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Abstract

The heterogeneity among interacting dynamical systems or variations in the pattern of their interactions occur naturally in many real

complex systems. Often they lead to partially synchronized states like chimeras or oscillation suppressed states like in-homogeneous

or homogeneous steady states. In such cases, it is a challenge to get synchronized oscillations in spite of prevailing heterogeneity.

In this study, we present a formalism for controlling multi layer, multi timescale systems and show how synchronized oscillations

can be restored by tuning the dynamical time scales between the layers. Specifically, we use the model of a multiplex network,

where the first layer of coupled oscillators is multiplexed with an environment layer, that can generate various types of chimera

states and suppressed states. We show that by tuning the time scale mismatch between the layers, we can revive the synchronized

oscillations. We analyse the nature of the transition of the system to synchronization from various dynamical states and the role of

time scale mismatch and strength of inter layer coupling in this scenario. We also consider a three layer multiplex system, where

two system layers interact with the common environment layer. In this case, we observe anti synchronization and in-homogeneous

steady states on the system layers and by tuning their time scale difference with the environment layer, they undergo transition to

synchronized oscillations.
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1. Introduction

The collective phenomena emerging from the interactions

of multiple dynamical systems are intensely studied recently

and they have a wide range of applications in physics, biology,

chemistry, technology, and social sciences. In such studies, the

framework of complex networks is effectively utilized to model

the complex pattern of interactions [1]. However, the variability

and heterogeneity of the interacting subsystems and the nature

of interactions are best studied using the model of multiplex

networks [2, 3]. These have wider applications since multiplex-

ing can be between layers of different topology or with different

intrinsic dynamics for the subsystems[4]. Hence, they are found

to be most effective in studying biological systems [5, 6, 7], so-

cial interactions [8], power grids [9], and epidemiology [10].

The emergent dynamics on multiplex networks are rich with

several interesting phenomena like diverse forms of synchro-

nization [11], cluster synchronization [12], amplitude death

[13], and oscillation death [14, 15]. Also, partially synchro-

nized states, like different types of chimera [16, 17, 18], form an

interesting spatiotemporal behaviour where spatially coherent

and incoherent behaviour of states coexist in the system. Such

chimera states emerge due to heterogeneity, either natural or

induced, like parameter or frequency mismatch, coupling types
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[19], coupling delay [20, 21], time scale mismatch [22] and en-

vironment coupling [4]. Recently, the concept of chimeras is

applied to explain many real-world phenomena such as epilep-

tic seizures[23], brain activity of various aquatic animals[24]

and power grid anomalies [25]. The wide variety of interesting

emergent states related to chimera include amplitude-mediated

chimera [26], amplitude chimera [27], breathing chimera [28],

homogeneous steady state, in-homogeneous steady state, two-

cluster steady state, multi-cluster steady state, and chimera

death states [27, 29] such as one-state chimera death, two-state

chimera death, etc.

The heterogeneity required for inducing chimera states can

be explicitly added among interacting systems by considering

them on multiplex networks and a few such studies are re-

ported recently [30]. They include the activation and inhibi-

tion of chimera states through multiplexing [31], the presence

of chimeras in a multi layer structure of neuronal networks [32],

and the synchronization of chimeras in multiplex networks [33].

It is reported that weak multiplexing can induce chimera states

in neural networks [34]. Additionally, the different synchro-

nization scenarios in the multiplex network are widely studied

[35, 36, 37], specifically the effect of inter-layer coupling delay

[38, 39], explosive synchronization [40, 41, 42, 43], synchro-

nization in adaptive multiplex [44] and relay synchronization

[45, 46, 47]

We note that the two-layer nature of multiplex networks is

useful in studying control strategies by which emergent dynam-
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ics can be controlled to desired states even when heterogeneity

exists. The advantage of control schemes based on multiplex-

ing is that they allow the desired state to be achieved in a certain

layer by tuning the other layer which may be more accessible

in practice. In this context, controlling the system back to syn-

chronised states from oscillation suppressed states or chimera

states will have many applications since synchronised states are

desirable for the functionality of many systems like power dis-

tribution systems [48], brain activity [49], coupled laser sys-

tems and cardiac cells[50].

Recent studies report the various collective dynamical states

possible in oscillators that interact with each other through a

dynamic environment in two-layer multiplex networks. In such

systems, due to feedback from the other layer that is nonlo-

cal in connectivity, a variety of emergent states like amplitude

chimera, chimera death states, oscillation suppressed states,

multi-cluster steady state etc can occur for different ranges of

coupling strengths [4].

