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We study the fractional three-dimensional (3D) nonlinear Schrödinger equation with exponential
saturating nonlinearity. In the case of the Lévy index α = 1.9, this equation can be considered as
a model equation to describe strong Langmuir plasma turbulence. The modulation instability of a
plane wave is studied, the regions of instability depending on the Lévy index, and the corresponding
instability growth rates are determined. Numerical solutions in the form of 3D fundamental soliton
(ground state) are obtained for different values of the Lévy index. It was shown that in a certain
range of soliton parameters it is stable even in the presence of a sufficiently strong initial random
disturbance, and the self-cleaning of the soliton from such initial noise was demonstrated.
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I. INTRODUCTION

The concept of a fractional derivative ∂α/∂xα is a gen-
eralization of the ordinary derivative ∂n/∂xn to the case
of a real number α, and has a rather long history (more
than three hundred years) [1–5] that began back in 1695
in the correspondence of Leibnitz with L’Hopital, where
the case of α = 1/2 was considered. Physical applica-
tions of the fractional derivative are very diverse and in-
clude such areas and phenomena as fractional quantum
mechanics, fractional and strange kinetics, fluid mechan-
ics, optics, electromagnetics, diffusion-reaction processes,
anomalous transport, fractals, and a number of others [6–
13]. The concept of fractional quantum mechanics, which
stimulated many works on physical applications of the
fractional derivative, was formulated by Laskin in [14–
16], and the fractional quantum mechanical Schrödinger
equation was introduced by generalizing the Feynman
path integral over Lévy trajectories corresponding ran-
dom Lévy flights in the theory of Brownian motion. In
this case, the number α (Lévy index) characterizing the
fractionality of the Laplacian in the Schrödinger equation
takes values in the range 0 < α ≤ 2.
The fractional Laplacian (with the Riesz fractional

derivative) is defined as

(−∆)α/2f(x) = F−1(|k|αFf)

=
1

(2π)D

∫

|k|αf̂(k)eik·xdDk, (1)

where f̂ = Ff is the Fourier transform of f , and D is
the spatial dimension (D = 1, 2, 3). Another definition
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of the fractional Laplacian (with the Caputo fractional
derivative) often used in applications is

(−∆)α/2f(x) =
2α−1αΓ((D + α)/2)√

πDΓ(1− α/2)

×P.V.

∫

f(x)− f(x′)

|x− x′|D+α
dDx′, for 0 < α ≤ 2, (2)

where P. V. stands for the Cauchy principal value. Both
of these definitions are equivalent in Schwartz space [2,
17]. Note that there is also a fairly large number of other
definitions of the fractional derivative, both classical and
new ones introduced quite recently [18]. In this paper,
for the fractional Laplacian we use Eq. (1).
One of the most physically significant models with frac-

tional derivatives is the fractional nonlinear Schrödinger
equation (NLS). It generalizes the well-known NLS equa-
tion to the case of a fractional Laplacian. Physical appli-
cations of the fractional NLS equation in most cases con-
cern nonlinear optics (see, e.g., reviews [10, 11] and ref-
erences therein). The fractional Davey-Stewartson equa-
tions (one of the generalizations of the two-dimensional
NLS equation) with the Lévy index α = 3/4 was obtained
in [19] for nonlinear surface water waves.
Numerical solutions of the one-dimensional (1D) frac-

tional NLS equation with cubic nonlinearity in the form
of a fundamental soliton (ground state) for different Lévy
indices 0 < α < 2 were found in [20]. There, the evolu-
tion of an initial profile different from the soliton one
was also studied, and both focusing and defocusing non-
linearity were considered. In the focusing case, at α = 1
there is a collapse in the so-called critical regime (nega-
tive Hamiltonian and the 1D norm exceeds the soliton 1D
norm), and for 0 < α < 1 in the supercritical regime (a
sufficiently large 1D norm). The 1D fractional NLS equa-
tion with cubic nonlinearity was also studied in detail in
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[21]. In particular, analytical soliton solutions were ob-
tained using a variational approach for different values of
α. It is shown that solitons are stable for 1 < α < 2, but
for α = 1 the soliton collapses. Various problems within
the framework of the fractional NLS equation (modula-
tion instability, the presence of a trapping potential, two-
dimensional structures, including vortex solitons, etc.)
were considered in [10, 11, 22–24]. The possible applica-
bility of the inverse scattering transfrom method for the
1D fractional NLS equation was discussed in [25].

