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We consider the trick of balancing a vertical stick on a horizontal plate. It is shown that the
horizontal stochastic driving of the point of contact can prevent the stick from falling provided that
the stochasticity is that of a coloured noise with a correlation strength stronger than a critical value.

I. INTRODUCTION:

Stabilizing an unstable equilibrium point has been an
interesting problem ever since Kapitza[1] showed how to
stabilize an inverted pendulum by a very fast oscilla-
tion of the point of support. It is a non-intuitive result
that has been explained carefully in classical mechanics
texts[2] and pedagogical journals[3][4]. On a more formal
basis, it has been explored by Levi[5] and formal tech-
niques of nonlinear dynamics in this context has been
studied by Polekhin[6]. Over the last decade, as tech-
niques in control dynamics have been extensively stud-
ied, there has been a lot of interest in different variants
of the Kapitza pendulum[7–14]. The widespread exis-
tence of the Kapitza phenomenon has been found even
at the quantam scales over the last few years,[15–17],
and extended to human walking very recently[18]. In-
termittent feedback control has also been developed as a
control strategy for the inverted pendulum[19] and was
anticipated by Cabrera and Milton[20, 21] and Gawthorp
etal[22]. The focus, as expected, has been on the ques-
tion of balancing a vertical stick - a popular fair-ground
and classroom trick. In this work we show that for the
vertical stick, a parametric modulation of the point of
support on the horizontal surface can lead to stabiliza-
tion if the modulation has the properties of a coloured
noise.

We begin by quickly recalling the Kapitza problem. In
this set-up, a pendulum has its point of support vibrated
vertically at a very high frequency Ω, and a small am-
plitude. This means that the natural frequency ω of the
pendulum will be subjected to oscillations of frequency
Ω and we can write the equations of motion as

θ̈ + ω2(1 + ϵ cosΩt) sin θ = 0 (1.1)

For ϵ = 0 the dynamics has two fixed points θ∗. One
is θ∗ = 0 which is stable and the other θ∗ = π which
is unstable (upside down pendulum). We consider small
oscillations δθ about the fixed points. Our interest is in
the unstable fixed point, i.e θ = π + δθ, which makes
Eq(1.1)

δθ̈ − ω2(1 + ϵ cosΩt) sin δθ = 0 (1.2)
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Expanding, δθ = δθ0 + ϵδθ1 + ϵ2δθ2 + . . ., we obtain at
O(1)

δθ̈0 − ω2δθ0 = 0 (1.3a)

At O(ϵ) and O(ϵ2) we obtain,

δθ̈1 − ω2δθ1 − ω2δθ0 cosΩt = 0 (1.3b)

δθ̈2 − ω2δθ2 − ω2δθ1 cosΩt = 0 (1.3c)

We are ignoring terms of O((δθ1)
2) in Eq(1.3c). Since

ω << Ω, δθ0 is a slowly varying function and we can
drop δθ1 in comparison to δθ̈1 to write

δθ1 ∼= −ω2

Ω2
δθ0 cosΩt (1.4)

Inserting this δθ1 in (1.3c) and keeping only the fast vary-
ing term, we have

δθ̈2 ∼= −ω4

Ω2
δθ0 cos

2 Ωt (1.5)

The equation of motion for δθ is obtained as

δθ̈ = δθ̈0 + ϵδθ̈1 + ϵ2δθ̈2 + . . .

= ω2(δθ0 + ϵδθ1 + ϵ2δθ2 + . . .) + ϵω2 cosΩtδθ0

− ϵ2
ω4

Ω2
cos2 Ωtδθ0 + . . . (1.6)

we do a long time averaging of δθ to write

⟨δθ̈⟩ = ω2⟨δθ⟩ − ϵ2ω4

2Ω2
⟨δθ⟩ (1.7)

Note that δθ0 has no oscillatory behaviour and hence the
time average of the second term on the r.h.s of Eq(1.6) is
zero. Further, for the same reason, the third term on the
r.h.s of Eq(1.6) can be set to zero and correct to O(ϵ2),
ϵ2δθ0 can be replaced by ϵ2δθ. It can easily be seen from
the r.h.s of Eq(1.7), that for ϵ2ω2 > 2Ω2, the second term
dominates and hence the deviation δθ oscillates around
the unstable fixed point θ0 = π.

