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Abstract

The properties of quasi-one-dimensional quantum droplets of Bose-Einstein condensates are investigated analytically and numeri-

cally, taking into account the contribution of quantum fluctuations. Through the development of a variational approach employing

the super-Gaussian function, we identify stationary parameters for the quantum droplets. The frequency of breathing mode oscilla-

tions in these quantum droplets is estimated. Moreover, the study reveals that periodic modulation in time of the atomic scattering

length induces resonance oscillations in quantum droplet parameters or the emission of linear waves, contingent on the amplitude

of the external modulation. A similar analysis is conducted for the Lee-Huang-Yang fluid, confined in a parabolic potential. The-

oretical predictions are corroborated through direct numerical simulations of the governing extended Gross-Pitaevskii equation.

Additionally, we study the collision dynamics of quasi-one-dimensional quantum droplets.

Keywords: Quantum droplets; Quantum fluctuations; Bose-Einstein condensate.

1. Introduction

One of the breakthrough achievements in condensed mat-

ter physics at the end of last century was the experimen-

tal realization of Bose-Einstein condensates (BECs) in dilute

atomic gases [1–4]. It has been shown that mean-field the-

ory, based on the Gross-Pitaevskii equation (GPE), can be suc-

cessfully applied to explain the existence, stability, and dy-

namics of BEC [3–5]. Recently, the investigation of beyond

mean-field effects has become an actual topic in the physics of

atomic Bose-Einstein condensates [6]. One particularly inter-

esting consequence of this research is the discovery of quan-

tum droplets (QDs), which have attracted the attention of many

researchers. Quantum droplets are self-bound states of BEC,

existing in three-dimensional free space due to the balancing

mechanism coming from the competition between the attrac-

tive mean-field energy and repulsive beyond mean-field en-

ergy, Lee-Huang-Yang (LHY) corrections [7]. Formation of the
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quantum droplet was first theoretically predicted by Petrov [8]

for two-component Bose gas. It is known that in mean-field

theory BEC of attracting atoms is unstable against collapse

in two and three dimensions [3, 4]. Stable BEC exists in

one-dimension [9], when attracting forces between atoms are

compensated by dispersion because of quantum pressure mix-

tures. One of the main motivations for the research of quantum

droplets came from the search for stable BEC states in two and

three spatial dimensions [10]. The effect of the quantum cor-

rections on the ground state energy of the one component Bose

gas, described by the LHY term, is negligibly small compared

to the contribution of mean field terms in the governing Gross-

Pitaevskii equation. However, as proposed by Petrov [8], in

symmetric binary BECs, the interspecies and intraspecies inter-

actions can be manipulated in such a way that the final single

modified GPE will contain both the attractive mean-field term

and the repulsive LHY term. Importantly, the strength of the at-

tractive term can be controlled independently, allowing the for-

mation of dilute liquid droplet states stabilized by quantum fluc-

tuations. The modified three-dimensional GPE equation [11],

with repulsive quartic nonlinearity responsible for LHY correc-

Preprint submitted to Chaos, Solitons & Fractals July 11, 2024

http://arxiv.org/abs/2407.07384v1


tions, was derived and successfully applied to describe stable

quantum droplets in BEC. The first experimental realization of

QD took place for single component Bose-Einstein condensates

(BEC) with dipolar atomic interactions [12, 13], and later in

binary Bose gas mixtures [14–16]. Further experimental stud-

ies with quantum fluctuations include QD in a heteronuclear

bosonic mixture [17], and collision of the droplets [18]. The

existence of quantum droplets in lower dimensions also was

elaborated. In particular, it was shown that in one dimension the

tight external potential strongly changes the spectrum of zero-

point excitations. It leads to the modification of the LHY term

from quartic to quadratic and changing of its sign [19–21]. Un-

der those circumstances, to provide the existence of quantum

droplets, two-body mean-field interaction should be repulsive.

The existence, stability and dynamics of quantum droplets for

1D GPE in this case were discussed in [22–26]. On the other

side, if the external potential is loose, the LHY corrections are

the same as obtained in the 3D case [19]. The quasi-1D GPE

and quantum droplets in this case have been discussed in the

papers [27, 28]. The surface tension of QD in 1D and quasi-

1D ultra-cold atomic Bose gases is analyzed in [29] and the

paper [30] is devoted to the interaction of quasi-1D QD with

impurities.

The objective of our work is to study further analytically

and numerically the quasi-1D quantum droplets in the two-

component BEC. The paper is organized as follows. In the

first section of the paper, the quasi-1D GPE is introduced and

the physical meaning of parameters is explained. Then we ap-

ply variational approximation (VA) with super-Gaussian ansatz

to find an approximate solution for quantum droplets and thor-

oughly discuss the properties of these solutions. The dynamical

equations for the parameters of quantum droplets are derived.

In the next two sections, we consider the quantum droplets un-

der periodic modulations of the atomic scattering length and the

case of LHY fluid which is formed, when the two-body attrac-

tion is reduced to zero and the repulsive term in GPE caused

by quantum fluctuations balanced by external potential. In the

last section, the collisions of quantum droplets are studied via

numerical simulation of quasi-1D GPE.

