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The model by Hu and Cai [Phys. Rev. Lett., Vol. 111(13) (2013)1] describes the self-organization of vascular networks
for transport of fluids from source to sinks. Diameters, and thereby conductances, of vessel segments evolve so as to
minimize a cost functional E. The cost is the trade-off between the power required for pumping the fluid and the energy
consumption for vessel maintenance. The model has been used to show emergence of cyclic structures in the presence
of locally fluctuating demand, i.e. non-constant net flow at sink nodes. Under rapid and sufficiently large fluctuations,
the dynamics exhibits bistability of tree-like and cyclic network structures. We compare these solutions in terms of the
cost functional E. Close to the saddle-node bifurcation giving rise to the cyclic solutions, we find a parameter regime
where the tree-like solution rather than the cyclic solution is cost-optimal. Thus we discover an additional, non-local
transition where tree-like and cyclic solutions exchange their roles as minimum-cost (or ground) states. The findings
hold both in a small system of one source and a few sinks and in an empirical vascular network with hundreds of
sinks. In the small system, we further analyze the case of slower fluctuations, i.e., on the same time scale as network
adaptation. We find that the noisy dynamics settles around the cyclic structures even when these structures are not
cost-optimal.

Transport or distribution networks are crucial for the
proper functioning of a wide range natural and techno-
logical systems. An important question is what network
structures are optimal in terms of energy consumption. A
classical result is that optimal transport networks are min-
imal spanning trees, provided that loads are stationary2;
however, many realistic settings display fluctuating loads,
in which case cyclic motifs allow for short cuts (shunts),
thus improving energy consumption. A number of stud-
ies demonstrated the necessity of such cycles using opti-
mization techniques3–7; an alternative dynamical systems
approach was put forward by Hu and Cai1 in a model
where vessel diameters adapt dynamically in response to
a power dissipation function, leading to adaptive network
dynamics8. The bifurcation structure for this model has
been subject of a number of studies1,9–11, which assumed
that fluctuations occur very rapidly, i.e., time scales asso-
ciated with fluctuations and the vessel conductance were
perfectly separated. Here, we relax this assumption and
use energy methods to elucidate the role of slower fluctua-
tions and show that in parameter regimes, where bi-stable
configurations with tree-like and cyclic motifs, noise may
render cyclic motifs even though tree-like configurations
are energetically favorable.

I. INTRODUCTION

In natural and engineered systems, transport and flow net-
works are essential to the distribution of resources12,13. Trans-
port networks range from mammalian vascular vessel net-

works14,15, leaf venation16, and brain glymphatic fluid path-
ways17 to arboreal sap conduits18; and man-made infrastruc-
tures like roads19 and microfluidic circuits20. Transport net-
works are tasked with the critical function of efficiently chan-
neling resources from sources to sinks amidst diverse de-
mands and constraints. The efficiency of these networks is
often attributed to their ability to self-organize and adapt dy-
namically to local flow conditions8,21, resulting in complex
network topologies that incorporate cycles and loops3,4,22,23

and community structures24. Such configurations are not only
indicative of robustness and flexibility, but are also optimized
in terms of energy consumption.

While the topology of technological transport networks
tends to be more static and thus offer limited adaptability,
biological networks such as the mammalian vascular system
demonstrate remarkable flexibility and operate reliably over
a vast parameter range25–27, thereby avoiding the risk of fail-
ure even in extreme scenarios. In the mammalian vasculature,
vessels dynamically adjust diameters in response to changes
in flow properties like pressure and shear stress28,29.

A range of studies have been dedicated to the optimal net-
work configuration in terms of energy consumption. While an
optimal distribution network assumes the structure of a min-
imal spanning tree when loads are static2, a range of studies
revealed that fluctuating loads instead result in the emergence
of cyclic motifs in order to optimize energy consumption3–7.
Intuitively, this can be explained by the realization that shunt-
ing (shortcutting) nearby nodes is cheaper than rerouting the
fluctuating demands up and down a number of levels in a tree
structure. An alternative line of research, introduced by Hu
and Cai1 takes the perspective of dynamical systems theory,
instead considering the time evolution of the network by in-
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voking a dynamic rule for vessel diameters (conductances),
such that they adapt in response to a power consumption func-
tion controlled by an exponent γ . Bifurcation analysis for a
minimal triangular motif and larger networks in the limit of
rapid fluctuations revealed that cyclic motifs may emerge in
either transcritical and saddle-node bifurcations, depending
on the specific value of γ; moreover, the saddle-node bifur-
cations give rise to bi-stability between tree-like and cyclic
configurations9–11. In such a dynamical formulation, the time
scales of the adaptation rule for the conductances and of fluc-
tuations are of order ∼ 1 and ∼ T , respectively — thus, a time
scale separation is made explicit. Crucially, biological set-
tings do not adhere to a strict time scale separation, i.e., we
cannot claim T ≪ 1. This raises the question how the time
scale associated with fluctuations, T , affects bifurcations and
bi-stability. Specifically, previous studies used the model as-
sumption of rapid fluctuations, T ≪ 1, but it is unclear to what
extent this assumption accurately predicts the favored network
configurations.

