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Abstract

This paper investigates the global convergence
of stepsized Newton methods for convex functions
with Hölder continuous Hessians or third derivatives.
We propose several simple stepsize schedules with
fast global convergence guarantees, up to O

(
k−3

)
.

For cases with multiple plausible smoothness
parameterizations or an unknown smoothness
constant, we introduce a stepsize linesearch and a
backtracking procedure with provable convergence
as if the optimal smoothness parameters were
known in advance. Additionally, we present strong
convergence guarantees for the practically popular
Newton method with exact linesearch.

1 Introduction

Second-order methods are fundamental to scientific
computing. With its rich history that can be traced back
to works Newton [1687], Raphson [1697], [Simpson, 1740],
they have remained widely used up to the present day
[Ypma, 1995, Conn et al., 2000]. The main advantage
of second-order methods is their independence from the
conditioning of the underlying problem, enabling an
extremely fast local quadratic convergence rate, where
precision doubles with each iteration. Additionally,
they are inherently invariant to rescaling and coordinate
transformations, which greatly simplifies parameter tuning.
In contrast, the convergence of first-order methods is highly
dependent on the problem’s conditioning, resulting in a
slower linear local convergence rate and a greater sensitivity
to parameter tuning.

Despite their extremely fast local convergence,
second-order methods often lack global convergence
guarantees. Even the classical Newton method,

xk+1 = xk −
[
∇2f(xk)

]−1∇f(xk), (1)

can diverge when initialized far from the solution
[Jarre and Toint, 2016, Mascarenhas, 2007]. Global
convergence guarantees are typically achieved through
various combinations of stepsize schedules [Nesterov and
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Nemirovski, 1994], line-search procedures [Kantorovich,
1948, Nocedal and Wright, 1999], trust-region methods
[Conn et al., 2000], and Levenberg-Marquardt regularization
[Levenberg, 1944, Marquardt, 1963].

The simplest globalization strategy is to employ stepsize
schedules. These schedules can be based on implicit descent
conditions, which often require an additional subroutine per
iteration, such as exact linesearch [Cauchy, 1847, Shea and
Schmidt, 2024], Armijo linesearch [Armijo, 1966], Wolfe
condition [Wolfe, 1969], Goldstein condition [Nocedal
and Wright, 1999]. However, those methods often lack
global convergence guarantees achieved by simple stepsize
schedules. Notably, Nesterov and Nemirovski [1994]
introduced a simple stepsize schedule with global rate
O
(
k−

1
2

)
. Hanzely et al. [2022] improved upon this

result by discovering duality between Newton stepsizes
and Lavenberg-Marquardt regularization and proposing a
stepsize with global rate O

(
k−2

)
matching regularized

Newton methods [Nesterov and Polyak, 2006, Mishchenko,
2023, Doikov and Nesterov, 2024].

Despite all recent advances, current guarantees still
fall short of the optimal rate for functions with Hölder
continuous Hessians, Ω

(
k−

7
2

)
[Gasnikov et al., 2019,

Agarwal and Hazan, 2018, Arjevani et al., 2019]. It remains
an open question whether the rate O

(
k−2

)
achieved by

Hanzely et al. [2022] is optimal for the Newton method or
if more efficient stepsize schedules are yet to be discovered.
In the context of first-order methods, several nontrivial
stepsize schedules have been shown to improve convergence
of Gradient Descent. Young [1953] introduced a stepsize
schedule based on Chebyshev polynomials achieving the
optimal rate for quadratic functions. Polyak [1987]
proposed a stepsize schedule optimal for non-smooth convex
functions, and Altschuler and Parrilo [2023], Grimmer
et al. [2024] proposed stepsize schedules with guaranteed
semi-accelerated rate for general convex, Lipschitz smooth
functions. This motivates us to ask the question:

Is it possible to guarantee a global convergence
rate better than O

(
k−2

)
for a simple stepsize

schedule of the Newton method?

The answer is positive. We demonstrate that the
stepsized Newton method can be analyzed under the
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assumption of Hölder continuity of third derivatives,
achieving convergence guarantees resembling third-order
tensor methods, up to O(k−3)1. Analyzing the Newton
method as the third-order method is a novel and unexpected
approach, as the Newton method has traditionally been
regarded as the most classical second-order method.

1.1 Benefits of basic methods

While it is possible to achieve optimal rates using
acceleration techniques with a more complex structure
[Gasnikov et al., 2019], basic methods are often preferred
in practice for several reasons.

Firstly, basic methods are simple and easy to understand.
They are also inherently robust, typically involving fewer
hyperparameters, which minimizes the need for complex
and costly hyperparameter tuning. In contrast, accelerated
methods often require multiple sequences of iterates and
additional hyperparameters, significantly increasing the
complexity of tuning.

Moreover, basic methods can be seamlessly integrated
with various techniques to enhance practical performance,
such as parameter searches, data sampling strategies,
momentum estimation, and gradient clipping. Combining
these techniques with accelerated methods, however,
introduces significant challenges. In the context of
first-order methods, acceleration with parameter searches
provides limited improvement over basic Gradient Descent
with stepsize linesearch.

For second-order methods, the basic stepsized Newton
method is particularly popular due to its affine invariance
(i.e., invariance to changes in basis and data scaling), making
it an efficient and convenient optimization tool.

1.2 Notation

For convex function f : Rd → R, we consider the
optimization objective

min
x∈Rd

f(x), (2)

where f is twice differentiable with nondegenerate Hessians
and potentially ill-conditioned.

Our paper uses a nontrivial amount of notation; hence,
we highlight definitions in gray and theorems in blue
for easier reference. Denote any minimizer of the
function x∗ ∈ argminx∈Rd f(x) and the optimal value

f∗
def
= f(x∗). We define norms based on a symmetric

positive definite matrix H ∈ Rd×d. For all x, g ∈ Rd,

∥x∥H
def
= ⟨Hx, x⟩1/2 , ∥g∥∗H

def
=
〈
g,H−1g

〉1/2
.

1For functions with Hölder continuous third derivatives, the achievable
lower bound is Ω

(
k−5

)
[Gasnikov et al., 2019].

As a special case H = I, we get l2 norm ∥x∥I = ⟨x, x⟩1/2.
We will utilize local Hessian norm H = ∇2f(x), with
shorthand notation for h, g ∈ Rd

∥h∥x
def
=
〈
∇2f(x)h, h

〉1/2
, ∥g∥∗x

def
=
〈
g,∇2f(x)−1g

〉1/2
.

1.3 Stepsizes as a form of regularization

Hanzely et al. [2022] demonstrated that a stepsize
schedule for the Newton method is equivalent to cubical
regularization of the Newton method [Nesterov and Polyak,
2006] if the regularization is measured in the local Hessian
norms. As the regularized Newton methods leverage the
Taylor polynomial, we denote the second-order Taylor
approximation of f(y) by information at point x as

Φx(y)
def
= f(x) + ⟨∇f(x), y − x⟩+ 1

2
∥y − x∥2x.

In particular, Hanzely et al. [2022] showed that

xk+1 = T (xk), T (x) = argmin
y∈Rd

{
Φx(y) +

σ

3
∥y − x∥3x

}
is equivalent to a Newton method with stepsize AICN2

xk+1 = xk − αk[∇2f(xk)]−1∇f(xk), (3)

for αk =
2

1 +
√

1 + 2σ∥∇f(xk)∥∗xk

. (4)

Note that stepsize schedule (4) preserves much
larger stepsize when initialized far from the solution,∥∥∇f(x0)

∥∥∗
x0 ≫ 1, compared to the stepsize of Damped

Newton method [Nesterov and Nemirovski, 1994], which
sets stepsize for Lsc-self-concordant functions as

αk =
1

1 + Lsc∥∇f(xk)∥∗xk

. (5)

Aiming to extend this dependence beyond L2,1-Hölder
continuous functions (Definition 1), in Section 3 we present
algorithm RN that under general Lp,ν-Hölder continuity
(Def 1) and q = p+ ν ∈ [2, 4] supports stepsize

αk =
1

1 + (9Lp,ν)
1

q−1 ∥∇f(xk)∥∗
q−2
q−1

xk

, (6)

up to a constant recovering schedules of both AICN stepsize
(4) (for L2,1-Hölder continuous functions, q = 3) and
constant stepsizes of Karimireddy et al. [2018b], Gower
et al. [2019a] (for L2,0-Hölder continuous functions, q = 2).

Remark. Stepsized Newton methods often enjoy much
simpler analysis compared to Newton methods regularized
in l2 norms, as it is possible to transition easily between
gradients and model differences with an exact identity∥∥xk+1 − xk

∥∥
xk

(3)
= αk

∥∥∇f(xk)
∥∥∗
xk . (7)

2We present the stepsize in a simplified but equivalent form. Hanzely

et al. [2022] expressed its stepsize as αk =
−1+

√
1+2σ∥∇f(xk)∥∗

xk

σ∥∇f(xk)∥∗
xk

.
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1.4 Higher order of regularization

Extending cubic regularization [Nesterov and Polyak, 2006],
tensor methods achieve better convergence guarantees by
regularizing p-th order Taylor approximations by (p+ 1)-th
order regularization (survey in Kamzolov et al. [2023]).

For third-order tensor methods, Nesterov [2021]
showed that regularization can avoid computation of
third-order derivatives, and Doikov et al. [2024] simplified
regularization using technique of Mishchenko [2023] to

xk+1 = T (xk), where for β, σ ≥ 0, (8)

T (x) = argmin
y∈Rd

{
Φx(y) +

σ

2
∥y − x∥22∥∇f(x)∥

β
2

}
. (9)

Combining insights about higher-order regularization with
the regularization-stepsize duality of Hanzely et al. [2022] ,
we show that the higher-order regularization in local norms

xk+1 = Tσ,β

(
xk
)
, where for β, σ ≥ 0, (10)

Tσ,β (x) = argmin
y∈Rd

{
Φx(y) +

σ

2 + β
∥y − x∥2+β

x

}
,

(11)

is equivalent to a Newton method with stepsize αk ∈ (0, 1],
where αk is the unique positive root of the polynomial
P [α]

def
= 1 − α − α1+βσ

∥∥∇f(xk)
∥∥∗β
xk . Even though the

polynomial P lacks an explicit formula for its roots, we
derive algorithm RN (Algorithm 1) with a simple and
exactly computed stepsize.

This method can be viewed as a third-order tensor
method, as the model (11) bounds the third-order term of
Taylor polynomial similarly to [Nesterov, 2021, Lemma 3].

Lemma 1. Let function f : Rd → R be third-order
L3,ν-Hölder continuous (Def. 1). Then ∀xk, xk+1 ∈ Rd,∥∥∇3f(xk)[xk+1 − xk]2

∥∥∗
xk

≤ 2

(
L3,ν

1 + ν

) 1
1+ν ∥∥xk+1 − xk

∥∥2
xk .

Generality of higher-order regularization

Investigating generality of the regularization (11), w can
observe that (11) also encapsulates all polynomial upper
bounds of polynomials P [∥x− y∥x] with smaller exponents.
Writing regularization as a polynomial,

f(y) ≤ Φx(y) + P [∥x− y∥x], (12)

this can be bounded as

f(y) ≤ Φx(y) +A1 +A2∥x− y∥px, (13)

where constants A1, A2 > 0 and degree p are expressed
in the lemma below. Notably, the next iterate x+ set as
the minimizer of the right-hand side of (13) is not affected
by A1, but the A1 worsens guarantees on functional value
decrease, f(x+) ≤ f(x) +A1.

Lemma 2. A polynomial P with dP coefficients ak ≥ 0
and exponents 0 ≤ b1 ≤ · · · ≤ bdP

,

P [x]
def
=

dP∑
k=0

akx
bk ,

satisfies following bound with any p ≥ maxk∈{1,...,dP } bk,

P [x] ≤ A1 +A2x
p,

where A1 = 1
p

∑dP

k=0 ak(p− bk), A2 = 1
p

∑dP

k=0 akbk.

A surprising observation: Similarly, we can
replace even the quadratic term from Taylor polynomial,
1
2∥y − x∥2x, by an upper bound in the form A1 +
A2∥x− y∥px. This further simplifies the regularization and
results in the Newton method with the unbounded stepsize

x+ = x−

(
1

(σ + 1)∥∇f(xk)∥∗βxk

) 1
1+β [

∇2f(x)
]−1∇f(x).

As the gradient diminishes, the stepsize diverges to infinity.
Yet, simultaneously, the functional value is guaranteed to
not deteriorate by more than a constant factor. We refer the
reader to the Appendix E for more details.