2. The model and Variational approach

Let us consider a three-dimensional, two-component Bose-

Einstein condensate influenced by quantum fluctuations. Here,

both the mass and the number of atoms in each component are

set to be identical. Under these conditions, the system can be

described by a single Gross-Pitaevskii equation [8]:

i~
∂Φ

∂T
+

~
2

2m0

∇2
Φ − U(x, y, z)Φ+ γ3D|Φ|2Φ

−δ3D|Φ|3Φ = 0 . (1)

In this context, Φ = Φ(x, y, z, t) symbolizes the conden-

sate wave function, with |Φ|2 indicating the density of the

condensate. Parameter γ3D = 4π~2δa/m0 and δ3D =

256
√

2π~2a5/2/3m0 represent the strengths of the two-body in-

teractions and quantum fluctuations, respectively. The Lapla-

cian operator, ∇2, represents the spatial derivatives across all

three dimensions. Here, T denotes time, and m0 represents the

atomic mass. The parameter δa = a + a12 describes the resid-

ual mean-field interaction, where a11 = a22 = a and a12 are the

intra- and inter-species scattering lengths, respectively.

The external potential, U(x, y, z) = m0ω
2
⊥r2
⊥/2 + m0ω

2
x x2/2,

incorporates the longitudinal trap frequency ωx, the transverse

trap frequency ω⊥ (where ωy = ωz), and r2
⊥ = y2

+ z2. We

focus on the situation where ωx/ω⊥ ≪ 1, which indicates

a condensate with a cigar-shaped geometry. In this particu-

lar arrangement, the condensate is subject to tight confinement

along two axes, effectively creating a quasi-one-dimensional

system [4, 31]. Consequently, we can employ a factorization

technique as introduced in Ref. [32], which ultimately guides

us towards the quasi-1D Gross-Pitaevskii equation:

i~
∂φ

∂T
+

~
2

2m0

∂2φ

∂x2
− U(x)φ + γ1D |φ|2φ

−δ1D|φ|3φ = 0 , (2)

where γ1D = γ3D/2πl2⊥ and δ1D = 2δ3D/5π
3/2l3⊥, where l⊥ =

(~/m0ω⊥)1/2 is harmonic oscillator length.

Through the application of the rescaling transformations t =

T/tS , x = x/xs, and Ψ = φ/Ψs, one can express Eq.(2) in a

dimensionless form:

iΨt +
1

2
Ψxx − V(x)Ψ + γ|Ψ|2Ψ − δ|Ψ|3Ψ = 0, (3)

where V(x) = αx2 represents the external potential after rescal-

ing with α = m0ω
2
xx2

s ts/2~, the scale parameters are defined as

follows:

ts =
216 m0γ

3a5

225 π2~ δ2δa3
, xs =

256

15π

(

γ3a5

δ2δa3

)1/2

,

ψs =
15πδa l⊥δ

256
√

2 a5/2γ
.

It is possible to normalize Eq. (3) so that the coefficients sat-

isfy |γ| = |δ| = 1. Nonetheless, we maintain these notations in

the dimensionless equation to facilitate the analysis of various

scenarios, encompassing cases where either γ or δ equals zero.

To examine the dynamics of the quasi-1D BEC influenced

by quantum fluctuations, we find it advantageous to employ the

variational approach reported in Refs. [21, 22, 33, 34]. The

Lagrangian density corresponding to Eq. (3) is formulated as

L =
i

2
(Ψ∗tΨ −Ψ∗Ψt) +

1

2
|Ψx|2 + V(x)|Ψ|2

−
γ

2
|Ψ|4 +

2δ

5
|Ψ|5. (4)

In our analysis, we use a super-Gaussian trial function to ap-

proximate the density distribution:

Ψ(x, t) = A exp



−
1

2

(

x

w

)2m

+ ibx2
+ iϕ



 . (5)

2



where A(t) is the amplitude, w(t) is the width, b(t) is the chirp,

and ϕ(t) is the linear phase of the condensate. These parameters

are time-dependent, while the super-Gaussian parameter m is

found from the stationary solution, see Eq. (9). The application

of the super-Gaussian trial function to the Gross-Pitaevskii type

equation has been also previously employed in several stud-

ies [35, 36]. In this work, we primarily investigate the existence

and stability of standing solutions. Including the centre-of-mass

coordinate and velocity in the VA is feasible and beneficial for

exploring soliton dynamics in trapping potentials, collective os-

cillations, and similar phenomena (see for example [26, 30]).

However, this is the reason we do not incorporate the centre-of-

mass coordinate in Eq. (5).

The norm is a conserved quantity directly proportional to the

number of atoms in the BEC. Its value can be found in the inte-

gral of the module square of the condensate wave function [31].

N ≡
∫ ∞

−∞
|Ψ|2dx = 2Γ(M + 1)A2w, (6)

where M = 1/(2m) is reduced super-Gaussian indeces, and Γ(z)

is the Gamma function. The parameter N = Nreal/Ns is the

dimensionless parameter related to the real number (Nreal) of

atoms in a BEC cloud, where Ns = ψ
2
s xs is the scale parameter.

All theoretical and numerical results pertain to the dimension-

less equation. However, at the end of Sec. 4, we also present

parameters in physical units.

The Lagrangian function is found from the integral: L =
∫ ∞
−∞L dx,

L

N
= ϕt +

Γ(3M)

Γ(M)
w2(2b2

+ bt + α) +
Γ(2 − M)

8M2 Γ(M) w2

−
2−M−2γN

Γ(M + 1) w
+

(

2

5

)M+1

δ

(

N

2Γ(M + 1)w

)3/2

. (7)

In obtaining Eq. (7), we employ the expression (6) for the norm

to eliminate the amplitude. The gamma function Γ(2 − M)

incorporates an argument of 2 − M, which must be positive.