Multiple-time-scale phenomena are ubiquitous in nature and

observed in temporal neural dynamics [51, 52], hormonal reg-

ulation [53, 54], chemical reactions [55], turbulent flows [56],

and population dynamics [57]. When such systems are mod-

eled by complex networks, the interplay between time scales

and the structural properties of the network of nonlinear oscil-

lators can generate many interesting phenomena like amplitude

death [58], cluster synchronization [59, 60], and frequency syn-

chronization [22]. Among interacting systems, if some systems

have slower dynamics than others, their dynamics can be mod-

elled on a multiplex network with the different layers evolving

at different time scales.We mention a few such situations; neu-

ronal networks in interaction with glia network, where the glia

operates at a slower time scale compared to neurons [61], en-

vironmental effects on ecosystems, where the changes in envi-

ronment can be slower [62] and power transmission networks

with variations in the subsystems and their frequencies [63].

Most of the studies on synchronization in multiplex networks

are on layers with identical dynamical time scales. The effect

of difference in time scales between the layers in deciding their

emergent states is still unexplored.

In this study we consider the evolution of emergent states in

a multiplex network with heterogeneity in dynamics and inter-

actions and present how synchronized oscillations can be re-

stored by tuning the dynamical time scales of the system. We

illustrate this using the model of a multiplex network where

the system layer of coupled oscillators is multiplexed with an

environment layer. In studies reported so far, the time scale

mismatch among systems on a network is shown to drive the

systems to suppression of oscillations[58]. But we show that

by tuning the time scale mismatch between the layers, we can

restore synchronized oscillations in both layers from chimera or

death states. We analyse the nature of the transition to synchro-

nization, and the results are verified for two- and three-layer

multiplex networks, with the Stuart-Landau (SL) oscillator as

the system dynamics controlled by the environment layer.

2. Two layer system

We start by considering a two layer multiplex system, with

one layer comprising of a ring network of SL oscillators, re-

ferred to as the system layer, L1, which has local intra layer

diffusive coupling. The second layer L2, which is the environ-

ment layer, is modeled as a ring network of 1-d over damped

oscillators with nonlocal intra layer diffusive couplings. The N

oscillators in L1 are connected to tho corresponding ones in L2

via interlayer coupling of the feedback type to form a multiplex

network. The dynamics of the environment L2 is sustained by

the negative feedback from L1, and the dynamics of L1 is con-

trolled by L2 via its positive feedback coupling. The equations

for the dynamics of such a two-layer multiplex network are as

given below.

ẋi = (1 − x2
i − y2

i )xi − ωyi +
K1

2P1

i+P1
∑

j=i−P1

(x j − xi) + ǫsi

ẏi = (1 − x2
i − y2

i )yi + ωxi

ṡi = τ[−γsi − ǫxi +
K2

2P2

i+P2
∑

j=i−P2

(s j − si)] (1)

where the dynamics of SL oscillators in layer L1 are charac-

terized by the variables xi and yi for i = 1, 2, ..., N, and ω is the

natural frequency of their intrinsic limit cycle oscillations. The

1-d over damped oscillators, si, in L2 have a positive damp-

ing coefficient, γ. The interaction between the layers is through

feedback coupling of strength ǫ. The interactions among the

SL oscillators in the first layer are regulated by the intra-layer

coupling strength, K1, and coupling range, P1, while that of the

environment is controlled by K2 and P2. Here P corresponds

to the number of nearest neighbors in each direction; hence,

P ∈ {1, N
2
}, with P = 1 for local connections, P = N

2
for a

global coupling, for other cases P is in the range 1 < P < N
2

.

The parameter τ is introduced to represent the mismatch in dy-

namical time scales between the two layers. Thus a value of

τ < 1 means the environment layer L2 evolves at a slower time

scale compared to layer L1.

Initially we keep τ = 1 so that both layers evolve with the

same time scale. Following the recent study [4], we gener-

ate various emergent dynamical states in the system by vary-

ing the value of ǫ, such as amplitude chimera(AC), homoge-

neous steady state(HSS), in homogeneous steady state(IHSS),

one-state chimera death(1-CD), two-state chimera death(2-CD)

etc. For this, we choose appropriate cluster-like initial condi-

tions, for the N = 100 oscillators in L1, while the systems in

L2 start with random initial conditions[4].

