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Abstract

We developed a mathematical model to investigate the role of indirect transmission in the spread of infectious diseases, using the
illustrative example of sarcoptic mange as a case study. This disease can be transmitted through direct contact between an infected
host and a susceptible one, or indirectly when potential hosts encounter infectious mites and larvae deposited in the environment,
commonly referred to as fomites. Our focus is on exploring the potential of these infectious reservoirs as triggers for emerging
infection events and as stable reservoirs of the disease. To achieve this, our mean field compartmental model incorporates the
epidemiological dynamics driven by indirect transmission via fomites. We identify different types of dynamics that the system can
go into, controlled by different levels of direct and indirect transmission. Among these, we find a new regime where the disease can
emerge and persist over time solely through fomites, without the necessity for direct transmission. This possibility of the system
reveals an evolutionary pathway that could enable the parasite to enhance its fitness beyond host co-evolution. We also define a new
threshold based on an effective reproductive number, that enables us to predict the conditions for disease persistence. Our model
allows us to assess the potential effectiveness of various disease intervention measures by incorporating a feature observed in real
systems. We hope this contributes to a better understanding of infectious disease outbreaks.
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1. Introduction

The representation and analysis of epidemics through math-
ematical modeling provides quantitative descriptions of the re-
lationships between variables and enables the formulation and
testing of hypotheses. By identifying the parametric conditions
associated with specific behaviors of the system, the mathe-
matical framework can be useful in understanding the different
mechanisms at play, as well as making predictions about the
global dynamics of an epidemic [1, 2]. Of particular interest are
emergent infectious diseases, caused by unknown pathogens or
by new variants of previously studied ones [3, 4]. These dis-
eases currently constitute a severe threat, not only to human
populations, but also to biodiversity and ecological networks
in various parts of the world. Their effects can range from in-
creases in natural mortality rates to local extinction of native
species [5, 6].

Among the infectious agents we can count not only micro-
bial and viral pathogens [7, 8, 9], but also eukaryote parasites,
like protozoa, helminths and arthropods [10, 11]. Within this
last group, we can mention Sarcoptes scabiei, which is consid-
ered an important threat for wildlife, with a great impact on a
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wide range of host species and ecosystems [12, 13, 14, 15, 16].
The disease associated with Sarcoptes scabiei is known as sar-
coptic mange (or scabies in the case of humans), and its symp-
toms originate as a hypersensitive allergic response from the
host, which can lead to a chronic process, with a decrease of
the host’s performance [15, 17, 18, 19, 20]. The present work
has been inspired by an outbreak of sarcoptic mange in wild
camelids populations, that occurred in 2014 in San Juan, Ar-
gentina [15]. Nevertheless, we keep our treatment at an abstract
level, providing a general framework for the description of sim-
ilar situations.

During the International Meeting on Sarcoptic Mange in
Wildlife in 2018, six key points of interest were identified to
further understand this infectious disease, including its natural
dynamics and various forms of transmission within wild popu-
lations. This is due to the fact that, despite the empirical evi-
dence emphasizing the role of sarcoptic mange as an emergent
threatening disease for wildlife [16], the causes of the devel-
opment of these epidemic episodes are still poorly understood
[12, 14].

Sarcoptes scabiei constitutes a case of a parasite that can be
transmitted through direct contact between a current host and
a potential one, or indirectly when a potential host comes into
contact with infectious mites and larvae deposited in the envi-
ronment, commonly called fomites. The role of both types of
contact may vary for different susceptible species [14, 19, 21].
The post-invasion dynamics in wild populations have been de-
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scribed as variable, resulting in either local declines or en-
demic states of the disease [15, 16, 22, 23]. Additionally, evi-
dence suggests that these outcomes could stem from both direct,
density-dependent dynamics, and indirect, density-independent
transmission [24, 25].

Taking sarcoptic mange as a reference parasite model, our
aim is to analyze the potential of fomites as a triggering fac-
tor for emerging events and also as a reservoir of the disease,
capable of persisting over time. For this, we have developed a
mean field system based on classical epidemiological models
[26, 27], with the addition of a compartment that represents the
fomites as an alternative source of infection [28]. This increase
in the analytical complexity of the system is rewarded with a
more comprehensive, closer to reality, perspective on the dis-
ease dynamics, providing a better understanding for eventual
management decisions [29, 30].