2 Contributions

Our contributions can be summarized as follows:

• Newton method as a third-order tensor method:
We analyze the stepsized Newton method for functions
with Hölder continuous third-derivatives (Definition 1).
This reframes the classical second-order Newton method
as a third-order method, bridging the gap between
second-order methods and third-order tensor methods.

• Simple stepsizes for fast global convergence:
We propose multiple stepsize schedules for the Newton
method (RN, Alg 1), leveraging various Hölder
continuity assumptions (Def 1). Although the stepsize is
chosen to be a root of a non-quadratic polynomial, it is
surprisingly simple and directly computable.

Depending on the considered variant of the Hölder
continuity assumption, they can achieve a global
convergence rate up to O

(
k−3

)
(Theorem 2). These

are the first Newton method stepsizes improving upon the
rate O

(
k−2

)
of Hanzely et al. [2022].

Additionally, we establish the following guarantees:

– a local superlinear convergence rate (Theorem 3),
– a global linear convergence (Theorems 9, 10)

under additional assumption of finite s-relative size
(Definition 4) [Doikov et al., 2024],

– and a global superlinear convergence (Theorem 7)
under the additional assumption of uniform
star-convexity (Definition 3) of degree s ≥ 2.

3



• Stepsize linesearches for unknown parameters:
In practice, smoothness constants are often unknown,
requiring approximation or fine-tuning. To address this,
we introduce a linesearch procedure GRLS (24) and
a stepsize backtracking method UN (Algorithm 2),
both of which provably converge as if the optimal
parameterization was known in advance (Col 1, Th 5).

• Guarantees for popular Newton linesearch:
As a byproduct of our analysis, we prove similar
convergence guarantees for the popular Newton method
with greedy linesearch (27) (Col 2, Th 7). This is, to our
best knowledge, the first result of such kind.

• Experimental comparison:
In Section 8, we experimentally compare the proposed
algorithms (RN, UN, and GRLS) with existing methods
and demonstrate that they outperform their counterparts
in most of the considered scenarios.

Also, we observe that the stepsizes of linesearch procedure
GRLS closely resemble stepsizes of popular Greedy
Newton linesearch.

2.1 Most relevant literature

Our theoretical framework leverages multiple insights of
works Hanzely et al. [2022] and Doikov et al. [2024]. We
will outline the key differences between those approaches.

Compared to our approach, the AICN method of
Hanzely et al. [2022] is restricted to cubic regularization
and achieves only an O

(
k−2

)
convergence rate. In

contrast, our schedules incorporate a range of smoothness
notions, including the Hölder continuity of the third
derivative, allowing Algorithm 1 to achieve rates up
to O

(
k−3

)
. Additionally, while AICN requires prior

knowledge of the smoothness constant, our backtracking
linesearch Algorithm 2 provably converge as if the optimal
parameterization was known in advance.

Furthermore, while Hanzely et al. [2022] relies on cubic
regularization, resulting in a stepsize that is the root of a
quadratic polynomial, higher-order regularizations yield
a stepsize that is the root of a higher-order polynomial.
Surprisingly, we show that even with higher-order
regularization, there is a unique positive root in the
interval (0, 1], and we present algorithms (Algorithm 1
and Algorithm 2) that can operate without requiring any
additional linesearch.

In comparison to Doikov et al. [2024], which utilizes
standard l2 norms for regularization, our approach leverages
the local Hessian norms suggested by [Hanzely et al.,
2022]. By utilizing local norms, the minimizers of various
regularization models (11) align on the same line, naturally
connecting different regularizations from a geometric
perspective. Local norms also result in a simpler algorithm
invariant to linear transformations (e.g., data scaling or

choice of basis), which is a valuable property in practice, as
it significantly reduces hyperparameter tuning.

We would like to highlight that our results explain the
success of popular stepsize linesearches in the Newton
direction. These insights have implications far beyond
our newly proposed methods. In comparison, the results
presented in Doikov et al. [2024] do not provide a novel
theoretical explanation for any established method.

3 Simple stepsize schedule

Now we are ready to present our new stepsize schedule.

Theorem 1. For any constants σ, β ≥ 0, the following
modifications of the Newton method are equivalent:

Regularize: xk+1 = xk + argmin
y∈Rd

Tσ,β

(
xk
)
, (14)

Damping: xk+1 = xk − αk[∇2f(xk)]−1∇f(xk),
(15)

where,

Tσ,β (x) = argmin
y∈Rd

{
Φx(y) +

σ

2 + β
∥y − x∥2+β

x

}
,

and αk ∈ (0, 1] is the only positive root of polynomial

P [α]
def
= 1− α− α1+βσ

∥∥∇f(xk)
∥∥∗β
xk .

We call this algorithm Root Newton (RN), Algorithm 1.

To simplify calculations, we reparametrize the RN as

θ
def
= αβσ∥∇f(x)∥∗βx , and θ ≥ 0. Now, the polynomial P

simplifies to P [α] = 1−α−αθ and for fixed θ, the positive
root of P can be expressed as α = 1

1+θ , with αθ < 1.

3.1 Hölder continuity

Our analysis is built upon the assumption that the function
has Hölder continuous Hessian or third derivative.

Definition 1. For f : Rd → R, and p ∈ N, we say
that p-times differentiable convex function is Hölder
continuous of p-th order, if for some ν ∈ [0, 1] there
exists a constant Lp,ν <∞, such thata ∀x, y ∈ Rd,

∥∇pf(x)−∇pf(y)∥op ≤ Lp,ν∥x− y∥νx, (16)

We say that the f has Hölder continuous Hessian if
L2,ν <∞ (for some ν ∈ [0, 1]) and Hölder continuous
third derivative if L3,ν <∞ (for some ν ∈ [0, 1]).

In particular, L3,0 =
∥∥∇3f(x)−∇3f(y)

∥∥
op

and L2,1 =

supx
∥∥∇3f(x)

∥∥
op

matches the definition of semi-strong
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Table 1: Global convergence guarantees of stepsized Newton methods under various notions of Hölder continuity
(Definition 1). For simplicity, we report dependence only on the number of iterations k.

Stepsize schedule
Stepsize for

gx
def
= ∥∇f(x)∥∗x

Smoothness
assumption Global rate Reference

Damped Newton B 1
1+Lscgx

(0) Lsc
(0) O

(
k−

1
2

)
(1) [Nesterov and Nemirovski, 1994](1)

AICN 2

1+
√

1+2L2,1gx

(2) L2,1 O
(
k−2

)
[Hanzely et al., 2022]

RN
(Algorithm 1)

1

1+(9Lp,ν)
1

q−1 g
q−2
q−1
x

(3) Lp,ν
(3) O

(
k−(p+ν−1)

)
(3) This work

(Theorem 4)

GRLS (24) Linesearched
Lp,ν

(3)

(unknown) minp,ν O
(
k−(p+ν−1)

)
(3) This work

(Corollary 1)

UN
(Algorithm 2) Backtracked

Lp,ν
(3)

(unknown) minp,ν O
(
k−(p+ν−1)

)
(3) This work

(Theorem 5)

Greedy Newton
(27) Linesearched

Lp,ν
(3)

(unknown) minp,ν O
(
k−(p+ν−1)

)
(3) Folklore

Rate: Corollary 2 (new)
(0) Constant Lsc represents self-concordance constant and is implied by L2,1-Hölder continuity.
(1) Authors show global decrease f(xk+1) ≤ f(xk)− c for some c > 0. Rate O(k− 1

2 ) is reported in Hanzely et al.
[2022]. We were unable to prove or find the convergence guarantee for Damped Newton B of the form O(k−α).

(2) We present a simplified form of the stepsize. Authors proposed AICN stepsize in equivalent form
−1+
√

1+L2,1gx
L2,1gx

.
(3) Parameters p, ν are fixed and satisfy p ∈ {2, 3} , ν ∈ [0, 1] and p+ ν − 1 ∈ [1, 3].

self-concordance [Hanzely et al., 2022]. Function Lp,ν is
log-convex in ν and hence for 0 ≤ ν1 ≤ ν ≤ ν2 ≤ 1, hold

Lp,ν ≤ [Lp,ν1
]

ν2−ν
ν2−ν1 [Lp,ν2

]
ν−ν1
ν2−ν1 ,

Lp,ν ≤ L1−ν
p,0 Lν

p,1.

We will use the properties of the Hölder continuity
summarized in the proposition below.

Proposition 1. L2,ν-Hölder continuous functions satisfy

∥∥∇f(y)−∇f(x)−∇2f(x)[y − x]
∥∥∗
x
≤ L2,ν

1 + ν
∥y − x∥1+ν

x .

L3,ν-Hölder continuous functions satisfy

∥∥∥∇f(y)−∇f(x)−∇2f(x) [y − x]−

−1

2
∇3f(x)[y − x]2

∥∥∥∥∗
x

≤ L3,ν

(1 + ν)(2 + ν)
∥y − x∥2+ν

x .

For further discussion of smoothness constants, we refer
the reader to Appendix D.

3.2 One-step decrease Hölder continuity

We are going to show that from the Hölder continuity for
sufficiently large θk follows bound〈
∇f(xk+1),

[
∇2f(xk)

]−1∇f(xk)
〉

≥ 1

2c1(1− αk)

∥∥∇f(xk+1)
∥∥∗2
xk ,

for c1 ∈ {1, 2}, implying the one-step decrease as

f(xk)− f(xk+1)

≥ −
〈
∇f(xk+1), xk+1 − xk

〉
=
〈
∇f(xk+1), αk

[
∇2f(xk)

]−1∇f(xk)
〉

≥ αk

2c1(1− αk)

∥∥∇f(xk+1)
∥∥∗2
xk

=
1

2c1θk

∥∥∇f(xk+1)
∥∥∗2
xk . (17)

Lemma 3. Let
∥∥∇f(xk)

∥∥∗
xk > 0, and xk ∈ Rd, xk+1 =

xk − αk

[
∇2f(xk)

]−1∇f(xk), as RN. Hölder continuity
of Hessian (Definition 1 with p = 2) implies that for θk
larger than

θk ≥
L2,ν

1 + ν
αν
k

∥∥∇f(xk)
∥∥∗ν
xk , (18)

5



holds〈
∇f(xk+1),

[
∇2f(xk)

]−1∇f(xk)
〉

≥ 1

2(1− αk)

∥∥∇f(xk+1)
∥∥∗2
xk .

Lemma 4. Let
∥∥∇f(xk)

∥∥∗
xk > 0, and xk ∈ Rd, xk+1 =

xk − αk

[
∇2f(xk)

]−1∇f(xk), as RN. Hölder continuity
of the third derivative (Definition 1 with p = 3) implies that
for θk larger than

θk ≥ αk

∥∥∇f(xk)
∥∥∗
xk max

{
6

(
L3,ν

1 + ν

) 1
1+ν

,

√
3L3,ν

(1 + ν)(2 + ν)

(
αk

∥∥∇f(xk)
∥∥∗
xk

)ν}
, (19)

holds〈
∇f(xk+1),

[
∇2f(xk)

]−1∇f(xk)
〉

≥ 1

4(1− αk)

∥∥∇f(xk+1)
∥∥∗2
xk .

3.3 Generalized one-step decrease

In Lemma 3 and Lemma 4, the requirement on θk is
dependent on αk. We can use the following observation to
derive a bound dependent only on the norm of the gradient.

Lemma 5. For c3, δ > 0, choice θk ≥ c
1

1+δ

3

∥∥∇f(xk)
∥∥∗ δ

1+δ

xk

ensures θk ≥ c3

(
αk

∥∥∇f(xk)
∥∥∗
xk

)δ
.

With Lemma 5, we can unify the cases p ∈ {2, 3}
(see Corollary 3 for the additional explanation). Let us

reparametrize as q
def
= p+ ν ∈ [2, 4] , Mq

def
= Lp,ν .

Theorem 2. Let ∥∇f(x)∥∗x > 0. Hölder continuity
(Definition 1) with q = p + ν ∈ [2, 4] for points
xk, xk+1 = xk − αk

[
∇2f(xk)

]−1∇f(xk) from RN
implies that for θk such that

θk ≥ (9Mq)
1

q−1
∥∥∇f(xk)

∥∥∗ q−2
q−1

xk (20)

holds〈
∇f(xk+1),

[
∇2f(xk)

]−1∇f(xk)
〉

≥ 1

2αkθk

∥∥∇f(xk+1)
∥∥∗2
xk .

