining:

PoA =
WSC

OSC
=

50

48.309
= 1.035.

As the price of anarchy is greater than 1, we can conclude that the system becomes inefficient
in an equilibrium situation for the considered demand.

As in Section 5.1, it would also be interesting to analyse the system efficiency as demand
increases. For this purpose, we make flow assignments for demands between 1 and 160 pas-
sengers and analyse the progress of the flow assignments, the social cost associated with the
equilibrium (WSC) and the optimal system cost (OSC), and the consequent evolution of the
price of anarchy. Figure 7 shows the flow assignments, while Figure 8 exposes the social costs
and the price of anarchy. As mentioned above, for the frequency function used in this example,
it is not easy to find an expression for the function w(α). However, w(α) and w′(α) can be
found numerically, making it possible to calculate:

lso = 38.59, uso = 62.72, lw = 75.94, uw = 123.4. (35)

If we analyse Figure 8(b), we observe that the network becomes inefficient in the equilibrium
situation when lso ≤ x ≤ uw. That is to say, if demand varies between 39 and 124 passengers
(approximately), the network becomes inefficient when users behave selfishly. In addition, the
maximum price of anarchy occurs when x = lw (approximately 76 passengers).

From what has been exposed in this Section and Section 5.1, we can conclude that, although
when considering different frequency functions the values of lw, lso, uw and uso changed, in both
cases the system becomes inefficient in front of the selfish behaviour when lso ≤ x ≤ uw, and
reaches the maximum point of inefficiency when x = lw.

Results Equilibrium assignment Social Optimum
v1 75.94 61.54
v2 24.06 38.46

Social Cost 50 48.309

Table 1: Arc flow and social cost obtained in the equilibrium assignment and the social
optimum.
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Figure 7: Evolution of arc flows for the example based on the optimisation problem.
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Figure 8: Evolution of the social cost and the price of anarchy for the example based
on the optimisation problem.

6 Conclusions

Throughout this work, we have presented the social optimum problem applied to the common-
lines problem, which had not been studied until now. We presented the approach using strategy
flows, and from this approach, we arrived at a formulation that only uses arc flows, which makes
it easier to handle and interpret. We have formulated and proved some results that allow us to
obtain a characterisation of the solution to the social optimum problem. From it, the analysis
of the price of anarchy becomes possible. Although this concept has already been studied
in public transportation networks, we did not find an analysis for the common-lines problem
since knowledge of the solution that guarantees the optimal operation of the system is required
to calculate the price of anarchy.

Finally, to illustrate all the concepts previously developed, two examples were presented
to compare the solutions with those found in the literature for the Wardrop Equilibrium and
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to analyse the evolution of the system efficiency as demand varies. With these examples, we
show that we can solve the equilibrium problem and the social optimum problem and analyse
the evolution of the social cost in each case, either by solving the corresponding optimisation
problems or by working from the characterisation of the solution.

The analysis developed in this work is based on simple networks with one origin node and
one destination node. This work is the beginning of a future analysis for general networks,
where intermediate nodes are considered that allow passenger boarding, alighting, and line
interchanges.

A Properties of wi

Let wi : [0,∞) → [0, v̄i) be the inverse function of vi 7→ vi
fi(vi)

for all i = 1, . . . , n.

Proposition A.1. wi is a differentiable function, with w′
i(α) > 0 for all α ∈ (0,∞) (and then

strictly increasing). Furthermore, if fi is C1[0, v̄i) then w′
i is continuous.

Proof. Since wi is the inverse function of vi 7→ vi
fi(vi)

, then wi(α)
fi(wi(α))

= α and

wi(α) = αfi(wi(α)). (36)

Differentiating the last expression, we have

w′
i(α) = fi(wi(α)) + αf ′i(wi(α))w

′
i(α).

Since f ′i(vi) < 0 for all vi ∈ [0, v̄i) and α ≥ 0, it follows that

w′
i(α) =

fi(wi(α))

1− αf ′i(wi(α))
(37)

and then wi is differentiable. Furthermore, since fi(vi) > 0 for all vi ∈ [0, v̄i), it follows that
w′
i(α) > 0. Finally, if fi(·) and f ′i(.) are continuous, it is easy to see from (37) that w′

i is also
continuous.

Proposition A.2. Let fi : [0, v̄i) → (0,∞) be a family of frequency functions for each i =
1, . . . , n such that f ′′i exists. Then, wi is concave if and only if

2f ′i(wi(α)) + αf ′′i (wi(α))w
′
i(α) < 0.

Proof. From the previous proposition, we know that

w′
i(α) = fi(wi(α)) + αf ′i(wi(α))w

′
i(α).