2. Model description

To study and describe the mean field dynamic of sarcop-
tic mange infested population, taking into account both direct
and indirect transmission, we developed a system of differential
equations based on classical compartmental models [26, 27].
Specifically, our model is an extension of an SEI model, with
vital dynamics represented by a logistic term. The rationale for
incorporating this term is twofold: firstly, the time scale associ-
ated with sarcoptic mange outbreaks is comparable to the lifes-
pan of the host population, resulting in the establishment of en-
demic states [24, 25]; secondly, its inclusion alters the estima-
tion and characterization of the system’s fixed points, defining
threshold values and thus generating new potential scenarios for
the development of the disease [8, 31, 32]. The SEI model is
represented by the following equations:

dS
dt
= r(S + E)(1 − S − E − I) − β1S I, (1)

dE
dt
= β1S I − γE, (2)

dI
dt
= γE − µI. (3)

Each equation reflects the dynamic of one of the epidemiolog-
ical compartments: S are the healthy and susceptible individu-
als, E (exposed) are the non-infectious carriers of the disease,
and I are the infectious individuals, capable of transmitting the
disease. The parameters of this reference model are r (net re-
production rate), β1 (direct transmission rate of the disease), γ
(rate at which the non-infectious carriers become infectious),
and µ (death rate of the infected individuals) [33]. In this foun-
dational model, transmission solely occurs through infected in-
dividuals, without considering the presence of fomites or any
other form of indirect transmission pathways.

In our proposal, we introduce a fourth component that de-
scribes the dynamic of fomites, F, together with corresponding
new terms in Eqs. (1) and (2), accounting for the indirect trans-

mission:

dS
dt
= r(S + E)(1 − S − E − I) − β1S I − β f S F, (4)

dE
dt
= β1S I + β f S F − γE, (5)

dI
dt
= γE − µI, (6)

dF
dt
= ρI − ωF. (7)

The rate at which these reservoirs are introduced into the envi-
ronment is determined by the parameter ρ and the total number
of infected individuals in the system. The rate at which they are
removed from the system is given by ω, the inverse of the max-
imum survival time of eggs and larvae outside the host. Finally,
the indirect transmission of the disease over the susceptible is
quantified by the parameter β f , which constitutes an additional
non-linear source of exposure in the dynamics (Fig. 1)2. Sim-
ilar treatments to include the mechanism of indirect transmis-
sion were conducted in studies [28, 34], although both the ini-
tial models and their approach are different from what we have
done in this work.

Figure 1: Scheme of the SEIF model

Another distinctive aspect of our model is based on the be-
havioral change observed in infected individuals. They typi-
cally spend a significant amount of time scratching themselves,
diverting their attention from other activities, reducing its per-
formance and fitness [35, 36, 37, 38]. Based on this, in our
model, infected individuals do not contribute to population
growth, while still consume their share of resources, as reflected
in Eq. (4).

We have analyzed the steady state solutions of the system of
equations (4-7), as well as their stability. We have also per-
formed an extensive numerical study of the dynamical system,
including a bifurcation analysis for each steady state solution
of the system as a function of the fomite control parameters β f

and ρ.
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3. Results

3.1. Steady state solution analysis

The SEI system, Eqs. (1-3), has 2 relevant equilibria (besides
the extinction one, S = E = I = 0, which is always an unstable
state, and one with negative populations). The phase space is
organized in two regimes: a disease-free state and an endemic
one. An appropriate control parameter to characterize the tran-
sition between them is the ratio between the infection rate and
the infection-related death rate, R0 = β1/µ, which can be inter-
preted as the basic reproductive number of the epidemic, since
it represents the number of contagions produced by each in-
fected, while alive. As expected, if the death rate is faster than
the contagion (that is, if R0 < 1) the system is free of disease.
On the contrary, if R0 > 1, that state is unstable and the sys-
tem displays a persistent infected population. The disease-free
state is a stable node and only attractor of the dynamics, when
R0 < 1. At R0 = 1 there is a transcritical bifurcation, where the
two equilibria interchange stability, and the the system enters
an endemic state when R0 > 1.