(21)

In particular, in view of (17), we have that the choice

θk = (9Mq)
1

q−1
∥∥∇f(xk)

∥∥∗ q−2
q−1

xk guarantees decrease

f(xk)− f(xk+1) ≥ 1

2

(
1

9Mq

) 1
q−1

∥∥∇f(xk+1)
∥∥∗2
xk

∥∇f(xk)∥∗
q−2
q−1

xk

.

(22)

This naturally leads to an optimization algorithm RN.

Algorithm 1 RN: Root Newton stepsize schedule

1: Requires: Initial point x0 ∈ Rd, Hölder continuity
exponent q ∈ [2, 4] and constant Mq <∞.

2: for k = 0, 1, 2 . . . do
3: nk =

[
∇2f(xk)

]−1∇f(xk) ▷ Newton direction

4: gk =
〈
∇f(xk), nk

〉 1
2 ▷ gk =

∥∥∇f(xk)
∥∥∗
xk

5: θk = (9Mq)
1

q−1 g
q−2
q−1

k ▷ Sufficient regularization
6: αk = 1

1+θk
▷ αk is the root of P [α]

7: xk+1 = xk − αkn
k ▷ Step, xk = Tσk,β

(
xk
)

8: end for

4 Convergence garantees of RN

Denote the functional suboptimality fk
def
= f(xk)− f∗, the

initial level set Q(x0)
def
=
{
x ∈ Rd : f(x) ≤ f(x0)

}
, and

its diameter as D
def
= supx,y∈Q(x0) ∥x− y∥x. Note that

convexity and bounded diameter ofQ(x0), D <∞ together
imply D

∥∥∇f(xk)
∥∥∗
xk ≥ fk. We need the Hessian not to

change much between iterations to guarantee the global
convergence rate.

Assumption 1. There exists a γ > 0 bounding norms of the
gradients in the consecutive iterates,

γ ≤
∥∥∇f(xk+1)

∥∥∗2
xk

∥∇f(xk+1)∥∗2xk+1

.

Required γ exists in many cases. For L-smooth
µ-strongly convex functions, γ = µ

L . For functions with
ĉ-stable Hessian [Karimireddy et al., 2018a], γ = ĉ. For
Lsc-self-concordant functions, it holds when the points x, x+

are close to each other [Nesterov and Nemirovski, 1994] or
in the neighborhood of the solution (Proposition 2).

Proposition 2 (Hanzely et al. [2022], Lemma 4). For
convex Lsc-self-concordant function f : Rd → R and
for any 0 < c4 < 1 in the neighborhood of solution
xk ∈

{
x : ∥∇f(x)∥∗x ≤

(2c4+1)2−1
2Lsc

}
holds

∇2f(xk+1)−1 ⪯ (1− c4)
−2∇2f(xk)−1.

First, we present the local convergence of the RN.

6



Theorem 3. Let function f : Rd → R be convex,
Lp,ν-Hölder continuous (q = p+ ν) with γ-bounded
Hessian change (1). Algorithm RN has a superlinear
local convergence rate,∥∥∇f(xk+1)

∥∥∗
xk+1 ≤

2

γ
(9Mq)

1
q−1
∥∥∇f(xk)

∥∥∗(2− 1
q−1 )

xk .

Now we quantify the global convergence rate following
from Theorem 2 and present the rate of RN.

Lemma 6. Let function f : Rd → R be convex with
γ-bounded Hessian change (1) and the bound level sets
with diameter D. If an algorithm A generates the iterates{
xk
}n
k=1

with one-step decrease for q ≥ 2 and c5 ≥ 0 as

f(xk)− f(xk+1) ≥ c5

∥∥∇f(xk+1)
∥∥∗2
xk

∥∇f(xk)∥∗
q−2
q−1

xk

, (23)

then A has the global convergence rate

fn ≤
Dq (2γ(q − 1))

q−1

c5q−1nq−1
+
∥∥∇f(x0)

∥∥∗
x0D exp

(
−k

4

)
.

Theorem 4. Let function f : Rd → R be convex,
Lp,ν-Hölder continuous (q = p+ ν) with γ-bounded
Hessian change (1) and the bound level sets with
diameter D. RN (Algorithm 1) with known parameters
q,Mq converges as

f(xk)− f∗ ≤
9MqD

q (4γ(q − 1))
q−1

kq−1

+
∥∥∇f(x0)

∥∥∗
x0D exp

(
−k

4

)
,

which in O notation is simplifies to O
(

MqD
q

kq−1

)
.

Note that the loss function can satisfy Hölder continuity
(Definition 1) with multiple different Lp,ν , and therefore
different pairs (q, Mq) can be used. The best parametrization
might not be known.

5 Unknown parametrization

To address unknown parameterization, we propose a
stepsize linesearch Gradient-Regulated Line Search GRLS
simultaneously minimizing loss and gradient norms as

xk+1 = argmin
y∈{x−αn

xk |α∈[0,1]}

f(y)− f(xk)

∥∇f(y)∥∗2xk

, (24)

where nx
def
= [∇2f(x)]−1∇f(x) is a shorthand for

Newton’s direction at point x. Linesearch GRLS is directly
minimizing bound (23) in Lemma 6, and therefore has the
corresponding convergence rate.

Corollary 1. Let function f : Rd → R, be convex, Hölder
continuous with some Mq < ∞, with γ-bounded Hessian
change (1), and the bound level sets with diameter D <∞.
Linesearch GRLS converges as minq∈[2,4]O

(
MqD

q

kq−1

)
f(xk)− f∗ ≤ min

q∈[2,4]

9MqD
q (4γ(q − 1))

q−1

kq−1

+
∥∥∇f(x0)

∥∥∗
x0D exp

(
−k

4

)
. (25)

Observe that for small stepsizes αk ∈ [0, α], for
some α ≪ 1, model differences are small xk+1 ≈ xk

and ∇f(xk) ≈ ∇f(xk+1). Therefore, expression (24)
minimized by GRLS can be approximated as

f(y)− f(xk)

∥∇f(y)∥∗2xk

≈f(y)− f(xk)

∥∇f(xk)∥∗2xk

, (26)

and the minimizer of the right-hand-side is equivalent to the
practically popular Newton method with greedy linesearch

xk+1 = argmin
y∈{xk−αn

xk |α∈[0,1]}
f(y), (27)

which we will call Greedy Newton (GN). Leveraging this
insight, we obtain the convergence rate for (27) in the
corollary below. More details can be found in Appendix B.

Corollary 2. Let function f : Rd → R, be convex,
Mq-Hölder continuous for some Mq <∞, with γ-bounded
Hessian change (1), and the bound level sets with diameter
D < ∞. If the Greedy Newton linesearch (27) satisfies
the inequality

∥∥∇f(xk+1)
∥∥∗
xk ≤ c

∥∥∇f(xk)
∥∥∗
xk with some

constant c ≥ 0 for all iterates xk, then it has convergence
guarantee minq∈[2,4]O

(
MqD

qc2(q−1)

kq−1

)
f(xk)− f∗ ≤ min

q∈[2,4]

9MqD
q
(
4γc2(q − 1)

)q−1

kq−1

+
∥∥∇f(x0)

∥∥∗
x0D exp

(
−k

4

)
.

Linesearches GRLS (24) and GN (27) have fast
convergence guarantees without knowledge of smoothness
parametrization (q,Mq), yet their implicit nature might not
be suitable for all practical scenarios. To remedy that, in the
next section, we present a stepsize backtracking procedure
with matching convergence guarantees.

6 Universal stepsize backtracking

Our backtracking procedure is based on the observation
that the knowledge of the parametrization (q,Mq) in RN
(Algorithm 1) is required only for setting θk. We start with
an estimate of θk smaller than the true value and increase
it until it achieves the theoretically predicted decrease. We
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Algorithm 2 UN: Universal stepsize backtracking
procedure for the Newton method

1: Input: Initial point x0 ∈ Rd, any constants β ∈[
2
3 , 1
]
, σ0, γ > 1 ▷ β ≥ q−2

q−1 for q ∈ [2, 4]
2: for k = 0, 1, 2 . . . do
3: nk =

[
∇2f(xk)

]−1∇f(xk) ▷ Newton direction

4: gk =
〈
∇f(xk), nk

〉 1
2 ▷ =

∥∥∇f(xk)
∥∥∗
xk

5: for jk = 0, 1, 2 . . . do
6: θk,jk = γjkσkg

β
k ▷ Increase regularization

7: αk,jk = 1
1+θk,jk

▷ Update stepsize

8: xk
jk

= xk − αk,jkn
k ▷ = Tγjkσk,βk

(
xk
)

9: if
〈
∇f(xk

jk
), nk

〉
≥ 1

2αk,jk
θk,jk

∥∥∇f(xk
jk
)
∥∥∗2
xk

then
10: xk+1 = xk

jk

11: σk+1 = γjk−1σk

12: break
13: end if
14: end for
15: end for

claim that the resulting algorithm, UN, Algorithm 2, is
well-defined with a bounded number of backtracking steps
and a fast global convergence rate.

To formalize this claim, we first define
a quantity to identify the smallest plausible
true parameter θk to be estimated first,

H (x)
def
= infq∈[2,4] (9Mq)

1
q−1 ∥∇f(x)∥∗(

q−2
q−1−β)

x , for

q ∈ [2, 4] and β ≥ 2
3 .

Lemma 7. If Mq < ∞ for some q ∈ [2, 4], and the
initial estimate σ0 small enough, σ0 ≤ H

(
x0
)
, then all

iterations
{
xk
}n
k=0

of UN, such that
∥∥∇f(xk)

∥∥∗
xk > 0,

satisfy σk+1 =
θk,jk−1

∥∇f(xk)∥∗β
xk

≤ H
(
xk
)
. Moreover, the

total number NK of backtracking steps during the first k
iterations is bounded,

Nk ≤ 2k + logc
H
(
xk−1

)
σ0

.

Theorem 5. Let function f : Rd → R, be
convex, Hölder continuous with some Mq < ∞,
with γ-bounded Hessian change (Assumption 1),
and the bound level sets with diameter D <
∞. UN (Algorithm 2) converges with the rate
minq∈[2,4]O

(
MqD

q

kq−1

)
,

f(xk)− f∗ ≤ min
q∈[2,4]

9MqD
q
(
4γ2(q − 1)

)q−1

kq−1

+
∥∥∇f(x0)

∥∥∗
x0D exp (−k/4) .

7 Global (super)linear convergence rate

Stepsized Newton method is known to be able to achieve a
global linear rate if the Hessian is bounded and stepsize is
constant [Karimireddy et al., 2018b, Gower et al., 2019b], or
when the function is L2,1-Hölder continuous with stepsize
following schedule AICN [Hanzely et al., 2022, proof in
[Hanzely, 2023]].

In line with those results, we present global linear rates
for algorithms RN, UN, GRLS on Lp,ν-Hölder continuous
functions with finite (p + ν)-relative size characteristic
[Doikov et al., 2024]. The proof is in Appendix G.

Definition 2 ([Doikov et al., 2024]). For strictly
convex function f : Rd → R we call s-relative size
characteristic

Ds
def
= sup

x,y∈Q(x0)

{
∥x− y∥x

(
Vf

βf (x, y)

) 1
s

}
,

where βf (x, y)
def
= ⟨∇f(x)−∇f(y), x− y⟩ > 0 and

Vf
def
= supx,y∈Q(x0) βf (x, y).

Theorem 6. Let function f be Lp,ν-Hölder continuous,
with finite relative size Dq < ∞ for q = p +
ν (Definition 4) and γ-bounded Hessian change
(Assumption 1). Algorithms RN, UN and GRLS find
points in the ε-neighborhood, f(xk)− f(x∗) ≤ ε, in

k ≤ O

(
γ

(
MqD

q
q

Vf

) 1
q−1

ln
f0
ε

+ ln

∥∥∇f(x0)
∥∥∗
x0D

ε

)

iterations, implying a global linear convergence rate.

Remark. In view of (26), analogous convergence
guarantee (with a worse constant) can be proven for GN.

Replacing relative size assumption with uniform
star-convexity of degree s (q > s ≥ 2), we can
guarantee a global superlinear rate for RN and GN similarly
to Kamzolov et al. [2024]. The proof is in Appendix F.

Definition 3. For s ≥ 2 and µs ≥ 0 we call function
f : Rd → R µs-uniformly star-convex of degree s in
local norms with respect to a minimizer x∗ if ∀x ∈
Rd,∀η ∈ [0, 1] holds

f (ηx+ (1− η)x∗) ≤ ηf(x) + (1− η)f∗

− η(1− η)µs

s
∥x− x∗∥sx.