This article seeks to understand the response of adaptive
flow networks, subject to non-rapid fluctuation. To achieve
this, we first derive a framework for the rapid fluctuation limit,
using an ’energy function’1,30, in physical terms describing
the energy consumption due to dissipation along the total net-
work. A minimal energy principle31 is used to characterize the
stability of equilibria and offers a more global view on stabil-
ity. Using this methodology, we are then able to study how the
timescale and level of fluctuations affect the system dynamics
under various conditions. Our study reveals that fluctuations
may stabilize cyclic configurations even when tree-like con-
figurations are energetically favorable. Thus, we clarify the
influence of the time scale associated with fluctuations, an as-
pect which was neglected in previous studies.

II. MODEL

A. The model by Hu and Cai

Let V denote a set of nodes of a network with N = |V |< ∞

and A ⊆ N ×N the set of edges. The edges are bidirectional;
therefore, (i, j) ∈ A implies ( j, i) ∈ A. Each node is assigned
pressure pi. The edge flow is Qi j > 0 from node i to j. We
assume that the network is resistive and linear, i.e., Ohmian
with Qi j =Ci j(pi − p j), where an edge carries the property of
conductance between nodes i and j with Ci j =C ji > 0 only if
(i, j) ∈ A.

At each node i, Kirchhoff’s law (mass balance) demands
that

hi = ∑
j∈V

Qi j = ∑
j∈V

Ci j(pi − p j) (1)

with the constraint guaranteeing that total mass be conserved,
∑i∈V hi = 0.

Given conductances Ci j and flows Qi j, the energy consump-

tion of the system is postulated as

E =
1
2 ∑
(k,l)∈A

Q2
kl

Ckl
+ c0Cγ

kl (2)

by Hu and Cai1. Each vessel segment, represented by an edge
(k, l), consumes energy in terms of two amounts in Eq. (2).
The first contribution is the power required to sustain the flow
Qkl , akin to the power RI2 dissipated by an electric current
I over a resistance R = 1/C. Secondly, the power required
for maintenance of the vessel segment depends on its diam-
eter and thereby its conductance Ckl . Larger conductance
gives rise to larger maintenance power, hence the exponent
γ > 0. For real systems, the maintenance power is linear or
sublinear1, implying that γ ≤ 1. The constant c0 = (τe)

2/γ

reflects the scale ratio of flow power and maintenance power.
We use the scale τe = 1 so that c0 = 1/γ . The prefactor 1/2
compensates for double counting each edge in the sum, both
as (k, l) and (l,k).

The gradient of the energy consumption (2) has the compo-
nents

∂E
∂Ci j

=−
Q2

i j

C2
i j
+ γc0Cγ−1

i j , (3)

where we use that Ci j = C ji and Qi j = −Q ji. Note also that
terms containing inner derivatives ∂Qkl/∂Ci j cancel due to
mass balance (1), see Lu and Hu 31 for details.

A system minimizing energy consumption may adapt con-
ductances according to a gradient descent rule

d
dt

Ci j =− ∂E
∂Ci j

. (4)

More generally, one may consider any adaptation rule

d
dt

Ci j =− f (Ci j)
∂E
∂Ci j

(5)

with arbitrary non-negative function f which ensures dE/dt ≤
0. Hu and Cai1 choose f (x) = cx2−γ with a constant c > 0
resulting in

d
dt

Ci j = c

(
Q2

i j

Cγ+1
i j

− γc0

)
Ci j. (6)

By appropriate choice of units of time and conductance, we
obtain values of the constants c = 1 and c0 = 1/γ . Then, since
Qi j =Ci j(pi − p j), we have

d
dt

Ci j =
C2

i j(pi − p j)
2

Cγ

i j
−Ci j . (7)