II. THE VERTICAL STICK:

In this section, we focus on a vertical stick of mass
m and length l, being balanced on a flat surface against
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FIG. 1. The vertical stick

the force of gravity. We simplify it to a two dimensional
problem, where the stick can only fall along the angle θ
as shown in Fig.1.

The initial (t = 0) position of the center of mass of
the stick is (x0 +

l
2 sin θ,

l
2 cos θ) relative to the origin O

of the co-ordinate axes as shown in Fig1. We apply a
horizontal force F0 at the base of the stick to stabilize
the falling stick for a small angular displacement θ. At
any instant the y-coordinate of the center of mass will be
l
2 cos θ and the x-coordinate will acquire a time depen-
dence as well, which makes the x-coordinate of the center
of mass x(t) + l

2 sin θ. We introduce the horizontal and
vertical coordinates (X,Y ) as

X = x+
l

2
sin θ (2.1a)

Y =
l

2
cos θ (2.1b)

The total kinetic energy is

K =
m

2
ẋ2 +

mL

2
θ̇ẋ cos θ +

mL2

6
θ̇2 (2.2)

The total potential energy is

V =
mgl

2
cos θ − F0x (2.3)

The Lagrangian of the system is:

m

2
ẋ2 +

mL

2
θ̇ẋ cos θ +

mL2

6
θ̇2 − mgl

2
cos θ + F0x (2.4a)

The Equations of motion are obtained as

ẍ+
θ̈l

2
cos θ − θ̇2l

2
sin θ =

F0

m
(2.4b)

ẍ cos θ +
2

3
θ̈l = g sin θ (2.4c)

Eliminating the variable x from Eq(2.4b) and (2.4c) takes
us to

θ̈[5− 3 cos 2θ] + 3θ̇2 sin 2θ − 12ω2 sin θ = −12F cos θ
(2.4d)

In the above equation F = F0

ml and ω2 = g
l The dy-

namics of Eq(2.4d) is understood by looking for its fixed
points and its stability. It is seen that the only fixed
point is θ∗ = tan−1( F

ω2 ). To find the stability of the
fixed point, we write θ = θ∗ + δθ and linearizing in δθ,
we obtain

δθ̈ = 6[
ω2 cos θ∗ + F sin θ∗

4− 3 cos2 θ∗
]δθ (2.5)

The coefficient of δθ is always positive making the fixed
point unstable and the stick falls as expected. This raises
the question whether the dynamics can be stabilized in
the Kapitza fashion.

III. KAPITZA LIKE STABILIZATION:
PERTURBATION THEORY

We apply an Oscillatory/random force ϵFg(t) at the
base of the stick in addition to the constant force F dis-
cussed in the previous section. Our aim will be to explore
if a high frequency oscillatory g(t) or a random g(t) can
help stabilize the stick. We begin rewriting Eq.(2.4d), by
including the time dependant force, as

θ̈[5− 3 cos 2θ] + 3θ̇2 sin 2θ − 12ω2 sin θ

= −12F cos θ(1 + ϵg(t)) (3.1)

As shown in Sec.I, we expand the angle variable θ as

θ = θ0 + ϵθ1 + ϵ2θ2 + . . . (3.2)

At different orders of ϵ the dynamics acquires the form

O(1) : θ̈0[5− 3 cos 2θ0] + 3θ̇20 sin 2θ0 − 12ω2 sin θ0

= −12F cos θ0 (3.3)

O(ϵ) : θ̈1[5− 3 cos 2θ0] + 6θ̈0θ1 sin 2θ0+

6θ̇20θ1 cos 2θ0 + 6θ̇0θ̇1 sin 2θ0 − 12ω2θ1 cos θ0

= 12F [θ1 sin θ0 − g(t) cos θ0] (3.4)

