
ar
X

iv
:2

40
7.

05
04

8v
2 

 [
nl

in
.C

G
] 

 2
9 

O
ct

 2
02

4

October 30, 2024 0:36 WSPC/INSTRUCTION FILE main

Cellular Automata as a Network Topology

Temitayo Adefemi

University of Edinburgh

T.M.Adefemi@sms.ed.ac.uk

Cellular automata represent physical systems where both space and time are discrete,

and the associated physical quantities assume a limited set of values. While previous

research has applied cellular automata in modeling chemical, biological, and physical

systems, its potential for modeling topological systems, specifically network topologies,

remains underexplored. This paper investigates the use of cellular automata to model

decentralized network topologies, which could enhance load balancing, fault tolerance,

scalability, and the propagation and dissemination of information in distributed systems.

Keywords: Topology, Cellular Automata, Networking

1. Introduction

Cellular automata (CA) are dynamic systems characterized by discrete space and

time. Each cell in a regular lattice updates synchronously based on a deterministic

rule. All cells follow the same rule and have a finite number of states.

Since their inception in the 1940s by John von Neumann and Stanislav Ulam, cel-

lular automata have been reinvented multiple times under various names. Stephen

Wolfram’s extensive research has further highlighted the importance of CA in mod-

eling complex systems and self-replicating mechanisms. A notable feature of cellular

automata is their universality, meaning they can simulate any computation achiev-

able by a computer algorithm, given the appropriate initial configuration and rules.

One prominent example is Conway’s Game of Life, a universal cellular automa-

ton capable of performing computations analogous to conventional computer algo-

rithms. This example underscores CA’s profound capabilities, which remain largely

untapped in contemporary research.

The concept of cellular automata originates from von Neumann’s idea of us-

ing computers to represent cells in the automaton. His initial design for a self-

reproducing cellular automaton required each cell to support 29 states, and the

array needed approximately 200,000 cells. However, subsequent research has ex-

panded beyond von Neumann’s original framework.

This paper reaffirms concepts that build on previous research. It applies cel-

lular automata to model decentralized fault tolerance and resilience in network

topologies. These models can enhance load balancing, information dissemination,

propagation, and scalability in distributed systems.

1

http://arxiv.org/abs/2407.05048v2


October 30, 2024 0:36 WSPC/INSTRUCTION FILE main

2

We will illustrate these concepts by analogizing each system component to a cell

within a lattice, following Von Neumann’s foundational idea, where cell interactions

mimic network dynamics. We will identify algorithms that enable information to

spread through each systematic cell in the lattice and explore methodologies for

paralleling the lattice. This allows one grid in the lattice to remain functional while

others stay idle, which is beneficial for load balancing and parallelized networking.

Additionally, we will introduce data scaling attributes within the lattice and other

practical tools used in creating network topologies.

2. Related Work

The application of cellular automata (CA) in network topologies, load balancing,

information dissemination, and scalability in distributed systems has been limited.

Beerbohm et al. (1994) introduced a load-balancing strategy for distributed and

parallel systems using cellular automaton systems to propose process migrations

based on node load states, achieving significant performance improvements and

scalability (Beerbohm et al., 1994). Similarly, Hofestädt et al. (1996) developed a

cellular automaton system for simulating load balancing, demonstrating significant

speedup and applicability in workstation clusters (Hofestädt et al., 1996). Shen and

Zhu (2012) proposed the Cellular Automata Programming Algorithm (CAPA) for

dynamic load balancing in large heterogeneous systems, showing excellent perfor-

mance due to the simultaneity and concurrency of CA (Shen & Zhu, 2012). In in-

formation dissemination, Luo (2022) analyzed data modeling for micro-propagation

using CA, establishing models for network information dissemination coupled with

data assimilation algorithms (Luo, 2022). Huang et al. (2019) proposed a CA-based

propagation control mechanism to inhibit and monitor emergent-event contagion in

sensor networks, enhancing invulnerability and scalability (Huang et al., 2019). In

parallel computing and scalability, Mazzariol et al. (2000) presented an algorithm

for dynamically remapping cells to balance load in parallel cellular automata appli-

cations, showing improved performance in load-unbalanced scenarios (Mazzariol et

al., 2000), while Giordano et al. (2021) proposed an optimal workload assignment

algorithm for parallel execution of CA, demonstrating significant performance im-

provements and reduction in execution times (Giordano et al., 2021). Furthermore,

Souihi and Mellouk (2011) developed a knowledge dissemination mechanism for au-

tonomic networks using CA to maintain knowledge planes, improving load balanc-

ing and scalability (Souihi & Mellouk, 2011), and Cannataro et al. (1995) described

CAMEL, a scalable CA environment for system modeling on parallel computers,

achieving high performance in urban simulation applications (Cannataro et al.,

1995). These studies highlight the versatility and effectiveness of cellular automata

in addressing various challenges in distributed systems, from load balancing and

information dissemination to scalability and fault tolerance.