In connection with the problem of Langmuir plasma
turbulence [26–28], in [29] the three-dimensional (3D)
stochastic NLS equation with external noise was studied
using quantum field theory approach. In particular, using
the quantum field renormalization group method, it was
shown that in this case the usual linear dispersion in the
NLS equation ω = k2 (assuming ψ ∼ exp(ik ·x− iωt)) is
replaced by ω = k2−γa , where γa is the so-called anoma-
lous dimension known from quantum field theory, and
γa = 0.0804. The effective NLS equation with such a
corrected dispersion no longer contains a stochastic term.
This equation appears to be the only example of a frac-
tional three-dimensional NLS equation that has physical
applications. As is known, an arbitrary initial perturba-
tion with a negative Hamiltonian or formal stationary so-
lutions of the conventional three-dimensional NLS equa-
tion with cubic nonlinearity collapse (blow-up), that is,
become singular in a finite time [30]. The same is true (as
shown by the 1D examples given above) for the fractional
three-dimensional NLS equation with α < 2. In reality,
the formation of a singularity is prevented by dissipation
or higher-order nonlinearities. For nonlinear Langmuir
waves, the collapse can be arrested for the exponential
saturable nonlinearity corresponding to the Boltzmann
distribution of plasma particles [31, 32].

In this paper, we study the three-dimensional frac-
tional NLS equation with exponential saturating nonlin-
earity and numerically obtain soliton solutions (ground
states) for different values of the Lévy index. We pay
special attention to the case of the Levy index α =
2− γa ∼ 1.9 corresponding to an important physical ap-
plication in the problem of Langmuir plasma turbulence.
By direct numerical simulation, we show the stability of
solitons in a certain range of parameters satisfying the
Vakhitov-Kolokolov criterion. For the first time, the phe-
nomenon of self-cleaning of a stable soliton from a suffi-
ciently strong initial random disturbance is demonstrated
for the fractional NLS equation.

The paper is organized as follows. The basic model
equation is presented in Sec. II. In Sec. III, we consider
modulation instability of a plane wave and find the cor-
responding instability thresholds and instability growth
rates. Sec. IV, soliton solutions are found, and a nu-
merical analysis of the stability of solitons is performed.
Finally, Sec. V concludes the paper.

II. MODEL EQUATION

We consider the fractional nonlinear Schrödinger equa-
tion with exponential saturable nonlinearity in spatial
dimension D = 3,

i
∂ψ

∂t
− (−∆)α/2ψ +

[

1− exp(−|ψ|2)
]

ψ = 0. (3)

As noted in the Introduction, the fractional Laplacian
with α = 2 − γa ∼ 1.9 in Eq. (3) corresponds to the
corrected linear dispersion law (in fact, a renormalized
propagator) of Langmuir waves for the stochastic NLS
equation with cubic nonlinearity in the theory of Lang-
muir plasma wave turbulence. On the other hand, the
exponential nonlinearity in the three-dimensional NLS
equation with the usual Laplacian (α = 2) prevents the
phenomenon of wave collapse and can results in the ex-
istence of stable nonlinear coherent structures such as
solitons and vortex solitons (they can be treated as ”el-
ementary bricks” of strong Langmuir turbulence). In
particular, Eq. (3) with α = 1.9 can be considered as
a model equation for Langmuir turbulence without the
phenomenon of catastrophic collapse.

Equation (3) conserves the 3D norm

N =

∫

|ψ|2d3x, (4)

and Hamiltonian

H =

∫

{

Re
[

ψ∗(−∆)α/2ψ
]

− |ψ|2 − exp(−|ψ|2) + 1
}

d3x,

(5)
and can be written in the hamiltonian form

i
∂ψ

∂t
=
δH

δψ∗
. (6)