O(ϵ2) : θ̈2[5− 3 cos 2θ0] + 6θ̈1θ1 sin 2θ0

+ 6θ̈0[θ
2
1 cos 2θ0 + θ2 sin 2θ0] + 12θ1θ̇1θ̇0 cos 2θ0

+ 6θ̇20[θ2 cos 2θ0 − θ21 sin 2θ0] + 3[θ̇21 + 2θ̇2θ̇0] sin 2θ0

+ 6ω2[θ21 sin θ0 − 2θ2 cos θ0]

= 6F [θ21 cos θ0 + 2θ2 sin θ0 + 2θ1 sin θ0g(t)] (3.5)
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At O(1), we have the dynamics studied in the previous
section, and the outcome of that was the existence of an
unstable fixed point θ∗ = tan−1( F

ω2 ). This fixed point
being unstable, we now proceed to higher orders, namely
O(ϵ) and O(ϵ2), to explore the effect of the modulating
force g(t). At O(ϵ), the dynamics is driven primarily by
the rapidly changing g(t). This means that terms with
higher derivative dominate and the approximate solution
of Eq.(3.4) can be obtained in the Kapitza fashion by
considering the dominant part.

[5− 3 cos 2θ0]θ̈1 ∼= −12F cos θ0g(t) (3.6)

If g(t) is an oscillatory function A cosΩt, then

θ1(t) =
12F cos θ0
5− 3 cos 2θ0

A

Ω2
cosΩt (3.7a)

On the other hand, if g(t) is a stochastic function, then
the solution θ1(t) can be written as

θ1(t) = − 12F cos θ0
5− 3 cos 2θ0

∫ t

0

dt′
∫ t′

0

dt′′g(t′′) (3.7b)

At the next order O(ϵ2), we need to identify the relevant

terms that contribute to θ̈(t) after an averaging over time
has been carried out over the periodically/stochastically
driven terms in Eq.(3.5). This forces the relevant part of
O(ϵ2) dynamics to be restricted to

θ̈2[5− 3 cos 2θ0] + 6θ1θ̈1 sin 2θ0 + 3θ̇21 sin 2θ0

= 12Fθ1 sin θ0g(t) (3.7c)

We now need to construct the average values of the terms
θ1θ̈1, θ̇

2
1 and θ1g(t) in order to arrive at the averaged equa-

tions of motion for θ2(t). To begin with we note from
Eqs.(3.7a) and (3.7b) that

⟨θ1(t)⟩ = 0 (3.8)

Turning to Eq.(3.7c), we note that on using
Eqs(3.6),(3.7a) and (3.7b), we can write the differ-

ent contributions to ⟨θ̈2⟩ as

⟨θ1θ̈1⟩ = −(
12F cos θ0
5− 3 cos 2θ0

)2
A2

2Ω2
(3.9a)

⟨θ1θ̈1⟩ = (
12F cos θ0
5− 3 cos 2θ0

)2(
1

Γt
)⟨g(t)

∫ t

0

dt′
∫ t′

0

dt′′g(t′′)⟩

(3.9b)
Eq.(3.9a) above is for an oscillatory modulation and

Eq.(3.9b) is for a random function g(t). Similarly, for an
oscillatory function g(t) we have

⟨θ̇21⟩ = (
12F cos θ0
5− 3 cos 2θ0

)2
A2

2Ω2
(3.10a)

and for a random function g(t)

⟨θ̇21⟩ = (
12F cos θ0
5− 3 cos 2θ0

)2(
1

Γt
)⟨
∫ t

0

dt′g(t′)

∫ t

0

dt′′g(t′′)⟩

(3.10b)

Finally, we have

⟨θ1g(t)⟩ =
6F cos θ0

5− 3 cos 2θ0

A2

Ω2
(3.11a)

for the oscillatory g(t) and

⟨θ1g(t)⟩ = −(
12F cos θ0
5− 3 cos 2θ0

)(
1

Γt
)⟨g(t)

∫ t

0

dt′
∫ t′

0

dt′′g(t′′)⟩

(3.11b)
It is apparent by substituting the averaged values that

the oscillatory movement g(t) ∝ cosΩt cannot stabilize
the stick. On the other hand, a stochastic g(t) has the
potential for stabilizing the stick (the white noise situ-
ation where ⟨g(t1)g(t2)⟩ ∝ δ(t1 − t2) does not give any
contribution and does not stabilize the falling stick) if we
use a coloured noise with