2.1. Recovery of synchronized oscillations

In this section, we present the role of time scale separation

between the layers in controlling the emergent dynamics of the

system. Specifically, we show how introducing a disparity in

the time scale between the layers can facilitate the recovery of

synchronized oscillations from the above-mentioned dynamical

states. We consider the scenario in which all SL oscillators in
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Figure 1: Spatio temporal dynamics for different values of ǫ and τ. (a1): Amplitude chimera at ǫ = 2 and τ = 1, (a2) and (a3): Synchronized oscillations at ǫ = 2,

τ = 0.4 and 0.1 respectively, (b1): Inhomogeneous steady state at ǫ = 3 and τ = 1, (b2) and (b3): Synchronized oscillations at ǫ = 3 and τ = 0.4 and 0.1, (c1) and

(c2): Homogeneous steady state at ǫ = 4.5, τ = 1 and 0.4, (c3): Synchronized oscillations at ǫ = 4.5 and τ = 0.1, (d1): One state chimera death at ǫ = 6.15 and

τ = 1, (d2): Homogeneous steady state at ǫ = 6.15 and τ = 0.4 and (d3): Synchronized oscillations at ǫ = 6.15 and τ = 0.1. The other parameter values used are :

K1 = K2 = 10, P1 = 1, P2 = 25, ω = 2 and γ = 1.By adjusting the time scale difference between the layers, synchronised oscillations are seen to be restored from

the various emergent states considered.
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L1 are connected with one another locally, P1 = 1. At the same

time, the environment is coupled nonlocally, with P2 = 25. We

set the values of K1 and K2 to 10, and investigate the impact of

varying τ for different values of interlayer coupling strengths,

ǫ.

The spatiotemporal plots from the y variable of SL oscilla-

tors in L1 for different values of ǫ and τ are shown in Fig. 1. As

shown in Fig. 1(a1) when ǫ = 2 and τ = 1, the system exhibits

a stable amplitude chimera, which is characterized by the coex-

istence of coherent and incoherent oscillations with respect to

amplitude. The system persists in this state as τ is reduced from

1 up to 0.5. But as the mismatch increases or the τ value is fur-

ther reduced, synchronized oscillations are restored in both the

layers. This is clear from Fig. 1(a2) and Fig. 1(a3), plotted for

the same ǫ value but with τ = 0.4 and 0.1 respectively. While

both show synchronized oscillations, we find the frequency of

oscillations in L1 depends on τ. When ǫ = 3 and τ = 1, the

system emerges into an IHSS, (Fig. 1(b1)), from which syn-

chronized oscillations are revived by reducing τ as shown in

Fig. 1(b2,b3). The IHSS is seen for τ values ranging from 1

to 0.6, after which synchronized oscillations are revived. For

ǫ = 4.5 and τ values ranging from 1 to 0.4, HSS is observed in

the system as shown in Fig. 1(c1,c2) and for smaller values of τ

synchronized oscillations are revived(Fig. 1(c3)). Similarly for

ǫ = 6.15 and τ in the range 1.0 to 0.5, the emergent state is one

state chimera death(1-CD), (Fig. 1(d1)). For τ values ranging

from 0.4 to 0.2, the system settles to HSS as in Fig. 1(d2). For

τ=0.1 synchronized oscillations are restored in the system as

shown in Fig. 1(d3). Thus the mismatch in time scales required

to revive synchronized oscillations depends on the strength of

interlayer connections parameterised by ǫ.

To check the stability of the revived oscillations, we add

white noise of strength 0.5 for a short time of 10 time steps as

an external perturbation. We observe the system returns to the

synchronized oscillations shortly after the noisy perturbation is

removed. We have also verified the results with random initial

conditions on both layers. For instance, for values of ǫ = 5

and τ = 1, IHSS is observed in the system. As τ is reduced

the systems goes to HSS which is followed by the revival of

synchronized oscillations.

Furthermore, the study is extended with different nodal dy-

namics on system layer L1 , such as the van der Pol oscillator

with limit cycle oscillations and the Rössler system with chaotic

dynamics. In the case of the van der Pol oscillator, for random

initial conditions, with the same setting as the previous case,

IHSS is observed for ǫ = 5, from which synchronized oscilla-

tions are recovered reducing τ.