The evolution of an arbitrary initial disturbance within
the framework of Eq. (3) occurs under the influence of
two competing factors - dispersion and nonlinearity. Dis-
persion causes the wave packet to spread and, in this
sense, counteracts collapse. However, as α decreases,
the dispersion becomes increasingly unable to arrest the
collapse (blow-up). For example, at α = 1, even one-
dimensional solitons of the fractional NLS equation with
cubic nonlinearity are unstable and collapse. At suffi-
ciently large amplitudes |ψ| ≫ 1, the nonlinear term in
Eq. (3) effectively becomes linear. This is an example
of the so-called saturable nonlinearity (not necessarily
exponential), which is often encountered, for example,
in nonlinear optics [33]. Saturable nonlinearities cause
collapse arrest (or beam self-focusing in two-dimensional
models) and can lead to the existence of stable coherent
structures.
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III. MODULATIONAL INSTABILITY

Equation (3) has an exact solution in the form of a
monochromatic plane wave

ψ = |ψ0| exp(ik0 · x− iω0t) (7)

with a frequency depending on the amplitude ψ0,

ω0 = kα0 + exp(−|ψ0|2)− 1. (8)

Consider the stability of such a plane wave. The per-
turbed plane wave solution has the form

ψ = (|ψ0|+ δψ) exp(ik0 · x− iω0t), (9)

where

δψ = ψ+eik·x−iΩt + ψ−e−ik·x+iΩt, (10)

is a linear modulation with the frequency Ω and the wave
vector k. Linearizing Eq. (3) in δψ, we get the nonlinear
dispersion relation

1−
[

1− exp(−|ψ0|2)
]

[

1

ωk0+k − ωk0
− Ω

+
1

ωk0−k − ωk0
+Ω

]

= 0, (11)

where ωq = |q|α is the linear dispersion relation for Eq.
(3). In the case of short-wave modulations k ≫ k0, and
taking into account that ωk is even function, Eq. (11)
becomes

Ω2 = ωk

{

ωk − 2[1− exp(−|ψ0|2)]
}

. (12)

Equation (12) predicts a purely growing instability (mod-
ulational instability) provided

2[1− exp(−|ψ0|2)] > kα, (13)

that is, when the amplitude threshold is exceeded,

|ψ0| >
√

− ln(1− kα/2). (14)

The instability growth rate γ is given by

γ =
√

2kα[1− exp(−|ψ0|2)]− k2α. (15)

For each fixed value of α, instability occurs only for
wave numbers k exceeding the critical value kcr = 21/α,
and at k → kcr the instability threshold tends to infinity.
The region of instability determined by Eq. (14) on the
plane (k, |ψ0|) is shown in Fig. 1 for different values of α,
namely α = 1.9, α = 1.2 and α = 0.6. The correspond-
ing values of the critical wave number kcr are equal to
k1 = 1.44, k2 = 1.78 and k3 = 3.17, respectively. The
optimal wave number of perturbations, that is, corre-
sponding to the maximum instability growth rate in Eq.
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FIG. 1: Modulational instability region on the plane (|ψ0|, k).
The areas above the corresponding curves correspond to insta-
bility. The numbers above the curves correspond to different
α: 1 - α = 1.9, 2 - α = 1.2, and 3 - α = 0.6. The correspond-
ing critical wave numbers k1 = 1.44, k2 = 1.78, and k3 = 3.17
are indicated.
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FIG. 2: Dependence of the instability growth rate γ on wave
number k for different amplitude values ψ0; (a) α = 1.9; (b)
α = 1.2. The numbers under the curves correspond to dif-
ferent amplitudes: 1 - |ψ0| = 0.1, 2 - |ψ0| = 0.15, and 3 -
|ψ0| = 0.2.

(15) is kopt = [1−exp(−|ψ0|2)]1/α, and the corresponding
instability growth rate is

γm = 1− exp(−2|ψ0|2), (16)

and does not depend on α. Dependence of the instability
growth rate γ on wave number k for different amplitude
values ψ0 in the cases α = 1.9 and α = 1.2 is shown in
Fig. 2.
In the opposite case of short-wave modulations with

k ≪ k0, using

ωk0±k ∼ ωk0
± ∂ωk0

∂k0
· k+

1

2

∂2ωk0

∂k2
0

k2, (17)
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from Eq. (11) we obtain

(Ω−k·vg)
2 =

1

4
(ω′′

k0
)2k4−ω′′

k0
k2[1−exp(−|ψ0|2)], (18)

where

vg =
∂ωk0

∂k0
=
∂(k0 · k0)