October 30, 2024 0:36 WSPC/INSTRUCTION FILE main

3

3. Cellular Automaton Applications in Network Topologies

3.1. Resillience & Healing Mechanisms

Network topologies are crucial for maintaining the robustness and reliability of

communication systems. They are designed to be resilient, capable of managing

failures, and able to prevent the escalation of errors. One innovative approach to

enhancing the resilience of these systems is the use of cellular automata for network

topology design.

Cellular automata are dynamic, discrete systems characterized by a grid of cells,

each in one of a finite number of states, such as on or off. The state of each cell

changes over time according to a set of rules that depend on the states of neigh-

boring cells. This method is intriguing for network topology because each cell in

the automaton can be conceptualized as a node in the network, such as a router or

switch.

The essential advantage of using cellular automata in network topologies lies in

their inherent reversibility. In many cellular automata systems, reversing any action

or update is possible—effectively ”undoing” the last movement or change. This

feature can be precious in network management, particularly in error correction

and system recovery scenarios. For example, if a node fails or a data transmission

error occurs, the system can revert to a previous state before the failure, thereby

providing a self-healing capability.

Furthermore, the local interaction rules in cellular automata can lead to complex

global behaviors, making these systems capable of dynamically adapting to changes

and failures. This adaptability can be tailored to mimic the behavior of network

protocols that handle data transmission and error management, offering a more

flexible and robust approach to designing network topologies.

Incorporating cellular automata into network design could lead to new types

of network architectures that are more resilient to disruptions and capable of self-

repair, significantly enhancing the reliability of data transmission networks.

Cellular automata (CA) provide a compelling model for decentralized computing

systems due to their inherent design and operational characteristics. In a cellular

automaton, each cell in the grid operates based on a set of rules that depend only on

the state of its neighboring cells. This localized and independent decision-making

process ensures the system is inherently decentralized, with no single cell acting

as a central control point. This structure significantly enhances the resilience and

fault tolerance of the network.

The decentralized nature of cellular automata means there is no single point of

failure. In conventional centralized systems, the failure of a central unit can cripple

the entire network. However, in a CA-based system, each cell functions indepen-

dently. If one or more cells fail, the impact is generally localized, and neighboring

cells can continue to operate normally, potentially adapting their behavior accord-

ing to the local rules to compensate for the failure. This makes the network much



October 30, 2024 0:36 WSPC/INSTRUCTION FILE main

4

more robust and resistant to failures.

Additionally, the ability of each cell to interact independently allows for greater

adaptability and flexibility. In dynamic environments where network conditions or

operational requirements change frequently, each cell’s decentralized and indepen-

dent operation enables the network to adapt more efficiently. Each cell can modify

its behavior based on its immediate surroundings without awaiting instructions from

a central authority, allowing the network to respond to changes in the environment

quickly.

This model of operation, inspired by cellular automata, could be applied to

various distributed computing applications, such as distributed data storage, peer-

to-peer networks, and decentralized digital ledgers like blockchain. These applica-

tions can benefit significantly from the resilient, adaptable, and failure-resistant

characteristics the cellular automaton approach provides.

3.2. Load Balancing Mechanisms

. Load balancing across distributed systems can be innovatively approached using a

cellular automaton lattice. By imagining each cell within the automaton as a sepa-

rate computer, this model allows for the decentralized and autonomous distribution

of computational tasks. Simple yet effective rules can be employed to manage how

computation is spread across this lattice, mimicking the structure and behavior of

cellular automata.

For instance, cellular automaton rules could be designed to replicate various

traditional load-balancing algorithms. A round-robin scheduling algorithm could

be emulated by cyclically assigning tasks to each ’cell’ or computer in a fixed order,

ensuring that every cell handles an equal amount of load over time. Alternatively,

a zigzag pattern could be utilized to distribute tasks in a way that dynamically

adjusts based on the workload intensity at different nodes, enhancing efficiency and

reducing bottlenecks.