This stipulation imposes an additional constraint on m, specif-

ically m > 0.25. The Euler-Lagrange equations for ϕ give the

dN/dt = 0, which refers to the conservation of the number of

atoms. The equations of motion for w and b yields equations

governing the time derivatives bt and wt, respectively:

bt = −α − 2b2
+

1

8Γ(3M + 1)

[

3Γ(2 − M)

Mw4

−
3γN

2Mw3
+

9δN

w3

(

2

5

)M+1(

N

2Γ(M + 1)w

)1/2


 ≡ fb,

wt = 2bw ≡ fw . (8)

We employ the given equation to determine the stationary

profile of the QDs. In the stationary scenario, the quantum

droplet’s profile remains constant over time, implying that the

time derivative should be equal to zero. The latter of Eq. (8)

yields b = 0. Consequently, the stationary parameters can be

obtained from the following equations:

fb(w,m,N) = 0,

fm(w,m,N) ≡
∂L

∂m

∣

∣

∣

∣

∣

b=0

= 0. (9)

The former of Eq. (9) is a quadratic equation on w. Only the

one root is real and positive. By solving the equations (9) for

given parameters (γ, δ,N) the stationary values of QD width ws

and super-Gaussian indices ms can be obtained. Subsequently,

the stationary amplitude of QDs As is obtained from Eq. (6).

We find that the dynamics of droplets are well described by

assuming m = ms.

The set of equations (8) can be simplified to a single equation

concerning the width of the QD, given by

wtt = 4b2w + 2btw .

Then, the effective potential is found from wtt = −∂U(w)/∂w

relation, which resembles the equation of motion for a unit mass

particle in an anharmonic potential.

U(w) = αw2
+

1

Γ(3M)

[

Γ(2 − M)

8M2w2
−

γN

2M+2Mw

+

(

2

5

)M+1
δN

Mw

(

N

8Γ(M + 1)w

)1/2


 . (10)

The figure 1(a) illustrates the typical shapes of the effective

potentials. The minimum point of the potential curve, or where

fb(w,m,N) equals zero, corresponds to the stationary width ws

of the QDs. Figure 1(b) compares the stationary profiles pre-

dicted by VA and the solutions obtained numerically using the

imaginary time method.

0 20 40 60
w

0

0.5
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U
(w
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|
|2

N=9

N=20

N=3

(b)

Fig. 1. (a) The characteristic form of the effective potential

U(w), corresponding to N = 3. (b) The profiles of station-

ary QDs for different values of N, straight lines are determined

through the VA, while dashed lines are obtained from imaginary

time simulations Eq. (3). Other parameters (α, γ, δ) = (0, 1, 1).

The chemical potential µ for the stationary QDs can be de-

termined as:

µ =
∂Es

∂N
=

2αΓ(3M)

Γ(M)
w2

s −
3γN

2M+3MΓ(M) ws

+
7δ

10

(

2

5

)M(

N

2wsΓ(M + 1)

)3/2

, (11)
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where

Es =

∞
∫

−∞

dx

(

1

2
|Ψx|2 + V(x)|Ψ|2 −

γ

2
|Ψ|4 +

2δ

5
|Ψ|5
)

. (12)

is the stationary energy of the QD.

To investigate the stability of stationary solutions, we first

checked the Vakhitov-Kolokolov stability criterion, which is of-

ten used to analyze the stability of solutions in nonlinear sys-

tems. It involves examining the sign of the chemical potential

derivative concerning the norm. According to this criterion, the

system is considered stable when dµ/dN < 0. This implies

that an augmentation in the number of atoms corresponds to

a reduction in the chemical potential, indicating a stable be-

haviour for the stationary solutions. One can see from the µ(N)

dependence in Fig. 2(a) that, an augmentation in the number

of atoms corresponds to a reduction in the chemical potential,

satisfies the Vakhitov-Kolokolov criteria and indicates a stable

behaviour for the stationary quantum droplets. In general, the

Vakhitov-Kolokolov criterion serves as a necessary but not suf-

ficient condition for the stability of localized solutions. Hence,

the theoretical results were systematically tested through direct

numerical simulations of the governing Eq. (3). The results ro-

bustly indicate that all quantum droplets are stable against small

perturbations.
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Fig. 2. (a) The dependence between the chemical potential

µ and the particle number N. The dashed line represents the

Thomas-Fermi limit of a chemical potential µTF. (b) The sta-

tionary QD parameters for different values of N. The dashed

line represents the Thomas-Fermi limit of QD amplitude ATF

(right axis). In both panels, the lines are determined through

the VA, whereas the points correspond to imaginary time simu-

lations of Eq. (3). Other parameters (α, γ, δ) = (0, 1, 1).

Figure 2(b) presented a comparison between parameters de-

termined through the VA (represented by lines) and those

found from direct numerical simulations of Eq. (3) (depicted

as points). Figures 1(b) and 2 reveal that the VA employing the

super-Gaussian function yields good results for the main prop-

erties of QDs. The proposed trial function (5) includes an ad-

ditional parameter, m, compared to the standard Gaussian func-

tion (where m = 1 in Eq. (5)). This additional super-Gaussian

parameter allows this function to describe both bell-shaped and

flat-top characteristics, which are typical of QDs. The standard

Gaussian function is limited to describing bell-shaped states

with a very small number of atoms and cannot account for flat-

top states.

When the number of atoms is large, the density of the QDs

attains a uniform saturation density with low compressibility,

resulting in bulk energy characteristic of flat-top QDs. These

values can be approximated using the Thomas-Fermi (TF) limit,

as shown in Ref. [37]. In the case where there is no external po-

tential, V(x) = 0, we apply the TF approximation. The energy

density of the flat region, which has the peak density np ≡ |Ψp|2
in the QD profile, is given by ε(np) = −γn2

p/2 + 2δn5/2
p /5,

as described by Eq. (12). The minimization of the bulk en-

ergy, dEbulk/dnmax = 0 yields n
1/2
TF = 5 γ/6 δ. This corre-

sponds to an amplitude ATF = n
1/2
TF and a chemical potential

µTF = dε(nmax)/dnmax = −γ nTF + δ n
3/2
TF . Figure 2 clearly

shows that for fixed values of γ = δ = 1, the droplet am-

plitude and chemical potential tend to approach the Thomas-

Fermi limit for a large number of atoms, with ATF = 5/6 and

µTF = −(5/6)2/6, respectively. It is important to note that these

TF limits can also be determined by calculating the asymptotic

behaviour of the equations derived from the VA. An increase

in the super-Gaussian parameter ms with larger N suggests that

the density profile of a QD transitions towards a flat-top shape.