Note that taking into account actual vessel lengths facilitates
application of the model to real vascular networks11; however,
as a simplification, we assume all vessel segments (edges) of
the network to have unit length.
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Extrema and saddles of the energy landscape are character-
ized by ∇E = 0, amounting to

Q2
kl

Ckl
=Cγ

kl . (8)

using γc0 = 1. The left hand side of this equation is the cost
of dissipation caused by the direct flow between nodes k and
l; the term Cγ

kl on the right hand side is the maintenance cost
of the vessel segment. The inner equilibria of the dynamics,
equivalent to the critical points of the energy, are thus char-
acterized by equality of these two contributions to the energy
consumption.

B. Sink fluctuations

We consider systems with a single source node r ∈V having
hr = 1. We denote the set of sink nodes with S ⊂ V where
r /∈ S. The net flow at sink nodes is assumed to fluctuate in
general. This is implemented by choosing one sink s ∈ S and
assigning s a larger net flow (in absolute value) than the other
sinks as

hi =



1 if i = r

−1−α

|S|
−α if i = s

−1−α

|S|
if i ∈ S\{s}

0 otherwise.

(9)

The parameter α ≥ 0 determines the amplitude of fluctuations.
For α = 0, fluctuations vanish with each sink i∈ S having con-
stant outflow hi =−1/|S|. The case where α = 1 corresponds
to a single moving sink3 since all sinks except high-flow sink
s have zero net flow. When α > 1, sink nodes with i ̸= s are
assigned hi > 0, so they act as sources; however, this is not a
scenario we expect to occur in real systems. Yet, the following
analysis is valid for all values α ≥ 0.

For stochastic sink fluctuations occurring on a time scale
T > 0, the net flows in all sinks are constant on all time inter-
vals In = [(n− 1)T,nT [ with n ∈ N. Independently for each
n ∈N, we draw the high-flow sink sn ∈ S uniformly at random
(with probabilities 1/|S|).

III. ANALYSIS

In this section, we discover non-local transitions where the
ranking of solutions with respect to the energy functional E
changes, and thus switching between ground (minimum E)
states occurs (see subsections E and F). The impact of these
transitions in a system with finite time-scale fluctuations is
studied in subsection G. We provide context for these findings
by first reviewing the known saddle-node bifurcations giving
rise to cyclic solutions11,23 (subsections A-C). For particular
values of cost exponent γ , we reveal additional bifurcations
(subsection D).

A. Triangular network motif with 1 source and 2 sinks

We consider a triangular network motif with one source
h1 = 1 and two fluctuating sinks h2 and h3. This motif has
already been considered in previous studies9–11 as it serves
as an elementary building block for larger networks in setups
with one source and many sinks (terminal loads).

We assume that the drive h2,3 f (t) fluctuates on a rapid time
scale, i.e., T = T (h2,3) ≪ 1. The sources then obey ⟨h2⟩−
⟨h3⟩ → 0 and no net pumping occurs between nodes k = 2
and k = 3.

Accordingly, we seek solutions, ⟨Ckl⟩, averaged over rapid
fluctuations with characteristic time scale T . We consider that
Ci j changes on a slow time scale, Ci j → ⟨Ci j⟩ as T → 0. From
now on, we therefore use ⟨Ckl⟩ and Ckl interchangeably and
simplify notation by omitting ⟨·⟩ around the conductances.
Note that the symmetry of both the triangular network motif
and of the (rapid) fluctuations imply that ⟨C12⟩= ⟨C13⟩.

In this rapid fluctuation limit, the dynamics of the conduc-
tances is constrained to a two dimensional subspace with the
dynamics governed by

d
dt

C12 =C12(C
1−γ

12 ⟨(p1 − p2)
2⟩−1), (10a)

d
dt

C23 =C23(C
1−γ

23 ⟨(p2 − p3)
2⟩−1). (10b)

The conductances are related via the mass balance (1), i.e.,

1 =C12(p1 − p2)+C13(p1 − p3), (11a)
h2 =C12(p2 − p1)+C23(p2 − p3), (11b)
h3 =C13(p3 − p1)+C23(p3 − p2), (11c)

where we may (without loss of generality) set the reference
pressure p1 = 0. The mass balance is further simplified using
the symmetry C12 = C13 in Eqs. (11a)-(11c). We omit the
details of the analysis which was carried out in our previous
studies9,11 and instead summarize the main results in the two
following Secs. III B and III C.