Deriving on both sides, we obtain

w′′
i (α) = f ′i(wi(α))w

′
i(α) +

[
f ′i(wi(α)) + αf ′′i (wi(α))w

′
i(α)

]
w′
i(α) + αf ′i(wi(α))w

′′
i (α)

from where we can get

w′′
i (α) =

2f ′i(wi(α))w
′
i(α) + αf ′′i (wi(α))(w

′
i(α))

2

1− αf ′i(wi(α))
.

22



Since f ′i(wi(α)) < 0 and α ≥ 0, 1−αf ′i(wi(α)) is always positive, to ensure that wi is concave,
it is only necessary that

2f ′i(wi(α))w
′
i(α) + αf ′′i (wi(α))(w

′
i(α))

2 < 0.

From Proposition A.1 we know that w′
i(α) > 0 for all α ∈ [0,∞), so the above inequality is

equivalent to:
2f ′i(wi(α)) + αf ′′i (wi(α))w

′
i(α) < 0.

Note that from (37), w′
i is a frequency function for line i. Moreover, since 1−αf ′i(wi(α)) >

1, then w′
i(α) < fi(α). Let’s see that w′

i holds the requested properties for frequencies.

Proposition A.3. Assume that the function wi ∈ C2(0,∞) is strictly concave. Then w′
i is a

decreasing smooth function defined on (0,∞) with w′
i(α) → 0 when α→ ∞.

Proof. If the function wi are strictly concave, then w′′
i (α) < 0 for all α ∈ R. Then w′

i is
decreasing. Furthermore, lim

α→∞
w′
i(α) = 0 since lim

α→∞
wi(α) = v̄i and wi is concave.

B Properties of ψα function

Proposition B.1. Assume that the functions wi ∈ C2(0,∞) are strictly concave for all i =
1, . . . , n. Then, for each λ ≥ t1, the function ψα(λ) is decreasing and continuous as a function
of α.

Proof. It is easy to see that ψα(λ) is continuous for fixed λ. Let us now λ ≥ t1. In particular,
λ ≥ tk for some k. If for each i, the functions wi are strictly concave, then w′′

i (α) < 0 for all
α ∈ R. Therefore,

d

dα
ψα(λ) =

k−1∑

i=1

(λ− ti)w
′′
i (α) < 0

and the function ψα(λ) is strictly decreasing as a function of α.

We are interested in the values of α ∈ (0,∞) that make equation (16) have a solution.

Proposition B.2. Assume that the functions wi ∈ C2(0,∞) are strictly concave for all i =
1, . . . , n. Let λ∗, if there exists α∗ ∈ (0,∞) such that ψα∗(λ∗) = 1, then equation (16) has a
solution for all λ > λ∗. On the other hand, if there is no α∗ ∈ (0,∞) such that ψα∗(λ∗) = 1,
then equation (16) does not have a solution for all λ < λ∗.

Proof. Suppose first that there exists α∗ ∈ (0,∞) such that ψα∗(λ∗) = 1 for some λ∗. Then

ψα∗(λ) =

n∑

i=1

(λ− ti)+w
′
i(α

∗) >

n∑

i=1

(λ∗ − ti)w
′
i(α

∗) = 1 ∀ λ > λ∗,

and ψα(λ) is continuous and strictly decreasing in α by Proposition B.1, then there exist
α > α∗ such that ψα(λ) = 1 for all λ > λ∗. On the other hand, suppose there is no α∗ such
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that ψα∗(λ∗) = 1. Since the function ψα(λ
∗) is decreasing as a function of α by Proposition

B.1, then ψα(λ
∗) < 1 for all α ∈ (0,∞).Then

1 >

n∑

i=1

(λ∗ − ti)+w
′
i(α) >

n∑

i=1

(λ− ti)w
′
i(α) = ψα(λ) ∀ λ < λ∗.

Therefore, there is no α such that ψα(λ) = 1 for all λ < λ∗.

Lemma B.1. Assume that the functions wi ∈ C2(0,∞) are strictly concave for all i =

1, . . . , n. Then, for each λ ≥ 1+t1f1(0)
f1(0)

, there exists an α ∈ (0,∞) such that ψα(λ) = 1.

Furthermore, if maxi[(λ − ti)+fi(0)] < (n − 1)−1, then there is no α ∈ (0,∞) such that
ψα(λ) = 1.

Proof. Fix first λ ≥ 1+t1f1(0)
f1(0)

, then

(λ− t1)f1(0) ≥ 1.

In particular, λ ≥ tk for some k. Then,

k−1∑

i=1

(λ− ti)fi(0) ≥ (λ− t1)f1(0) ≥ 1.