The SEIF model also features two significant equilibria
which are analogous to those in the SEI model. However, the
stability of these equilibria cannot be assessed by considering
only the previously defined R0, as it is the basic reproductive
number of a system that considers only direct transmission.
One way to describe the behavior of the SEIF model is by con-
sidering an additional control parameter, Φ = β fρ/ω, which
characterizes the dynamics of fomites. This allows us to draw
a phase diagram (see Fig. 2), showing the stable states of the
system based on two control parameters, R0 and Φ. In this rep-
resentation, the SEI system is restricted to the horizontal axis,
where either β f or ρ are zero.1

To isolate their effects on the steady state of the system, we
kept the remaining parameters fixed. The growth rate will be
kept as r = 0.11, corresponding to the system of wild camelids
that inspired our model [39], whereas γ = 0.5 corresponds to a
incubation time of a couple of days. Their exact values do not
affect the structure of the phase space of the model that we will
describe below.

The phase diagram shows that the disease-free state (I = 0)
is restricted to a triangular region around the origin. Increasing
the role of the fomites destabilizes this state, which bifurcates
into an endemic state with I > 0. The transcritical bifurcation
(marked T in Fig. 2) can be found analytically, and it is given
by the straight line:

Φ = µ (1 − R0). (8)

Figure 2 shows that this transition is rather involved. The trian-
gular disease-free region comprises a stable node (adjacent to
the horizontal axis, which is the SEI system) and a stable spiral
that develops from it when a pair of eigenvalues become com-
plex.2 The transcritical line T, shown in blue in Fig. 2, separates

1See mathematical details in the Supplementary Material.
2Bear in mind that the space is four-dimensional, which allows a spiral dy-

namics yet with I = 0.

Figure 2: Phase diagram of the SEIF system. The bifurcation lines where iden-
tified through the eigenvalues of the linearized system. The bifurcation marked
T is transcritical (blue line), while the other one is Hopf (red line). Note that
there is a break in the vertical axis. Parameters: µ = 0.1, β f = 0.5, ω = 0.4,
r = 0.11, γ = 0.5, while β1 and ρ where varied to cover the range of control
parameters.

both these states from corresponding ones with and endemic
(I > 0) state. Most of this phase consists of a stable spiral, but
a small rhomboidal region is actually a stable node, which is
also adjacent to the corresponding state in the SEI system (the
horizontal axis).

The structure of the phase diagram of Fig. 2 highlights the
crucial role of the fomites as a reservoir of disease: they allow
the infectious agent to avoid extinction. We see that, even for
R0 < 1 (which, in the SEI system, ensures the disappearance of
the disease), if the SEIF system lies above the transcritical line
T, the infection persists. The key role of the fomites manifests
itself also at larger values of the control parameters. There is
a further transition that destabilizes the spiral and produces a
limit cycle as a transcritical Hopf bifurcation (H). These transi-
tions will be further elaborated on in the following.

A straightforward approach to describing the system’s behav-
ior is through horizontal and vertical cross-sections of the phase
diagram just presented. In Fig. 3, we illustrate two horizontal
sections corresponding to the cases Φ = 0 (SEI model, without
fomites) and Φ = 0.0125 (SEIF model), depicting the behavior
of the relevant eigenvalues as functions of R0.

The relevant eigenvalue of the disease-free state (Fig. 3, top
panel) is shown in black (full line is the real part, while the
imaginary part is dashed), and the one corresponding to the en-
demic state is blue (same convention for real and imaginary
parts). The critical point, marked T, is the transcritical bifurca-
tion between both states, and the real parts cross at the value
0, interchanging stability. It can also be seen that, while the
disease-free phase is always a stable node (null imaginary part),
the endemic state becomes a stable spiral at a larger value of
R0. This is analogous to a mechanical oscillator at the criti-
cal damping, changing from overdamped to underdamped, and
consequently we marked this point as C1 in the graph.
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Figure 3: Real and imaginary parts of the eigenvalues controlling the stability
of the disease-free (I = 0, top panel) and the endemic (I > 0, bottom panel)
phases. Each diagram corresponds to a different cut on the vertical axis (Φ) of
the phase diagram of Fig. 2. At the point T, the real part of an eigenvalue of
the disease-free state exchange sign with the one of the endemic state, which
indicates a change of stability on both equilibrium points. Additionally, C1
and C2 indicate the points where their respective eigenvalues become real or
complex, respectively. Parameters: r = 0.11, γ = 0.5, µ = 0.1, and for the SEIF
system: β f = 0.5, ω = 0.4, ρ = 0.01 (β1 was varied to cover the range of the
control parameter R0).