Relations between the average squared terminal fluctua-
tions, h1,h2 and h3, and the fluctuation amplitude α rele-
vant to evaluating the pressure difference terms in Eq. (10),
are derived in Appendix A.1. in Ref.11 They are ⟨h2

2⟩ =
1+α2

4 ,⟨(h2 −h3)
2⟩= α2,⟨h2h3⟩= 1−α2

4 .

B. Stationary solutions of triangular motif

The triangular motif described by Eqs. (10) has two types of
stationary solutions as previously shown11. We do not explic-
itly calculate equilibria for (10), and instead refer to our previ-
ous study11 for a detailed derivation; however, we note that the
symmetry assumption C12 =C13 in conjunction with imposing
an equilibrium condition to Eq. (10) implies the key relations〈
(p1 − p3)

2
〉
=
〈
(p1 − p2)

2
〉
. These include the tree-like so-

lution, B∧ = (C12,C23), with

B∧ =
(
⟨h2

2⟩
1

1+γ ,0
)
=

(1+α2

4

) 1
1+γ

,0

 , (12)
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which is always stable for 0 < γ < 1; stable for α < αc with
γ = 1, and repellent for 1 < γ ≤ 2; and the cyclic solution,
B∆ = (C12,C23), implicitly defined via the following two rela-
tions valid for γ ̸= 1,

C23 =C12(4−C−γ−1
12 )

1
γ−1 , (13a)

α = (C12 +2C23)C
γ−1

2
23 . (13b)

For γ = 1, one may instead find9,11 the explicit solution

C12 =
1√
3
, (14a)

C23 =
1
2

(
α −

√
1
3

)
. (14b)

These relations produce the bifurcation curves shown in
Fig. 2. For γ ̸= 1, one may treat the variable C12 ≥ 0 as a
free parameter and use (13a) and (13b) generate the tuples
(α(C12),C12) and (α(C12),C23(C12)).

C. Bifurcations and stability diagram

We summarize the results on the bifurcation behavior and
stability analysis for stationary solutions occurring in the tri-
angular network motif9,11. Bifurcation diagrams and phase
diagrams for selected values of γ are shown in Fig. 1 and in
Fig. 3 panels a) to c), respectively.

For γ < 1, the tree-like solution BΛ (12) is always present,
and stable for any value of α . The cyclic solution emerges in
a saddle-node bifurcation (SN) at α = α SN(γ). For α < α SN,
there is only a stable tree-like solution BΛ, see Fig. 3 panel a)
and Fig. 2 panel a); for α > α SN, we see a stable node (∆) and
a saddle (S) corresponding to cyclic solutions,and the tree-like
solution (Λ), see Fig. 3 panel b) and Fig. 2 panels b) or c). As a
consequence, tree-like and one cyclic solution stably co-exist
above the bifurcation with α > α SN. An approximate condi-
tion for the saddle-node bifurcation was derived previously in
Ref. 11, i.e., the value for C12 at the saddle node bifurcation is
well approximated by32

C SN
12 =

(
4−
(

2(1− γ)

3(1+ γ)

)γ−1
)−1/(1+γ)

. (15)

Substitution of this value into Eqs. (13a) and (13b) yields the
conductance C SN

23 and the critical value α = α SN at the SN
bifurcation in the parameter regime where γ < 1.

For γ = 1, the tree-like and cyclic solution branches collide
in a transcritical bifurcation (TC). This bifurcation point oc-
curs where the solution changes sign, and (14b) determines a
critical parameter value,

α TC =
√

1/3 , (16)

in agreement with previous studies9,10. Thus, below the trans-
critical threshold, the only stable solution is tree-like; above
the threshold, the only stable solution is cyclic.

Finally, for γ > 1, the saddle-node bifurcation is annihilated
in the transcritical bifurcation point TC and the tree-like and
cyclic solutions stably co-exist for any value of α , see Fig. 2
panel c). Note that the tree-like and cyclic solutions display
nearly identical values for C23 below a specific value of α and
only begins to substantially differ above a certain α-value.

The stability diagram from these bifurcations is shown in
Fig. 1. We remind the reader that not all values of α and γ

are of interest to us, due to certain limitations in their physical
interpretations. First, we limit our attention to α ≤ 1 to avoid
sign reversal in the terminal fluctuations (see Sec. II B). Sec-
ond, for the exponent value γ > 1, the maintenance power of a
vessel segment scales superlinearly with its conductance. This
case appears less realistic than the linear (γ = 1) and sublinear
(γ < 1) ones. Under γ > 1, maintenance power may always
be lowered by replacing a vessel segment with several parallel
segments while keeping total conductance.