α/2

∂k0
= αkα−2

0 k0 (19)

is the group velocity, and ω′′

k0
= α(α − 1)kα−2

0 . If the
amplitude threshold |ψ0| determined by

4[1− exp(−|ψ0|2)] > ω′′

k0
k2, (20)

is exceeded, then Eq. (18) corresponds to convective
instability when growing disturbances are carried away
with the group velocity vg, and the instability growth
rate is given by

γ = 2k
√

ω′′
k0
[1 − exp(−|ψ0|2)− ω′′

k0
k2/4]. (21)

IV. THREE-DIMENSIONAL SOLITON

We look for stationary solutions of Eq. (3) of the form

ψ(r, t) = u(r) exp(iλt), (22)

where λ > 0 is a free parameter, and the function u(r) is
assumed to be real without loss of generality. Then from
Eq. (3) we have

−λu− (−∆)α/2u+
[

1− exp(−u2)
]

u = 0. (23)

An analytical solution of Eq. (23) is impossible, but
in addition, due to the exponential form of nonlinear-
ity and the impossibility of analytical calculation of the
corresponding integrals, the variational approach used
for the fractional NLS equation with cubic nonlinearity
[10, 21, 34], is also apparently inapplicable. Note that
the solutions of the fractional NLS equation (α 6= 2)
with general nonlinearities decay algebraically at infin-
ity as ∼ 1/|x|D+α [35–37], in contrast to the case α = 2,
where the solutions are localized exponentially.
We numerically find localized solutions of Eq. (23) us-

ing the Petviashvili method [38–40]. Periodic boundary
conditions are assumed and, due to the algebraic behav-
ior at infinity, the box length is taken to be sufficiently
large that the solution at the boundary is negligible small.
The advantage of the Petviashvili method is that it is
used in Fourier space (that is, the fractional Laplacian is
introduced in a simple natural way) and, in combination
with the Fast Fourier Transform (FFT), does not require
much computational time even on very high resolution
grids. Note that there is a modification of this method
[41, 42] that uses only physical space and is therefore ap-
plicable to equations containing an explicit dependence
on spatial variables, but in this case the method is slower
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FIG. 3: Radial profiles of a spherically symmetric soliton
(ground state) for the case of the Lévi index α = 1.2 for
different values of λ.
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FIG. 4: Radial profiles of a spherically symmetric soliton
(ground state) for the case of the Lévi index α = 1.9 for
different values of λ.

(FFT is not used). After the Fourier transform, defined
here for an arbitrary function f(r) as

fk =

∫

f(r) exp(−ik · r)d3r, (24)

equation (23) is written in the form

G−1
k uk = Nk, (25)

where Gk = −1/(λ + kα) and Nk accounts for the non-
linear term. Then the Petviashvili iteration procedure at
the n-th iteration is

u
(n+1)
k = sGkN

(n)
k , (26)
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FIG. 5: The 3D norm N of the fundamental soliton as a
function of the parameter λ: (a) Lévy index α = 1.2; (b)
Lévy index α = 1.9.

where s is the so-called stabilizing factor determined by

s =

(

∫

|u(n)
k

|2d3k
∫

u
∗,(n)
k GkN

(n)
k d3k

)γ

, (27)

and the parenthetic superscript denotes the iteration step
index. The nonlinear term at each step was first calcu-
lated in physical space and then its Fourier transform
Nk was used. For power-law nonlinearity up, the fastest
convergence occurs for

γ =
p

p− 1
. (28)

Petviashvili formulated this in the form of a mnemonic
rule, but the choice of the optimal value of γ was rigor-
ously justified in Ref. [43]. The procedure always con-
verges to the nonlinear ground state, i. e. fundamen-
tal soliton, regardless of the initial guess. Moreover, the
rate of convergence is almost independent of the initial
approximation. For nonlinearity other than power-law,
the value of γ corresponding to the fastest convergence is
chosen empirically and 1 < γ < p/(p− 1), where p is the
smallest exponent in the Taylor series expansion of non-
linearity. For the exponential nonlinearity in Eq. (23),
we chose γ = 1.3. We used u(r) = λ1/2 exp(−λ1/2r2) as
the initial guess in all runs. The iterations rapidly con-
verge to a three-dimensional spherically symmetric soli-
ton solution. The progressive iterations were terminated
when the value |s − 1| fell below 10−15. Radial profiles
of the three-dimensional soliton solutions for Lévy index
α = 1.2 and for Lévy index α = 1.9 at different values of
λ are shown in Fig. 3 and Fig. 4, respectively.
The dependences of the 3D norm N of the fundamen-