⟨g(t1)g(t2)⟩ = Ae−Γ|t1−t2| (3.12)

Using the above definition the average values for the
stochastic g(t) can be calculated as

⟨θ1θ̈1⟩ = (
12F cos θ

5− 3 cos 2θ
)2(

A

Γt
)[

1

Γ2
− 1

Γ2
e−tΓ − t

Γ
e−tΓ]

⟨θ̇21⟩ = (
12F cos θ

5− 3 cos 2θ
)2(

A

Γ2
)[2 +

2

Γt
e−Γt − 2

Γt
] (3.13a)

⟨θ1g(t)⟩ = −(
12F cos θ

5− 3 cos 2θ
)(

A

Γt
)[

1

Γ2
− 1

Γ2
e−tΓ − t

Γ
e−tΓ]

in the large time limit, when t → ∞ we get

⟨θ1θ̈1⟩ = 0

⟨θ̇21⟩ = (
12F cos θ

5− 3 cos 2θ
)2
2A

Γ2
(3.13b)

⟨θ1g(t)⟩ = 0

We have

⟨θ⟩ = ⟨θ0⟩+ ϵ⟨θ1⟩+ ϵ2⟨θ2⟩+ . . .

⟨θ̈⟩ = ⟨θ̈0⟩+ ϵ⟨θ̈1⟩+ ϵ2⟨θ̈2⟩+ . . . (3.14)

with,

⟨θ1⟩ = 0

⟨θ2⟩ = 0

⟨θ̈1⟩ = 0 (3.15)

So, after the averaging over the rapid oscillations is done
we are left with

⟨θ⟩ = ⟨θ0⟩
⟨θ̈⟩ = ⟨θ̈0⟩+ ϵ2⟨θ̈2⟩ (3.16)
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Substituting Eq.(3.7a) to Eq.(3.13b) in (3.16) one gets

⟨θ̈⟩ = − 3 sin 2θ

5− 3 cos 2θ
⟨θ̇2⟩+ 12ω2 sin θ

5− 3 cos 2θ

− 12F cos θ

5− 3 cos 2θ
− ϵ2[

6 sin 2θ

5− 3 cos 2θ
⟨θ̈1θ1⟩

+
3 sin 2θ

5− 3 cos 2θ
⟨θ̇21⟩ −

12F sin θ

5− 3 cos 2θ
⟨θ1g(t)⟩] (3.17a)

θ̈ =
12ω2 sin θ

5− 3 cos 2θ
− 12F cos θ

5− 3 cos 2θ

− ϵ2[(
3 sin 2θ

5− 3 cos 2θ
)(

12F cos θ

5− 3 cos 2θ
)2
2A

Γ2
] (3.17b)

Now expanding the above equation about the unstable
equilibrium position for small θ we get

θ̈ = [6ω2 − ϵ2A(
108F 2

Γ2
)]θ − 6F (3.18)

It is obvious that the above equation gives rise to oscil-

lations when ϵ2A( 18F
2

Γ2 ) > ω2. It is interesting to note

that it is the combination F
Γ which determines the effi-

ciency of the setup in effecting a stabilization. A small
value of Γ corresponds to a strongly coloured noise i.e a
noise which is correlated over a longer duration and that
facilitates the stabilization.

IV. CONCLUSION:

Balancing a vertical stick on one’s hand against grav-
ity has always seemed to provide a challenge to one’s
co-ordination of hand and eye. Over the last few years,
this co-ordination has become the subject of generating
control algorithms that can do the balancing act. In this
work, we have cast this problem as an analogue of the
Kapitza pendulum situation and shown that the oscilla-
tion will not work in this case. However , if the oscillation
is replaced by a correlated coloured noise, then it is pos-
sible to obtain a stabilization over a critical strength of
the noise-correlation. As expected, a longer correlation
time for the noise leads to an easier stabilization.
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