D. Additional saddle-node bifurcations

For specific values of γ , the governing equations allow
for additional saddle-node bifurcations. To see this, con-
sider Eq. (15), which is of the general form C12 = (−x)β =

(−1)β |x|β = eiπβ |x|β , with x = (2/3(1− γ)/(1+ γ))γ−1 − 4
and β = −1/(1+ γ). Exponentiation with values β /∈ Z will
result in a complex solution which is to be rejected. However,
exponents with β = k where k ∈ Z result in a real-valued C12.
Furthermore, C12 > 0 if β = 2k; but C12 < 0 if β = 2k + 1.
Thus, we expect additional saddle-node bifurcations produc-
ing physically realistic values exactly when

β =
−1

1+ γ
= 2k, k ∈ Z. (17)

Note that almost the same condition (apart from a sign flip)
for the exponent of Eq. 13a controls whether C23 is complex-
or real-valued. These additional saddle-node bifurcations are
destroyed upon perturbation in γ and are thus not considered
to be structurally robust. Nevertheless, we mention them here
as they may avoid confusion for future investigators.

E. Energy consumption for the triangular motif

We now turn our attention to the model in terms of mini-
mizing energy consumption E as given by (2). Relative val-
ues for E evaluated at different equilibria allow for a more
global characterization of stability, which is particularly use-
ful to discuss the system behavior in the presence of multista-
bility (occurring for α > α SN and γ ≤ 1) and of noise-driven
dynamics in the regime of non-rapid slow fluctuations, which
we will discuss later in Sec. II B.

Let us obtain an explicit expression for the energy con-
sumption E of the triangular network motif. Using Qi j =
Ci j(pi − p j), we can rewrite (2) in terms of pressure differ-
ences. Additionally, the symmetry of load fluctuations be-
tween nodes 2 and 3 implies C13 = C12, and so the energy



5

SN

αE(γ)

TC

Tree-like (Λ) Cyclic (Δ)

γ0 γ1

B
istab

le

0.7 1 1.2γm
0

1

3

1

γ

α

FIG. 1. Stability diagram for the triangular network motif in the
regime of rapid fluctuations (T ≪ 1). The curves of the saddle-
bifurcation (SN) and of αE(γ) intersect α = 1 when γ0 ≈ 0.785 and
γ1 ≈ 0.816, respectively. Note that the diagram extends to α > 1
continuously, but this regime is ignored for physical reasons.

consumption becomes

E = 2C12
〈
(p1 − p2)

2〉+C23
〈
(p2 − p3)

2〉
+

2
γ

Cγ

12 +
1
γ

Cγ

23 ,
(18)

where we also replaced c0 = γ−1. The expectation values of
quadratic pressure differences have been obtained using mass
balance, see Eqs. (17) and (18) in Reference 11, which are

〈
(p2 − p3)

2〉= α2

(C12 +2C23)2 =: X (19)

and 〈
(p2 − p1)

2〉= 1
4

(
1

C2
12

+X
)

. (20)

Inserting the former expressions into (18), we have

E =
1

2C12
+

α2

2(C12 +2C23)
+

2
γ

Cγ

12 +
1
γ

Cγ

23 . (21)

We evaluate E along the C12-nullclines (blue curves in Fig.3
panels (a)-(c)), as shown in Figure 3 in panels (d)-(f). In
particular, maximum and minima of E give the energy con-
sumption at the saddle and stable fixed points. Fixing α = 1
and choosing subcritical γ = 0.76 < γ0, the unique minimum
of E is at the tree-like solution, see Figure 3(d). For values
γ = 0.80 > γ0 and γ = 0.85 > γ0, i.e. above the saddle-node

bifurcation, the stable cyclic solution is a local minimum; the
unstable cyclic solution (saddle) is a local maximum of E as
seen in panels (e) and (f) of Figure 3. A change of behaviour
occurs between γ = 0.80 and γ = 0.85 at γ = γ1. For γ < γ1,
the tree-like solution with C23 = 0 is the unique global min-
imum of E. For γ > γ1, the stable cyclic solution uniquely
globally minimizes E. Thus in addition to the saddle-node bi-
furcation at γ = γ0, the system undergoes another transition
at γ1, where the ground state changes from the tree-like fixed
point to the stable cyclic fixed point.