Moreover, other patterns, such as weighted distribution or dynamic feedback-

based approaches, could also be implemented. These methods would allow the sys-

tem to adapt to changing load conditions in real-time, further optimizing compu-

tational efficiency and resource utilization across the network.

By leveraging the inherent properties of cellular automata—such as local in-

teractions and simple rule-based evolution—this approach can lead to a robust,

scalable, and flexible load-balancing strategy well-suited for complex distributed

systems.

3.2.1. Rules to emulate load balancing in a Cellular Automaton (CA)

Neighbor activation rule In a cellular automaton modeled as a lattice, compu-

tation distribution can be cyclically managed across a grid of nodes, starting from

an initial position and moving to the nearest unactivated neighbor sequentially. The

process is defined mathematically as follows:



October 30, 2024 0:36 WSPC/INSTRUCTION FILE main

5

Definitions:

• Let Ci,j(t) represent the state of the node at position (i, j) at time t, where

Ci,j(t) = 1 indicates active, and Ci,j(t) = 0 indicates inactive.

• The lattice dimensions are M ×N .

Initial Condition:

C0,0(0) = 1, Ci,j(0) = 0 for all (i, j) 6= (0, 0) (1)

Activation Rule:

Ck,l(t) =

{

1 if (k, l) is the closest unactivated neighbor of (i, j) where Ci,j(t− 1) = 1

Ck,l(t− 1) otherwise

(2)

Restart and Cyclic Behavior:

C0,0(t+ 1) = 1 if
∑

i,j

Ci,j(t) = M ×N (3)

Ci,j(t+ 1) = 0 for all (i, j) 6= (0, 0) if the above condition is met (4)

Boundary feedback rule A boundary feedback rule can be effectively used to

model network topologies within a cellular automaton and to emulate a round-robin

distribution of computation. This rule can be implemented in a wrap-around format,

where the computation, upon reaching the edge of the automaton, wraps around

to the next row. This mechanism ensures that computation is smoothly distributed

across the entire grid without interruption. Once the computation reaches the final

cell of the automaton, it wraps back to the first cell, following a cyclic pattern similar

to that used in the neighbor activation rule. This method ensures a continuous

and evenly distributed computational load across the lattice, facilitating efficient

processing in scenarios that mimic real-world network operations.

Definitions:

• Let Ci,j(t) represent the state of the node at position (i, j) at time t, where

Ci,j(t) = 1 indicates active, and Ci,j(t) = 0 indicates inactive.

• The lattice dimensions are M ×N .

Initial Condition:

C0,0(0) = 1, Ci,j(0) = 0 for all (i, j) 6= (0, 0) (5)

Boundary Feedback Activation Rule:

Ck,l(t+ 1) =

{

1 if (k, l) follows (i, j) cyclically and Ci,j(t) = 1

0 otherwise
(6)



October 30, 2024 0:36 WSPC/INSTRUCTION FILE main

6

• Here, (k, l) is defined such that when (i, j) = (m,n) reaches the boundary

(either m = M or n = N), it wraps around to the beginning of the next

row or the start of the lattice.

Restart and Cyclic Behavior:

C0,0(t+ 1) = 1 if
∑

i,j

Ci,j(t) = M ×N (7)

Ci,j(t+ 1) = 0 for all (i, j) 6= (0, 0) if the above condition is met (8)

Shift register rule A shift register rule can also be used to also model load

balancing mechanisms, each cell in the grid has a state, which can change over time

according to certain rules based on the states of its neighboring cells. To implement

a round-robin system using a CA model, you would define a set of states—such

as ”active” and ”inactive”—to represent the status of each cell at any given time.

The round-robin approach can be modeled by cyclically shifting the ”active” state

among the cells in a predefined sequence, mimicking the scheduling technique used

in computing where each process is given a fixed time slot, one after the other, in

a cyclic order.

Definitions:

• Let Ci,j(t) represent the state of the cell at position (i, j) at time t, where

Ci,j(t) = 1 indicates the cell is active, and Ci,j(t) = 0 indicates the cell is

inactive.

• The grid dimensions are M ×N , representing a matrix of cells.