If this inequality holds for µs = 0, we call function f
star-convex in local norms (w.r.t. minimizer x∗).
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Theorem 7. Let the function f : Rd →
R be Lp,ν-Hölder continuous (Definition 1) and
µs-uniformly star-convex of degree s in local norms

(Definition 3) and q
def
= p+ν ≥ s ≥ 2 then RN and GN

have global decrease in functional value suboptimality,

f(xk)− f∗ ≤
(
f(x0)− f∗

) k−1∏
t=0

(1− η̂t),

where η̂k ∈ [0, 1] is the only positive root of Ek(η)
def
=

(1− η)µs

s − ηq−1
(

Mq

(p+1)! +
σ
q

)∥∥xk − x∗
∥∥q−s

xk .
If q = s, then η̂k is constant throughout all

iterations and the rate is globally linear.
If q > s, then η̂k is monotonically increasing as∥∥xk − x∗

∥∥
xk decreases, 1 − η̂k → 0, and therefore,

the resutling rate is globally superlinear.

8 Numerical experiments

Logistic regression

In Figure 2, we compare the performance of the proposed
algorithms on binary classification on datasets from
LIBSVM repository [Chang and Lin, 2011]. For datapoints
{(ai, bi)}ni=1, where ai ∈ Rd, bi ∈ {−1,+1}, and
regularizer µ = 10−3, we aim to minimize

min
x∈Rd

{
f(x) =

1

n

n∑
i=1

log
(
1 + e−bi⟨ai,x⟩

)
+

µ

2
∥x∥22

}
.

We initialize all methods at x0 = 10 · [1, 1, . . . , 1]T ∈ Rd.

Polytope feasibility

In Figure 3, we compare proposed algorithms on polytope
feasibility problem, aiming to find a point from a polytope
P =

{
x ∈ Rd : ⟨ai, x⟩ ≤ bi, 1 ≤ i ≤ n

}
, reformulated as

min
x∈Rd

{
f(x) =

n∑
i=0

(⟨ai, x⟩ − bi)
p
+

}
, (28)

where (t)+
def
= max{t, 0} and p ≥ 2. We generate data

points (ai, bi) and the solution x∗ synthetically as ai, x∗ ∼
N (0, 1) and set bi = ⟨ai, x∗⟩.

We initialize all methods at x0 = [1, 1, . . . , 1]T ∈ Rd.

Rosenbrock function

Linesearch procedures solve the abovementioned problems
in just a few steps. For a more challenging task, Figure 1
presents the notorious d-dimensional Rosenbrock function,

min
x∈Rd

{
f(x) =

d−1∑
i=0

[100(xi+1 − x2
i )

2 + (1− xi)
2]
}
. (29)

Notably, the Rosenbrock function (29) is nonconvex, which
breaks assumptions in our convergence theorems.

The function (29) has the global solution at x∗ =
[1, . . . , 1]T , and therefore we choose the initial point from a
normal distribution, x0 ∼ N (0, Id) · 20.

8.1 Experimental comparison

In Figures 2a, 3a, we compare higher-order methods without
any linesearch procedures, namely RN (Algorithm 1),
AICN [Hanzely et al., 2022] and Gradient Regularization
of Newton Method (GRN) [Doikov et al., 2024, Alg.
1]. As additional baselines, we use the damped Newton
method with a fixed fine-tuned stepsize and classical
first-order Gradient Method (GM) [Nesterov, 2018]. RN
and AICN show similar performance while GRN has a
slight disadvantage. As expected, the first-order method
GM that does not utilize Hessian has quicker iterations but
slower per-iteration convergence.

In Figures 2b, 3b, we compare higher-order
regularization methods with smoothness constant
estimation procedures, UN and Super-universal Newton
method [Doikov et al., 2024, Alg. 2]. As an additional
baseline, we use the damped Newton method with a fixed
but fine-tuned stepsize. We show that UN displays faster
convergence than the Super-universal Newton method.
Moreover, we show that the exponent of the regularization
term β that appears in both UN and super-universal Newton
method (8) does not have a significant impact on overall
performance.

Figures 2c, 3c, 1 compare implicit linesearch procedures
for Newton stepsizes, namely GRLS, Armijo stepsize,
and Greedy Newton stepsize (GN) [Cauchy, 1847, Shea
and Schmidt, 2024]. Our theory presents convergence
guarantees for GRLS and GN with stepsizes limited to
the interval [0, 1]. We go beyond this limitation and perform
parameter linesearches over α ∈ R+ instead.

Figures 2c, 3c demonstrate that on logistic regression
and polytope feasibility problems, linesearch procedures
GRLS and GN use almost indistinguishable stespsizes and
converge faster than Armijo linesearch and fixed stepsize
Newton. On the Rosenbrock function (Figure 1), GRLS
significantly outperforms all other linesearches procedures.
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Figure 1: Performance of Newton method stepsize lineserch
procedures on nonconvex Rosenbrock function (29). We
plot mean ± standard deviation of 5 random initializations.
We crop stepsize standard deviation at 0.
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(a) Performance of RN compared to other higher-order methods without any linesearch procedure.
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(b) Performance of UN compared to other higher-order regularization methods with smoothness estimation procedures.
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(c) Performance of Linesearch GRLS (24) compared to other linesearch procedures.

Figure 2: Binary classification logistic regression problem on LIBSVM datasets.
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Figure 3: Polytope feasibility problem (28) on a synthetic datasets.

11



References

Naman Agarwal and Elad Hazan. Lower bounds for higher-order convex optimization. In Conference On Learning Theory,
pages 774–792. PMLR, 2018.

Jason Altschuler and Pablo Parrilo. Acceleration by stepsize hedging I: multi-step descent and the silver stepsize schedule,
2023.

Yossi Arjevani, Ohad Shamir, and Ron Shiff. Oracle complexity of second-order methods for smooth convex optimization.
Mathematical Programming, 178(1):327–360, 2019.

Larry Armijo. Minimization of functions having lipschitz continuous first partial derivatives. Pacific Journal of mathematics,
16(1):1–3, 1966.

Augustin Cauchy. Méthode générale pour la résolution des systemes d’équations simultanées. Comp. Rend. Sci. Paris, 25
(1847):536–538, 1847.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM Transactions on
Intelligent Systems and Technology (TIST), 2(3):1–27, 2011. URL https://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/.

Andrew Conn, Nicholas Gould, and Philippe Toint. Trust Region Methods. SIAM, 2000.

Nikita Doikov and Yurii Nesterov. Gradient regularization of Newton method with bregman distances. Mathematical
programming, 204(1):1–25, 2024.

Nikita Doikov, Konstantin Mishchenko, and Yurii Nesterov. Super-universal regularized Newton method. SIAM Journal on
Optimization, 34(1):27–56, 2024.

Alexander Gasnikov, Pavel Dvurechensky, Eduard Gorbunov, Evgeniya Vorontsova, Daniil Selikhanovych, and César Uribe.
Optimal tensor methods in smooth convex and uniformly convexoptimization. In Conference on Learning Theory, pages
1374–1391. PMLR, 2019.

Robert Gower, Dmitry Kovalev, Felix Lieder, and Peter Richtárik. RSN: randomized subspace Newton. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information
Processing Systems 32, pages 616–625. Curran Associates, Inc., 2019a. URL http://papers.nips.cc/paper/
8351-rsn-randomized-subspace-newton.pdf.

Robert Gower, Dmitry Kovalev, Felix Lieder, and Peter Richtárik. RSN: randomized subspace Newton. Advances in Neural
Information Processing Systems, 32, 2019b.

Benjamin Grimmer, Kevin Shu, and Alex Wang. Accelerated objective gap and gradient norm convergence for gradient
descent via long steps. arXiv preprint arXiv:2403.14045, 2024.

Slavomír Hanzely. Sketch-and-project meets Newton method: Global O(1/k2) convergence with low-rank updates. arXiv
preprint arXiv:2305.13082, 2023.

Slavomír Hanzely, Dmitry Kamzolov, Dmitry Pasechnyuk, Alexander Gasnikov, Peter Richtárik, and Martin Takáč. A
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Appendix
A Technical details of experiments

All hyperparameters were fine-tuned to achieve the best possible performance for both objectives and every dataset. All
experiments were conducted on a workstation with specifications: AMD EPYC 7742 64-Core Processor with 32Gb of RAM.
Source code is available at https://anonymous.4open.science/r/root-newton-8D65.
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Extended comparison on Rosenbrock function

Here we present an extended comparison of linesearch procedures on Rosenbrock function (29) (similar to Figure 1), with 10
random initializations and the limit of 1000 steps. We observe that none of the considered algorithms consistently converge
to the exact solution for all of the random seeds, and that GRLS performs better than the other linesearch methods.
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Figure 4: Performance of Newton method stepsize lineserch procedures on nonconvex Rosenbrock function (29). We plot
mean ± standard deviation of 10 random initializations. We crop stepsize standard deviation at 0.

B Fast convergence guarantees for Greedy Newton linesearch

If the inequality ∥∇f(y)∥∗xk ≤ c
∥∥∇f(xk)

∥∥∗
xk holds for constant c ≥ 0, we have that for stepsizes in a range [α, α] holds

min
α ∈ [α, α]

y = x− αnxk

f(y)− f(xk)

∥∇f(xk)∥∗2xk

≤c2 · min
α ∈ [α, α]

y = x− αnxk

f(y)− f(xk)

∥∇f(y)∥∗2xk

, (30)

proving that Greedy Newton minimizes the target metric of GRLS up to a constant ×c2. If we denote ĉ5 constant with
which GRLS satisfies Lemma 6, then Greedy Newton satisfies Lemma 6 with constant ĉ5c2 and guarantee convergence
similar to Corollary 1.

Now we are going to discuss how constant c can be found in different scenarios.

Remark (General Mq-Hölder continuous functions). To find c we note that Theorem 2 shows that stepsize θk
def
= 1−αk

αk
≥

(9Mq)
1

q−1
∥∥∇f(xk)

∥∥∗ q−2
q−1

xk for Mq-Hölder continuous function implies

1

2(1− αk)
∥∇f(y)∥∗2xk ,≤

〈
∇f(y),

[
∇2f(xk)

]−1∇f(xk)
〉
≤ ∥∇f(y)∥∗xk

∥∥∇f(xk)
∥∥∗
xk ,

which after rearranging yields ∥∇f(y)∥∗xk ≤ 2(1− αk)
∥∥∇f(xk)

∥∥∗
xk . Therefore if

α ≤ 1

1 + (9Mq)
1

q−1 ∥∇f(xk)∥∗
q−2
q−1

xk

(31)

or equivalently

α ≤
(
1 + (9Mq)

1
q−1
∥∥∇f(xk)

∥∥∗ q−2
q−1

xk

)−1

≤

(
1 + sup

q∈[2,4]

(9Mq)
1

q−1
∥∥∇f(x0)

∥∥∗ q−2
q−1

x0

)−1

. (32)
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In such case, c can be set as c = 2(1− α).

Note that (32) is satisfied by smaller stepsizes, which damped Newton methods use globally until they converge to the
neighborhood of the solution.