The phenomenon of switching ground state generalizes to
parameter values α ≤ 1. In the stability diagram in Figure 1,
the curve αE(γ) further subdivides the parameter regime of
bistability. Above the curve, i.e. for α > αE(γ), the stable
cyclic solution is the ground state configuration. Below the
curve, the tree-like solution globally minimizes E.

F. System with a multitude of local minima of energy

Let us consider a larger network with more cycles and thus
more possibilities for the presence or absence of cross-edges.
Figure 4 shows the test network with 9 nodes and 12 edges,
where we denote the four vertically drawn edges as cross-
edges, the remaining ones as tree-edges. There are 24 = 16
combinations of conducting / non-conducting cross-edges; 15
of these are cyclic (with at least one cross-edge conducting);
the remaining combination is the tree without any conducting
cross-edges.

Out of the 15 cyclic combinations, 7 are not observed as
stable equilibria for any values of γ ∈ [0,1], while α = 1.0
remains constant. For each of the remaining 8 cyclic com-
binations, Figure 4 displays the energy values for the stable
equilibrium on the γ-interval where the cyclic equilibrium ex-
ists. As the parameter γ is varied, the ranking of equilibria by
energy varies. In particular, which equilibrium constitutes the
ground state, is strongly parameter-dependent. At γ = 1.0, the
ground state is the one with all cross-edges except {2,3}. At
γ ≈ 0.86, γ ≈ 0.67, the ground state configuration switches be-
tween different cyclic equilibria. Below γ ≈ 0.30, the ground
state is the tree.

G. Sink nodes fluctuating on finite time scale

We now relax the time scale separation between the sink
fluctuations and the network adaptation. Accordingly, we no
longer require that T ≪ 1, and we analyze the tree-node motif
under stochastic fluctuations with time scale T as described in
Sec. II B. We choose the fluctuation amplitude α = 1.0. Thus
at any point in time, we either have h2(t) =−1 and h3(t) = 0,
or h2(t) = 0 and h3(t) =−1 as the net flow at sink nodes 2 and
3. We integrate the dynamics for conductances (C12,C13,C23)
according to Eq. (6). We record the distribution of C23 values
and plot histograms in Fig. 5.

For fluctuation time scale T = 1.0 (upper row of panels in
Fig. 5), the same distributions are obtained regardless of cho-
sen initial conditions. At γ = 0.76, in the subcritical regime
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αSN

0.5 1
α

0.2

0.4

0.6

0.8

C12, C23

C23

C12

αTC

1

3
1 2

α

1

3

1

C12, C23

1 2
α

0.5

1.0

1.5

C12, C23

αSN α

1
α

2.5

3.0

3.5

4.0

E

αSN αE

1 1.05
α

3.25

3.30

3.35

3.40

E

αTC

1

3

1 2

α

2

3

4

E

1 2
α

2.

2.5

3.

3.5

E

FIG. 2. Bifurcation diagrams (top tow) and energy diagrams (bottom row) for the triangular network motif with T ≪ 1. Diagrams are shown
for γ = 0.8 (left) γ = 1 (middle) and γ = 1.11 (right). Tree-like solution branches and associated energy are shown as black curves. Cyclic
solutions for are shown in blue (C12) and red (C23), and associated energy levels in magenta. Solution branches / energies associated with the
stable and unstable (saddle) branches are shown as solid and dashed curves, respectively.

with respect to the saddle-node bifurcation, the configurations
encountered are tree-like with C23 close to zero. For the super-
critical choices γ = 0.80 and γ = 0.85, mostly cyclic configu-
rations are obtained, see Fig. 5)(b,c). In these panels, for com-
parison we demark the value of C23 corresponding to the sta-
ble cyclic equilibrium obtained for the rapid fluctuation limit
(T ≪ 1) with a vertical dashed line. The distribution of C23
peaks remain (relatively) close to this value for both γ = 0.80
and γ = 0.85. For T = 1.0 and all values of γ , the distribution
of C23 is independent of the initial condition.

At shorter fluctuation time scale T = 0.5 and supercritical
γ ∈ {0.80,0.85}, the observed C23 distribution does depend
on the initial condition, see Fig. 5 panels (e) and (f). Us-
ing the initial conditions close to the tree-like solution, we
observe only tree-like configurations with values of C23 con-
centrating towards values close to zero. As an initial condi-
tion sufficiently far from the tree-like configuration we use
(C12,C13,C23) = (1,1,1) and observe mostly tree-like config-
urations.