Initial Condition:

C0,0(0) = 1, Ci,j(0) = 0 for all (i, j) 6= (0, 0) (9)

Shift Register Transition Rule:

Ci,j(t+ 1) = Ci,(j−1) mod N (t) for all i and j (10)

This rule applies the shift register logic, cycling the active state through each column

in a row and wrapping around the row boundaries.

Boundary Feedback Activation Rule:

Ci,0(t+ 1) = C(i−1) mod M,N−1(t) for all i (11)

This part of the rule ensures that the activation wraps around to the beginning of

the next row when it reaches the end of the current row.

Restart and Cyclic Behavior:

C0,0(t+ 1) = 1 if
∑

i,j

Ci,j(t) = M ×N (12)



October 30, 2024 0:36 WSPC/INSTRUCTION FILE main

7

Ci,j(t+ 1) = 0 for all (i, j) 6= (0, 0) if the above condition is met (13)

This part governs the restart mechanism, ensuring that once all cells have been

activated in turn, the entire grid resets to start the round-robin process anew.

These simple rules can be manipulated to not only emulate round robin strate-

gies but to also create multiple formats of load balancing algorithms. Neighbor

activation rule can effectively be changed to zigzag neighbour activation rule in

which we activate the neighbor in a zigzag pattern, this can also be implemented

using the other rules such as shift register rule

3.3. Information Propagation & Dissemination

In cellular automata, information spreads across the lattice through various rules

that utilize the model’s inherent characteristics. A critical method involves apply-

ing load balancing rules, which help distribute computational tasks and data evenly

across the network. This prevents any single node from becoming overloaded, en-

hancing efficiency and reducing latency. Specifically, the neighbor activation rule

allows for efficient information propagation. This rule is beneficial for performing

heartbeat checks within a network topology. For example, when a byte of data is sent

to a neighboring computer in the lattice, a response from that computer confirms

its active status. Without a response, mechanisms could be implemented to restart

the system. This demonstrates how cellular automata can effectively manage and

optimize network topologies, facilitating reliable and efficient information transfer

between systems in the lattice. Here are rules which could be used to illustrate the

methodology.

Majority Rule One effective rule for information dissemination is the majority

rule, where a cell adopts the state that is most common among its neighbors.

This rule helps in reaching consensus and propagating dominant states across the

automaton.

Rule 110 and Universal Computation Rule 110 is an elementary cellular au-

tomaton rule known for its ability to perform universal computation, meaning it

can simulate any Turing machine. This rule is notable for its complex behavior and

ability to propagate information effectively.

Genetic Algorithms for Rule Optimization Genetic algorithms have been

used to evolve cellular automata rules for specific tasks, such as the majority classi-

fication problem. These algorithms optimize the rules to improve the dissemination

and integration of information across the cellular space.

Definitions:

• Let Ci,j(t) represent the state of the cell at position (i, j) at time t, where



October 30, 2024 0:36 WSPC/INSTRUCTION FILE main

8

Ci,j(t) = 1 indicates the cell is active, and Ci,j(t) = 0 indicates it is inactive.

• The lattice dimensions are M ×N .

Initial Condition:

C0,0(0) = 1, Ci,j(0) = 0 for all (i, j) 6= (0, 0) (14)

Activation Rule (Majority Rule):

Ci,j(t+ 1) =

{

1 if the majority of the neighbors of (i, j) at time t are 1

0 otherwise
(15)

Rule 110:

Ci,j(t+ 1) = Ci−1,j(t)⊕ (Ci,j(t) ∨ Ci+1,j(t)) (16)

Here, ⊕ represents the XOR operation, and ∨ represents the OR operation.

Genetic Algorithms for Rule Optimization: Optimization using genetic

algorithms for tasks like the majority classification problem involves iteratively

adjusting the rules based on fitness, which measures how well the rules achieve

desired information propagation.

Restart and Cyclic Behavior:

C0,0(t+ 1) = 1 if
∑

i,j

Ci,j(t) = M ×N (17)

Ci,j(t+ 1) = 0 for all (i, j) 6= (0, 0) if the above condition is met (18)

3.4. Parallelization & Concurrency

A cellular automaton, defined on an N×M lattice, is a practical framework for

implementing parallelization and concurrency in computational environments. This

lattice structure inherently supports simultaneous operations across its multiple

rows and columns. The parallel processing capability is governed by predefined

rules, which dictate the initiation and progression of computations across the lattice.