The addition of fomites, as represented by Eqs. (4-7), pre-
serves and extends this structure in the larger phase space. The
stability of the two relevant equilibria can be assessed analyti-
cally. The real and imaginary parts of the relevant eigenvalues,
for a representative case, are shown in Fig. 3 (bottom panel).
The transcritical bifurcation (T) is still there, as well as the
transformation of the endemic node into a spiral (C1), but there
is an additional critical point in the region where the disease-
free state is stable, from which the spiral becomes a node (C2).

To complete the analysis, we display in Figure 4 the relevant
eigenvalues corresponding to vertical cuts at values R0 = 0.5
and R0 = 1.1 of the diagram presented in Fig. 2, as functions
of Φ. At large values of Φ a transcritical Hopf bifurcation (H)
takes place, as the real part of one of the eigenvalues of the
endemic state turns positive, resulting in the loss of stability
of that equilibrium point. At small values of Φ, on the other
hand, a transition C is observed where the eigenvalues become
complex.

To complement the visualization of the phases shown in
Fig. 2, we present a bifurcation diagram in Fig. 5, using the
infected population as order parameter. The phase of no infec-
tion can be seen, again, as a triangle near the origin. The stable
center of the node or spiral occupies the adjacent phase. In the
region of the limit cycle, we show the maximum and minimum
of the infection oscillation as order parameters.

There are several interesting features of the scenario pre-
sented by these results. Firstly, it is worth noting the way in
which the amplitude of the cycles grows, for increasing values
of the fomite parameter (which means increasing β f or ρ, or
decreasing ω).
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Figure 4: Real and imaginary parts of the eigenvalues controlling the stability
of the disease-free (I = 0, top panel) and the endemic (I > 0, bottom panel)
phases. Note that there is a break in the horizontal axis. Each diagram corre-
sponds to a different cut on the horizontal axis (R0) of the phase diagram, as
indicated. The point H marks a Hopf bifurcation and the onset of a limit cycle.
The point C indicates the point where the eigenvalues become complex. Pa-
rameters: β1 = 0.05 and 0.15, µ = 0.1, β f = 0.5, ω = 0.4, r = 0.11, γ = 0.5,
while ρ was varied to cover the range of the control parameter.

Another interesting feature is the non-monotonic behavior
observed in the bifurcation diagram. There exists a broad range
across both control parameters where the infected phase de-
creases as the parameters governing the infection severity in-
crease (Fig. 5). Nevertheless, since the model includes a vital
dynamics that also affects the susceptible population, the frac-
tion of infected always grows (not shown here).

4. Discussion

4.1. An endemic state induced by indirect transmission

As described in the previous section and shown in Fig. 5,
a fomites-free system (the horizontal axis of Fig. 2, where ei-
ther β f or ρ are zero), with R0 smaller than 1, stabilizes at the
disease-free state. If there are fomites, but they are ephemeral
as defined by Φ, the same situation holds. However, with the
same value of R0 (e.g., same contagion and death rates), the
system can abandon the disease-free state, and instead stabilize
at the endemic state on a spiral, if the following condition is
fulfilled:

Φ > µ − β1. (9)

This threshold corresponds to the point T in the Fig. 3, where
there is change of sign in the eigenvalues of the endemic state
that are sensitive to fomite parameters. With a further increase
of Φ, the spiral loses its stability and a stable limit cycle is
formed around the equilibrium. This assessment of the speed of
environmental transmission was also made at [34], but here we
were able to determine the specific minimum level for success-
ful disease invasion. The figure labeled Fig. 6 illustrates this
concept, with the blue line representing the system trajectory
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Figure 5: Bifurcation diagram, showing the infected population size projected
from the R0-ϕ plane.

when Φ is below this minimum level, stabilizing in the disease-
free state, while trajectories depicted by the black and red di-
verge when Φ exceeds the minimum level, showcasing stable
spiral and limit cycle dynamics discussed in previous section.