We also study emergent dynamics in a two-layer multiplex

network with N = 100 chaotic Rössler oscillators in L1 cou-

pled with the environment in L2, keeping P1 = P2 = 10,

K1 = K2 = 5, and γ = 1. We observe both L1 and L2 in

synchronized chaotic state for small values of ǫ. As ǫ is in-

creased, the system undergoes reverse period-doubling transi-

tions to reach HSS. However, by introducing a time scale mis-

match, the system can revert back to synchronized chaotic be-

haviour from HSS or from any periodic cycle.
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Figure 2: Parameter plane, ǫ vs τ, for the two-layer multiplex network with

Stuart-Landau oscillators in L1 and the environment in L2 for K1 = K2 = 10,

P1 = 1, P2 = 25, ω = 2 and γ = 1. Here, the dynamical states seen are, CS -

Complete synchronization, NS - No-synchronization, AC - Amplitude chimera,

IHSS - Inhomogeneous steady state, HSS - Homogeneous steady state 1-CD -

One-state chimera death, 2-CD - Two-state chimera death, and 2CSS - Two-

cluster steady state. We see the combined effect of the time scale mismatch and

the intralayer coupling strength on the transition to synchrony.
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Figure 3: Strength of incoherence (S ) with decreasing τ indicating the transition

to synchronized state from (a): amplitude chimera at ǫ = 2, and (b): one state

chimera death at ǫ = 6.15. The other parameter values are: K1 = K2 = 10,

P1 = 1, P2 = 25, ω = 2 and γ = 1. In each case, the transition from the

chimera state to synchronization occurs at a critical value of τ.

2.2. Characterization of the dynamical states and their transi-

tions

To characterise the nature of the emergent dynamics and

study the transitions in the dynamics of the system, we calcu-

late the strength of incoherence (S), as introduced by Gopal et

al[64]. By definition, S = 0 for the spatially synchronized state,

S = 1 for the desynchronized state and an intermediate value

between 0 and 1 indicates the chimera or the cluster states.

We begin by determining w = xi−xi+1, where i represents the

index of the oscillators. By grouping the oscillators into M bins
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of equal size n, such that n = N
M

, the local standard deviation,

σ(m), is defined as

σ(m) =

〈

√

√

1

n

mn
∑

j=n(m−1)+1

[w j − w̄ j]2

〉

t

(2)

where w̄ = 1
n

∑mn
j=n(m−1)+1 w j(t) and 〈..〉t represents average

over time. Now, S is obtained as,

S = 1 −

∑M
m=1 sm

M
, sm = Φ(δ − σ(m)) (3)

The Heaviside step functionΦ(.) of σ(m) and δ is used to cal-

culate sm, with δ being a predefined threshold value set as a per-

centage of the difference between the maximum and minimum

values of x. In our calculations, we set δ = 0.2 and M = 20.

To track the transition from a state of suppressed oscillations,

we compute the average amplitude as an order parameter as

shown below.

< A(τ) >=
1

N

N
∑

i=1

[〈xi,max〉t − 〈xi,min〉t] (4)

The value of A(τ) = 0 when all oscillators are in the stationary

state of HSS or IHSS, whereas when they are in the oscillatory

state, the value of A(τ) > 0.

Using the above two measures, we map the spatiotempo-

ral behavior of the two layer multiplex system for a range

of the parameters, ǫ and τ with the other parameter values

kept as K1 = K2 = 10, P1 = 1, P2 = 25, ω = 2 and

γ = 1. We mark the variety of emergent states possible on

the parameter plane of ǫ vs τ in Fig. 2. The regions of dis-

tinct dynamical states shown include complete synchroniza-

tion(CS), no synchronization(NS), chimera states such as am-

plitude chimera(AC), one state chimera death(1-CD), two state

chimera death(2-CD), various steady states such as homoge-

neous steady state(HSS), inhomogeneous steady state(IHSS)

and two cluster steady state(2-CSS). It is clear from Fig. 2 that

as τ decreases, the region of synchronized oscillations expands,

indicating the system’s transition from various dynamical states

to synchronized oscillations. The phase diagram in Fig. 2 also

reveals the combined effect of the time scale mismatch τ and

the intralayer coupling strength ǫ on the transition to intralyer

synchrony.

We use the strength of incoherence S to identify nature of

the transition from chimera state to complete synchronization.

We illustrate this for two such transitions in Fig. 3, where S

is plotted against τ for ǫ = 2(a) and ǫ = 6.15(b). The vari-

ation in S indicates the tipping of the system to the state of

synchronized oscillations from amplitude chimera and one state

chimera death respectively.