The functional dependence of ms on N can be approximated by

ms(N) = 0.10214(N + 5.0424)1.1051. This relationship, captur-

ing the behaviour of ms(N), has been accurately described for

N values in the range 0 < N ≤ 100, employing a power law fit

of the form ms(N) = a1(N + a2)k. The droplet width exhibits

nearly linear growth with increasing N. This property of QDs

displays an incompressibility reminiscent of ordinary liquids.

Usage of the effective potential allows us to determine the

frequencyΩ0 associated with small oscillations of QD parame-

ters around the equilibrium state.

Ω
2
0 =

∂2U(w)

∂w2

∣

∣

∣

∣

∣

w=ws

= 2α +
3Γ(2 − M)

4M2Γ(3M)w4
s

−
γN

2M+1MΓ(3M)w3
s

+

(

2

5

)M
3δN

25/2MΓ(3M)w3
s

(

N

Γ(M + 1)ws

)1/2

. (13)

In the simulations, we introduce small deviations in the VA-

predicted parameters (see, Eq. (5)) and use them as initial con-

ditions. This alteration results in the oscillation of the QD shape

around the equilibrium state. Figure 3(a) illustrates the compar-

ison dynamics of QD shape, specifically amplitude and width.

When the amplitude reaches a maximum, the width has a mini-

mum and vice versa, this indicates the conservation of the initial

norm. We compute the average of the maximum and minimum

of this small oscillation over several periods and corresponding

values presented in Fig. 2(b) as points. This procedure allows

us additional check the stability of the VA-predicted stationary

solutions.

It is also evident from Fig. 3(b) that the frequencies pre-

dicted by the VA closely align with the numerical results for

a wide range of N. Numerically, the frequency is determined

as Ω0 = 2π/τ, with τ representing the average period of small

oscillation.
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A(t)
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0
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0.15

0

(b)

Fig. 3. (a) Comparison of the QD shape oscillations specifi-

cally their amplitude and width, solid lines from numerical sim-

ulations of Eq. (3) and dashed lines represent VA-predicted re-

sults for N = 10. (b) The frequency of small oscillations, in the

width of the QDs is plotted as a function of the norm N. This

graph includes results from the VA, shown as a line, and from

numerical simulations, indicated by points. Other parameters

(α, γ, δ) = (0, 1, 1).

The chirp parameter allows us to describe the oscillations

of the amplitude and width of the soliton in time. Also, it is

the simplest extension describing the space dependence of the

phase (see [32, 38, 39]). Nonzero initial chirp in variational

approximation bVA corresponds to nonzero initial velocity wt in

the equation (8) for width. As a result, the width and chirp of

the droplet start to oscillate, see Fig. 4(a). We compared the

0 200 400 600
t

-2

0

2

b
(t

)

10 -3

b
GPE

b
VA

(a)

Fig. 4. (a) Comparison of the chirp dynamics for the initial

value b = 0.001. The solid line represents results obtained

from the VA while the dashed line corresponds to values de-

rived from numerical simulations. (b) Dynamics of the density

distributions with an initial chirp of b = 0.025. The colorbar

indicates the values of |Ψ|. Additional parameters are set as

(N, γ, δ) = (12, 1, 1).

results for the chirp from variational equations and direct sim-

ulations. To monitor chirp in direct numerical simulations we

applied the following expression [40]

bGPE =
Im
∫ ∞
−∞Ψ

∗2
x Ψ

2dx
∫ ∞
−∞ |Ψ|4dx

. (14)

The results of the simulations presented in Fig. 4(a) show that

for relatively small initial chirp values, the variational equations

accurately describe the evolution of droplets. However, increas-

ing the initial chirp value leads to droplet instability, causing

the initial droplet to eventually split into several fragments with

some low-amplitude radiation, see Fig. 4(b). The variational

approach cannot explain the process of splitting.

3. Dynamics of quantum droplets under periodic manage-

ment of the atomic scattering length

To illustrate the significance of the VA, we examine the pe-

riodic modulation of atomic scattering length. In experimental

settings, this kind of modulation can be generated by periodic

variation of the atomic scattering length using the Feshbach res-

onance technique [41–43]. Near the resonance, the scattering

length as a function of the magnetic field is described by

as(t) = abg

(

1 −
∆B

B(t) − Br

)

, (15)

where abg denotes the background scattering length, character-

izing the scattering length far from the resonance; ∆B repre-

sents the resonance width, showing the necessary change in the

magnetic field around the resonance magnetic field Br to signif-

icantly modify the scattering length; Br is the resonance mag-

netic field, defined as the specific magnetic field value where the

energy of the colliding atoms equals the energy of a bound state;

B(t) refers to the periodically varying magnetic field, which is

experimentally adjusted to control the scattering length.