The implications of this result are most interesting, since it
shows that the disease persists under a regime where the in-
fected individuals die faster than they would be replaced on
the classical SEI system with no indirect transmission. The
fomites can be thought of as an environmental cache of the in-
fectious agent, that enhance the chances of having an endemic
state by increasing the “contagion risk” of the susceptible pop-
ulation, almost independently of the infected population itself.
Although those infected tend to be eliminated rapidly, they can
spread the infection postmortem through these reservoirs.

Once the system enters the phase of sustained oscillations,
as shown in Fig. 5, the infection recovers from a small value at
each successive cycle. Such behavior is reasonable in a contin-
uous model. However, it should be noted that an actual system
would consist of discrete individuals and be subject to stochas-
tic factors (either demographic or environmental). In such a
case, it is unavoidable that the infection would disappear due to
fluctuations. Without an external source of infected, the system
would remain free of infection.

Based on bibliographic data, we decided to exclude the in-
fected individuals from the reproductive process. For a further
test of the implications of this assumption, we performed a vari-
ant of our model Eq. (4-7) including the infected fraction in the
vital term. This resulted on the vanishing of the limit cycle
phase and more damped oscillations in the spiral phases com-
pared to the previous case (not shown here). This outcome is
interesting, considering that in the similar system analyzed in
Ref. [34], no analytical differences were found in the system
under different growth functions.

4.2. Outbreak trigger
In the same regime (R0 < 1), an outbreak can begin after a

small perturbation from the disease-free state, unlike the situa-

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0

0 . 1

0 . 2
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0 . 4
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S ( t )
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 e n d e m i c  ( β f  =  0 . 3 2 )
 e n d e m i c  ( β f  =  0 . 6 3 )

i n i t i a l  c o n d i t i o n

Figure 6: Trajectories in the reduced susceptible-infected phase space. When
Φ is subcritical, the system stabilizes in a disease-free stable node (blue line).
When Φ is below H, the stable state is an endemic spiral. When it is beyond
the Hopf bifurcation, the stable state is an endemic limit cycle (red line). The
trajectories were obtained for three different values of β f as indicated in the text,
while keeping the rest of the parameters fixed at the values r = 0.11, β1 = 0.05,
γ = 0.5, µ = 0.1, ρ = 0.7, and ω = 0.4.

tion of a system without fomites. It can even arise and persist
without any level of direct transmission (β1 = 0), as illustrated
in Fig. 7, in the series labeled as I(i). It’s also noteworthy that,
even without direct transmission, the disease can enter the en-
demic state with significant oscillations in S (i) and I(i), that
regularly bring the population close to extinction.

Additionally, we note the striking resemblance between the
series labeled as I(d) (only direct transmission) and I(d+i) (both
direct and indirect transmission).

Using the threshold expressed by Eq. (9), which corresponds
directly to the transcritical line T marked in Fig. 2, we can
rewrite it to define an effective reproductive number for the sys-
tem with indirect transmission, RS , as a replacement of the now
inadequate R0. This parameter would be:

RS =
1
µ

(
β1 +

ρ β f

ω

)
. (10)

This parameter has been calculated in Ref. [28]; however, an
important distinction is that our system does not include a term
for the replacement of the susceptible population. Considering
this main difference, it is remarkable that we still can predict if
the system goes to the disease-free or the endemic states, based
on such a simple generalization of R0. Even when there is no
substitution or recovery of the infected population, if RS ≤ 1,
the disease is extinguished, otherwise it persists.