Further, we study the variation of the average amplitude of

the system with decreasing τ or increasing mismatch in time

scale as plotted in Fig. 4 for the specific case of ǫ = 3. We

compute < A(τ) > starting from cluster like initial conditions

for each value of τ. By decreasing τ from 1.0, we look for

the transition to synchronized state from the state of IHSS. For

τ = 1, the system is in IHSS with the average amplitude of

zero. As τ is reduced, we see an abrupt increase in value of A

indicating the sudden transition to large amplitude synchronous

oscillations for both layers for a critical value of τ.

0.20.40.60.81.0

τ

0.0

0.5

1.0

1.5

2.0

<A
(τ
)>

Figure 4: Average amplitude with decreasing τ for ǫ = 3. The sudden transition

from inhomogeneous steady state(IHSS) to synchronized oscillations is seen in

layer L1(blue) and layer L2(green), as the τ is varied. The other parameter

values are: K1 = K2 = 10, P1 = 1, P2 = 25, ω = 2 and γ = 1.

3. Three layer system

The study is extended to a three layer multiplex system with

the L1 and L3 layers as networks of N Stuart-Landau oscillators

and the environment in the middle layer L2 as shown in the

Fig. 5. The equations for the dynamics of the three layer system

are presented below.

Figure 5: Schematic representation of the three-layer network with N = 8,

where nodes in the middle layer (L2) (blue) model the environment while nodes

in the upper (L1) and lower (L3) layers (orange) represent the system layers.

L1 and L3 have local and L2 nonlocal intralayer connections of strength Ki ,

while interlayer connections are feedback type of strength ǫi.
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Figure 6: Time series of the x-variable of Stuart-Landau oscillators (L1-red,

L3-green) and s-variable of the environment (blue). (a): Anti synchronization

between L1 and L3 for ǫ1 = ǫ2 = 2.5 and τ = 1, (b): Complete synchronization

between L1 and L3 for ǫ1 = ǫ2 = 2.5 and τ = 0.1. The other parameter values

are: K1 = K2 = K3 = 15, P1 = P3 = 1, P2 = 25, ω = 2 and γ = 1. It is seen that

as τ is decreased, the two layers undergo transition from anti synchronization

to synchronized oscillations.

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

τ

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Δθ

Figure 7: Variation in the phase difference ∆θ between L1 and L3 as τ is varied

for ǫ1 = ǫ2 = 2.5. The other parameter values are: K1 = K2 = K3 = 15, P1 =

P3 = 1, P2 = 25, ω = 2 and γ = 1. As τ is reduced, we see synchronization is

revived from IHSS.

ẋi1 = (1 − x2
i1 − y2

i1)xi1 − ωyi1 +
K1

2P1

i+P1
∑

j=i−P1

(x j1 − xi1) + ǫ1 si2

ẏi1 = (1 − x2
i1 − y2

i1)yi1 + ωxi1

ṡi2 = τ[−γsi2 − ǫ1 xi1 − ǫ2 xi3 +
K2

2P2

i+P2
∑

j=i−P2

(s j2 − si2)]

ẋi3 = (1 − x2
i3 − y2

i3)xi3 − ωyi3 +
K3

2P3

i+P3
∑

j=i−P3

(x j3 − xi3) + ǫ2 si2

ẏi3 = (1 − x2
i3 − y2

i3)yi3 + ωxi3

(5)

where the SL oscillators are characterized by the variables xik and

yik for i = 1, 2, ..., N in the kth layer, where k = 1, 3. In addition,

ǫ1 and ǫ2 represent the inter-layer coupling strength for L1 and L3,

respectively. All other parameters are consistent with those previously

described in the two-layer scenario.