Assuming the magnetic field varies as B(t) = B0 +

B1 sin(ωmt), where B0 is a constant field component, and B1

is the amplitude of oscillation. Near a Feshbach resonance,

this results in a corresponding variation in the scattering length

as(t), and thus in the interaction strength, [44]

γ(t) = γ0[1+ǫ1 sin(ωmt)], δ(t) = δ0[1+ǫ2 sin(ωmt+θ)], (16)

where ǫ1, ǫ2 ≪ 1, ωm and θ denote the amplitude, frequency,

and initial phase of the modulations, respectively. The inclusion

of θ is intended to show the impact of modulations on the initial

phase difference. Initially, we set θ = 0. The periodic modula-

tions in γ(t) and δ(t) result in oscillations of the QD shape. A

similar study is also reported in Ref. [34] for 3D case. It is also

possible to study the properties of Faraday waves in the conden-

sate using Floquet theory by periodically varying the coupling

constants. However, this topic requires separate research and is

beyond this paper’s scope.

In simulations using Eq. (3), we observe distinct responses in

QD dynamics, influenced by the modulation amplitudes. The

QD exhibits adiabatic oscillations for lower values of ǫ1 and ǫ2.

A significant increase in oscillation amplitude occurs when the

modulation frequency ωm approaches the eigenfrequency Ω0,

as shown in Fig. 5(a). With parameters (γ0, δ0) = (1, 1), the

calculated eigenfrequency Ω0 is 0.0848, while the resonance

frequency ωr identified through simulations is approximately

0.0836. This figure clearly shows that the variational method

we have developed effectively determines the resonance fre-

quencies of a quantum droplet when exposed to external peri-

odic modulation. This resonance frequency is determined based

on how the difference in amplitude ∆A = Amax − Amin varies

with the modulation frequency ωm, where Amax and Amin repre-

sent the highest and lowest values of the amplitude oscillation

over time, respectively. Within the scenario of small periodic

modulations in QD dynamics, a phenomenon akin to beating

5



in the amplitude and width of the QD is noted, characteristic

of forced oscillations. During these adiabatic oscillations, the

particle count within the QD remains largely unchanged, as de-

picted by the solid line in Fig. 5(b).
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Fig. 5. (a) The amplitude difference plotted against modula-

tion frequency for ǫ1 = ǫ2 = 0.05. The line represents re-

sults obtained from numerical simulations, while points corre-

spond to values derived from the VA. (b) The dynamics of the

norm N across various modulation amplitude for ωm ≈ 0.085.

The representations include solid lines for ǫ1 = ǫ2 = 0.1,

dashed lines for ǫ1 = 0.1, ǫ2 = 0.05, and dash-dotted lines for

ǫ1 = 0.05, ǫ2 = 0.1. Circular markers indicate the case where

ǫ1 = ǫ2 = 0.1 and θ = π/2, while triangular markers denote

ǫ1 = ǫ2 = 0.1 and θ = π. Additional parameters are set as

(N, γ0, δ0) = (10, 1, 1).

For larger values of ǫ1 = ǫ2, the next type of dynamics ob-

served involves a QD gradually diminishing as it releases par-

ticles. This emission manifests as low-density waves spreading

outward from the QD. In our numerical simulations, we imple-

mented absorbing boundary conditions to ensure that atoms ex-

iting the quantum droplet do not reflect back from the numeri-

cal domain’s edge, thereby preventing any interference with the

droplet’s dynamics. Furthermore, we explore scenarios where

the modulation amplitudes differ, ǫ1 , ǫ2. Under these condi-

tions, the QD decays more rapidly compared to when ǫ1 = ǫ2,

as illustrated by the dashed and dash-dotted lines in Fig. 5(b).

Our findings indicate that the two forces exerted on a QD are

in antiphase and show a strong dependence on θ. At θ = 0, these

forces are nearly in equilibrium, as illustrated by the solid line

in Fig. 5(b). The most rapid decay of the QD is observed at θ =

π, as highlighted by the points in Fig. 5(b). This suggests that

periodic modulations can serve as an efficient mechanism for

altering the thermodynamic states (liquid and vapour) of BECs

and for managing potential breathing mode oscillations within

the QD.

Let us expand the equation for wtt by a series of small de-

viation ξ from the equilibrium width ws, w = ws + ξ, where

ξ ≪ ws. The following linearized equation describes the dy-

namics of the width displacement ξ:

ξ̈ + Ω2
0

∣

∣

w=ws,α=α0,β=β0
ξ = B sin(ωmt) , (17)

where ξ̈ denotes the second order derivative of width displace-

ment ξ in terms of time t, and

B = −
2−M−2Nγ0ǫ1

MΓ(3M)w2
s

+
3 · 2M−3/2Nδ0ǫ2

5M+1MΓ(3M)w
5/2
s

√

N

Γ(M + 1)
.

Under the condition B = 0, we identified the relationship be-

tween the modulation amplitudes as ǫ2 = 5M+1γ0ǫ1(wsΓ(M +

1))/3 · 22M+1/2δ0N1/2. Should the amplitude of the modulations

ǫ1 and ǫ2 satisfy the given condition, their modulations cancel

one another, as illustrated by the dashed line in Fig. 6. Under

0 500 1000 1500 2000
t

-5

0

5

Fig. 6. The behaviour of width displacement ξ

across various modulation amplitudes is depicted as follows:

The (red) dashed line represents the case when modulation am-

plitude fulfils specific relation ǫ1 = 0.1 and ǫ2 = 0.105641,

while the (blue) solid line indicates ǫ1 = ǫ2 = 0.1. Additional

parameters are set as (γ0, δ0,N) = (1, 1, 10).

these circumstances, the parameters of the quantum droplets re-

main constant over time. The validity of this relationship is

verified through the dynamics of QDs in the VA and also in

numerical simulations. In the simulations, we employ an imag-

inary time profile as the initial condition to test this relation

and note only minor, inconsequential oscillations in the QD

parameters around their stationary values. These linear anal-

yses indicate that when the modulation amplitudes ǫ1 and ǫ2

do not meet the specified condition, the dynamics of width dis-

placement ξ are influenced by the modulation frequency ωm.