Remark (Hölder continuity of Hessians). For L2,ν-Holder, Lemma 8 yields

∥∇f(y)∥∗xk ≤
(
|1− α|+ L2,ν

1 + ν
α1+ν

∥∥∇f(xk)
∥∥∗ν
xk

)∥∥∇f(xk)
∥∥∗
xk , (33)

ensuring that without any limitation on α

cx
def
= sup

α∈[α,α]

|1− α|+ L2,ν

1 + ν
α1+ν

∥∥∇f(xk)
∥∥∗ν
xk (34)

= max
α∈{α,α,1}

|1− α|+ L2,ν

1 + ν
α1+ν

∥∥∇f(xk)
∥∥∗ν
xk . (35)

For α← 0, α← 1, we can set

c = max

{
1,

L2,ν

1 + ν

∥∥∇f(xk)
∥∥∗ν
xk

}
≤ max

{
1,

L2,ν

1 + ν

∥∥∇f(x0)
∥∥∗ν
x0

}
. (36)

Remark (L2,0-Hölder continuity). For L2,0-Hölder functions with L2,0 ≥ 1, constant c simplifies to c
def
= α

L2,0

2 + |1− α|,
because α

(
L2,0

2 − 1
)
+ 1 ≥ α

(
L2,0

2 − 1
)
+ 1 ≥ 1

2 , if α ≤ 1,

α
(

L2,0

2 + 1
)
− 1 ≥ α

(
L2,0

2 + 1
)
− 1 ≥ L2,0

2 , if α ≥ 1.
(37)

C Connection between stepsizes and regularization

We show connections of particular stepsizes to regularized Newton methods. For fixed σ > 0, β ≥ 0 define regularized
model as

Tσ,β (x)
def
= argmin

y∈Rd

{
f(x) + ⟨∇f(x), y − x⟩+ 1

2
∥y − x∥2x +

σ

2 + β
∥y − x∥2+β

x

}
. (38)

We can define optimization algorithm RN as

xk+1 def
= Tσ,β

(
xk
)

(39)

By first-order optimality condition, solution of model h∗ def
= Tσ,β (x)− x satisfy(

1 + σ∥h∗∥βx
) [
∇2f(x)

]
h∗ = −∇f(x), (40)

h∗ = −
(
1 + σ∥h∗∥βx

)−1

︸ ︷︷ ︸
def
=α>0

[
∇2f(x)

]−1∇f(x). (41)

Now iterates of RN are in the direction of Newton method (for any σ and β) and we can write

h∗ = −α
[
∇2f(x)

]−1∇f(x), (42)[
∇2f(x)

]
h∗ = −α∇f(x), (43)

∥h∗∥x = α∥∇f(x)∥∗x. (44)

Substituting
[
∇2f(x)

]
h∗ back to the first-order optimality conditions we get

0 = ∇f(x)
(
1− α− α1+βσ∥∇f(x)∥∗βx

)
. (45)
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Thus, α defined as a root of the polynomial

P [α]
def
= 1− α− α1+βσ∥∇f(x)∥∗βx (46)

satisfies first-order optimality condition. Note that P [0] > 0 and P [1] ≤ 0, hence P has root on interval (0, 1]. This will be
the stepsize of our algorithm. Also note that P is monotone on R+,

P ′[α] = −1− (1 + β)αβσ∥∇f(x)∥∗βx < 0, (47)

and consequently, the positive root of P is unique.

D Extra smoothness relations

Let γ ∈ [0, 1]. From Hölders continuity, triangle inequality and definition of Lp,ν ,∥∥∇3f(x)[y − x]
∥∥
op
≤
∥∥∇2f(x)−∇2f(y)

∥∥
op

+
L3,ν

1 + ν
∥y − x∥1+ν

x (48)

≤ L2,γ∥x− y∥γx +
L3,ν

1 + ν
∥y − x∥1+ν

x (49)

For y ← x+ τh, where ∥h∥x = 1, τ > 0, we can continue∥∥∇3f(x)
∥∥
op
≤ L2,γ

τ1−γ
+

L3,ν

1 + ν
τν , (50)

≤ 2 + ν

1 + ν
[L2,γ ]

ν
1+ν−γ τ1−γ [L3,ν ]

1
1+ν−γ , // by τ ←

[
L2,γ

L3,ν

] 1
1+ν−γ

(51)

≤ 3

2

√
L2,0L3,1, // by γ ← 0, ν ← 1 (52)

and we can summarize

L3,0 = sup
x ̸=y

∥∥∇3f(x)−∇3f(y)
∥∥
op
≤ sup

x̸=y

(∥∥∇3f(x)
∥∥
op

+
∥∥∇3f(y)

∥∥
op

)
= 2 sup

x

∥∥∇3f(x)
∥∥
op

(53)

≤

{
2L2,1

3
√
L2,0L3,1

. (54)

Lemma 8. If L2,ν exists, for points xk, xk+1 = xk − αk

[
∇2f(xk)

]−1∇f(xk) holds decrease∥∥∇f(xk+1)
∥∥∗
xk ≤

(
θk +

L2,ν

1 + ν
αν
k

∥∥∇f(xk)
∥∥∗ν
xk

)
αk

∥∥∇f(xk)
∥∥∗
xk ,

and hence, if ν > 0 and θk ≥
∥∥∇f(xk)

∥∥∗ε
xk for ε > 0, and if the bound (131) exists (meaning that the Hessian does not

change much), we have guaranteed superlinear local rate.

Remark. Hanzely et al. [2022] shows that L2,1-Hölder continuity implies self-concordance, and [Nesterov, 2018, Theorem
4.1.3] proves that self-concordance implies positive definiteness of Hessian ∇2f the domain of function f contains no
straight line.

E Simplified regularization

In the view of Section 1.4 and Lemma 2, we can bound the majorization as

Tσ,β (x) = argmin
y∈Rd

{
f(x) + ⟨∇f(x), y − x⟩+ 1

2
∥y − x∥2x +

σ

2 + β
∥y − x∥2+β

x

}
(55)

≤ argmin
y∈Rd

{
f(x) + ⟨∇f(x), y − x⟩+ β

2(β + 2)
+

σ + 1

2 + β
∥y − x∥2+β

x

}
(56)

= x−

(
1

(σ + 1)∥∇f(xk)∥∗βxk

) 1
1+β [

∇2f(x)
]−1∇f(x), (57)
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where stepsize was obtained as the positive root of polynomial P [α]
def
= 1− α1+β(σ + 1)

∥∥∇f(xk)
∥∥∗β
xk .

Surprisingly, stepsize is unbounded, and when ∥∇f(x)∥∗x → 0, then α → ∞. This puzzling result has a simple
explanation – such stepsize converges only to a neighborhood of the solution.

In practice, we could not observe stepsize larger than 5 on any considered dataset. When close to the solution and the
stepsize becomes larger than one, algorithm (57) stops converging closer to the solution, and functional values oscillate.

F Analysis under uniform star-convexity assumption in local norms

Proof of Theorem 7. We have that updates of RN with q = p+ ν = 2 + β and any σ ≥Mq can be written as

f(xk+1) ≤ Φxk(xk+1) +
σ

q

∥∥xk+1 − xk
∥∥q
xk (58)

= min
y∈Rd

{
Φxk(y) +

σ

q
∥y − x∥qxk

}
, (59)

using standard integration arguments from Mq-Hölder continuity

≤ min
y∈Rd

{
f(y) +

Mq

(p+ 1)!

∥∥y − xk
∥∥q
xk +

σ

q

∥∥y − xk
∥∥q
xk

}
(60)

= min
y∈Rd

{
f(y) +

(
Mq

(p+ 1)!
+

σ

q

)∥∥y − xk
∥∥q
xk

}
, (61)

setting y ← x+ ηk(x
∗ − xk) for arbitrary ηk ∈ [0, 1],

≤ f
(
xk + ηk(x

∗ − xk)
)
+ ηqk

(
Mq

(p+ 1)!
+

σ

q

)∥∥xk − x∗∥∥q
xk , (62)

assuming µs-strong star-convexity for q ≥ s ≥ 2,

≤ (1− ηk)f(x
k) + ηkf∗ −

ηk(1− ηk)µs

s

∥∥xk − x∗∥∥s
xk + ηqk

(
Mq

(p+ 1)!
+

σ

q

)∥∥xk − x∗∥∥q
xk , (63)

denoting functional suboptimality δk
def
= f(xk)− f∗ ,

δk+1 ≤ (1− ηk)δk − ηk
∥∥xk − x∗∥∥s

xk

(
(1− ηk)

µs

s
− ηq−1

k

(
Mq

(p+ 1)!
+

σ

q

)∥∥xk − x∗∥∥q−s

xk

)
. (64)

Denote expression E(η)
def
= (1− η)µs

s − ηq−1
(

Mq

(p+1)! +
σ
q

)
∥x− x∗∥q−s

x for η ∈ [0, 1]. Observe that E′(η) < 0 and

therefore E is monotonically decreasing on R+; with E(0) ≥ 0 ≤ E(1) we can conclude that it has a unique root η̂ on
[0, 1]. With choice η ← η̂ in the last inequality we can conclude global convergence rate

δk+1 ≤ (1− η̂k)δk. (65)

Note that the root of the expression E is inversely proportional to the distance from the solution ∥x− x∗∥x, and therefore as
the method converges, xk → x∗, then the size of its root increases η̂k → 1. Therefore, the global convergence rate (65) is
superlinear.

Unrolling the recurrence (65) yields the inequality from the Theorem 7.

Note that the decrease is based solely on the decrease in functional values, which allows us to prove the identical
guarantee for Greedy Newton linesearch GN. In particular, GN implies f(x+

GN) ≤ f(x+
RN), and we can analogically conclude

f(xk+1
GN )− f∗ ≤

(
f(xk

GN)− f∗
)
(1− η̂k). (66)
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G Analysis under s-relative size assumption

In this section, we present global convergence guarantees under a novel characteristic called s-relative size recently proposed
by Doikov et al. [2024].

Definition 4 ([Doikov et al., 2024]). For strictly convex function f : Rd → R we call s-relative size characteristic

Ds
def
= sup

x,y∈Q(x0)

{
∥x− y∥x

(
Vf

βf (x, y)

) 1
s

}
,

where βf (x, y)
def
= ⟨∇f(x)−∇f(y), x− y⟩ > 0 and Vf

def
= supx,y∈Q(x0) βf (x, y).

Theorem 8. Let function f be Lp,ν-Hölder continuous, with finite relative size Dq <∞ for q = p+ ν (Definition 4)
and γ-bounded Hessian change (Assumption 1). Algorithms RN, UN and GRLS find points in the ε-neighborhood,
f(xk)− f(x∗) ≤ ε, in

k ≤ O

(
γ

(
MqD

q
q

Vf

) 1
q−1

ln
f0
ε

+ ln

∥∥∇f(x0)
∥∥∗
x0D

ε

)

iterations, enjoying a global linear convergence rate.

Strict convexity implies βf (x, y) > 0, we also have lims→∞ Ds = D, also βf (x,y)
Vf

≤ 1, and

⟨∇f(x)−∇f(y), x− y⟩ ≥ Vf

(
∥x− y∥x

Ds

)s

(67)

Characteristic Ds is log-convex function in s, and if Ds1 , Ds2 <∞, then for 2 ≤ s1 ≤ s ≤ s2 holds

Ds ≤ [Ds1 ]
s2−s
s2−s1 [Ds2 ]

s−s1
s2−s1 , (68)

and Ds is continuous on this segment.

Remark. For self-concordant functions, it holds βf (x, y) ≥ ∥y − x∥2x, and Ds ≤ D1− 2
sV

1
s

f .

Remark. For functions such that βf (x, y) ≥ µs∥x− y∥sx it holds Ds ≤
(

Vf

µs

) 1
s

. In particular, for self-concordant

functions holds βf (x, y) ≥ ∥y − x∥2x, and therefore D2 ≤
√

Vf .

Assumption 2. For some s ≥ 2, value of Ds is finite, Ds <∞.

Lemma 9. For any 2 ≤ s ≤ q, we have (
Dq

D

)q

≤
(
Ds

D

)s

(69)

Proof of Lemma 9. Analogical to Doikov et al. [2024].

Now for any x, y ∈ Q(x0),

f(y) = f(x) + ⟨∇f(x), y − x⟩+
∫ 1

0

1

τ
⟨∇f(x+ τ(y − x))−∇f(x), τ(y − x)⟩ dτ (70)

≥ f(x) + ⟨∇f(x), y − x⟩+ 1

s
Vf

(
∥x− y∥x

Ds

)s

, (71)

and minimizing both sides w.r.t. y independently, we get

s− 1

s

(
Ds∥∇f(x)∥∗x

Vf

) s
s−1

≥ f(x)− f∗
Vf

(72)

Let us denote some constants that will appear in proofs.
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γ̂
def
=

q(s− 1)

(q − 1)s
∈
[
2

3
, 2

]
, and 1− γ̂ =

q − s

(q − 1)s
(73)

ωq,s
def
=

1

2

(
s

s− 1

)γ̂
 V

q
s

f

9MqD
q
s

 1
q−1

=
1

2

(
s

s− 1

) q(s−1)
(q−1)s

 V
q
s

f

9MqD
q
s

 1
q−1

(74)

Cq
def
= 2γ(q − 1)(9Mq)

1
q−1D

q
q−1 (75)

Note that ωq,sCq

γ(q−1) =

((
s

s−1

) s−1
s V

1
s

f D

Ds

) q
q−1

.