Figure 6 shows an example of the conductances evolving
under slow sink fluctuations. Notice that when sink s is active
during a given time interval, the direct conductance C1s from
source node 1 to active sink s is strengthening, while the other
two conductances are exponentially decreasing. In Fig. 6, this
is seen for time interval [62.0,69.0] where sink s = 3 is con-
stantly active. After switching to sink s = 2, both C12 and C23
increase rapidly. The increase of C23 is due to large value of
C13 causing a low pressure difference between source 1 and
sink 3 at this time. This makes the direct connection via C12
and the indirect connection via sink 3 involving C23 almost

equally cost-efficient in establishing flow from source 1 to cur-
rent sink 2. The mechanism explains the broad fluctuations in
C23 at T ≫ 1. The cross-conductance intermittently assumes
values close to zero without being drawn into the equilibrium
at C23 = 0.

Note that considerations using the energy function are only
(strictly) valid for the deterministic limit (or T ≪ 1); in the
case of finite time fluctuations, the energy function is no
longer a Lyapunov function for the system.

IV. CONCLUSIONS AND DISCUSSION

The model by Hu and Cai describes a vascular network
with adaptive conductances at two levels, namely (i) an en-
ergy landscape established on the space of conductance val-
ues, with the energy function E being the maintenance cost
plus the power needed to sustain the pipe flow, summed over
all vessel segments; and (ii) a system of coupled differential
equations describing the time evolution of the conductances.
Levels (i) and (ii) are linked through the fact that the conduc-
tances’ evolution is chosen such as to never increase the value
of the energy function E. Thus, each critical point of E is a
fixed point of the dynamics. In particular, each local minimum
of E is a stable fixed point (Fig. 3).

The model shows multistability already for the system of
three nodes with one source and two sink nodes. The energy
function E is a means of discerning the stable solutions. This
establishes another critical curve in parameter space where a
switch in ground state occurs: the two stable solutions, tree-
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FIG. 3. Phase portraits for the triangular network motif with (T ≪ 1) are shown in the top row (panels a)-c)), with parameter values α = 1
and γ specified in the panels. C12-nullclines and C23 nullclines are shown as blue and orange curves, respectively. Tree-like (Λ) and cyclic (∆)
equilibria are highlighted as black and magenta circles, respectively. The lower row (panels d)-f)) show the energy consumption E along the
C12-nullcline as a function of C23. The dotted horizontal line indicates the value of E at the local minimum corresponding to the stable cyclic
equilibrium solution.
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FIG. 4. Energies of stable equilibria in dependence of the cost exponent γ in a network with 1 source (node 1) and 8 sinks, shown in the upper
right corner. Fluctuation amplitude is set to α = 1.0. For each value of γ where a stable cyclic equilibrium exists, we plot the energy difference
E −Etree between cyclic solution and tree solution. The tree solution (dashed horizontal line) is the one without any of the cross-edges {2,3},
{4,5}, {6,7}, {8,9}.
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for the system with 1 source and 2 sinks. The upper row of panels (a-c) have fluctuation time scale T = 1.0, the lower row of panels (d-f) have
T = 0.5. In each panel, histograms are drawn for the dynamics with initial condition (C12,C13,C23) = (1,1,1) (open magenta bars), and for
initial condition C12 = C13 = 0.51/(1+γ) and C23 = 10−6 (solid black bars). The latter initial condition corresponds to the tree-like solution
(12) perturbed by adding 10−6 to the C23 component. Dashed vertical lines indicate the C23 value in the stable cyclic solution, see also Fig. 3
panels b) and c). Euler integration is performed with a time step ∆t = 10−4 until time t reaches 105. We have verified that histograms remain
unchanged (up to sampling error) when varying random number sequences for the sink fluctuations.
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FIG. 6. Example of conductances’ time evolution under slow fluctu-
ations in the 3-node system with source node 1 and sink nodes {2,3}.
The thick curve indicates which one of the two sinks s ∈ {2,3} is ac-
tive at any given time t. The evolution of conductances C23 (dashed
black), C12 (solid green) and C13 (solid blue) are show. Parameter
values are γ = 0.8 and α = 1.0.

like and cyclic, exchange their ranking in terms of energy and
thus their thermodynamic stability. This phenomenon is illus-
trated in Fig. 4 for an example network with 1 source and 8

sinks.