Specifically, when ωm matches the eigenfrequencyΩ0, the sys-

tem experiences resonant oscillations, as depicted by the solid

line in Fig. 6. In proximity to the resonant frequency, a phe-

nomenon of beating is observed. As demonstrated in Fig. 6, at

the resonant frequency, the amplitude of oscillation appears to

approach infinity. However, in the nonlinear dynamics at the

resonant frequency, there is a noticeable beating effect in the

QD parameters, attributable to the interdependence of oscilla-

tion amplitude and frequency in a nonlinear system.

4. Lee-Huang-Yang fluid

In this section, our attention is directed toward the LHY

fluid [45, 46]. By manipulating scattering lengths through

the Feshbach resonance technique and adjusting atom numbers

within a binary BEC, it becomes feasible to create a scenario

where attractive and repulsive two-body interactions offset each

other. In this case, the residual mean-field interactions van-

ish from the governing equation, with δa = 0, implying that

a should equal a12 when δa = 0, the scale parameters must be
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redefined:

ts = ω
−1
⊥ , xs =

√

~

m0ω⊥
, ψs =

(

15πm0l3⊥ω⊥δ

512
√

2~a5/2

)1/3

.

In this system, repulsive quantum fluctuations take precedence

as the dominant interaction term. When we balance these repul-

sive quantum fluctuations with an external potential, it becomes

possible to achieve a state known as the LHY fluid.

In our model, α , 0 and γ = 0 correspond to the LHY fluid

case. In this case, the characteristic form of the effective po-

tential is illustrated in Fig. 7(a). In the scenario where α = 0

and γ , 0, the potential curves tend to approach zero as w be-

comes large, as depicted in Fig. 1(a). In contrast, in the LHY

fluid case, the potential takes on a parabolic form, as shown

in Fig. 7(a), see also Eq. (10). In both cases, the minimum of

the potential curves corresponds to the stationary width of the

localized states.
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Fig. 7. (a) Typical shape of the potential curves U(w) for

N = 10. (b) The stationary QDs profiles correspond to different

particle numbers, where solid lines represent results derived us-

ing the VA, and dashed lines are outcomes from imaginary time

simulations. Other parameters are (α, γ, δ) = (1, 0, 1).

In figure 7(b), we compared the stationary profiles of the

LHY fluid predicted by the VA and the numerical simulated

solutions for different values of the number of atoms. In the

case of the LHY fluid, it is evident that as the number of atoms

increases, the density of the localized state does not reach sat-

uration. Conversely, in the scenario where α = 0 and γ , 0,

the localized state exhibits a saturation density at large values

of N, indicative of incompressible liquid properties, as depicted

in Figs. 1(b) and 2(b). In the LHY fluid case, a thorough in-

vestigation across a wide range of N ∈ (0, 2000] did not reveal

a saturation density.

In figure 8(a), a comparison is presented regarding the sta-

tionary parameters of LHY fluid. The lines found from the VA,

and points represent the numerical simulated averaged values.

With an increase in the number of atoms N, both the amplitude

and width of the LHY fluid exhibit a corresponding increase.

Additionally, the super-Gaussian indices ms also experience an

extremely slow increment on large N. The stationary profile

of the LHY fluid also transforms into a more flat-top shape as

N increases. In the simulations, a small initial perturbation is

introduced in the VA-predicted parameters, providing an addi-

tional check on the stability of the solutions, as discussed after

Eq. (13). We verified the stability of localized states across a
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Fig. 8. (a) The steady-state parameters for the LHY fluid at dif-

ferent values of N, where straight lines are determined through

the VA, while points are obtained from numerical simulations.

(b) The dynamics of |Ψ|2 of the initially perturbed LHY fluid

for N = 10. Other parameters are (α, γ, δ) = (1, 0, 1).

broad range of atom numbers, and in all observed cases, sta-

ble evolutions were confirmed. Figure 8(b) depicts the typical

stable time evolution of the initially perturbed localized states.

Let us determine the parameters of our model for realistic

experimental conditions. We consider 39K atoms in different

spin states, for example |F = 1,mF = 1〉 and |F = 1,mF = 0〉,
with a mass of m0 = 6.49 × 10−26 kg. Both intra- and inter-

species scattering lengths are set as a11 = a22 = a = 50 a0

and a12 = −50 a0, where a0 is the Bohr radius, ensuring that

the residual scattering length satisfies δa = 0. The characteris-

tic scales of our system, with |δ| = 1, are xs = l⊥ ≈ 0.7 µm,

ts ≈ 0.3 ms, and ψs ≈ 5.1 × 104 m−1/2. We chose a trans-

verse trap frequency of ω⊥ = 2π× 500 Hz, providing tight con-

finement and allowing the condensate dynamics to be consid-

ered within a quasi-1D approximation. The integration domain

length L = 500 corresponds to 360 µm, while dimensionless

t = 1000 equates to 300 ms. Real atom numbers and the size

of the QD corresponding to N = 10 are Nreal = 1.8 × 104 and

5.7 µm, respectively. The critical temperature for these values is

Tcr = 3.3125
~

2

m0kB

·
(

Nreal

V

)2/3

≈ 0.88 µK, where Nreal = Nψ2
s xs

and V = Lxsl
2
⊥. The estimates provided above demonstrate

that the parameter values used in numerical simulations quali-

tatively align with experimental conditions.

5. Collision dynamics of quasi-1D quantum droplets

In our model, the condensate wave function, as defined by

Eq. (5), is structured by the interplay of cubic and quartic non-

linear terms and dispersion within the governing GPE for the

QD. This interplay generates a form reminiscent of the typi-

cal bright solitons. It is a well-established fact that the shape

of the density profile remains unchanged during its time evolu-

tion, even when it is in motion at a steady velocity. One dis-

tinctive feature of solitons in integrable systems is their ability

to maintain their shape during collisions with other solitons.