tal soliton on the parameter λ are shown in Fig. 5 for
the cases of the Lévy index α = 1.2 and α = 1.9. It can
be seen that these dependencies are nonmonotonic func-
tions N(λ) of the parameter λ. The minimum points are
λcr,1 = 0.057 and λcr,2 = 0.076 for the cases α = 1.2
and α = 1.9, respectively. The corresponding 3D norms
are Nmin,1 = 84 and Nmin,2 = 123. For the case of

FIG. 6: Self-cleaning and stable dynamics of the fundamental
soliton for the Lévy index α = 1.9 and λ = 0.15. The initial
state is perturbed by the white noise with the parameter ε =
0.05; the shape (isosurface |ψ| = 1.35) of the perturbed soliton
at the initial moment t = 0, at t = 6, and at t = 100.

FIG. 7: Evolution of the fundamental soliton for the Lévy
index α = 1.9 and λ = 0.15 with a sufficiently strong random
initial perturbation (ε = 0.3); the shape (isosurface |ψ| =
1.35) of the perturbed soliton at the initial moment t = 0, at
t = 2, and at t = 10.

the Lévy index α = 2 (ordinary Laplacian), the criti-
cal value λ = 0.101 was found in [31]. For an ordinary
NLS equation (α = 2) in an arbitrary spatial dimension
D and with a rather arbitrary form of nonlinearity, the
Vakhitov-Kolokolov criterion is valid. It was first formu-
lated in [44] and later rigorously justified and generalized

FIG. 8: Unstable dynamics of the soliton for the Lévy index
α = 1.9 and λ = 0.03; radial profiles at the initial moment
t = 0, at t = 13.3, and at t = 13.6.
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in [45, 46] (see also references therein). According to this
criterion, a sufficient (but not necessary) condition for
the stability of the ground state is

∂N

∂λ
> 0. (29)

As far as we know, the applicability of the Vakhitov-
Kolokolov criterion for a fractional NLS equation has not
yet been studied. Nevertheless, from Fig. 5 it is clear that
for the Lévy index α = 1.2 in the region λ > λcr,1, as well
as for the Lévy index α = 1.9 in the region λ > λcr,2,
the corresponding ground states satisfy the Vakhitov-
Kolokolov criterion (29), and therefore one may expect
that they are stable.
To verify the results predicted by the Vakhitov-

Kolokolov criterion, we solved numerically the dynam-
ical equation (3) initialized with our computed solutions
of the form of fundamental soliton with added Gaus-
sian noise. The initial condition was taken in the form
ψ(x, 0) = ψ0(r)[1 + εf(r)], where ψ0(r) is the numeri-
cally calculated solution, f(r) is the white Gaussian noise
with variance σ2 = 1, and the parameter of perturbation
ε = 0.05−0.3. The time integration was performed by the
Runge-Kutta-Merson method with the variable time step
and local error control (we used the corresponding NAG
(Numerical Algorithms Group) routine [47]). The lin-
ear term (fractional Laplacian) was calculated in spectral
space and then transformed into physical space. The 3D
norm conserved with a relative accuracy < 10−5 during
the simulations. In the case of the Lévy index α = 1.9,
the evolution of soliton with λ = 0.15, i. e. satisfying the
stability condition λ > λcr,2, with an initial rather strong
random perturbation with ε = 0.05 is presented in Fig. 6.
It can be seen that the soliton turns out to be robust and
stable. During the evolution, the soliton undergoes self-
cleaning from the initial random disturbance. At time
t = 6, the soliton completely restores its unperturbed
shape, and then evolves without distortion (t = 100).
Simulations with other values of λ in the stability re-
gion, as well as for the Lévy index α = 1.2, also result in
self-cleaning of the soliton. If the intensity of the initial
random disturbance is sufficiently large, the soliton self-
cleanses itself from noise, simultaneously deforming, but
does not undergo any significant shape distortions. An
example of such an evolution of a soliton subjected at the
initial moment of time to a strong random perturbation
with ε = 0.3 is shown in Fig. 7. Self-cleaning of sta-
ble localized structures in the form of multidimensional
solitons and vortex solitons from initial noise within the
framework of conventional NLS equation (α = 2) with
different types of nonlinearity was observed numerically
in a number of works [32, 42, 48–50]. Note that in our
case, self-cleaning of the soliton from the initial noise
occurs for a 3D soliton with algebraically decaying tails
caused by the fractional Laplacian in the model under
consideration. The time evolution of the soliton with the
Lévy index α = 1.9 and λ = 0.03, that is, correspond-
ing to an unstable region λ < λcr,2 in accordance with