The presence of multistability brings up the question, which
solution is approached by the dynamics. Specifically, is the
energetically lower solution always preferred? We made this
question precise by studying the effect of stochastic sink fluc-
tuations, occurring on a time scale of order T compared to
the time scale of the conductance dynamics which is of or-
der 1. These fluctuations were averaged over when they were
assumed to occur on a faster time scale compared to the dy-
namics of the conductances (i.e., T ≪ 1), resulting in the de-
terministic dynamics given by Eqs. (10) and (11) (see results
in Figs. 1-3 and 7). However, when the associated time scale
separation is relaxed, stochasticity is introduced in the dynam-
ics (Fig. 5). The main result of the analysis is that the system
exhibits mostly cyclic configurations even when the tree-like
solution is energetically favourable in the deterministic limit
for sufficiently large fluctuation strength, α .

A question related to multistability is thus how large the
basin of attraction is for the tree-like and cyclic solutions,
respectively. The likelihood that the vascular network re-
mains in the most energetically preferable state depends on the
state’s stability against significant perturbations. While lin-
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FIG. 7. Saddle-node bifurcation and energy landscape in an empirical vascular network. (a) Bifurcation diagram for cyclic (C696,702 > 0) fixed
point solutions in dependence of cost exponent γ . (b,c,d) Energy plotted along curves through configuration space. Each curve contains the
stable fixed point and the saddle-point seen in panel (a), showing as a local minimum / maximum respectively. For each γ ∈ {0.75,0.70,0.65},
the points on the curve fulfill dCkl/dt = 0 for all {k, l} ̸= {696,702}, whereas C696,702 chosen in the range [3× 10−7,3× 10−3] is used to
parameterize the curve. The network is from the data set by Blinder et al.33 labeled 012208 with 826 nodes and 855 edges. Fluctuations have
α = 1.0, and are to be understood in the rapid limit, T ≪ 1. In this setting, the stable solutions with positive conductivity on the vessel between
nodes 696 and 702 are the first ones to disappear by a saddle-node bifurcation as γ is lowered from 1.0 towards zero, see also the preliminary
work in 11.

ear stability analysis gives local information of stability, basin
stability provides a more global view on this issue34. It is not
straight forward to define a trapping region (such as separa-
trices), especially while incorporating varying values for the
system parameters. Therefore, we did not attempt the to de-
vise a measure for the basin volume; however, inspection of
the phase portraits in Fig. 3 panels b) and c) displays that the
phase space is subdivided into regions of attraction by the sep-
aratrices emanating from the saddle point S, i.e., the stable and
unstable manifolds. Thus, we may estimate that basin size35

for the tree-like solution scales with the distance between the
stable fixed point Λ and S; and that basin size for the cyclic
scales like the distance between S and the stable node ∆. Note
that all three fixed points more or less lie on a straight line.
Thus, qualitatively we can see that the basin size for cycles
∆ is comparatively much larger than the one for Λ, which at
least for the shown parameters explains the higher likelihood
to reside near the cyclic attractor when terminal fluctuations
are sufficiently slow.

Shifting focus to larger systems, we have also analyzed the
energy landscapes and dynamics on a large system based the

vascular networks empirically obtained by Blinder et al.33.
Previous analysis by the authors11, considering the rapid fluc-
tuation limit T ≪ 1, had shown that a saddle-node bifurcation
creates a pair of fixed point solutions with non-zero conduc-
tance for each cross-edge in a large network, analogous to the
case of the triangular motif. Figure 7(a) shows an example of
such a bifurcation in an empirical network33 for α = 1 with
T ≪ 1. Similar to the energy function of the small system
evaluated along the nullclines in Figure 3, panels (b), (c), and
(d) of Figure 7 show slices through the energy landscape for
the large network. The main observation from the three-node
motif is reproduced in the large network: Close to the bifur-
cation, the tree-like solution lies energetically lower than the
cyclic solution; however, this ranking switches when tuning
the parameter γ farther away from the transition. We con-
jecture that the saddle-node bifurcations and the additional
change of behaviour in terms of the energy minimality of so-
lutions are generic features of the model on all networks in-
volving cycles.

For future research, it could be interesting to also consider
other types of time-dependent networks. In particular, how are
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energy configurations altered in co-evolving networks where
edges are dynamically created/deleted8,21, such as in growing
supply networks36?
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