When α = 0 and δ = 0, Eq. (3) transforms into a 1D non-

linear Schrödinger equation, which is an integrable equation.

In this scenario, collisions between solitons are entirely elas-

tic. From this viewpoint, in our quasi-1D model, it becomes

essential to investigate the persistence of the shape of droplets
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engaged in pairwise collisions. A similar study is reported in

Ref. [23] for the 1D case with a quadratic-cubic nonlinear term.

In the present Section, to investigate the collision dynamics

we numerically solved Eq. (3) by using the split-step Fourier

method with periodic boundary conditions and VA-predicted

initial conditions, see Eq. (5). The initial condition was taken

as a superposition of two QDs,

Ψ(x, t = 0) = Ψ1(x + x0)eikx
+ Ψ2(x − x0)e−ikx+iβ (18)

here, Ψ1(x) and Ψ2(x) represent the stationary shapes of QD

normalized with N1 and N2, as derived from Eq. (5). The pa-

rameters ±x0 denote their initial positions, ±k represent the ini-

tial momenta of the colliding droplets, and β stands for the rel-

ative phase.

Let us start with the interaction of two non-moving QDs.

When two stationary QDs are positioned at a considerable dis-

tance from each other, they do not interact. It is only when they

are brought close enough, such that the “tails” of the localized

waves overlap, that they begin to interact. In this scenario, it is

observed that the interaction force between two identical QDs

is contingent upon their relative phase, as depicted in Fig. 9.

Fig. 9. Density plots illustrate the evolution of two identical

stationary droplets for different relative phase values β. These

include (a) in-phase with β = 0, (b) a phase of β = π/4, (c) a

phase of β = π/2, and (d) out-of-phase with β = π.

When two in-phase (β = 0) droplets are present, they attract

each other and merge, as illustrated in Fig. 9(a). At the colli-

sion point, there might be radiation of small amplitude waves.

An asymmetric interaction is noted between two identical quan-

tum droplets when the relative phase falls within the interval

0 < β ≤ π/2. The interaction dynamics in these regions reveal

two inelastic regimes, as seen in Figs. 9(b) and (c). In Fig. 9(b),

two QDs collide with a phase difference of π/4, initially attract-

ing each other, colliding, and then repelling, with particle redis-

tribution at the collision point. In Fig. 9(c), two QDs interaction

is presented with a phase difference of π/2, where redistribu-

tion occurs through atom exchange during the initial interval,

followed by repulsion. The resulting QDs maintain their shape

during motion, and their velocities differ to comply with mo-

mentum conservation. In the π/2 < β ≤ π interval, QDs induce

repulsion, with maximal repulsion occurring at β = π. The ini-

tial density distribution is also preserved, as shown in Fig.9(d).

Now, let’s explore the collision dynamics between two quan-

tum droplets travelling in opposite directions. The interaction

force between these QDs is generally influenced by factors such

as the phase difference, initial momentum (velocity), and the

number of particles. Figure 10(a) illustrates the collision dy-

namics of fast-moving bell-shaped droplets with a small num-

ber of particles, while Fig. 10(b) depicts the collision dynamics

of flat-top QDs with a large number of particles. In both cases,

an interference pattern may manifest at the moment of colli-

sion, serving as a distinctive feature of the interplay of coherent

matter waves.

Fig. 10. The time evolution density plot reveals an interference

pattern resulting from the interaction of two identical, in-phase

(β = 0) droplets, each having an incident momentum of k = 1.

This is observed (a) in the case of small N1 = N2 = 0.5 bell-

shaped QDs, and (b) for larger N1 = N2 = 10 flat-top QDs.

Other parameters are (α, γ, δ) = (0, 1, 1), and x0 = 40.

For small bell-shaped quantum droplets with N1 = N2 = 0.5

and k = 1, the density distribution of the droplets remains un-

changed after the collision. However, in the case of large flat-

top QDs, the shape of the droplet is not preserved post-collision.

Instead, interactions between the incoming droplets lead to the

formation of multiple outgoing small-amplitude droplets, along

with additional quiescent droplets.

Figure 11 displays the scattering dynamics of two identical

large flat-top QDs moving slowly in opposite directions. In

the context of slow motion, the behaviour of these large in-

phase flat-top QDs as shown in Fig. 11(a) closely resembles

the interaction observed in non-moving droplets, as depicted

in Fig. 9(a). During the slow-moving scenario, the main part

of the atoms remains confined within the newly created central

droplet, with only relatively minor amounts of particles being

emitted as small amplitude waves. The combined central QD

exhibits excitation, manifesting in amplitude oscillations.

A symmetry breaking occurs in the relative phase difference

values within the interval 0 < β ≤ π/2. The collision dynamics

of quantum droplets for given values of β, namely π/4 and π/2,

are depicted in Figs. 11(b) and (c), respectively. This behaviour

closely aligns with the dynamics observed in the interaction of

two stationary quantum droplets, as shown in Fig. 9(b). In these

instances, incoming QDs do not maintain their shape after the

collision. Figure 11(d) shows the collision of two large flat-
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Fig. 11. The same as in Fig. 9, but this figure presents the

scenario of the interaction of slowly moving flat-top QDs with

an initial momentum of k = 0.1 and a starting position at x0 =

30.

top droplets characterized by an out-of-phase structure β = π.

This collision reveals that when large QDs with an equal nor-

malization meet, they rebound instantaneously, creating a final

trajectory resembling a complete mirror reflection.