Lemma 10. For q ∈ [2, 4] and s ∈ [2,∞), we have

1

(γ̂ − 1)f γ̂−1
k+1

− 1

(γ̂ − 1)f γ̂−1
k

≥ ωq,s

∥∇f(xk+1)∥∗2xk+1

∥∇f(xk)∥∗2xk

. (76)

Proof. Analogically to Doikov et al. [2024].

fk − fk+1

(22)
≥ 1

2

(
1

9Mq

) 1
q−1

∥∥∇f(xk)
∥∥∗2
xk

∥∇f(xk)∥∗2xk

∥∥∇f(xk)
∥∥∗ q

q−1

xk (77)

(72)
≥ 1

2

(
1

9Mq

) 1
q−1

∥∥∇f(xk+1)
∥∥∗2
xk

∥∇f(xk)∥∗2xk

V
1
s

f

Ds


q

q−1 (
s

s− 1

)γ̂

f γ̂
k (78)

=
1

2

(
s

s− 1

)γ̂
 V

q
s

f

9MqD
q
s

 1
q−1 ∥∥∇f(xk+1)

∥∥∗2
xk

∥∇f(xk)∥∗2xk

f γ̂
k (79)

= ωq,s

∥∥∇f(xk+1)
∥∥∗2
xk

∥∇f(xk)∥∗2xk

f γ̂
k . (80)

If s ≥ q, then γ̂ ∈ [1, 2] and the function y(x)
def
= xγ̂−1 is concave. With monotonicity of {fk}k≥0, we have

1

(γ̂ − 1)f γ̂−1
k+1

− 1

(γ̂ − 1)f γ̂−1
k

=
f γ̂−1
k − f γ̂−1

k+1

(γ̂ − 1)f γ̂−1
k+1 f

γ̂−1
k

≥ fk − fk+1

f γ̂−1
k+1 fk

≥ ωq,s

∥∇f(xk+1)∥∗2xk

∥∇f(xk)∥∗2xk

. (81)

If 2 ≤ s < q, then γ̂ < 1 and the function y(x)
def
= xγ̂−1 is concave. We have

1

(γ̂ − 1)f γ̂−1
k+1

− 1

(γ̂ − 1)f γ̂−1
k

=
f1−γ̂
k − f1−γ̂

k+1

1− γ̂
≥ fk − fk+1

f γ̂
k

≥ ωq,s

∥∇f(xk+1)∥∗2xk

∥∇f(xk)∥∗2xk

. (82)

Theorem 9. Let function f be Lp,ν-Hölder continuous with finite s-relative size and γ-bounded Hessian change,
Mq, Ds <∞ for some q ∈ [2, 4] and s ≥ q and sequence of iterates x0, . . . , xk by generated by one of the algorithms
RN, UN, GRLS. If all iterates had function suboptimality worse than ε > 0, ft ≥ ε for t ∈ {0, . . . k}, then the
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algorithm did at most

k ≤ γ

ωq,s(γ̂ − 1)

[
1

f γ̂−1
k

− 1

f γ̂−1
0

]
+ 2 ln

∥∥∇f(x0)
∥∥∗
x0D

fk
(83)

≤ 2γ
s(q − 1)

s− q

(
s− 1

s

) q(s−1)
(q−1)s

9MqD
q
s

V
q
s

f

 1
q−1 [

ε−
s−q

s(q−1) − f
− s−q

s(q−1)

0

]
+ 2 ln

∥∥∇f(x0)
∥∥∗
x0D

ε
(84)

steps. If s = q, treating RHS as limit together with lima→0
b−a−c−a

a = ln
(
c
b

)
guarantees the linear convergence rate

k ≤ 2γ
q − 1

q

(
9MqD

q
q

Vf

) 1
q−1

ln
f0
ε

+ 2 ln

∥∥∇f(x0)
∥∥∗
x0D

ε
. (85)

Remark. We can analogically guarantee the global linear convergence of Greedy Newton linesearch GN (27), but with a
slightly different constant.

Proof. Telescoping Lemma 10,

1

(γ̂ − 1)f γ̂−1
k

− 1

(γ̂ − 1)f γ̂−1
0

≥ ωq,s

k−1∑
t=0

∥∥∇f(xt+1)
∥∥∗2
xt

∥∇f(xt)∥∗2xt

(86)

≥ kωq,s

(
k−1∏
t=0

∥∥∇f(xt+1)
∥∥∗2
xt

∥∇f(xt)∥∗2xt

) 1
k

(87)

≥ kωq,s

γ

(
fk

∥∇f(x0)∥∗x0D

) k
2

(88)

≥ kωq,s

γ
exp

(
−2

k
ln

∥∥∇f(x0)
∥∥∗
x0D

fk

)
(89)

≥ kωq,s

γ

(
1− 2

k
ln

∥∥∇f(x0)
∥∥∗
x0D

fk

)
(90)

=
kωq,s

γ
− 2ωq,s

γ
ln

∥∥∇f(x0)
∥∥∗
x0D

fk
, (91)

hence

k ≤ γ

ωq,s(γ̂ − 1)

[
1

f γ̂−1
k

− 1

f γ̂−1
0

]
+ 2 ln

∥∥∇f(x0)
∥∥∗
x0D

fk
(92)

≤ γ

ωq,s(γ̂ − 1)

[
1

f γ̂−1
k

− 1

f γ̂−1
0

]
+ 2 ln

∥∥∇f(x0)
∥∥∗
x0D

ε
. (93)

Theorem 10. Let funciton f be Lp,ν-Hölder continuous with finite s-relative size and γ-bounded Hessian change,
Mq, Ds < ∞ for some q ∈ [2, 4] and 2 ≤ s ≤ q and sequence of iterates x0, . . . , xk by generated by one of the

algorithms RN, UN, GRLS. If all iterates were far from solution, ft ≥ ε > 0 and gt
def
= ∥∇f(xt)∥∗xt ≥ δ > 0 for

t ∈ {0, . . . k}, then the algorithm did at most

k ≤ 2γ
q

s

(
s− 1

s

) s−1
q−1
(
9MqD

s
sD

q−s

Vf

) 1
q−1 s(q − 1)

q − s

1− s

q

((
s

s− 1

)s−1
Ds

s

VfDs
ε

) q−s
s(q−1)


+ 2 ln

g0
δ

(94)

20



steps. If s = q, treating RHS as a limit guarantees linear convergence rate

k ≤ 2γ
q − 1

q

(
9MqD

q
q

Vf

) 1
q−1

ln

((
q

q − 1

)q−1
VfD

q

Dq
qε

)
+ 2 ln

g0
δ
. (95)

Proof. Note 1 − γ̂ = q−s
s(q−1) > 0. Let’s split the analysis of the method into two stages, k = m + n. With Cq =

2γ(q − 1)(9Mq)
1

q−1D
q

q−1 , we bound the first stage,

Cq
1

f
1

q−1
m

≥ Cq

 1

f
1

q−1
m

− 1

f
1

q−1

0

 (126)
≥ m

(
gm
g0

) 2
m

= m exp

(
2

m
ln

gm
g0

)
(96)

≥ m+ 2 ln
gm
g0

= m+ 2 ln
gm
δ
− 2 ln

g0
δ
. (97)

For the second stage, telescoping inequalities for t = m, . . . , k − 1

1

ωq,s(1− γ̂)

[
f1−γ̂
t+1 − f1−γ̂

t

]
≥
∥∇f(xt+1)∥∗2xt+1

∥∇f(xt)∥∗2xt

, (98)

we get

γ

ωq,s(1− γ̂)

[
f1−γ̂
m − ε1−γ̂

]
≥ γ

k−1∑
t=m

∥∇f(xt+1)∥∗2xt+1

∥∇f(xt)∥∗2xt

≥ n

(
gk
gm

) 2
n

≥ n

(
δ

gm

) 2
n

(99)

≥ n− 2 ln
gm
δ
. (100)

Expressing n,m from the inequalities above and adding them together yields

k ≤ Cq
1

f
1

q−1
m

+
γ

ωq,s(1− γ̂)

[
f1−γ̂
m − ε1−γ̂

]
+ 2 ln

g0
δ
. (101)

Note that 1− γ̂ = q−s
s(q−1) . Minimizer of RHS in fm is achieved at

f∗
m

def
=

(
Cqωq,s

γ(q − 1)

) s(q−1)
q

=

(
s

s− 1

) s
− 1

VfD
s

Ds
s

. (102)

Substituting definitions of f∗
m, ωq,s, Cq, γ̂ into the terms we get

Cq
1

f
∗ 1

q−1
m

= 2γ(q − 1)

(
s− 1

s

) s−1
q−1
(
9MqD

s
sD

q−s

Vf

) 1
q−1

,

γ

ωq,s(1− γ̂)
f∗ (1−γ̂)
m = γ

s(q − 1)

q − s

1

ωq,s
f
∗ q−s

s(q−1)
m

= 2γ
s(q − 1)

q − s

(
s− 1

s

) s−1
q−1
(
9MqD

s
sD

q−s

Vf

) 1
q−1

,

γ

ωq,s(1− γ̂)
ε1−γ̂ = 2γ

s(q − 1)

q − s

(
s− 1

s

) q(s−1)
(q−1)s

9MqD
q
s

V
q
s

f

 1
q−1

ε
q−s

s(q−1) ,
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and plugging them back in, we conclude

k ≤ Cq
1

f
∗ 1

q−1
m

+
γ

ωq,s(1− γ̂)

[
f∗ (1−γ̂)
m − ε1−γ̂

]
+ 2 ln

g0
δ

= 2γ(q − 1)
q

q − s

(
s− 1

s

) s−1
q−1
(
9MqD

s
sD

q−s

Vf

) 1
q−1

− γ

ωq,s(1− γ̂)
ε1−γ̂ + 2 ln

g0
δ

= 2γ
q

s

(
s− 1

s

) s−1
q−1
(
9MqD

s
sD

q−s

Vf

) 1
q−1 s(q − 1)

q − s
×

×

1− s

q

((
s

s− 1

)s−1
VfD

s

Ds
s

) q−s
s(q−1)

ε
q−s

s(q−1)

+ 2 ln
g0
δ
.

H Proofs

H.1 Proof of Lemma 2

Proof of Lemma 2. Using weighed AG inequality, for 0 ≤ b ≤ p, we have

xb ≤ (p− b) + bxp

p
. (103)

We use this inequality for each term of the polynomial.

H.2 Proof of Proposition 1

Proof of Proposition 1. We can derive all of the inequalities straightforwardly

∇f(y)−∇f(x)−∇2f(x) [y − x] =

∫ 1

0

(
∇2f(x− τ(y − x))−∇2f(x)

)
[y − x]dτ

∥∥∇f(y)−∇f(x)−∇2f(x) [y − x]
∥∥∗
x
≤
∫ 1

0

∥∥∇2f(x− τ(y − x))−∇2f(x)
∥∥
op
∥y − x∥xdτ

≤ L2,ν∥y − x∥1+ν
x

∫ 1

0

τνdτ

=
L2,ν

1 + ν
∥y − x∥1+ν

x ,

∇2f(y)−∇2f(x)−∇3f(x) [y − x] =

∫ 1

0

(
∇3f(x− τ(y − x))−∇3f(x)

)
[y − x]dτ

∥∥∇2f(y)−∇2f(x)−∇3f(x) [y − x]
∥∥
op
≤
∫ 1

0

∥∥∇3f(x− τ(y − x))−∇3f(x)
∥∥
op
∥y − x∥xdτ

≤ L3,ν∥y − x∥1+ν
x

∫ 1

0

τνdτ

=
L3,ν

1 + ν
∥y − x∥1+ν

x ,
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∇f(y)−∇f(x)−∇2f(x) [y − x]− 1

2
∇3f(x)[y − x]2 =

∫ 1

0

∫ τ

0

(
∇3f(x+ σ(y − x))−∇3f(x)

)
[y − x]2dσdτ∥∥∥∥∇f(y)−∇f(x)−∇2f(x) [y − x]− 1

2
∇3f(x)[y − x]2

∥∥∥∥∗
x

≤
∫ 1

0

∫ τ

0

∥∥∇3f(x+ σ(y − x))−∇3f(x)
∥∥∗
x
∥y − x∥2xdσdτ

≤ L3,ν∥y − x∥2+ν
x

∫ 1

0

∫ τ

0

σνdσdτ

=
L3,ν

(1 + ν)(2 + ν)
∥y − x∥2+ν

x .