For instance, one such rule could be simultaneously initiating computation at

the start of each row or column. This approach leverages the discrete nature of

the cellular automaton, where each cell’s state is updated based on its neighbors,

allowing for independent updates within each row or column. As computations

proceed, they can advance concurrently, effectively distributing the processing load

and reducing overall computation time.

Once the computation reaches the end of a row or column, it can be designed to

either wrap around to the beginning of the same row or column or terminate, de-

pending on the model’s specific requirements. This flexibility in defining boundary

conditions and computational rules enhances the adaptability of cellular automata



October 30, 2024 0:36 WSPC/INSTRUCTION FILE main

9

in various applications, ranging from simple data processing tasks to complex sim-

ulations of physical systems.

Moreover, the parallelization enabled by cellular automata is not merely limited

to linear advancements across rows or columns. It can also be extended to more

complex patterns of computational progression, such as diagonal processing or ex-

pansion in multiple directions. It can benefit simulations requiring more dynamic

interaction between cells across the lattice.

In summary, a cellular automaton in an N×M lattice format offers a robust

method for achieving efficient parallel computations. This method optimizes com-

putational speed and efficiency and provides a versatile tool for exploring various

scientific and engineering problems where concurrency and parallel processing are

crucial.

4. Conclusion

The paper explores the application of cellular automata (CA) in decentralized net-

work topologies, highlighting their potential to enhance resilience, load balancing,

and information dissemination in distributed systems. Cellular automata’s inher-

ent properties, such as localized interaction, reversibility, and decentralized control,

make them suitable for designing robust and adaptable network architectures. These

features allow for efficient load balancing and fault tolerance, as well as dynamic

adaptation to changing conditions, which are crucial for maintaining the reliability

and efficiency of communication networks. The study reaffirms the versatility and

effectiveness of CA in addressing various challenges in distributed systems, from

load balancing and information dissemination to scalability and fault tolerance.

References

1. M. Beerbohm, J. Dongarra, and D. Walker, ”A load balancing strategy for distributed
and parallel systems using cellular automaton systems,” Journal of Parallel and Dis-

tributed Computing, vol. 22, no. 2, pp. 185-197, 1994.
2. M. Cannataro, A. Congiusta, and D. Talia, ”CAMEL: A scalable cellular automata

environment for modeling on parallel computers,” Parallel Computing, vol. 21, no. 5,
pp. 729-748, 1995.

3. S. Giordano, A. Pascale, and A. Ricci, ”Optimal workload assignment for parallel exe-
cution of cellular automata,” Concurrency and Computation: Practice and Experience,
vol. 33, no. 6, e5660, 2021.

4. R. Hofestädt and D. Mentrup, ”A cellular automaton system for simulating load bal-
ancing in workstation clusters,” Future Generation Computer Systems, vol. 12, no. 4,
pp. 271-278, 1996.

5. L. Huang, L. Yu, and S. Jiang, ”A cellular automata-based propagation control mech-
anism in sensor networks,” Sensors, vol. 19, no. 13, 2876, 2019.

6. W. Luo, ”Data modeling for micro-propagation using cellular automata,” Information

Sciences, vol. 582, pp. 66-82, 2022.
7. F. Mazzariol and F. Borsani, ”An algorithm for dynamically remapping cells to balance

load in parallel cellular automata applications,” Journal of Supercomputing, vol. 18,
no. 2, pp. 109-124, 2000.



October 30, 2024 0:36 WSPC/INSTRUCTION FILE main

10

8. X. Shen and Y. Zhu, ”The Cellular Automata Programming Algorithm (CAPA) for
dynamic load balancing in large heterogeneous systems,” Parallel Computing, vol. 38,
no. 1-2, pp. 33-49, 2012.

9. S. Souihi and A. Mellouk, ”Knowledge dissemination in autonomic networks using
cellular automata,” Journal of Network and Computer Applications, vol. 34, no. 5, pp.
1497-1505, 2011.


	Introduction
	Related Work
	Cellular Automaton Applications in Network Topologies
	Resillience & Healing Mechanisms
	Load Balancing Mechanisms
	Rules to emulate load balancing in a Cellular Automaton (CA)

	Information Propagation & Dissemination
	Parallelization & Concurrency

	Conclusion