We now examine the collision dynamics between two identi-

cal bell-shaped quantum droplets with a small number of parti-

cles at low speeds. When the relative phase difference β equals

zero, the collision dynamics of these QDs are influenced by

their initial velocities. If the initial momentum of the droplets

falls below a critical threshold k < kcr, they merge. However,

this merging does not result in the complete fusion of the col-

liding droplets into a single entity. Instead, it leads to the for-

mation of a bound state, referred to as a weak merging regime,

as illustrated in Fig. 12 (a). Following the initial collision, the

droplets reemerge as two distinct localized waves subsequently

undergoing multiple collisions. This type of behaviour is also

present in various other nonlinear systems. For example, simi-

lar investigations have been reported in the context of 1D cubic-

quintic media in Ref. [47].

When the initial momentum of the droplets exceeds a critical

threshold k > kcr, each individual droplet remains intact after

the collision, as depicted in Fig. 12 (b). For other different val-

ues of β, the collision behaviour of small bell-shaped droplets

at low speeds closely resembles the dynamics observed in large

flat-top QDs, as shown in panels (b), (c) and (d) of Figs. 11.

In addition to our analysis of colliding droplets with equal

norms, we also investigate collisions involving droplets with

differing particle numbers. Panels (c) and (d) in Fig. 12 de-

pict the collision between a large droplet with N = 10 and

a smaller one with N = 1. The subsequent trajectory of the

smaller droplet after the collision highly depends on its initial

velocity. In Fig. 12(c) and (d), we explore a scenario where

large flat-top and small Gaussian-like droplets collide with an

initial momentum of k = 0.1. Following the collision, either

Fig. 12. Time-dependent density profiles of two in-phase QDs

are presented in this sequence. Panel (a) shows the case for

N1 = N2 = 0.5 and momentum k = 0.01 less than the critical

value kcr, while panel (b) displays a similar setup as in panel

(a) but with k = 0.1 exceeding the critical value kcr. Panel (c)

illustrates the collision dynamics of QDs with differing norms,

N1 = 10 and N2 = 1, at a momentum of k = 0.1. Panel (d) fol-

lows the same parameters as in panel (c) but with a momentum

of k = 0.15.

one or both of the droplets may become excited and disperse,

displaying internal periodic oscillations. When the initial speed

varies, the droplets may separate after the collision, potentially

resulting in a redistribution of particle counts. Remarkably, at

specific initial momentum, such as k = 0.3, a droplet with a

limited number of particles changes its direction, moving in the

opposite direction towards a larger QD as shown in Fig. 12(d).

Conservation of norm and momentum are monitored by calcu-

lation of these quantities before and after a collision. For norm

N we use Eq. (6) and for momentum M the following expres-

sion [31]

M ≡ i

∫ ∞

−∞
(Ψ∗Ψx −ΨΨ∗x)dx. (19)

The values were calculated at t = 0, (initial moment of time)

and t = 360 (after collision), and they were the same N = 11,

and M = 5.34 for both mentioned moments of time.

6. Conclusions

In conclusion, this paper presents a systematic theoreti-

cal study of quantum droplets in quasi-one-dimensional Bose-

Einstein condensates comprising a symmetric mixture of dilute

cold atomic gases. We introduce a modified mean-field one-

dimensional Gross-Pitaevskii equation with cubic and quartic

nonlinearity terms, accounting for attractive two-body interac-

tions and the repulsive impact of quantum fluctuations. Dy-

namical variational equations for time-dependent parameters of

quantum droplets are derived using a super-Gaussian ansatz.
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Based on these equations, we obtain approximate stationary so-

lutions for quantum droplets, which exhibit a bell-shaped soli-

tonic form for smaller norms. In comparison, profiles for larger

norms become wider, with amplitude and chemical potential

reaching the Thomas-Fermi limit. The time-dependent vari-

ational equations are explored to study the stability of quan-

tum droplets and oscillations of their shape near stationary so-

lutions. The frequencies of width and amplitude oscillations are

calculated, demonstrating that oscillations of width and shape

are in counter-phase, ensuring norm conservation. It is also

revealed that droplets are stable to small variations in shape.

The approximate results for stationary solutions and their sta-

bility, obtained by applying variational equations, are in excel-

lent agreement with the results of direct numerical simulations

of Eq. (3).

The dynamics of quantum droplets at periodic modulation of

the atomic scattering length are investigated. The phenomenon

is described by periodic modulations of the nonlinear coeffi-

cients γ(t) and δ(t). The analysis is performed using varia-

tional equations, demonstrating that relatively small modula-

tion amplitudes can initiate forced oscillations and resonances.

The variational approximation accurately predicts the parame-

ters of oscillations and resonance frequencies. For larger values

of modulation amplitudes, direct numerical simulations of the

modified GPE show that quantum droplets emit small density

waves, eventually decaying and disappearing.

The particular case of the LHY fluid is discussed using the

variational method with a super-Gaussian ansatz, assuming that

in the modified GPE, the repulsive quartic term induced by

quantum fluctuations is dominant, and the mean-field cubic

nonlinearity term is neglected. With the LHY term being re-

pulsive and balanced by a parabolic trap, it is shown that stable

stationary quantum LHY fluid exists.

The last part of the paper is devoted to the interaction and

collision of two quantum droplets through direct numerical so-

lutions of the modified quasi-1D GPE. It concludes that the in-

teraction between two quantum droplets strongly depends on

their distance, relative phase, initial velocities, and norms. Two

in-phase identical droplets with zero initial velocity attract each

other if their initial locations are close enough to interact by

tails. Repulsion occurs when the relative phase is equal to π.

For other phase differences, interaction may be asymmetric,

with redistribution of density, merging, or separation of droplets

after collision. In summary, the interaction of quantum droplets

exhibits complex, non-integrable behaviour.
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