Analysing lim
α→0+

w′
i(α), we have:

lim
α→0+

w′
i(α) = lim

α→0+

fi(

→0︷ ︸︸ ︷
wi(α))

1− α︸︷︷︸
→0

f ′i(wi(α))
=
fi(0)

1
= fi(0).

Therefore, it follows from the above inequality and the continuity of w′ that

ψ0(λ) = lim
α→0+

k−1∑

i=1

(λ− ti)w
′
i(α) =

k−1∑

i=1

(λ− ti)w
′
i(0) =

k−1∑

i=1

(λ− ti)fi(0) ≥ 1.

By hypothesis, the function ψα(λ) is continuous and strictly decreasing as a function of α by
Proposition B.1. Furthermore, lim

α→∞
w′
i(α) = 0 by Proposition A.3. Therefore,

lim
α→∞

ψα(λ) = lim
α→∞

k−1∑

i=1

(λ− ti)w
′
i(α) = 0.

Hence, since lim
α→0+

ψα(λ) ≥ 1, lim
α→∞

ψα(λ) = 0 and ψα(λ) is strictly decreasing as a function of

α, there exist α such that is the solution of the equation

ψα(λ) =

k−1∑

i=1

(λ− ti)w
′
i(α) = 1.
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Assume now maxi[(λ− ti)+fi(0)] < (n− 1)−1. Then

1 > (n− 1)max
i

[(λ− ti)+fi(0)] >
n−1∑

i=1

(λ− ti)+fi(0)

>

n−1∑

i=1

(λ− ti)+w
′
i(α) = ψα(λ)

for each α ∈ (0,∞). Then there is no α such that ψα(λ) = 1.

The values tk are relevant to the problem. Therefore, we must study the values α ∈ (0,∞)
such that ψα(tk) = 1 for each k.

Corollary B.1. Assume that the functions wi ∈ C2(0,∞) are strictly concave for all i =

1, . . . , n, and there exists an index 2 ≤ j ≤ n such that tj ≥ 1+t1f1(0)
f1(0)

. Then there exist

αk ∈ (0,∞) such that ψαk
(tk) = 1 for all k = j, . . . , n.

Proof. Since tj < tj+1 < · · · < tn and tj ≥ 1+t1f1(0)
f1(0)

, the proof follows immediately from
Lemma B.1 and Proposition B.2.

Remark B.1. If (t2 − t1)f1(0) ≥ 1, we get that

t2 ≥
1 + t1f1(0)

f1(0)
.

If wi is strictly concave for all i = 1, . . . , n, the Corollary B.1 hypothesis holds. Therefore, for
all k = 2, . . . , n, there exists αk ∈ (0,∞) such that ψαk

(tk) = 1.

C Properties of fi

Proposition C.1. The effective frequency function fi : [0, v̄i) → (0,∞) is strictly decreasing
and tends to 0 when vi → v̄i.

Proof. For the formulation presented in equation (34), the saturation flow of the line i is
v̄i = µc. If vi ∈ [0, v̄i), we have 0 ≤ vi < µc, so:

fi(vi) = µ

[
1−

(
vi
µc

)β
]
= µ−

µ

(µc)β
vβi .

Therefore, f ′i will be given by:

f ′i(vi) = −
µ

(µc)β
βvβ−1

i ,

and is f ′i(vi) < 0 since µ, c, β, vi > 0. In particular, f ′i(vi) = 0 iff vi = 0. To see that the
frequency of an arc tends to 0 when the flow on it tends to its maximum capacity, it is only
necessary to note that vi/µc→ 1 when vi → µc.

Proposition C.2. The effective frequency function given in (34) is concave iff β > 1 and
convex iff 0 < β < 1.
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Proof. From equation (34), we have, for vi ∈ [0, µc):

f ′i(vi) = −
µ

(µc)β
βvβ−1

i ,

from which we can obtain:
f ′′i (vi) = −

µ

(µc)β
β(β − 1)vβ−1

i .

Knowing that µ, c, vi > 0, it is not difficult to see that f ′′i (vi) < 0 iff β > 1 and f ′′i (vi) > 0 iff
0 < β < 1.

To show that w′
i is continuous in Proposition A.1, we need fi to be C1. We will show that

next.

Proposition C.3. The effective frequency function given in (34) is C1 in (0, µc).

Proof. For vi ∈ (0, µc), we have fi(vi) = µ

[
1−

(
vi
µc

)β]
. It is a continuous function since

β > 0 and vi/µc > 0.
As previously shown, f ′i(vi) = − µ

(µc)β
βvβ−1. If β > 1 (that is, β − 1 > 0), it is evident

that f ′i(vi) is continuous since vi > 0. If 0 < β < 1, this implies that β − 1 < 0, but f ′i(vi) is
still continuous since vi > 0.