Similar to the two-layer case, we consider all SL oscillators in L1

and L3 connected with one another locally, with P1 = P3 = 1 and the

environment L2 is coupled nonlocally, with P2 = 25. When there is no

time scale mismatch between the layers, for random initial conditions

we observe synchronized oscillations in the system layers, but with L1

and L3 being anti synchronized with each other for parameter values

Figure 8: Spatio temporal plots from the yi variable of Stuart-Landau oscillators

in L1 for the three-layer multiplex network. (a): Inhomogeneous steady state

for ǫ1 = ǫ2 = 5 and τ = 1, (b): Synchronized oscillations for ǫ1 = ǫ2 = 5 and

τ = 0.1. The other parameter values are: P1 = P3 = 1, P2 = 40, K1 = K3 = 30,

K2 = 1, ω = 2 and γ = 1. As τ is reduced, we see synchronization is revived

from IHSS.

of K1 = K2 = K3 = 15, γ = 1, ω = 2 and ǫ1 = ǫ2 = 2.5 as shown

in Fig. 6(a). In this case, the environment goes to death due to the

antiphase feedback from the system layers. As time scale mismatch

is introduced, the layers L1 and L2 transit from anti synchronization

to complete synchronization, as shown in Fig. 6(b) with the revival of

oscillations in L2 also. In Fig. 7 we show this transition by plotting the

phase difference ∆θ between L1 and L3, as τ is decreased.

A similar recovery of synchronized oscillations is observed from

a state of IHSS also. For parameter values of P1 = P3 = 1, P2 =

40, K1 = K3 = 30, K2 = 1, γ = 1 and ω = 2, the system shows

IHSS for ǫ1 = ǫ2 = 5 and τ = 1 as shown in Fig. 8(a) from which

synchronized oscillations are revived as depicted in Fig. 8(b) for τ =

0.1. For the three layer system, with τ = 1, chimera states are seen

only for very specific initial conditions and they undergo transitions

to synchronization as τ is decreased. Thus we show that it is possible

to revive synchronized oscillations from different dynamical states by

tuning the parameter τ in the three layer system also.

4. Conclusion

While there are several studies on the collective dynamics of mul-

tiplex networks, the role of time scales remains unexplored. In this

letter, we discuss how the time scale differences between layers can

be exploited to revive the synchronized oscillations in a multiplex net-

work of nonidentical layers. When we consider each layer evolving

at a different time scale, we can introduce the time scale mismatch

between the layers as an effective parameter that can control the dy-

namics of the system.

We first consider a two-layer network where the first layer L1 con-

sists of an ensemble of Stuart-Landau (SL) oscillators, while the sec-

ond layer L2 model the environment. When both layers evolve with

the same time scale, the coupled system exhibits various emergent

phenomena, such as amplitude chimera, chimera death, HSS, IHSS,

and 2-CSS. By tuning the time scale difference between the layers, we

show the synchronized oscillations can be restored in both layers from

these different states. By computing the measures, strength of incoher-

ence and average amplitude, we characterise the possible dynamical

states and show the nature of their transitions to synchronized oscil-

lations. The revival of synchronized oscillations are also shown with

van der Pol oscillators and chaotic Rössler systems on layer L1.

We also consider a three layer multiplex network, with the upper

and lower layers, L1 and L3, as coupled SL oscillators, and the mid-

dle layer, L2, as the environment. The most dominant emergent states

in this case are anti-synchronization between L1 and L3 and IHSS in
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both, for random and cluster like initial conditions, depending on ǫ

and extent of nonlocal connections in L2. For identical time scales

and lower value of interlayer coupling, first layer’s oscillators are ex-

actly in anti-phase with third layer oscillators. When mismatch is time

scale is introduced between the environment and system layers, the

system layers go to complete synchronization. Similarly for identical

time scale but higher value of interlayer coupling, the system shows

inhomogeneous steady state from which synchronized oscillations are

revived by introducing time scale difference between layers. Thus in

two layer and three layer multiplex systems studied, the main result

is the revival of synchronization, but the synchronization in the three

layer case is achieved remotely between L1 and L3 by tuning the time

scale of the shared common layer L2.

We note real-world complex systems exist where different time

scales and structural patterns coexist resulting in a variety of emer-

gent states like in neuronal networks, power grids, climate and ecosys-

tems. The present study extends our understanding of emergent states

of such systems modeled using the framework of multiplex networks,

with different layers evolving at nonidentical dynamical time scales.

The model introduced here is highly flexible and has relevance in con-

trolling systems evolving under differing time scales to desired syn-

chronized oscillations. Thus in eco systems, the time scale difference

between intrinsic dynamics and environmental changes is shown to

have a decisive role in inducing transitions in the system [62]. Here

the role of a slowly changing environment is studied by introducing a

drift in the relevant parameters. In our study we include environment

as a layer multiplexed with the system layer, which gives more flex-

ibility to track the impact of slowly varying environment. This also

provides a way to arrive at possible control mechanisms to achieve

desired emergent states even in the presence of heterogeneity among

interacting systems.
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