H.3 Proof of Lemma 1

Proof of Lemma 1. For any x, h, y ∈ E and taking y = x+ τu for τ > 0, ∥u∥x = 1

0 ≤ ∥h∥2y ≤ ∥h∥
2
x +

〈
∇3f(x)[h]2, y − x

〉
+

L3,ν

1 + ν
∥y − x∥1+ν

x ∥h∥2x

0 ≤ 1

τ
∥h∥2x +

〈
∇3f(x)[h]2, u

〉
+

L3,ντ
ν

1 + ν
∥h∥2x∥∥∇3f(x)[h]2

∥∥∗
x
≤
(
1

τ
+

L3,ντ
ν

1 + ν

)
∥h∥2x

Setting

τ =

(
1 + ν

L3,ν

) 1
1+ν

,

we get

∥∥∇3f(x)[h]2
∥∥∗
x
≤ 2

(
L3,ν

1 + ν

) 1
1+ν

∥h∥2x.

Setting xk = x, h = xk+1 − xk we get

∥∥∇3f(xk)[xk+1 − xk]2
∥∥∗
xk ≤ 2

(
L3,ν

1 + ν

) 1
1+ν ∥∥xk+1 − xk

∥∥2
xk = 2

(
L3,ν

1 + ν

) 1
1+ν

α2
k

∥∥∇f(xk)
∥∥∗2
xk

H.4 Proof of Lemma 8

Proof. Proof of Lemma 8.∥∥∇f(xk+1)
∥∥∗
xk =

∥∥∇f(xk+1)−∇2f(xk)
[
xk+1 − xk

]
− αk∇f(xk)

∥∥∗
xk

=
∥∥∇f(xk+1)−∇f(xk)−∇2f(xk)

[
xk+1 − xk

]
+ (1− αk)∇f(xk)

∥∥∗
xk

≤
∥∥∇f(xk+1)−∇f(xk)−∇2f(xk)

[
xk+1 − xk

]∥∥∗
xk + (1− αk)

∥∥∇f(xk)
∥∥∗
xk

≤ L2,ν

1 + ν

∥∥xk+1 − xk
∥∥1+ν

xk + (1− αk)
∥∥∇f(xk)

∥∥∗
xk (if L2,ν exists)

=
L2,ν

1 + ν
α1+ν
k

∥∥∇f(xk)
∥∥∗(1+ν)

xk + (1− αk)
∥∥∇f(xk)

∥∥∗
xk

=

(
1− αk +

L2,ν

1 + ν
α1+ν
k

∥∥∇f(xk)
∥∥∗ν
xk

)∥∥∇f(xk)
∥∥∗
xk

=

(
θk +

L2,ν

1 + ν
αν
k

∥∥∇f(xk)
∥∥∗ν
xk

)
αk

∥∥∇f(xk)
∥∥∗
xk .
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Hence

∥∥∇f(xk+1)
∥∥∗
xk ≤

{
2
L2,ν

1+ν α
1+ν
k

∥∥∇f(xk)
∥∥∗(1+ν)

xk if θk ≤ L2,ν

1+ν α
ν
k

∥∥∇f(xk)
∥∥∗ν
xk

2θkαk

∥∥∇f(xk)
∥∥∗
xk if θk ≥ L2,ν

1+ν α
ν
k

∥∥∇f(xk)
∥∥∗ν
xk

H.5 Proof of Lemma 3

Proof of Lemma 3. We can rewrite the Hölder continuity for points xk, xk+1 s.t. xk+1 = xk − αk

(
∇2f(xk)

)−1∇f(xk)

(
L2,ν

1 + ν

(
αk

∥∥∇f(xk)
∥∥∗
xk

)1+ν
)2

=

(
L2,ν

1 + ν

∥∥xk+1 − xk
∥∥1+ν

xk

)2

≥
∥∥∇f(xk+1)−∇f(xk)−∇2f(xk)

[
xk+1 − xk

]∥∥∗2
xk

=
∥∥∇f(xk+1)−∇f(xk) + αk∇f(xk)

∥∥∗2
xk

=
∥∥∇f(xk+1)− (1− αk)∇f(xk)

∥∥∗2
xk

=
∥∥∇f(xk+1)

∥∥∗2
xk + (1− αk)

2 ∥∥∇f(xk)
∥∥∗2
xk − 2 (1− αk)

〈
∇f(xk+1),

[
∇2f(xk)

]−1∇f(xk)
〉
.

We are going to set σ so that

1− αk

2

∥∥∇f(xk)
∥∥∗2
xk ≥

1

2(1− αk)

(
L2,ν

1 + ν

(
αk

∥∥∇f(xk)
∥∥∗
xk

)1+ν
)2

, (104)

and hence, we can conclude the proof by rearranging,

〈
∇f(xk+1),

[
∇2f(xk)

]−1∇f(xk)
〉

≥ 1

2(1− αk)

∥∥∇f(xk+1)
∥∥∗2
xk +

1− αk

2

∥∥∇f(xk)
∥∥∗2
xk −

1

2(1− αk)

(
L2,ν

1 + ν

(
αk

∥∥∇f(xk)
∥∥∗
xk

)1+ν
)2

≥ 1

2(1− αk)

∥∥∇f(xk+1)
∥∥∗2
xk .

Now we are going to choose σ to satisfy (104). Because αk is a root of a polynomial P , we have

1− αk − α1+β
k λk = 0,

so the equation (104) is equivalent to

1− αk = α1+β
k λk ≥

L2,ν

1 + ν
α1+ν
k

∥∥∇f(xk)
∥∥∗ν
xk ,

θk ≥
L2,ν

1 + ν
αν
k

∥∥∇f(xk)
∥∥∗ν
xk .
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H.6 Proof of Lemma 4

Proof of Lemma 4. We can rewrite the Hölder continuity for points xk, xk+1 s.t. xk+1 = xk − αk

(
∇2f(xk)

)−1∇f(xk)

L3,ν

(1 + ν)(2 + ν)

(
αk

∥∥∇f(xk)
∥∥∗
xk

)2+ν

(105)

=
L3,ν

(1 + ν)(2 + ν)

∥∥xk+1 − xk
∥∥2+ν

xk (106)

≥
∥∥∥∥∇f(xk+1)−∇f(xk)−∇2f(xk)[xk+1 − xk]− 1

2
∇3f(xk)[xk+1 − xk]2

∥∥∥∥∗
xk

(107)

=

∥∥∥∥∇f(xk+1)− (1− αk)∇f(xk)− 1

2
∇3f(xk)[xk+1 − xk]2

∥∥∥∥∗
xk

. (108)

Squaring

(
L3,ν

(1 + ν)(1 + ν)

(
αk

∥∥∇f(xk)
∥∥∗
xk

)2+ν
)2

≥
∥∥∥∥∇f(xk+1)− (1− αk)∇f(xk)− 1

2
∇3f(xk)[xk+1 − xk]2

∥∥∥∥∗2
xk

=
∥∥∇f(xk+1)

∥∥∗2
xk + (1− αk)

2
∥∥∇f(xk)

∥∥∗2
xk +

1

4

∥∥∇3f(xk)[xk+1 − xk]2
∥∥∗2
xk

−2(1− αk)
〈
∇f(xk+1),

[
∇2f(xk)

]−1∇f(xk)
〉

+(1− αk)
〈[
∇2f(xk)

]− 1
2 ∇f(xk),

[
∇2f(xk)

]− 1
2 ∇3f(xk)[xk+1 − xk]2

〉
−
〈[
∇2f(xk)

]− 1
2 ∇f(xk+1),

[
∇2f(xk)

]− 1
2 ∇3f(xk)[xk+1 − xk]2

〉
≥ 1

2

∥∥∇f(xk+1)
∥∥∗2
xk + (1− αk)

2
∥∥∇f(xk)

∥∥∗2
xk−

1

4

∥∥∇3f(xk)[xk+1 − xk]2
∥∥∗2
xk

−2(1− αk)
〈
∇f(xk+1),

[
∇2f(xk)

]−1∇f(xk)
〉

−(1− αk)
∥∥∇f(xk)

∥∥∗
xk

∥∥∇3f(xk)[xk+1 − xk]2
∥∥
xk

≥ 1

2

∥∥∇f(xk+1)
∥∥∗2
xk + (1− αk)

2
∥∥∇f(xk)

∥∥∗2
xk−

(
L3,ν

1 + ν

) 2
1+ν

α4
k

∥∥∇f(xk)
∥∥4
xk

−2(1− αk)
〈
∇f(xk+1),

[
∇2f(xk)

]−1∇f(xk)
〉

−2
(

L3,ν

1 + ν

) 1
1+ν

α2
k(1− αk)

∥∥∇f(xk)
∥∥∗3
xk .

Rearranging yields

〈
∇f(xk+1),

[
∇2f(xk)

]−1∇f(xk)
〉

≥ 1

4(1− αk)

∥∥∇f(xk+1)
∥∥∗2
xk +

1− αk

2

∥∥∇f(xk)
∥∥∗2
xk−

1

2

(
L3,ν

1 + ν

) 2
1+ν α4

k

1− αk

∥∥∇f(xk)
∥∥∗4
xk

−
(

L3,ν

1 + ν

) 1
1+ν

α2
k

∥∥∇f(xk)
∥∥∗3
xk−

1

2(1− αk)

(
L3,ν

(1 + ν)(2 + ν)

)2 (
αk

∥∥∇f(xk)
∥∥∗
xk

)2(2+ν)

.
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Finally, we are going to set θk so that

1− αk

6

∥∥∇f(xk)
∥∥∗2
xk ≥

1

2

(
L3,ν

1 + ν

) 2
1+ν α4

k

1− αk

∥∥∇f(xk)
∥∥∗4
xk (109)

1− αk

6

∥∥∇f(xk)
∥∥∗2
xk ≥

(
L3,ν

1 + ν

) 1
1+ν

α2
k

∥∥∇f(xk)
∥∥∗3
xk (110)

1− αk

6

∥∥∇f(xk)
∥∥∗2
xk ≥

1

2(1− αk)

(
L3,ν

(1 + ν)(2 + ν)

)2 (
αk

∥∥∇f(xk)
∥∥∗
xk

)2(2+ν)

(111)

and then we can conclude 〈
∇f(xk+1),

[
∇2f(xk)

]−1∇f(xk)
〉
≥ 1

4(1− αk)

∥∥∇f(xk+1)
∥∥∗2
xk .

Note that the choice of stepsize implies
1− αk = α1+β

k λk

and (109), (110), (111) are satisfied as

1− αk = α1+β
k λk ≥

√
3
(

L3,ν

1+ν

) 1
1+ν

α2
k

∥∥∇f(xk)
∥∥∗
xk if θk ≥

√
3
(

L3,ν

1+ν

) 1
1+ν

αk

∥∥∇f(xk)
∥∥∗
xk

6
(

L3,ν

1+ν

) 1
1+ν

α2
k

∥∥∇f(xk)
∥∥∗
xk if θk ≥ 6

(
L3,ν

1+ν

) 1
1+ν

αk

∥∥∇f(xk)
∥∥∗
xk

√
3L3,ν

(1+ν)(1+ν)α
2+ν
k

∥∥∇f(xk)
∥∥∗(1+ν)

xk if θk ≥
√
3L3,ν

(1+ν)(2+ν)α
1+ν
k

∥∥∇f(xk)
∥∥∗(1+ν)

xk .

We can ensure (109), (110), (111) by

θk ≥ αk

∥∥∇f(xk)
∥∥∗
xk max

{
6

(
L3,ν

1 + ν

) 1
1+ν

,

√
3L3,ν

(1 + ν)(2 + ν)
αν
k

∥∥∇f(xk)
∥∥∗ν
xk

}
.

H.7 Towards the proof of Theorem 2

We unify cases p = 2, 3 with the Lemma 5.