Another important assumption is that wi is concave for each i ∈ A. We prove in Proposi-
tion A.2 that wi will be concave if and only if the frequency function satisfies 2f ′i(wi(α))w

′
i(α)+

αf ′′i (wi(α))(w
′
i(α))

2 < 0. To show that the effective frequency (34) satisfies this condition, let
us first note that, by definition, wi(α) = vi and α = vi

fi(vi)
. Considering that, we can rewrite

w′
i as:

w′
i(α) =

fi(wi(α))

1− αf ′i(wi(α))
=

fi(vi)

1− vi
fi(vi)

f ′i(vi)
=

f2i (vi)

fi(vi)− vif ′i(vi)
.

Let us see if fi satisfies the condition established in Proposition A.2:

2f ′i(wi(α))w
′
i(α) + αf ′′i (wi(α))(w

′
i(α))

2 =
2f ′i(vi)f

2
i (vi)

fi(vi)− vif ′i(vi)
+

vi
fi(vi)

f ′′i (vi)f
4
i (vi)

(fi(vi)− vif ′i(vi))
2

=
2f ′i(vi)f

2
i (vi)

fi(vi)− vif ′i(vi)
+

vif
′′
i (vi)f

3
i (vi)

(fi(vi)− vif ′i(vi))
2

=
2f ′i(vi)f

2
i (vi)(fi(vi)− vif

′
i(vi)) + vif

′′
i (vi)f

3
i (vi)

(fi(vi)− vif ′i(vi))
2

,

Therefore, 2f ′i(wi(α))w
′
i(α) + αf ′′i (wi(α))(w

′
i(α))

2 < 0 is equivalent to proving that:

2f ′i(vi)f
3
i (vi)− 2vif

2
i (vi)(f

′
i(vi))

2 + vif
′′
i (vi)f

3
i (vi) < 0

which, since fi(vi) > 0, is equivalent to proving that:

2f ′i(vi)fi(vi)− 2vi(f
′
i(vi))

2 + vif
′′
i (vi)fi(vi) > 0. (38)
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Proposition C.4. The frequency function (34) satisfies the condition (38).

Proof. Proving that the frequency function satisfies (38) is equivalent to proving that:

−vif
′′
i (vi)fi(vi)− 2f ′i(vi)fi(vi) + 2vi(f

′
i(vi))

2 > 0.

This is equivalent to proving that:

viβ(β − 1)vβ−2
i

cβµβ−1

(
µ−

vβi
cβµβ−1

)
+ 2

(
µ−

vβi
cβµβ−1

)
βvβ−1

i

cβµβ−1
+ 2vi

(
−

1

cβµβ−1
βvβ−1

i

)2

> 0 ⇔

β(β − 1)vβ−1
i

cβµβ−1

(
µ−

vβi
cβµβ−1

)
+ 2

(
µ−

vβi
cβµβ−1

)
βvβ−1

i

cβµβ−1
+ 2vi

β2v2β−2
i

c2βµ2β−2
> 0.

Multiplying by cβµβ−1 > 0, the above is equivalent to:

β(β − 1)vβ−1
i

(
µ−

vβi
cβµβ−1

)
+ 2

(
µ−

vβi
cβµβ−1

)
βvβ−1

i + 2
β2v2β−1

i

cβµβ−1
> 0 ⇔

µβ(β − 1)vβ−1
i −

β(β − 1)v2β−1
i

cβµβ−1
+ 2µβvβ−1

i −
2βv2β−1

i

cβµβ−1
+

2β2v2β−1
i

cβµβ−1
> 0 ⇔

vβ−1
i [µβ(β − 1) + 2µβ] + v2β−1

i

[
−β(β − 1)

cβµβ−1
−

2β

cβµβ−1
+

2β2

cβµβ−1

]
> 0 ⇔

vβ−1
i µβ(β + 1) + v2β−1

i

β(β − 1)

cβµβ−1
> 0.

Dividing by vβ−1
i µβ > 0, the above is equivalent to:

(β + 1) + vβi
(β − 1)

cβµβ
> 0 ⇔

(β + 1) + (β − 1)

(
vi
µc

)β

> 0 ⇔

β

[
1 +

(
vi
µc

)β
]
+

[
1−

(
vi
µc

)β
]
> 0

but this is true since vi, µ, c, β > 0 and we are considering vi < µc, so vi/µc < 1 and therefore[
1−

(
vi
µc

)β]
> 0.
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