As we can observe in Fig. 7, there is a small difference be-
tween the system with only indirect transmission (curves of S (i)
and I(i)) and a system with both forms of transmission (curves
of S (d + i) and I(d + i)). This is related to the fact that the RS

values between these curves are very close: RS = 11 for direct
transmission and RS = 10.5 for the mixed case.
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Figure 7: Time series of disease evolution under different transmission mech-
anisms under the regime R0 < 1. Starting from the same initial condition, the
system stabilizes at the disease-free equilibrium in the absence indirect trans-
mission to reinforce the disease spread (blue lines). In cases involving indirect
transmission, whether with direct contact (black lines) or even without it (red
lines), the disease can persist within the system.

4.3. Conclusion
Our results show that the indirect transmission by fomites

can actually perform as an outbreak trigger and as an effective
stable reservoir of the infectious agent, allowing the disease to
enter into an endemic state, even under a regime where the in-
fected individuals die faster than they transmit the disease to
others. These outcomes are similar to those observed in other
systems [28, 34], but conducting a more detailed study of the
equilibrium points allowed us to obtain a more precise descrip-
tion of the phase space and further classification of the different
regions shown in Fig. (2).

It has been described that, in many human and wildlife pop-
ulations, sarcoptic mange persists as an endemic disease, gen-
erating periodic fluctuations of the population. It has also been
observed that, in the initial waves, the populations experiment
high rates of mortality, and that in later waves the mortality
rate is reduced, arguing the selection of resistant individuals and
herd immunity [40]. As we showed in this work, this damped
oscillations could also emerge from the mathematical properties
of the system, without involving selection or immune response
processes (we did not even considered a recovery compartment
in our model).

Mathematical modeling allows us to describe the relation be-
tween the different variables and different courses of the dis-
ease, which is a useful tool to evaluate possible measures of
intervention or management of the disease [2, 33, 41]. For
wildlife, the most considered measures are eradication, control
and prevention [40, 42]. Based on our model and results, the
eradication of infected individuals does not necessarily put an
end to the outbreak, given the fact that, in the SEIF system,
there is a second source of infection in the form of fomites,
which makes the system very vulnerable to small perturbations.
The control of the spread of a disease by preventing the direct
transmission between hosts, which in our model is represented

by the parameter β1, could also not be enough, considering that
there is another type of contagion quantified by β f , and the
disease persists even without any direct transmission (β1 = 0,
Fig. 7). For these reasons we consider that the best kind of mea-
sure would be prevention, which implies reducing the probabil-
ity of encounter of a disease reservoir and to get the pathogen
(which in terms of our model would mean reducing β f ), and
therefore moving the system away for the endemic phase.

Nevertheless, even if our fomite parameters (ρ, β f and ω)
capture many factors involving the parasite’s fitness on the sys-
tem off-host, it is important to remember that the mean field
approximation does not take into consideration other relevant
phenomena, such as the host species social and foraging be-
havior or the structure of the habitat [36, 43]. Some of them
would bring a stochastic aspect into the mathematical mod-
elling, as mentioned above, or modifications to the well-mixed
assumption inherent to the mass-action equations analyzed in
the present work. All these factors could lead to outcomes dif-
ferent from those predicted here. For instance, stochastic or
seasonal behavior or the inclusion of the Allee effect [44], along
with the oscillating nature of the endemic state, could result
in the total extinction of the population, a state that, as men-
tioned, is unstable in our mean-field model. These aspects are
currently been taking into consideration in the development of
a spatially explicit model, where we will test the relative impor-
tance of every fomite parameter in the evolution of a sarcoptic
mange infection on a more realistic scenario, inspired by the
outbreak that took place in the wild camelids populations of
San Guillermo National Park [15, 16].

Still, it is worth stressing the biological significance of
fomites and their potential role as an outbreak trigger and dis-
ease reservoir, considering the fact that several of the parame-
ters considered (such as ρ and ω) are functionally related only
to traits that belong to the parasite, and not to traits of the host.
With this in mind, if we consider that the real system could have
any similarity to our mean field model (see, for example, [45]),
the parasite could improve its fitness by enhancing characteris-
tics that are beyond co-evolution processes with the host. This
kind of betterment is natural of parasites in wildlife, as they are
under strong selective pressures to evolve strategies that enable
them to persist [43, 46, 47].
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