Corollary 3. Lemma 5 with γ = ν implies that choice θk =
(

L2,ν

1+ν

) 1
1+ν ∥∥∇f(xk)

∥∥∗ ν
1+ν

xk satisfies (18), and therefore
Lemma 3 implies decrease as Doikov et al. [2024],

f(xk)− f(xk+1) ≥ 1

θk

∥∥∇f(xk+1)
∥∥∗2
xk ≥

(
1 + ν

L2,ν

) 1
1+ν

∥∥∇f(xk+1)
∥∥∗2
xk

∥∇f(xk)∥∗
ν

1+ν

xk

. (112)

Lemma 5 with γ ∈ {1, 1 + ν} implies that the choice

θk ≥
∥∥∇f(xk)

∥∥∗ 1
2

xk max


(
61+νL3,ν

1 + ν

) 1
2(1+ν)

,

( √
3L3,ν

(1 + ν)(2 + ν)

) 1
2+ν ∥∥∇f(xk)

∥∥∗ ν
2(2+ν)

xk

 , (113)

satisfies (19), and therefore Lemma 4 implies decrease

f(xk)− f(xk+1) ≥ 1

2θk

∥∥∇f(xk+1)
∥∥∗2
xk (114)

≥ 1

max

{(
61+νL3,ν

1+ν

) 1
2(1+ν)

,
( √

3L3,ν

(1+ν)(2+ν)

) 1
2+ν ∥∇f(xk)∥

∗ ν
2(2+ν)

xk

} ∥∥∇f(xk+1)
∥∥∗2
xk

∥∇f(xk)∥∗
1
2

xk

. (115)
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On the other hand, choice of θk =
(

61+νL3,ν

1+ν

) 1
2+ν ∥∥∇f(xk)

∥∥∗ 1+ν
2+ν

xk in Lemma 4 implies decrease as Doikov et al. [2024],

f(xk)− f(xk+1) ≥ 1

2θk

∥∥∇f(xk+1)
∥∥∗2
xk ≥

1

2

(
1 + ν

61+νL3,ν

) 1
2+ν

∥∥∇f(xk+1)
∥∥∗2
xk

∥∇f(xk)∥∗
1+ν
2+ν

xk

. (116)

H.7.1 Proof of Theorem 2

We can combine previous corollaries.

Proof of Theorem 2. For p = 2, choice θk =
(

Lp,ν

p−1+ν

) 1
p−1+ν ∥∥∇f(xk)

∥∥∗ p−2+ν
p−1+ν

xk implies

f(xk)− f(xk+1) ≥
(
p− 1 + ν

Lp,ν

) 1
p−1+ν

∥∥∇f(xk+1)
∥∥∗2
xk

∥∇f(xk)∥∗
p−2+ν
p−1+ν

xk

. (117)

For p = 3, choice θk = 6
(

Lp,ν

3(p−1+ν)

) 1
p−1+ν ∥∥∇f(xk)

∥∥∗ p−2+ν
p−1+ν

xk implies

f(xk)− f(xk+1) ≥ 1

12

(
3(p− 1 + ν)

Lp,ν

) 1
p−1+ν

∥∥∇f(xk+1)
∥∥∗2
xk

∥∇f(xk)∥∗
p−2+ν
p−1+ν

xk

. (118)

And for any p ∈ {2, 3} we have that θk = 6
(

Lp,ν

3(p−1+ν)

) 1
p−1+ν ∥∥∇f(xk)

∥∥∗ p−2+ν
p−1+ν

xk implies

f(xk)− f(xk+1) ≥ 1

12

(
3(p− 1 + ν)

Lp,ν

) 1
p−1+ν

∥∥∇f(xk+1)
∥∥∗2
xk

∥∇f(xk)∥∗
p−2+ν
p−1+ν

xk

. (119)

H.8 Proof of Lemma 5

Proof of Lemma 5. Consider any c2, δ > 0. Inequality θk ≥ c
1

1+δ

2 implies

1

θkδ
c2 ≥ c2α

δ
k,

which is ensured by

θk ≥
1

θkδ
c2,

or equivalently

θk ≥ c
1

1+δ

2 .

Now, choice c2 = c3
∥∥∇f(xk)

∥∥∗δ
xk guarantees that θk ≥ c

1
1+δ

3

∥∥∇f(xk)
∥∥∗ δ

1+δ

xk ensures θk ≥ c3

(
αk

∥∥∇f(xk)
∥∥∗
xk

)δ
.

H.9 Proof of Corollary 3

Proof of Corollary 3. For the first part of (19), we use αk, ν ∈ [0, 1] to bound 1

θk
1

1+ν
≥ α

1
1+ν

k ≥ αk and

1

θk
1

1+ν

6

(
L3,ν

1 + ν

) 1
1+ν ∥∥∇f(xk)

∥∥∗
xk ≥ 6

(
L3,ν

1 + ν

) 1
1+ν

αk

∥∥∇f(xk)
∥∥∗
xk .
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Now, the first part of (19) is ensured by θk so that

θk ≥
1

θk
1

1+ν

6

(
L3,ν

1 + ν

) 1
1+ν ∥∥∇f(xk)

∥∥∗
xk ,

or equivalently

θk ≥
(
61+νL3,ν

1 + ν

) 1
2+ν ∥∥∇f(xk)

∥∥∗ 1+ν
2+ν

xk .

We ensure the second part of (19) directly using Lemma 5 and together with first part we have

θk ≥ max


(
61+νL3,ν

1 + ν

) 1
2+ν ∥∥∇f(xk)

∥∥∗ 1+ν
2+ν

xk ,

( √
3L3,ν

(1 + ν)(2 + ν)

) 1
2+ν ∥∥∇f(xk)

∥∥∗ 1+ν
2+ν

xk


=

(
L3,ν

1 + ν

) 1
2+ν ∥∥∇f(xk)

∥∥∗ 1+ν
2+ν

xk max

6
1+ν
2+ν ,

( √
3

2 + ν

) 1
2+ν


=

(
61+νL3,ν

1 + ν

) 1
2+ν ∥∥∇f(xk)

∥∥∗ 1+ν
2+ν

xk .

H.10 Proof of Lemma 6

Proof of Lemma 6. For 0 ≤ β ≤ 1, function y(x) = xβ , x ≥ 0 is concave, which implies

aβ − bβ ≥ β

a1−β
(a− b), ∀a > b ≥ 0, (120)

which we will be using for β def
= 1

q−1 = (0, 1] . We rewrite functional value decrease as

1

fβ
k+1

− 1

fβ
k

=
fβ
k − fβ

k+1

fβ
k f

β
k+1

(120)
≥ β(fk − fk+1)

fkf
β
k+1

(22)
≥ βc5

∥∥∇f(xk+1)
∥∥∗2
xk

∥∇f(xk)∥∗
q−2
q−1

xk

1

fkf
1

q−1

k+1

(121)

≥ βc5

∥∥∇f(xk+1)
∥∥∗2
xk

∥∇f(xk)∥∗(2−
q

q−1 )
xk

1

f
q

q−1

k

≥ βc5
D1+β

∥∥∇f(xk+1)
∥∥∗2
xk

∥∇f(xk)∥∗2xk

, (122)

where in the last step we used the convexity of f in the form fk ≤ D
∥∥∇f(xk)

∥∥∗
xk . We can continue by summing it for

k = 0, . . . , n− 1,
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1

fβ
n

− 1

fβ
0

≥ βc5
D1+β

n−1∑
k=0

∥∥∇f(xk+1)
∥∥∗2
xk

∥∇f(xk)∥∗2xk

(123)

AG
≥ βc5n

D1+β

(
n−1∏
k=0

∥∥∇f(xk+1)
∥∥∗2
xk

∥∇f(xk)∥∗2xk

) 1
n

(124)

=
βc5n

D1+β

(
n−1∏
k=1

∥∥∇f(xk)
∥∥∗2
xk−1

∥∇f(xk)∥∗2xk

) 1
n (∥∇f(xn)∥∗xn−1

∥∇f(x0)∥∗x0

) 2
n

(125)

≥ βc5n

γD1+β

(
fn

∥∇f(x0)∥∗x0D

) 2
n

(126)

=
βc5n

γD1+β
exp

(
− 2

n
ln

(∥∥∇f(x0)
∥∥∗
x0D

fn

))
(127)

≥ βc5n

γD1+β

(
1− 2

n
ln

(∥∥∇f(x0)
∥∥∗
x0D

fn

))
(128)

We can bound fn based on the size of 2
n

∥∇f(x0)∥∗
x0D

fn
.

1. If 2
n ln

(
∥∇f(x0)∥∗

x0D

fn

)
≥ 1

2 , then fn ≤
∥∥∇f(x0)

∥∥∗
x0D exp

(
−k

4

)
.

2. If 2
n ln

(
∥∇f(x0)∥∗

x0D

fn

)
< 1

2 , then

1

fβ
n

>
1

fβ
n

− 1

fβ
0

≥ βc5n

2γD1+β
⇔ fn <

(
2γD1+β

βc5n

) 1
β

=
Dq (2γ(q − 1))

q−1

c5q−1nq−1
(129)

Hence

fn ≤
Dq (2γ(q − 1))

q−1

c5q−1nq−1
+
∥∥∇f(x0)

∥∥∗
x0D exp

(
−k

4

)
. (130)

H.11 Proof of Theorem 3

Proof of Theorem 3. Bounded Hessian change together with condition (21) in Theorem 2 imply inequalities

∥∥∇f(xk+1)
∥∥∗
xk

∥∥∇f(xk)
∥∥∗
xk ≥

〈
∇f(xk+1),

[
∇2f(xk)

]−1∇f(xk)
〉
≥ 1

2αkθk

∥∥∇f(xk+1)
∥∥∗2
xk ,∥∥∇f(xk)

∥∥∗
xk ≥

1

2αkθk

∥∥∇f(xk+1)
∥∥∗
xk ≥

γ

2αkθk

∥∥∇f(xk+1)
∥∥∗
xk+1

(
≥ γ

2

∥∥∇f(xk+1)
∥∥∗
xk+1

)
, (131)

which for θk from (20) guarantees local superlinear rate for q > 2.

H.12 Proof of Theorem 4

Proof of Theorem 4. Theorem 2 implies that Algorithm 1 satisfies requirements of Lemma 6 with correspondent q and

c5 = 1
2

(
1

9Mq

) 1
q−1

. The convergence rate follows.
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H.13 Proof of Lemma 7

Proof of Lemma 7. We will prove the statement by induction. The base for σ0 holds. For k-th iteration, consider 2 cases
based on the number of iterations of the inner loop.

1. Algorithm continues after jk > 0 inner iterations. Note that if θk,jk−1 satisfied (20), Theorem 2 guarantees the
continuation condition to be satisfied for jk − 1. Consequently, θk,jk−1 does not satisfy (20) for any q ∈ [2, 4], and
hence

σk+1 =
θk,jk−1

∥∇f(xk)∥∗βxk

< inf
q∈[2,4]

(9Mq)
1

q−1
∥∥∇f(xk)

∥∥∗ q−2
q−1−β

xk = H
(
xk
)
. (132)

2. Algorithm continues after j = 0 iterates, then from (131) we have

σk+1 =
σk

γ
≤ 1

γ
H
(
xk−1

)
≤ γ

q−2
q−1−1H

(
xk
)
≤ H

(
xk
)
. (133)

For the total number of oracle calls NK ,

NK =

K−1∑
k=0

(1 + jk) = K +

K−1∑
k=0

logc
cσk+1

σk
= 2K + logc

σK

σ0
(134)

≤ 2K + logc

H
(∥∥xk−1

∥∥∗
xk−1

)
σ0

. (135)

H.14 Proof of Theorem 5

Proof of Theorem 5. Algorithm 2 sets xk+1 = xk
jk

so that〈
∇f(xk

jk−1
), nk

〉
<

1

2αk,jk−1
θk,jk−1

∥∥∥∇f(xk
jk−1

)
∥∥∥∗2
xk
, (136)

〈
∇f(xk

jk
), nk

〉
≥ 1

2αk,jkθk,jk

∥∥∇f(xk
jk
)
∥∥∗2
xk . (137)

From Theorem 2 we can see that while θk,jk−1
= θk,jk/γ does not satisfy (21) for any q ∈ [2, 4] and θk,jk satisfies (20) for

some q, therefore

θk,jk ≥ (9Mq)
1

q−1
∥∥∇f(xk)

∥∥∗ q−2
q−1

xk ∃q ∈ [2, 4] (138)

θk,jk < γ (9Mq)
1

q−1
∥∥∇f(xk)

∥∥∗ q−2
q−1

xk ∀q ∈ [2, 4] (139)

θk,jk < γ inf
q∈[2,4]

(9Mq)
1

q−1
∥∥∇f(xk)

∥∥∗ q−2
q−1

xk , (140)

hence estimate θk,jk is at most constant γ times worse than any plausible parametrization of (q,Mq), and therefore, even
the best plausible parametrization. In particular, for

q∗
def
= argmin

q∈[2,4]

9MqD
q
(
4γ2(q − 1)

)q−1

kq−1
+
∥∥∇f(x0)

∥∥∗
x0D exp

(
−k

4

)
, (141)

we have that from Theorem 2

f(xk)− f(xk+1) ≥ 1

2γ

(
1

9Mq∗

) 1
q∗−1

∥∥∇f(xk+1)
∥∥∗2
xk

∥∇f(xk)∥
∗ q∗−2

q∗−1

xk

. (142)

The rest of the proof is analogous to the proof of Theorem 4.
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