the formal Vakhitov-Kolokolov criterion (29), is shown in
Fig. 8. During the evolution, the 3D norm N has been
conserved with an accuracy < 10−7. Until time t . 13
the soliton shape remains unchanged. This time is equal
in order of magnitude to the inverse modulation insta-
bility growth rate ∼ 1/λ (λ corresponds to the square of
amplitude of the plane wave) of the fastest growing mode
in Eq. (16). At subsequent moments in time t = 13.3 and
t = 13.6, the amplitude of the soliton rapidly increases,
and at the same time soliton contracts in accordance with
the preservation of the 3D norm. That is, the instabil-
ity becomes explosive in a nonlinear regime, resulting in
a singularity in a finite time (blow-up). Thus, as pre-
dicted by the criterion (29), in the unstable region the
3D soliton collapses.

V. CONCLUSION

We have studied the fractional 3D nonlinear
Schrödinger equation with exponential saturating nonlin-
earity. We have pointed out that in the special case of the
Lévy index α = 1.9, this equation describes the dynam-
ics of strong Langmuir turbulence of plasma waves. The
modulation instability of a plane wave has been studied
and a nonlinear dispersion equation has been derived. In
particular cases of perturbations corresponding to small
and large wavelengths compared to the length of plane
wave, the modes of convective and absolute instability
have been predicted, respectively. The regions of insta-
bility depending on the Lévy index, and the correspond-
ing modulational instability growth rates have been ob-
tained.
Numerical solutions in the form of 3D fundamental

soliton (ground state) have been obtained for different
values of the Lévy index. The obtained dependences
of the 3D norm of the soliton on the free parameter λ
(for plasma turbulence it corresponds to a nonlinear fre-
quency shift) turn out to be non-monotonic and corre-
spond to two regions for which the Vakhitov-Kolokolov
stability criterion is formally valid. Numerical simulation
has shown that in a certain range of soliton parameters it
is stable even in the presence of a sufficiently strong ini-
tial random disturbance, and self-cleaning of the soliton
from such initial noise has been demonstrated.
In connection with the soliton self-cleaning effect, we

would like to make a short comment. As is known, a one-
dimensional NLS equation with α = 2 and cubic nonlin-
earity is completely integrable. In particular, any local-
ized initial condition (including a random perturbation)
with a sufficiently large 1D norm in the course of evolu-
tion results in the emergence of a pure soliton (or sev-
eral solitons) while the non-soliton part is dispersed and
carried to infinity. Therefore, in this context, the self-
cleaning of a soliton in the presence of a random distur-
bance is a rigorously established fact. Multidimensional
generalizations of the NLS equation are not completely
integrable, and even in cases where the type of nonlinear-
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ity allows the existence of stable multidimensional soli-
tons, direct analogy is not applicable here. Nevertheless,
in our case, considering a random disturbance against
the background of a pure soliton as a localized but dis-
persive wave packet, one can treat the self-cleaning as the
spreading and disappearance at infinity of the non-soliton
dispersive part in the course of evolution.
For the model under consideration, the question of the

value of the Lévy index α at which 3D solitons become
unstable remains open (recall that 1D solitons of the frac-
tional NLS equation with cubic nonlinearity collapse if
α < 1). In the case under consideration with saturating
exponential nonlinearity (as apparently for other saturat-
ing nonlinearities) these values of the critical index de-
pend on the parameter λ in contrast to the conventional
model with non-saturating nonlinearity. This problem is
expected to be studied in the future.
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